skip to main content
research-article

Mobile Unified Memory-Storage Structure Based on Hybrid Non-Volatile Memories

Published:21 April 2017Publication History
Skip Abstract Section

Abstract

In mobile computing systems, the limited amount of main memory space leads to page swap operation overhead and data duplication in both main memory and secondary storage. Furthermore, SQLite write operations in mobile devices such as smartphones and tablet PCs tend to frequently overwrite data to storage, significantly degrading performance. Thus, this article presents a unified memory-storage structure that is optimized for mobile devices and blurs the boundary between the existing main memory layer and secondary storage layer. This structure can eliminate the conventional page-swap operations that cause significant performance degradation and support fast program execution time. The unified memory-storage structure consists of a dynamic RAM (DRAM) and phase change memory (PCM) -based dual buffering module, a hybrid unified memory-storage array consisting of DRAM and NAND Flash memory, and an associated unified storage translation layer devised for the memory address and file translation mechanism as a system software module. This hybrid array of non-volatile memories is formed as a single memory-disk integrated storage space that can be logically divided into static and dynamic spaces. Experimental results show that the overall performance of the hybrid unified memory-storage system with the buffering structure increases by around 13% and power consumption is also improved by 35%, compared to current mobile system.

References

  1. Ferdinando Bedeschi, Rich Fackenthal, Claudio Resta, Enzo Michele Donze, Meenatchi Jagasivamani, Egidio Buda, Fabio Pellizzer, David Chow, Alessandro Cabrini, Giacomo Matteo, et al. 2008. A multi-level-cell bipolar-selected phase-change memory. In Proceedings of the 2008 IEEE International Solid State Circuits Conference (ISSCC’08) (San Francisco, CA). IEEE, Article 5, 3. Google ScholarGoogle ScholarCross RefCross Ref
  2. Pai-Yu Chen and Shimeng Yu. 2014 Impact of vertical RRAM device characteristics on 3D cross-point array design. In Proceedings of the 2014 IEEE 6th International Memory Workshop (IMW’14) (Taipei). IEEE, 1--4. DOI:http://dx.doi.org/10.1109/IMW.2014.6849382 Google ScholarGoogle ScholarCross RefCross Ref
  3. Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making persistent objects fast and safe with next-generation, non-volatile memories. In Proceedings of the 16th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’11). ACM, New York, 105--117. DOI:http://dx.doi.org/10.1145/1950365.1950380 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Gaurav Dhiman, Raid Ayoub, and Tajana Rosing. 2009. PDRAM: A hybrid pram and dram main memory system. In Proceedings of the 46th ACM/IEEE Design Automation Conference (DAC’09) (San Francisco. CA). IEEE, 664--669. DOI:http://dx.doi.org/10.1145/1629911.1630086 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Ju-Young Jung and Sangyeun Cho. 2013. Memorage: Emerging persistent RAM based malleable main memory and storage architecture. In Proceedings of the 27th ACM Conference on International Conference on Supercomputing (ICS’13) (Eugene, Ore.). ACM, New York,, 115--126. DOI:http://doi.acm.org/10.1145/2464996.2465005Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jinfeng Kang, Bin Gao, B. Chen, P. Huang, F. F. Zhang, Y. X. Deng, L. F. Liu, X. Y. Liu, H.-Y. Chen, Z. Jiang, S. M. Yu, and H. S. Philip Wong. 2014. 3D RRAM: Design and optimization. In Proceedings of the 12th IEEE International Conference Solid-State and Integrated Circuit Technology (ICSICT’14). IEEE, 1--4. DOI:http://dx.doi.org/ 10.1109/ICSICT.2014.7021234 Google ScholarGoogle ScholarCross RefCross Ref
  7. Jin Kyu Kim, Hyung Gyu Lee, Shinho Choi, and Kyoung Il Bahng. 2008. A PRAM and NAND flash hybrid architecture for highperformance embedded storage subsystems. In Proceedings of the 8th ACM International Conference on Embedded Software (EMSOFT’08) (Atlanta. GA). ACM, New York, 31--40. DOI:http://doi.acm.org/10.1145/1450058.1450064Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. 2012. Revisiting storage for smartphones. ACM Trans. Storage (TOS) 8, 4, Article 14 (Nov. 2012), 25. DOI:http://dx.doi.org/10.1145/2385603.2385607 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Mark H. Kryder and Chang Soo Kim. 2009. After hard drives—what comes next? IEEE Trans. Magnet. 45, 10 (Oct. 2009), 3406--3413. DOI:http://dx.doi.org/10.1109/TMAG.2009.2024163 Google ScholarGoogle ScholarCross RefCross Ref
  10. Emre Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. 2013. Evaluating STT-RAM as an energy-efficient main memory alternative. In Proceedings of the 2013 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS’13) (Austin, TX). IEEE, 256--267. DOI:http://dx.doi.org/10.1109/ISPASS.2013.6557176 Google ScholarGoogle ScholarCross RefCross Ref
  11. Kisung Lee and Youjip Won. 2012. Smart layers and dumb result: IO characterization of an android-based smartphone. In Proceedings of the 10th ACM International Conference on Embedded Software (EMSOFT’12) (Tampere). ACM, New York, 23--32. DOI:http://doi.acm.org/10.1145/2380356.2380367Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Benjamin C. Lee, E. Ipek, O. Mutlu, and D. Burger. 2009. Architecting phase change memory as a scalable dram alternative. In Proceedings of the 36th Annual International Symposium on Computer Architecture (ISCA’09). ACM, New York, 2--13. DOI:http://doi.acm.org/10.1145/1555754.1555758Google ScholarGoogle Scholar
