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ABSTRACT
Spatial crowdsourcing (a.k.a mobile crowdsourcing) is a new
paradigm of data collection, which has been emerged in the
last few years to enable workers to perform tasks in the
physical world. The objective of spatial crowdsourcing is to
outsource a set of location-specific tasks to a set of work-
ers, in which the workers are required to physically be at
the task locations to complete them, i.e., taking pictures
or collecting air quality information at specified locations
of interest. In this paper, we discuss the unique challenges
of spatial crowdsourcing: task assignment, incentive mecha-
nism, worker’s location privacy and the absence of real-world
datasets. Thereafter, we present our current approaches to
those issues.

Categories and Subject Descriptors
H.2.4 [Database Management]: Database Applications—
Spatial databases and GIS

1. INTRODUCTION
The increase in computational and communication per-

formance of mobile devices, coupled with the advances in
sensor technology lead to an exponential growth in data col-
lection and sharing by smartphones. Exploiting this large
volume of potential users and their mobility, a new mecha-
nism for efficient and scalable data collection has emerged,
named Spatial Crowdsourcing (SC) [5]. With SC, the re-
quester issues a location-specific task (spatial task) to a spa-
tial crowdsourcing server (SC-server). Consequently, the
SC-server crowdsources the task among the available work-
ers in the vicinity of the events. Once the workers document
their events with their mobile phones, the results are sent
back to the requester. SC has applications in numerous do-
mains such as journalism, tourism, intelligence, emergency
response and urban planning. Examples of real-world SC

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

3rd ACM SIGSPATIAL PhD Workshop’16, October 31-November 03 2016,
Burlingame, CA, USA

c© 2016 ACM. ISBN 978-1-4503-4584-2/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/3003819.3003820

applications are TaskRabbit1 (commercialized system) and
gMission2 (testbed system).

A recent survey [19] thoroughly discuss the unique chal-
lenges of SC, including task assignment, incentive mecha-
nism, privacy protection, the absence of real-world datasets,
scalability and quality of reported data, etc. Our work has
been focusing on the first four issues. The first objective
of the SC-server is to match many requesters’ tasks to nu-
merous workers in real-time given the dynamic arrivals of
workers and tasks, i.e., new tasks and workers become avail-
able or as tasks are completed (or expired) and workers leave
the system. Thus, the dynamism of the arriving tasks and
workers renders an optimal solution infeasible in the online
scenario. Toward this end, we study the complexity of of-
fline task assignment where the server is clairvoyant about
the future workers and tasks and then propose heuristics
for the online scenario that exploit the spatial and temporal
knowledge acquired over time.

The second issue that hinders the success of SC is workers’
location privacy as mobile users may not accept to engage
in spatial tasks if their privacy is violated. To illustrate,
workers are often assigned to nearby tasks to minimize the
travel cost; thus, matching must take into account the lo-
cation of workers. However, disclosing individual locations
(to the SC-server) has serious privacy implications. With-
out privacy protection, a malicious adversary can stage a
broad spectrum of attacks such as physical surveillance and
stalking, and breach of sensitive information such as an in-
dividual’s health issue (e.g., presence in a cancer treatment
center), alternative lifestyles, political and religious prefer-
ences (e.g., presence in a church). Thus, we propose a frame-
work that enables the participation of the workers without
compromising their privacy.

A major challenge in any crowdsourcing system is how
to motivate people to participate, in which payment is a
popular mean. However, little study has been done on the
relationship between incentives and workers’ participation
in SC. Motivated by such relationship, we conduct two real-
world SC campaigns utilizing our mobile app, named Genkii,
which enables users to report moods at their locations and
time (regarded as spatial task). We reward users for each
performed task by means of Yahoo! Japan Crowdsourcing.
We conduct various analysis on the reported data, revealing
interesting mobility patterns. Last but not least, we mention
the absence of real-world datasets in the research community

1https://www.taskrabbit.com/
2http://www.gmissionhkust.com/
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and discuss our approach to generate realistic data workload
for evaluating SC algorithms.

This paper describes our contributions to spatial crowd-
sourcing. We first present a taxonomy for SC (Figure 1);
followed by our approaches to the challenges in SC (Sec-
tion 3); Finally, Section 4 concludes the paper and provides
future research directions.

2. TAXONOMY
In this section, we define a taxonomy of SC (Figure 1) and

classify our studies based on the taxonomy (Table 1).
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Figure 1: The taxonomy of spatial crowdsourcing.

