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ABSTRACT 
The human activity recognition in the IoT environment plays the 

central role in the ambient assisted living, where the human 

activities can be represented as a concatenated event stream 

generated from various smart objects. From the concatenated event 

stream, each activity should be distinguished separately for the 

human activity recognition to provide services that users may need. 

In this regard, accurately segmenting the entire stream at the precise 

boundary of each activity is indispensable high priority task to 

realize the activity recognition. Multiple human activities in an IoT 

environment generate varying event stream patterns, and the 

unpredictability of these patterns makes them include redundant or 

missing events. In dealing with this complex segmentation problem, 

we figured out that the dynamic and confusing patterns cause major 

problems due to: inclusive event stream, redundant events, and 

shared events. To address these problems, we exploited the 

contextual relationships associated with the activity status about 

either ongoing or terminated/started. To discover the intrinsic 

relationships between the events in a stream, we utilized the LSTM 

model by rendering it for the activity segmentation. Then, the 

inferred boundaries were revised by our validation algorithm for a 

bit shifted boundaries. Our experiments show the surprising result 

of high accuracy above 95%, on our own testbed with various smart 

objects. This is superior to the prior works that even do not assume 

the environment with multi-user activities, where their accuracies 

are slightly above 80% in their test environment. It proves that our 

work is feasible enough to be applied in the IoT environment. 
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1. INTRODUCTION 
The era of the internet of things (IoT) opens a new horizon to 

enhance the quality of human life, via highly advanced 

technologies that realize the Ambient Assistant Living (AAL). To 

achieve the AAL, smart objects are becoming more prevalent in our 

environment, and technologies that can support the necessary 

services in the specific environment are required. Specifically, the 

human activity recognition (AR) recognizes the actions and goals 

of humans from observing the human behaviors and the contextual 

conditions. So, the activity recognition constitutes the underlying 

technology for the AAL in the IoT environment where many 

unpredictable behaviors by individual participants are found. 

Accordingly, numerous researches have been proposed to apply the 

AR to the real world. [11, 12] claimed that the nature of human 

activities in the IoT environment poses the challenges of 

concurrent activities, interleaved activities, ambiguity, variety, and 

multiple subjects, all of which complicate the issue of AR. In 

general, the AR involves 1) monitoring and collecting event 

streams, 2) activity segmentation, and 3) activity recognition.  

In this paper, the events are defined as the data generated from the 

deployed state-change sensors or smart devices upon detecting the 

human behaviors. Examples of the events include entrance, sit 

down or light on. Thus, an activity such as a seminar, study or 

phone call is expressed as an event stream generated by the smart 

objects actuated from that activity. In our environment, the event 

streams from a series of activities are concatenated into one longer 

event stream. Therefore, the long event stream must be segmented 

in advance according to genuine activity boundaries for precise 
activity recognition, which we call activity segmentation.  

For the activity recognition, various researches have been proposed. 

Earlier works focused not on activity segmentation but on activity 

recognition from a pre-segmented event stream. [14, 18, 20] 

assumed pre-segmented event streams provided by people, where 

they recorded the starting and finishing times for every conducted 

activity. However, such manual segmentation is physically 

demanding, time-consuming, and error-prone so that their 

assumption may not be practical. Other studies [1, 2, 10, 17] 

conducted activity segmentation using the concept of a window 

based on the time or the number of events. But, the proper length 

of the window is difficult to determine because the duration or the 

length of event stream of each activity may differ significantly. 

Furthermore, in a case of the consecutive windows, if the length of 

the window is incorrect, the accuracy of activity recognition would 

be gradually decreased due to cumulative deviation from the 
genuine activity boundaries.   

To address the activity segmentation problem, different approaches 

[3, 13, 15, 16, 17, 21] have been proposed. Most of them focused 

on a smart home environment, where the activities can be 

distinguished by the situation information only. The situation 

information includes the occurrence time and/or location, the 

location-specific objects, or the predefined event set for each 

activity. Unlike these studies, we assumed the IoT environment 

where the location-specific and the time-specific situation 

information are not available, and various activities using almost 
the same objects can occur in succession. 