  13. Do-Heon Lee, Su-Kyung Yoon, Jung-Geun Kim, Charles C. Weems, and Shin-Dug Kim. 2015. A new memory-disk integrated system with HW optimizer. ACM Trans. Architect. Code Optimiz. (TACO) 12, 2, Article 11 (July 2015), 23. DOI:http://doi.acm.org/10.1145/2738053Google ScholarGoogle Scholar
  14. Ren-Shuo Liu, De-Yu Shen, Chia-Lin Yang, Shun-Chih Yu, and Cheng-Yuan M. Wang. 2014. NVM duet: Unified working memory and persistent store architecture. In Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’14). ACM, New York, 455--470. DOI:http://doi.acm.org/10.1145/2541940.2541957Google ScholarGoogle Scholar
  15. Justin Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu. 2013. A case for efficient hardware/software cooperative management of storage and memory. In Proceedings of the Workshop on Energy-Efficient Design (WEED’13). Carnegie Mellon University, 1--7.Google ScholarGoogle Scholar
  16. QEMU. Org. 2006. QEMU open source processor emulator. Retrieved October 15, 2016 from http://qemu.org.Google ScholarGoogle Scholar
  17. Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. 2009. Scalable high performance main memory system using phase-change memory technology. In Proceedings of the 36th Annual International Symposium on Computer Architecture (ISCA’09) (Austin, TX). ACM, New York, 24--33. DOI:http://doi.acm.org/10.1145/1555754.1555760Google ScholarGoogle Scholar
  18. Simone Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam. 2008. Phase-change random access memory: A scalable technology. IBM J. Res.Develop. 52, 4.5 (July 2008), 465--479. DOI:http://dx.doi.org/10.1147/rd.524.0465 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jinglei Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu. 2015. ThyNVM: Enabling software-transparent crash consistency in persistent memory systems. In Proceedings of the 48th International Symposium on Microarchitecture (MICRO-48) (Waikiki, HI). ACM, New York, 672--685. DOI:http://doi.acm.org/10.1145/2830772.2830802Google ScholarGoogle Scholar
  20. Hyunchul Seok, Youngwoo Park, and Kyu Ho Park. 2011. Migration-based page caching algorithm for a hybrid main memory of DRAM and PRAM. In Proceedings of the 2011 ACM Symposium on Applied Computing (SAC’11) (TaiChung). ACM, New York, 595--599. DOI:http://doi.acm.org/10.1145/1982185.1982312Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mungyu Son, Sungkwang Lee, Kyungho Kim, Sungjoo Yoo, and Sunggu Lee. 2015. A small non-volatile write buffer to reduce storage writes in smartphones. In Proceedings of the 2015 Design, Automation and Test in Europe Conference and Exhibition (DATE’15) (San Jose, CA). EDAA, 713--718. Google ScholarGoogle ScholarCross RefCross Ref
  22. Kshitij Sudan, Anirudh Badam, and David Nellans. 2012. NAND-Flash: Fast storage or slow memory. In Proceedings of the 2012 Non-Volatile Memory Workshop (NVMW’12). 1--2.Google ScholarGoogle Scholar
  23. Jie Tang, S. Liu, Z. Gu, C. Liu, and J. L. Gaudiot. 2011. Prefetching in embedded mobile systems can be energy-efficient. IEEE Comput. Architect. Lett. 10, 1 (June 2011), 8--11. DOI:http://dx.doi.org/10.1109/L-CA.2011.2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Haris Volos, A. Tack, and M. M. Swift. 2011. Mnemosyne: Lightweight persistent memory. In Proceedings of the 16th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’11). ACM, New York, 91--104. DOI:http://doi.acm.org/10.1145/1950365.1950379Google ScholarGoogle Scholar
  25. Su-Kyung Yoon, Mei-Ying Bian, and Shin-Dug Kim. 2013. An integrated memory-disk system with buffering adapter and non-volatile memory. Des. Automat. Embed. Syst. 17, 3 (Sept. 2013), 609--626. DOI:http://dx.doi.org/10.1007/s10617-014-9152-7 Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Shimeng Yu, Hong-Yu Chen, Bin Gao, Jinfeng Kang, and H. S. Philip Wong. 2013. HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano, 7, 3 (Feb.2013), 2320--2325. DOI:http://dx.doi.org/10.1021/nn305510u Google ScholarGoogle ScholarCross RefCross Ref
  27. Kan Zhong, X. Zhu, T. Wang, D. Zhang, X. Luo, D. Liu, and E. H. M. Sha. 2014. DR. swap: Energy-efficient paging for smartphones. In Proceedings of the 2014 International Symposium on Low Power Electronics and Design (ISPED’14). ACM, New York, 81--86. DOI:http://doi.acm.org/10.1145/2627369.2627647Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Mobile Unified Memory-Storage Structure Based on Hybrid Non-Volatile Memories

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Journal on Emerging Technologies in Computing Systems
            ACM Journal on Emerging Technologies in Computing Systems  Volume 13, Issue 3
            Special Issue on Hardware and Algorithms for Learning On-a-chip and Special Issue on Alternative Computing Systems
            July 2017
            418 pages
            ISSN:1550-4832
            EISSN:1550-4840
            DOI:10.1145/3051701
            • Editor:
            • Yuan Xie
            Issue’s Table of Contents

            Copyright © 2017 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 21 April 2017
            • Accepted: 1 October 2016
            • Revised: 1 September 2016
            • Received: 1 November 2015
            Published in jetc Volume 13, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed
          • Article Metrics

            • Downloads (Last 12 months)7
            • Downloads (Last 6 weeks)0

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader