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Abstract

“Geographic Load Balancing” is a strategy for reducing the energy
cost of data centers spreading across different terrestrial locations. In
this paper, we focus on load balancing among micro-datacenters pow-
ered by renewable energy sources. We model via a Markov Chain the
problem of scheduling jobs by prioritizing datacenters where renewable
energy is currently available. Not finding a convenient closed form so-
lution for the resulting chain, we use mean field techniques to derive
an asymptotic approximate model which instead is shown to have an
extremely simple and intuitive steady state solution. After proving,
using both theoretical and discrete event simulation results, that the
system performance converges to the asymptotic model for an increas-
ing number of datacenters, we exploit the simple closed form model’s
solution to investigate relationships and trade-offs among the various
system parameters.

1 Introduction

Providers such as Amazon, Google, Facebook, etc., are making a consider-
able effort to offer efficient, scalable, and reliable services. To achieve these
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goals such services need to be supported by massive datacenters and relevant
infrastructures to distribute power and provide cooling. Power management
is becoming a crucial issue. Not only power consumption is ever increasing
with an increasing user base and service expansion, but, as pointed out by
several studies, the power consumption of datacenters is largely wasted.

In this paper we consider a set of micro-datacenters which are addition-
ally powered by renewable energy sources, e.g., photovoltaic (PV) panels.
Due to the current high costs for storing energy, the best use of renewable
energy is to consume it when it is produced. Hence, we would ideally wish to
adapt each micro-datacenter’s load to the instantaneous energy production.
One way to address such goal is to federate several micro-datacenters each
other, and use a central controller to dispatch jobs where renewable energy
is available, so as to minimize the (non-renewable) energy cost. The possi-
bility to manage more jobs obviously offers a higher flexibility. The law of
large numbers guarantees indeed that the aggregated load will be more reg-
ular and then easier to exploit for smart load scheduling as it is the case in
a big datacenter. But when local renewable sources are available, a micro-
datacenters’ federation offers an additional advantage in comparison to a
large datacenter: renewable energy production at different locations can be
loosely correlated and then the aggregated energy production exhibits less
variability.

Consider the following ideal case: a set of N identical datacenters, each
with independent job arrival processes with rate λ and a single server with
computing rate µ, and PV panels able to feed the datacenter a fraction
s of the time. Compare it with a single datacenter which aggregates lo-
cally all the jobs as well as the computing and energy production infras-
tructure. The total normalized load for the federation of datacenter is
ρ = (Nλ)/(Nµ) = λ/µ with a normalized variability (standard deviation of
the number of working servers divided by the average number of working
server) equal to

√

(1− ρ)/(ρN). Similarly the federation can power through
renewables a fraction s of its computing resources with a normalized variabil-
ity equal to

√

(1− s)/(sN), if the amounts of renewable energy produced at
different datacenters can be considered independent. The single datacenter
manages the same aggregate load with the same normalized variability, but
the situation is different energywise. The single datacenter can be powered
by renewables a fraction s of the time, but now the normalized variability is
√

(1− s)/s, if, as it is reasonable to assume in first approximation, all the
PV panels at a given location produce (/do not produce) at the same time.

The example above is clearly over-simplified, it ignores the costs of job
dispatchment among the micro-datacenters, the effect of fixed energy costs
that are easier to optimize at a single datacenter, the possibility that re-
newable energy dynamics are too fast to be exploited by smart scheduling
strategies, how revenues should be split among the datacenters, etc. Nev-
ertheless, this example highlights a potential benefit from federating micro-
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datacenters, that is interesting to quantify. As we are going to show below,
even simple models for job traffic and energy production lead soon to scenar-
ios for which it is difficult to provide closed-form expressions for the energy
cost of a federation of micro-datacenters. One may then need to rely on
expensive simulations that hide the role played by the different parameters.
For this reason, in this paper we propose a mean field (fluid) model that is
asymptotically correct and allows us to derive simple formulas for the main
performance metrics, like the expected energy costs of the system.

The paper is organized as follows. After a brief discussion of related work,
we introduce the system model in section III, and we provide and justify
with both theoretical and simulation results a mean field approximation in
section IV. In section V, we exploit the resulting simple model to quantify
performance and trade-offs emerging in scenarios characterized by variable
renewable energy production across micro datacenters.

2 Related Work

In Geographic Load Balancing (GLB) systems user requests are initially
accepted by front-end elements and then redirected by a scheduler to geo-
graphically distributed datacenters for processing. The scheduler’s decisions
may depend on several mutually interacting (and in some case conflicting)
objectives such as minimizing the electricity cost, the carbon-footprint and
the response time. The paper [12] is one of the first studies about GLB. In
particular, it focusses the attention on the key issues fostering the use of GLB
such as different energy markets (e.g., day-ahead and real-time markets),
and temporal or geographical energy price variations. The GLB represents
the combination of these basic ingredients with the use of energy related
metrics in the scheduler decisions. In this manner it is possible to account
for different workload conditions, and time and geographical variability of
the electricity costs.

In the last years other studies addressed the same problem by adding
different scheduling constraints and/or by optimizing different metrics (see
[14], [15], [16], [6], [10], [11]). For instance, the papers [14] and [11] introduce
additional constraints for accounting QoS guarantees; while the interaction
between GLB and smart grids, and then the exploitation of the workload
demand-response capability have been addressed in [14]. Furthermore, the
interaction of energy storage systems and GLB has been addressed in [6].
Indeed, storage systems can be used to smooth the variability of power
supply and this is very important when the datacenters are powered by
renewable sources.

Several studies pointed out that large datacenters are extremely expen-
sive to maintain and this has encouraged the development of architectures
that interconnects multiple micro-datacenters [3]. This trend influenced our
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work because workload scheduling among a large number of interconnected
datacenters gives rise to computational problems (e.g., see the summary of
the techniques used in geographical load balancing in [13]).

The works closest to ours are [11] and [10], where geographical load
balancing is driven by time-varying energy prices, that can be due to a
significant local production from renewable sources. While in these papers
energy prices are considered to be known in advance over some future time-
horizon, in our case renewable energy production is a stochastic process and
scheduling is decided on the basis of the current state of the system.

3 Problem

We consider a federation of N identical micro datacenters. The aggregated
job arrival process at the federation is modeled as a Poisson process with rate
Nλ. The service time of each job is assumed to be exponential with expected
value 1/µ.1 Each datacenter is connected to the grid but it can be powered
also by some renewable source. We consider here that the renewable source
can be in two states: in state S (sunny) the energy produced by the source is
able to power the whole datacenter, in state C (cloudy) the energy produced
is negligible. Renewable states evolve according to a continuous time Markov
Chain. Let νC and νS denote respectively the transition rates from S to C
and from C to S. The model for the renewable source can be made arbitrarily
more realistic by adding multiple states. For the moment we assume that
the Markov chains associated to renewable sources at different datacenters
evolve independently.

When a new job arrives the scheduler dispatches it i) to a datacenter
that is available to process it and in state S (i.e., currently powered by
renewables) if any, otherwise ii) to an available datacenter if any, and as last
option iii) to a central waiting queue from which the job will be moved to the
first available datacenter. The system is then operating as anM/M/N queue
with the characteristic that available servers in state S get jobs with strict
higher priority than other servers. Among the work conserving disciplines
this intuitively minimizes the total expected energy cost.

The system can be described as a continuous time Markov Chain with
state (JN (t), SN (t), BN

S (t)), where JN (t) is the number of jobs in the sys-
tem, SN (t) is the number of servers in state S, and BN

S (t) is the number of
servers busy (i.e., serving a job) and in state S, all at time t. The Markov
chain has a very particular structure: for example JN (t) itself, representing
the number of jobs in a M/M/N queue, evolves as a Markov chain. SN (t)
is described by a simple Markov chain too. In particular the stationary dis-

1While we need an underlying Markovian process to correctly derive the asymptotic
fluid model, empirical results show that the fluid model does not heavily depend on many
of these assumptions.
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tributions of JN (t) and SN (t) can be derived easily in closed-form. Despite
these properties, it is not easy to characterize BN

S (t) and in particular we
have not been able to derive in closed-form its stationary distribution. This
is less surprising if we think about a similar problem for parallel queues
where the simple join-the-shortest-queue policy couples the status of the
different queues so that their stationary distribution can be expressed only
as an infinite mixture of geometric distributions [1] (there are many works
on priority queues and/or shortest queue policies, see for instance [4] [7]).
Similarly, here our dispatching policy couples the two different states of a
server (being busy and being powered by renewables) in a non-trivial way so
that it is difficult to characterize the process BN

S (t), as we need to quantify
the energetic savings coming from the federation.

In order to study the system (JN (t), SN (t), BN
S (t)) we could resort to

simulations or to a numerical solution of the Markov Chain. In both cases
the computational cost increases with the number of datacenters N . These
difficulties are aggravated if more realistic and then more complex models
for traffic arrival process or renewable energy evolution are considered with
a potential explosion of the state space. Moreover, the effect of the dif-
ferent parameters can be more difficult to unveil using numerical methods.
For these reasons, as it has been successfully done in other fields, we derive
the fluid limit of the Markov chain of interest, that allow us to obtain sim-
ple closed-form expressions for the main performance metrics independently
from the system size N .

4 Fluid Model

In this section we show that the stochastic dynamics of the Markov chains
(JN (t), SN (t), BN

S (t)) converge in probability to a deterministic process as
N diverges.2 More precisely, we will show that if 1/N(JN (0), SN (0), BN

S (0))
converges to the constant values (j0, s0, bs,0) when N diverges, then there ex-
ists a vector of deterministic functions (j(t), s(t), bs(t)) such that
(j(0), s(0), bs(0)) = (j0, s0, bs,0) and for any T > 0:

sup
0≤t≤T

∣

∣

∣

∣

∣

∣

∣

∣

1

N
(JN (t), SN (t), BN

S (t))− (j(t), s(t), bs(t))

∣

∣

∣

∣

∣

∣

∣

∣

→
P

0,

i.e., the rescaled process converges to (j(t), s(t), bs(t)).
This kind of convergence results has become popular since the seminal

work of Kurtz (see for example [9]), that shows that the limiting process can
be described by a system of differential equations: dx/dt = f(x(t)), where
f() is called the limiting drift function. Classic results require f() to be a
Lipschitz function. By carrying out the usual derivation of the fluid limit

2In what follows, convergence of random variables is always “in probability.” We omit
to repeat it at each time.
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for the process (JN (t), SN (t), BN
S (t)), the corresponding function f() will

appear to be discontinuous and then it has not the Lipschitz property. Nev-
ertheless, we can apply more recent and general results from [5] to show that
the dynamics converge to the solution of a system of differential inclusions,
i.e. where the function f() is replaced by a set valued function.

As we observed in the previous section, the processes JN (t) and SN (t) are
themselves Markov chains. Rather than studying the joint system
(JN (t), SN (t), BN

S (t)) we first derive the fluid limits for JN (t) and SN (t)
and then move to consider the fluid limit for BN

S (t). While we could di-
rectly consider the limit of the triplet, this approach can result easier to
follow for the reader unfamiliar with fluid limits. Moreover, the results for
JN (t) and SN (t) do not require the more complex machinery of differential
inclusions, so this approach allows us to better highlight where difficulties
arise for BN

S (t).
The Markov chain describing JN (t) is such that the transition from state

J to state J + 1 occurs with rate Nλ, while the transition from state J to
state J − 1 occurs with rate µJ , if J ≤ N , and with rate µN , if J > N .
We consider now the scaled process JN (t)/N , whose transition rates from
x to x + l/n can be expressed as Nβl(x) where the functions βl(x) do not
depend on N . In particular β1(x) = λ, β−1(x) = µx for x ≤ 1, β−1(x) = µ
for x > 1 and βl(x) = 0 otherwise. The rate of changes of JN (t)/N is then

f(x) =
1

N
(β1(x)− β−1(x)) =

{

λ− µx if x ≤ 1

λ− µ if x > 1

that is a Lipschitz function. This property and the fact that
∑

l |l|βl(x) < ∞
guarantee [9] that if JN (0)/N converges to j0, J

N (t)/N converges to the
unique solution3 of the following equation

dj

dt
= f(j(t)), j(0) = j0. (1)

Observe that j(t) > 1 corresponds to JN (t) > N and then a situation where
all the N data centers are working and there are JN (t)−N jobs in the queue.
Given that f(x) < 0 for x > 1, Eq. (1) shows that j(t) < 1 for large enough
t and then after some transient the job queue is asymptotically empty and
the number of jobs in the system coincides with the number of busy servers.
Moreover, j(t) converges when t diverges: j∗ , j(∞) = λ/µ = ρ. This
value is the only accumulation point for the possible trajectories of j(t) and
then it is also the stationary probability that a server is busy in the original
Markov chain [2] (as it is known from the analysis of the M/M/N queue).

3 Continuity of the right hand side guarantees the existence of the solution and Lipschitz
property guarantees uniqueness.
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Figure 1: Transitions that bring to a change in BS for J ≤ N .

In a similar way, it is possible to show that if SN (0)/N converges to s0,
SN (t)/N converges to the solution of the following equation

ds

dt
= νS − (νS + νC)s(t), s(0) = s0, (2)

and when t diverges s(t) converges to s∗ , νS/(νS + νC), that is the sta-
tionary probability that a given datacenter is powered by renewables.

It is clear that we would not have needed fluid models to derive the
asymptotic probability that a datacenter is busy or that it is powered by
the renewables, but the fluid models allow us to evaluate simply the transient
dynamics for the percentage of busy datacenters and of datacenters powered
by renewables. Moreover, they are required to characterize the quantity
BS(t)/N that is needed to quantify how many datacenters work using the
cheap renewable energy.

In Fig. 1 we show the Markov chain transitions affecting BS(t), i.e. the
number of datacenters working and powered by renewables, when the num-
ber of jobs in the system J(t) is smaller than N . As we observed above, for
N large enough J(t) < N holds with probability arbitrarily close to one after
some finite time depending on JN (0). For this reason, we can for simplicity
assume that the system is in this situation. Observe that the transition in-
dicated in the figure by the dashed line is possible only for specific values of
S and BS . If a new job arrives and there are idle datacenters in state S (i.e.
BS < S) then the job will be assigned to one of them and BS will increase
by one unit. Otherwise BS will stay constant. If we calculate the drift for
BS(t)/N when (J(t), S(t), BS(t)) = (j, s, bs) as done above we obtain that
it is equal to

g(j, s, bs) =

{

λ− (νS + νC + µ)bs + νSj if bs < s,

−(νS + νC + µ)bs + νSj if bs = s.

Unfortunately the function g() is not continuous, and then neither Lipschitz.
Nevertheless, [5] shows that when BN

S (0)/N converges in probability to bs,0,
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BN
S (t)/N is related to the solutions of the following differential inclusion

dbs
dt

= G(j, s, bs) =

{

{g(j, s, bs)} if bs < s,

[g(j, s, s), g(j, s, s) + λ] if bs = s.
(3)

bs(0) = bs,0

The set-valued function G(j, s, bs) coincides with g(j, s, bs) for bs < s, while
G(j, s, s) is the interval obtained by the convexification of the accumulation
points of g(j, s, bs) when bs = s. Equation (3) admits at least a solution
because G() is upper-semicontinuous and Theorem 5 in [5] shows that in
such case

inf
bs∈D

sup
0≤t≤T

∣

∣

∣

∣

∣

∣

∣

∣

BS(t)

N
− bs(t)

∣

∣

∣

∣

∣

∣

∣

∣

→
P

0,

where D is the set of solutions of Eq. (3). This result has practical utility
if we can prove that the differential inclusion (3) has a unique solution. A
standard sufficient condition for the uniqueness of the solution is the one
side Lipschitz condition [8], that unfortunately does not hold for G(). We
suspect that Eq. (3) has a unique solution, but we have not been able to
prove it. Nevertheless, we can prove that any possible solution converges to
the same value as t diverges. This is enough to draw conclusions about the
stationary distribution of our stochastic system.

We start observing that for large t j(t) and s(t) are arbitrarily close
respectively to the values j∗ = ρ and s∗. It holds

g(j∗, s∗, s∗) = νS

(

ρ−
νS + νC + µ

νS + νC

)

< 0,

because ρ < 1. If λ + g(j∗, s∗, s∗) < 0, then all the values of G(j∗, s∗, bs)
are negative when bs belongs to an opportune interval (s∗ − ǫ, s∗] and then
any possible trajectory of bs(t) will be constrained to the interval [0, s∗ − ǫ],
where the differential inclusion (3) reduces to a usual differential equation
with Lipschitz drift and then it admits a unique solution. This solution
converges to (λ+ρνS)/(νS+νC+µ) when t diverges. If λ+g(j∗, s∗, s∗) > 0,
then for bs < s∗

g(j∗, s∗, bs) > λ− (νS + νC + µ)s∗ + νSj
∗ = λ+ g(j∗, s∗, s∗) > 0,

and any trajectory of bS(t) converges to s∗, that is a stable point because in
this case 0 ∈ G(j∗, s∗, s∗). Summarizing, it holds

b∗s , bs(∞) =

{

s∗, if λ+ g(j∗, s∗, s∗) > 0

(λ+ ρνS)/(νS + νC + µ), otherwise.

By observing that λ+ g(j∗, s∗, s∗) > 0 is equivalent to s∗ < (λ+ ρνS)/(νS +
νC + µ), and replacing λ = ρµ we can write in a more compact way:

b∗s = min

{

s∗, ρ
νS + µ

νS + νC + µ

}

. (4)
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Figure 2: Percentage of datacenters powered by renewables : Fluid Model
(b∗s) vs Simulation Averages (νS = νC = 0.01 µ = 1, N = 20, 100, 500).

Figure 2 shows how the stationary distribution of BN
S /N converges to

b∗s as N increases. The quality of the fluid approximation is different for
different values of the load ρ. In particular as far as ρ is far from the critical
value for which s∗ = ρ(νS + µ)/(νS + νC + µ), corresponding to the non
differentiability in Eq. (4), the approximation is very accurate even for N =
20 datacenters. For the critical load, the federation should include an order
of magnitude more datacenters to achieve a good level of approximation. For
a given value of N the quality of the approximation improves (/worsen) the
larger (/smaller) is the acute angle between the two segments determined
by the fluid model, as it happens if νC increases (/decreases).

5 Exploiting the model

In this section we show how our simple fluid model can help quantifying
the potential advantages of a federation of datacenters and the effect of the
different parameters.

We start by discussing Eq. (4). The percentage b∗s of datacenters working
and powered by renewables is obviously limited by the percentage s∗ of
datacenters powered by renewables, and by the percentage ρ of datacenters
working, then b∗s ≤ min{s∗, ρ}. These two regimes appear also in Eq. (4)
and we refer to them as the renewables-limited regime and the load-limited
regime. In particular, Eq. (4) shows how close the dispatching algorithm
can approach the bound min{s∗, ρ} when, as we assumed, the job will be
completed by the datacenter that started working on it. The factor (νS +
µ)/(νS +νC +µ) multiplying ρ takes into account the fact that a datacenter
may change status from S to C (or the other way around) after starting to
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process a job. These changes limit the utility of job scheduling.
Without the federation every datacenter receives a load ρ and can ex-

ploit renewables a fraction s∗ of the time. Then the percentage of time a
datacenter works and is powered by renewables is ρs∗, that is smaller than
b∗s from Eq. (4):

min

{

s∗, ρ
νS + µ

νS + νC + µ

}

> ρs∗,

because ρ < 1 and (νS+µ)/(νS+νC+µ) > νS/(νS+νC) = s∗. The difference
between the left hand side and the right hand side of the inequality times
N quantifies how many additional datacenters work powered by renewables
thanks to the federation in comparison to the situation when there is no
federation. In what follows we compare the corresponding average energy
costs, by normalizing the energy cost per time unit to 1 (/0) when the
datacenter is (/is not) powered by renewables. The average energy cost per
time unit and per datacenter is then:

cf , ρ− b∗s, with the federation

cnf , ρ− ρs∗,without the federation

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

(c
nf

-c
f)/

c n
f

(νs+νc)/µ

ρ=0.5
ρ=0.65

Figure 3: Cost reduction due to the federation vs speed of renewables’ dy-
namics (s∗ = 0.5).

We focus on the relative cost reduction achieved by the federation in
comparison to the uncoordinated case, i.e., on (cnf − cf )/cnf . Fig. 3 shows
how the relative cost changes as renewables’ dynamics become faster for two
different values of the load ρ. We set νS = νC so that s∗ is constant and
equal to 0.5. Eq. (4) shows that, when ρ and s∗ are constant, b∗s changes only
for the effect of the ratio (νS + νC)/µ. In other words, it is not important
how fast the quantity of renewable energy produced changes, but how much
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faster it changes than the job completion time. Intuitively, if this ratio is very
large, the scheduling is not effective, because a datacenter changes its status
S/C many times before completing the job, so that the job takes advantage
of renewables’ energy on average a fraction s∗ of the time, independently
from the status of the datacenter when the job execution started. Fig. 3
shows indeed that the advantage of the federation converges to 0 as the
ratio (νS + νC)/µ diverges. This behaviour is common to both the load
values considered. When ρ = 0.5, the system is always in the load-limited
regime (b∗s = ρ(νS + µ)/(νS + νC + µ)) and the advantage of the federation
always decreases as the ratio (νS + νC)/µ increases. When ρ = 0.65 the
system is initially in the renewables-limited regime, so that the relative gain
of the federation is limited by the average availability of renewables’ energy
and the gain is independent on the speed of their dynamics. This situation
corresponds to the initial horizontal part of the corresponding curve. As the
speed of renewables’ dynamics further increases, the scheduling is no more
able to effectively follow them and the system enters in the load-limited
regime. The relative improvement from the federation in this regime is
independent from ρ, so that both curves in Fig. 3 overlap.

Our analysis shows significant reduction of energy costs achievable by the
federation of different datacenters, but, until now, we have assumed that the
states of the renewables’ sources at the different datacenters are independent.
This is not true in general. For example, production from PV panels or
wind turbines are clearly positively correlated at nearby locations. When
energy quantities produced at the datacenters are positively correlated, the
improvement from scheduling is reduced. In order to quantify the effect of
positive correlation, we consider the following simple model. We assume
that the Markov chain determining the state of a renewable source (S or
C) is modulated by an underlying Markov chain that is common to all the
different sources. In particular, as a toy-example, we consider a Markov
chain with two states G and B. The transition rates νS and νC of each
renewable source depend now on the particular state of the modulating
Markov chain and we denote them νS,G, νC,G, νS,B and νC,B . We consider
that

s∗G =
νS,G

νS,G + νC,G

>
νS,B

νS,B + νC,B

= s∗B

and then states G and B correspond respectively to good and bad weather
(at least for the purpose of renewable energy production). It is possible to
extend simply our previous analysis, if we assume that the dynamics of the
modulating Markov chain are much slower than those of the modulated chain
and of job execution (i.e., max{νG, νB} << min{νS,G, νC,G, νS,B, νC,B, µ}).
In such case, the average percentage of datacenters working and powered by
datacenters can be obtained through a weighted sum of what would happen
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without modulation as follows

b∗s ≈ πGb
∗
s,G + πBb

∗
s,B,

where πG = νG/(νG + νB), πB = νB/(νG + νB) and b∗s,G (resp. b∗s,B) is
calculated from Eq. (4) replacing the rates νS and νC by νS,G and νC,G

(resp. νS,B and νC,B). As we anticipated, the modulating Markov chain
correlates the state of the renewable sources. We can quantify this effect by
using the correlation coefficient η defined as

η =
(s∗G)

2πG + (s∗B)
2πB − (s∗GπG + s∗BπB)

2

(s∗GπG + s∗BπB)(1− s∗GπG − s∗BπB)
.

As a sanity check, we observe that if νS,G = νS,B and νC,G = νC,B (i.e., the
modulating Markov Chain has no effect on the renewables’ state evolution),
then η = 0. If instead we have that s∗G = 1 and s∗B = 0, then η = 1, because
all the datacenters are in state S when the modulating Markov chain is in
state G and in state C when the modulating Markov chain is in state B.
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Figure 4: Cost reduction due to the federation vs renewables’ correlation
(νG = νB = 0.00001, νS,G + νC,G = νS,B + νC,B = 0.002, νS,G = νC,B,
µ = 1).

Figure 4 shows the relative cost reduction due to the federation versus the
correlation η. In the specific setting considered, the average percentage of
time renewables can power datacenters is constant: s∗ = πGs

∗
G+πBs

∗
B = 0.5.

Then, as the correlation increases s∗G increases and s∗B decreases of the same
amount. As expected, the benefit from the federation is maximum when
renewable sources evolve independently (η = 0) and null when at any time
they are all in the same state (η = 1). The benefit is non-increasing in η,
but, depending on the load ρ, there is a more or less wide range of correlation
values for which the benefit does not depend on η. In order to justify this
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result, we write the specific expression of b∗s neglecting for simplicity the
rates νS,G, νC,G, νS,B and νC,B when summed to µ, that is much larger. It
holds:

b∗s ≈
1

2
min {s∗G, ρ}+

1

2
min {s∗B, ρ}

Under this approximation, the setting ρ = 0.5 = s∗ corresponds to the case
when the system is at the boundaries between the two regimes for η = 0.
When the correlation increases, the system is i) in the load-limited regime
in good weather (state G) with a value b∗s,G almost constant and equal to
ρ and ii) in the renewables-limited regime in bad weather (state B) with
a value b∗s,B decreasing in η. As a consequence the corresponding curve is
decreasing. When ρ > s∗ = 0.5, the system is the renewables-limited regime
in both states G and B when η = 0, and then b∗s,G = s∗G and b∗s,B = s∗B.
As η increases, the increase of s∗G is exactly compensated by the decrease
of s∗B so that the system exhibits the same relative improvement until η
is so large that the system enters in the renewables-limited regime when
in bad weather and then the improvement decreases again. Finally, when
ρ < s∗ = 0.5, the system is initially in the load-limited regime in both states,
and then b∗s,G = b∗s,B = ρ, independent on η. Again, the improvement does
not depend on η until η becomes so large that the system enters in the
renewables-limited regime when in bad weather.

As we have shown, our simple fluid model reveals the existence of two
different regimes and helps to understand and quantify their non-trivial
interaction as the parameters change.

6 Conclusions

The paper proposes a model of geographical load balancing strategies for
a collection of federated (micro) datacenters powered by renewable energy
sources. In our strategy the scheduler uses a selection criterion that prior-
itizes datacenters where renewable energy is currently produced. For this
kind of system we use mean field techniques to derive a simple approximate
model that allows us to derive several performance measures. First, asymp-
totic convergence is proven and the quality of the approximation for finite
size systems is evaluated through an ad-hoc simulator. Then, we use the
simple fluid model to quantify the effect of the different system parameters
and to understand the different tradeoffs.
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