Crowdsourcing can be classified based on the motivation
of the workers into two classes: self-incentivised and reward-
based (Figure 1). With self-incentivised SC, workers volun-
teer to perform the tasks or usually have other incentives
rather than receiving a reward such as promoting their cul-
tural or religious views. An example of this class is traf-
fic.berkeley.edu, in which more than 5000 users voluntarily
install traffic software onto their phones and report traffic
information. With reward-based SC, every spatial task has
a price (assigned by a requester) and workers will receive a
certain reward for every task they perform satisfactorily. Ex-
amples of this class include fieldagent.net and gigwalk.com.
Another example is [4], a reward-based SC platform.

Next, we divide the spatial tasks into three groups based
on their geospatial coverages, i.e., point task, region task and
complex task. Most of our studies assume point task [13, 14,
15, 16], such as taking pictures at particular locations of in-
terest, which require workers to physically present at the
task location to perform the task. Meanwhile, our other
studies [11, 10] consider region task, for example, collecting
environmental information. Since the requested data such
as air quality, temperature and precipitation exhibit spa-
tial/temporal continuity in measurement, workers available
in close vicinity of the task location and request time are
sufficient to fulfill that task. Furthermore, one may need to
crowdsource a spatial complex task consisting of some spa-
tial sub-tasks [2]. An example of a complex task is to obtain
pictures of ten specific buildings; none of them is allowed to
be missed. The complex task is completed only when all of
the ten pictures, each of a particular building, are captured.

Finally, we define two task assignment modes in SC, Worker
Selected (WS) and Server Assigned (SA) [13, 11, 14, 15, 16,
2]. With the WS mode, the SC-server publishes the spa-
tial tasks and online workers can choose any spatial task
in their vicinity without the need to coordinate with the
server. An example of this mode is TaskRabbit, where the
workers browse for available spatial tasks, and pick the ones
in their neighborhood. One drawback of the WS mode is
that the server does not have control over the allocation of
spatial tasks; thus, workers can choose tasks based on their
own objectives (e.g., choosing the k closest spatial tasks to

minimize their travel cost). This may result in some spatial
tasks never be assigned, while others are assigned redun-
dantly. With the SA mode, online workers send their loca-
tions to the SC-server, which then assigns to every worker
his nearby tasks. The advantage of SA is that unlike WS,
the SC-server has the global picture, and therefore, can as-
sign to every worker his nearby tasks while maximizing the
overall task assignment. However, the drawback is that the
server knows the locations of all workers, which can pose a
privacy threat.

3. FOCUS STUDY

3.1 Task Assignment
With server-assigned SC, requesters and workers typically

register with a centralized SC-server that acts as a broker
between parties, and often also plays a role in how tasks are
assigned to workers. Therefore, the main challenge with SC
is to devise an efficient approach to assign tasks to workers
given the large scale and dynamism of the environment. In
our prior work [16], we propose a framework where the server
assigns to every worker tasks in proximity to his location
with the aim of maximizing the overall number of assigned
tasks. We formally define this maximum task assignment
problem and propose alternative solutions by exploiting the
spatial properties of the problem space, including the spatial
distribution and the travel cost of the workers. The heuris-
tic that obtains the maximum number of assigned tasks is
Least Popular Priority (LPP). The idea of LPP is to priori-
tize tasks during the assignment, i.e., which tasks should be
assigned now and which tasks can be deferred to a future
time period. In [16], the “popularity” of a task’s location in-
dicates whether the task can be assigned to future workers.
The reason is that tasks situated in a “worker-sparse” area
are less likely to be performed in the future since there may
be no worker visiting such area. Thus, those tasks should
have higher priority at the current time period. LPP pro-
vides 20% increase in the number of assigned tasks when
compared to a baseline algorithm.

The aforementioned approach maximizes task assignment
at every time snapshot; such local optimization may not re-
sult in a globally optimal answer over the entire campaign.
In our recent study [11], we propose a problem of maximiz-
ing the number of assigned tasks under the constraint on
the number of workers to activate referred to as “budget”.
When a budget is specified for the entire campaign, we de-
vise an adaptive strategy to dynamically allocate the given
budget to a number of time periods. We propose an online
algorithm based on the contextual bandit to captures the ar-
riving patterns of workers and tasks. The empirical results
show that the proposed solution increases the task coverage
by 40% over the prior heuristic (LPP).

3.2 Workers’ Location Privacy
Thus far, our assignments take as input exact worker lo-

cations to minimize the travel cost of workers to the task
locations [11, 16, 2]. However, leaking location information
may lead to serious consequences. For example, a security
flaw in a gay dating app named Grindr reveals precise loca-
tion of 90% users [1], leading to serious issues in countries
where homosexuals faced extreme dangers, such as Egypt
and Russia. A recent study [18] shows that a single de-
vice with limited resources can report false congestion and



Paper Worker Type Task Type Assignment Type
Reward-based Self-incentivised Point Region Complex Worker Selected Server Assigned

[14][15][16][13] x x x
[2] x x x x
[11] x x x x
[12] x x x
[10] N/A N/A x x N/A N/A

Table 1: Our contributions to spatial crowdsourcing.

accidents and automatically reroute user traffic on Waze–a
crowdsourced mapping service. Thus, there is a need to
protect worker location privacy while still use SC-server as
a broker to assign tasks to workers.

Our prior work [14] shows that privacy-preserving worker-
task assignment is a challenging task; existing solutions in
the context of location-based services and outsourced databases
neither offer satisfactory results nor apply in SC. One may
claim that simply removing workers’ identity by using fake
identity (i.e., pseudonymity) would achieve privacy. How-
ever, we argue that hiding users’ identity without hiding
their locations does not provide privacy. This is because a
user’s location information can be tracked through several
stationary connection points (e.g., cell towers). The user’s
location trace can be easily associated with a certain resi-
dence home or office, which reveal the user’s identity. This
has been referred to as inference attack [6].

Unlike another study [8] that uses cloaking technique to
tackle the privacy issue, we propose a framework for protect-
ing the privacy of worker locations, whereby the SC-server
only has access to data sanitized according to differential
privacy (DP) [3]. With this framework, worker locations
are first pooled together by the data owner (i.e., cell service
provider) and sanitized according to DP. In practice, every
worker subscribes to a cellular service provider (CSP), which
already has access to the worker locations, e.g., through cell
tower triangulation. Thereafter, the SC-server only has ac-
cess to the sanitized data. However, using DP techniques
introduces three challenges.

First, the SC-server must match workers to tasks using
noisy data, which requires complex strategies to ensure ef-
fective task assignment. Worker location data are sanitized
at the CSP using a private spatial decomposition (PSD),
named Adaptive Grid [9]. PSD is a sanitized spatial in-
dex, where each index node contains a noisy count of the
workers rooted at that node. On top of the noisy data,
to ensure that task assignment has a high success rate, we
developed analytical models and task assignment strategies
that consider task completion rate, worker travel distance
and system overhead. Second, by the nature of DP protec-
tion model, fake entries may need to be created in the worker
PSD. Thus the SC-server cannot directly contact workers,
not even if pseudonyms are used, as establishing a network
connection to an entity would allow the SC-server to learn
whether an entry is real or not, and breach privacy. To ad-
dress this challenge, a geocast mechanism was introduced
for the task request dissemination. Geocast is a routing and
addressing method, which is used to deliver information to
all devices situated within a geographical area. Once a PSD
partition is identified by the analytical model outlined above,
the task request is geocast to all the workers within that par-
tition. Third, protecting worker locations across multiple
timestamps is notoriously difficult. As workers move, new

snapshots of sanitized worker locations must be disclosed, to
maintain task assignment effectiveness. However, access to
sequential releases gives an adversary more powerful attack
opportunities. To counter such threats, differential privacy
requires more noise injection, which in the worst case may
reach amounts that are proportional to the length of the re-
leased location history (i.e., number of disclosed snapshots).
Clearly, such large noise would render the data useless, since
SC is likely to be a continuously offered service in practice.
To address the challenge of moving workers, we investigate
privacy budget allocation techniques across consecutive re-
leases, and we employ post-processing techniques based on
Kalman filters to reduce the inaccuracy introduced by noise
addition [13]. Our experimental results show that workers’
location privacy is protected without compromising perfor-
mance and the extra travel cost is tolerable (20% increase
when compared to the non-private case).

3.3 Incentive Mechanism
Incentive mechanism plays an important role in maximiz-

ing the number of performed tasks in SC. However, little
research has been done to understand worker’s motivation
in SC markets using real systems. To fill this gap, in a re-
cent work [12], we study the workers’ behavior in two new
paid SC campaigns in Japan. We develop an Android app
named Genkii to collect users’ moods and use Yahoo! Japan
Crowdsourcing as the payment platform. To receive a re-
ward, a worker needs to use Genkii to report his/her mood
(i.e., Happy, Ok, Dull) at the right time and at the right
place. Subsequently, the participating users’ behaviors are
analyzed through spatial and temporal analysis. Our find-
ings in this study are three-fold.

We first study the relationship between incentives and
participation by analyzing the impact of offering a fixed re-
ward versus an increasing reward scheme. Note that the
total rewards were the same in both campaigns. We observe
that users tend to stay in a campaign longer when the pro-
vided incentives gradually increase over time, showing that
workers are motivated by growing incentives. Second, we
report the worker performance during the two campaigns.
We obtain a total of 1059 reports from both campaigns, out
of which 436 reports were from the first campaign and 623
reports from the second. We observe a cyclic pattern in the
number of reports per hour during a day. Particularly, 4, 12
and 20 are the hours with peak numbers of reports. Inter-
estingly, they are pastimes in Japan. Moreover, 1, 9 and 17
are the hours with the least number of reports. Not surpris-
ingly, these are common commute times in Japan. Third,
we study worker mobility from the reporting locations. Each
worker has a certain degree of mobility defined as the area
of the minimum bounding rectangle that encloses all the
reporting locations. We found that the degree of mobility
is correlated with the reported information. For example,



users who travel more are observed to be happier than the
ones who travel less.

3.4 Lack of Real-world Datasets
One of the biggest challenges for the research community

is the absence of real-world SC datasets. Thus, most SC
algorithms are evaluated using proprietary data, users’ his-
torical call records [7] or synthetic datasets [5, 2, 11, 15,
17]. The call records (or mobility data) do not represent
actual datasets needed for the SC studies, in which workers
respond to requesters’ tasks. Hence, the generated synthetic
datasets from these studies may not represent the properties
of real-world SC datasets.

To fill this void, we propose a realistic workload genera-
tor for the SC applications, namely SCAWG (SC for Adap-
tive Workload Generator). SCAWG considers realistic spa-
tiotemporal properties and behaviors for both workers and
tasks. The generated data are either purely synthetic or
adapted from geosocial datasets with users’ check-in infor-
mation, such as Gowalla3 and Yelp4. These datasets exhibit
the task locality property in SC, i.e., workers tend to per-
form nearby tasks [5]. With purely synthetic data, since
a single spatial distribution may not be able to simulate
spatial distribution of some geosocial phenomena, SCAWG
introduces the mixed distributions to mimic complex be-
haviors observed in the real world. The mixed distribution
(i.e., either spatial or temporal) combines multiple primi-
tive distributions (e.g., Uniform, Gaussian). With SCAWG,
researchers can reuse our common, well-structured and ex-
tensible datasets in their evaluation studies, e.g., algorithms
can be compared on the same workload, facilitating the re-
producibility of research findings.

As SC aims to provide a generic platform for different
campaigns, our basic workload includes only the core re-
quirements of spatial workers and tasks. In particular, each
task (or worker) comprises an initial location, a start time,
i.e., arrival (online) time and an end time, i.e., expiry (of-
fline) time. The locations of workers or tasks follow a spatial
distribution (e.g., 2D Gaussian) while their start times fol-
low a temporal distribution (e.g., Poisson). Furthermore, we
observe that both workers and tasks may have application-
specific constraints or properties. First, a worker may set the
maximum number of tasks he can perform within a time pe-
riod, or a spatial region within which he is willing to travel
while a task may require a certain number of times it needs
to be performed. Also, there are different kinds of tasks,
e.g., tasks that require trustful workers, need a specific set
of skills [16] or are associated with rewards [4, 12]. Second,
the advanced generator takes into account worker identity,
which can be used to either enhance task allocation [16, 11,
5] or avoid repetitive activations of the same workers [11].
Each worker also has an activeness value, in which active
workers are likely to be available more often and perform
more tasks.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we summarized our contributions to spatial

crowdsourcing–a new paradigm of community data collec-
tion at large scale. We discussed our approaches toward
addressing some of its challenges, with emphasis on the new
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privacy-preserving and efficient techniques for online task
assignment. As future work, we will extend our framework
to also protect the privacy of task locations. We also plan to
conduct SC campaigns with more complex reward strategies
to incentivize workers to accept SC tasks, e.g., dynamically
update rewards for each task based on a given target, e.g.,
each task may require a number of responses to be consid-
ered fulfilled. Hence, an effective reward strategy is required
to monitor the number of responses per task and the work-
ers’ locations over time.
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