In this IoT environment, the event streams generated from the 

various activities may show dynamic and confusing patterns so that 

it is necessary to elaborately analyze them and grasp the contextual 

relationships inherent in a series of event streams. In other words, 

we should be able to determine segment boundaries through 

capturing the contextual relationships associated with the activity 

status about ongoing or terminated/started. To figure out these 

relationships, we took advantage of the Long short-term memory 

(LSTM) model [9], which has long been used in the text fields [4–

6]. Since the LSTM model can ascertain the contextual 

relationships between sufficient length of component events in the 

dynamic and confusing pattern sequence, we utilized the model to 

determine the segment boundaries in the concatenated long event 

stream. Based on its learning, the LSTM model can infer and 
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determine whether or not an activity is terminated, and outputs the 

boundary information in case of terminated status.  

To apply the LSTM model for the activity segmentation, we 

designed our specialized input and target vector weight. In addition, 

we devised a time interval validation algorithm for enhancing the 

result from the LSTM-based method. Our approach resulted in the 

surprising accuracy of 96.77% in our testbed and proved its 

feasibility in the real world.  

The rest of this paper is organized as follows. In Section 2, we 

analyze the event streams from the activities and define major 

problems in the activity segmentation. In Section 3, we present our 

LSTM method and propose a lightweight yet efficient validation 

algorithm. In Section 4, we evaluate our approach in our testbed for 

the IoT environment and demonstrate our work. After discussing 

related work in Section 5, we conclude in Section 6.  

2. ANALYSIS AND PROBLEMS 
The event streams generated from various activities occurring in 

the IoT environment may show dynamic and confusing patterns. In 

this regard, we analyzed the event streams collected from our 

testbed over a course of nearly nine months and discovered the 

following characteristics inherent in the event streams.  

1) Streams with similar component events from different 

activities: Even if the activities differ, the event streams from the 

activities would be similar if they occur in the same space. State-

change sensors in an IoT environment are related not only to one 

activity but to several activities in that space, so their event streams 

would have a similar set of component events. Figure 1(a) shows 

the probability that each event is included in the major activities.  

2) Different event streams from an identical activity: As 

opposed to 1), event streams from an activity may be composed of 

different events according to the situation such as the weather, the 

number of participants, and the occurrence time. From the ‘study’ 

activity, the following three event streams can be generated. 

1. entrance – light on – sit down – stand up – light off – exit 

2. entrance – sit down – stand up – exit 

3. entrance – air conditioner on – light on – sit down – stand up 

– light off – air conditioner off – exit 

The first stream can occur at night and the second one in the 

morning. When the activity is conducted in summer, the stream 

may resemble the last stream.  

3) Event stream for an undefined activity: For segmentation, the 

set of activities should be defined as many as possible in advance. 

However, in the IoT environment, undefined activities may 

occasionally happen. For example, someone can get into the 

environment to look for missing stuff or other people. In this case, 

event streams composed of ‘entrance’ and ‘exit’ are generated from 

the undefined activities. In this paper, we do not consider the 

occurrence of the undefined activities, since the portion of them is 

almost negligible in our environment. 

4) Interleaved events stream of simultaneous activities: If 

multiple people exist in the same environment, more than one 

activity can occur simultaneously. For example, while one user is 

studying, another user can receive a phone call. In this case, 

simultaneous event streams for the activities would be interleaved, 

making the activity segmentation much more difficult. However, 

when multiple activities occur in a space, they can disturb or 

distract with each other so that such situation would rarely happen 

in general. For this reason, we do not consider this situation, and 

this issue remains as our future work along with the above case. 

These characteristics cause the major problems that make the 

activity segmentation problem complicated to deal with.  

Inclusive event stream problem. A pattern, which is very similar 

to one event stream of one activity, can be found within an event 

stream from other longer activity. This problem may occur between 

the event stream of a simple activity lasting a short time by a single 

user and that of a complex one lasting a long time by multiple users.  

Activity 𝜶: entrance – sit down – stand up – exit 

From a simple activity, such as ‘phone call’, its complete event 

stream can be illustrated as above. However, from a complex one, 

such as ‘seminar’, the above pattern can be included within the 

entire event stream from the activity. So, a complete event stream 

is likely to be erroneously segmented within the segment body. 

Redundant events problem. When an activity is conducted by a 

single user or multiple users, the event stream may include 

repetitive events due to unpredictable or emergent situations by the 

individual users as follows:  

Activity 𝜶: entrance – light on – sit down – stand up 

– exit – entrance – sit down – stand up – light off – exit 

 This event stream that has the repetitive events is one instance for 

the ‘study’ activity when someone leaves the space to go to the 

bathroom. In addition, if more than one person participates the 

activity, the event stream would be longer with redundant events. 

This is because the same events such as the ‘exit’ can be generated 

by all the individuals and the occurrence time of each event may be 

different. Figure 1(b) shows the average probability for each event 

to occur at a certain part in an event stream. Here, when we divide 

each event stream into three parts of equal length, then the first part 
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will include the starting point and the third part will include the 

finishing point. However, those boundary-specific events may 

occur in any other parts. Therefore, since the events only do not 

guarantee the starting or finishing contexts, determining the 

segment boundaries depending on these events only is not feasible. 

Shared events problem over consecutive activities. When an 

activity occurs immediately after a previous activity, a set of events 

which are commonly related to the two activities is not generated 

in general. As one instance, a user can receive a phone call while 

studying. To conduct the ‘phone call’, the user does not have to 

actuate the light and sit down again, already actuated from the 

‘study’. In this case, the event stream is illustrated as below.  

     Activity 𝜶: entrance – light on – sit down 

Activity 𝜷: stand up – exit 

Therefore, shared events are rarely generated from the subsequent 

activity of two consecutive activities, and the segment boundary 

would be very ambiguous in the concatenated event stream.  

Interleaved segment boundary problem. When more than one 

activity occurs simultaneously, the boundary of one activity tends 

to be interleaved with the events of other activities. This effect will 

make the segment boundaries ambiguous to determine.   

3. ACTIVITY SEGMENTATION METHOD 
If a noisy input sequence has long time steps, [6] claims that the 

LSTM model can perform well than the Hidden Markov models 

(HMMs) and the standard Recurrent Neural Networks (RNNs) as 

sequence processing methodologies. Based on this feature, we 

adopt and apply the LSTM model to the activity segmentation by 

rendering it to capture the contextual relationships inherent in a 

long series of events. Our target method has been developed in a 

few stages. At the first stage, we customized the LSTM model into 

three layers of equal length, where we found the appropriate time 

steps in the layer and addressed the bias problem. Then, each LSTM 

input was augmented with some object status information and 

solved the inclusive event stream problem using an optimal set of 

the object status. Lastly, the segmented boundaries from the 

previous stage were inspected with our time interval validation 

algorithm so that the final result could be enhanced. All these stages 

are elaborated in the following subsections.  

3.1 LSTM Model for Activity Segmentation 

3.1.1 Basic LSTM Model 
Our LSTM model is composed of three layers, which are input 

layer, hidden layer, and output layer, where each layer has an 

identical length of nodes known as time steps. Figure 2 shows our 

LSTM model where an input sequence with the length of time steps 

enters into the input layer and then the hidden layer passes its 

calculated results to the output layer. In our input procedure, an 

input sequence enters into the model, shifting one event in the long 

concatenated event stream for each input sequence. In one input 

sequence, each event enters into its matching input node after 

converted into the one-hot vector. Each output node has a two-

dimensional vector, where if the first element of the vector is larger 

than the second one, the event for that output node is inferred as the 

segment boundary. Therefore, we can get all the indices of events 

in the long event stream, inferred as the segment boundaries.  

In our model, we set the length of time steps to 60, because more 

than 99% of the lengths of all the event streams are less than 60. 

We can see the distribution of the lengths in Figure 3. In the 

distribution, another noticeable factor is that the minimum length 

of the conforming activity is found to be 4 in our testbed. 

In the training process of the LSTM, our cost value is defined as 

the sum of squares of the differences between the two-dimensional 

vectors in each output node and its matching target vector, which is 

the typical definition in this area. The training process is executed 

iteratively to attain the lower cost value and it works better when 

the data are well-distributed over multiple groups. However, the 

dataset for the activity segmentation consists of only two groups, 

one for the segment boundaries and the other for the segment bodies. 

Here, there is a large unbalance between the numbers of events in 

two groups, which may lead to a bias problem in the training 

process. That is, the training process using two severely unbalanced 

numbers of data groups would decrease the segmentation accuracy. 

To address this bias problem, it is necessary to counterbalance the 

biased effect. So, the target vector is weighted by the value of ω 

which is close to the degree of bias, as in the following formulation.  

weight  ω   =    √
(𝑒𝑡𝑜𝑡𝑎𝑙− 𝑒𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦)

 𝑒𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
 , 

where  𝑒𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 denotes the number of segment boundaries 

and 𝑒𝑡𝑜𝑡𝑎𝑙 is the total number of events, so the square root indicates 

the degree of bias. In the evaluation, we determined and validated 

the optimal weight ω empirically. 

3.1.2 LSTM with Object Status  
The basic LSTM model described above results in the accuracy of 

75% during the activity segmentation process in our testbed. We 

found in our experiments that the basic model rarely solves the 

inclusive event stream problem. Therefore, if the patterns trained as 

short and complete event streams, such as entrance – sit down – 

stand up- exit, are observed in an input sequence, the model tends 

to regard each pattern as a single complete event stream, even if the 

stream is just a part of true event stream from one activity.  

To address the inclusive event stream problem frequently observed 

in the basic model, we investigated various situations around the 

segment boundaries and we found the following property:  

An event that may suggest the boundary can have different 

contextual meaning from the same event occurring at other position 

in one activity. 
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Figure 2. LSTM model for activity segmentation 



 

 

Figure 4. Overall activity segmentation procedure 

As to this property, the contextual meaning represents the progress 

of the activity, and the different meanings of the same event can be 

derived from the interrelationships with its neighboring events. 

Since such neighboring events are generated by the objects, it is 

meaningful to reflect more elaborate object status into the LSTM 

model. So, we utilized major object status to determine whether or 

not the event is relevant to the segment boundary.  

In detail, we designed augmented input vector of the LSTM model 

by appending the additional object status to the original one-hot 

vector. We selected the additional objects based on our criterion 

that the target object should be relevant to more than 90% of all 

event streams in our testbed. The Table 1 presents a list of the 

selected objects and their relevant events. In appending the object 

status to the input vector, the type of the object status is considered. 

For the object with on or off status, we append 1 or 0 respectively. 

In cases of the people count or occupied seats count, we append the 

value to the input vector after dividing the value by the maximum 

value for normalization. In applying this scheme, we considered not 

only a single object but also combined objects in augmenting the 

input vector. Based on various cases with these objects, we found 

out the target objects that resulted in the optimal performance. 

These procedures in the first stage are shown as step 1) in Figure 4. 

3.2 Time Interval Validation Algorithm 
If a prevailing event suggesting a segment boundary, which can 

occur at any position in an event stream as in Figure 1 (b), is 

generated before or after the true boundary, it can make a bit shifted 

output boundary. To prevent this shifted boundary, we can exploit 

another contextual property associated with the time intervals 

between consecutive events. In general, segmenting the event 

stream by using mainly the time intervals, which was used by some 

of the existing approaches, may not be practical in the IoT 

environment. This is because time interval-based segmentation can 

be incorrect in the cases of consecutive activities without a 

threshold time interval, or consecutive events with a long time 

interval in an activity. Even though the time intervals cannot be 

used solely for the activity segmentation, we observed a meaningful 

property pertaining to them. That is, the time intervals between 

consecutive events, around the starting or finishing points in each 

activity, tend to be small, compared to the intervals between 

neighboring activities. Specifically, when an activity is about to 

terminate, a set of events such as stand up, door opened, and exit is 

generated consecutively within a relatively short time. We can also 

observe this kind of property when an activity has just started. 

So, we intended to utilize this property for enhancing the accuracy 

of our LSTM method. The simple way to utilize this property is 

comparing the time intervals around the inferred segment 

boundaries. Thus, we propose our lightweight yet efficient 

enhancing algorithm that can examine the validity of the segment 

boundaries and confirm them. This algorithm works in two steps. 

The first step calculates three time intervals around each inferred 

segment boundary. The first interval is calculated between the last  

event and the last but one in the preceding segment body before the 

segment boundary. The second interval is computed at the segment 

boundary, which is between the last event in the previous segment 

and the first event in the subsequent segment. In that subsequent 

segment, the third time interval is obtained between the first and 

the second events. Then, we select the largest interval and 

determine its later event as the revised segment boundary. The 

second step confirms whether or not the lengths of all the segments 

exceed the minimum length of an event stream. If any segment has 

a length less than the minimum length, then we compare the two 

time intervals toward the two segments which are before and after 

that segment, and eliminate the segment boundary corresponding 

to the smaller interval. This algorithm is simple yet very efficient, 

which is demonstrated in the evaluation section. 

4. EVALUATION 
To demonstrate our approach, we used our own IoT environment 

installed in a room in our campus (building N1, KAIST). The 

environment has 12 state-change sensors such as Door sensor, 

Light sensor, Presence sensor, and Seat sensor. In the space, 23 

different events are generated from these objects and 17 different 

activities are defined and assumed to occur. Our dataset was 

collected from September 2015 to June 2016. The concatenated 

event stream used in the experiments and evaluations is composed 

of 6,843 events generated from 436 activities, which is obtained 

through preparation. In the preparation, the event stream was 

segmented manually for learning the true segment boundaries and 

evaluating our approach. And if the original raw data contained 

some erroneous event streams, like that the duration of a stream is 

too short to be a defined activity or abnormally arranged events are 

generated, they are regarded as undefined or nonconforming 

activities and removed in the evaluation. 

To implement our LSTM model, we utilized TensorFlow [19] 

which is an open source software library for machine learning. In 

the evaluation, we utilized 90% of the events for training and the 

remaining events for testing the model. We set the length of time 

steps to 60 and each input sequence of the LSTM is generated by 

sliding one event in both training and testing processes.   

The main metrics for the performance evaluation are three metrics: 

the recall, precision, and F1-score. In our experiments, the recall 

indicates the ratio of the number of correct segment boundaries that 

we found to the number of the true segment boundaries. The 

precision is the ratio of the number of correct segment boundaries 

among the number of the segment boundaries that we found.  

4.1 Target Vector Weight for Bias Problem  
In the LSTM model, it is necessary to consider the bias problem 

that occurs when the number of events relevant to the segment  

Object Relevant Events 

People count Entrance, Exit 

Light Light on, Light off 

Door Door opened, Door closed 

Occupied seats count Sit down, Stand up 

Method recall (%) precision (%) F1-score (%) 

siHMM 46.36 45.95 46.15 

Basic LSTM 89.36 64.62 75.00 

Basic LSTM +  

Time interval algorithm 
89.36 73.68 80.77 

Table 2. Baseline vs. our LSTM methods 

Table 1. Selected objects and their relevant events 

 



 

boundaries is much smaller than the number of events for the 

segment bodies. Since we set the length of time steps to 60 and 

given that the length of the shortest event stream of an activity is 4, 

then the number of segment boundaries is between 1 and 15 per 

time steps. In practice, only 435 out of 6,843 events are relevant to 

the segment boundaries, with the remaining 6,572 events included 

in the segment body in our testbed. Thus, in the training process, 

the target vector for the segment boundary is weighted according 

to the formulation defined in Section 3. We determined the weight 

to be 3 which achieves the highest accuracy as shown in Figure 5. 

4.2 Baseline vs. Our LSTM Methods 
This paper utilizes the siHMM [15] as the baseline method for 

comparison. The siHMM is an outstanding HMM for the activity 

segmentation with state-of-the-art accuracy compared to other 

HMMs. Table 2 shows the recall, precision and F1-score resulted 

from the siHMM and our LSTM methods, which were conducted 

using our dataset. From these results, our proposed methods show 

much higher accuracy. The accuracies can be interpreted that the 

large difference is caused by the attributes of our dataset, where the 

events in an event stream are dependent on each other. While the 

HMM-based approach is inappropriate when events are inter-

dependent, the LSTM can discover the intrinsic sequential 

relationship between events within a segment body or around the 

segment boundary. Therefore, our LSTM-based approach is 

suitable for the IoT environment. 

It is also important to note the precision values from the basic 

model and the time interval validation algorithm enhancing the 

result. When we applied the algorithm to the resulting segment 

boundaries, a bit shifted boundaries described in subsection 3.2 

were revised to the correct boundaries, so the precision increased 

by 9% and the final F1-socre increased by 5.77% to 80.77%. Thus, 

we could get higher accuracy by our validation algorithm. 

4.3 LSTM with Object Status  
In examining the detailed results, we found that the LSTM did not 

determine frequently the segment boundaries in the case of the 

inclusive event stream problem. In other words, the basic model 

regarded a part of a long event stream from one complex activity as 

a short and complete event stream from the simple activities, such 

as the ‘phone call’ activity. This problem made the precision 

decreased compared to the high recall. To address the problem, we 

augmented each input vector of the LSTM with some prevailing 

object status information that meets our criterion in Section 3. Table 

3 shows the results of the experiments with the cases of appending 

one object or combined objects. As shown in the table, when an 

object status or a set of object status are appended to the original 

input vector, the precision values show variations, while most recall 

values increase meaningfully, causing the F1-score to be enhanced 

in general. These results suggest that the appended object status can 

help the LSTM to resolve the inclusive event stream problem by 

grasping more insightfully the contextual meaning of each 

component event by the property described in subsection 3.1.2. 

While the concept of the object status is useful for the activity 

segmentation, using the concept solely for the process cannot solve 

the major problems declared in Section 2. For example, if the 

segment boundary is determined by the people count only, 

unpredictable ‘entrance’ or ‘exit’ event by some users can easily 

lead to wrong segmentation. Thus, the object status should be used 

adjunctively with the event stream due to the low flexibility and 

ambiguity in applying the criterion for segmentation.  

From the results of activity segmentation by appending the object 

status into the basic LSTM, we found that using the people count 

and light achieved the highest accuracy of 94.62%. This result can 

be interpreted that since the light and people count generate the 

dominant events that can signify the segment boundary, their 

combination would yield the optimal performance. This analysis 

can be strongly supported by the Figure 1(b). This result was 

obtained without applying our time interval validation algorithm.  

As our final stage evaluation, we applied the proposed validation 

algorithm to the above result. The final result showed the surprising 

accuracy level of 96.77%, by correcting a bit shifted segment 

boundaries and eliminating non-boundary segmentation. Thus, we 

demonstrated that this algorithm could enhance the accuracy even 

further from the high accuracy of the previous results. Figure 6 

shows this enhancement.  

5. RELATED WORK 
The recent study [15] is closest to our study in that the authors 

attempted to use mainly the event streams by proposing the siHMM, 

which is a feasible model for data stream segmentation in their 

environment. The most important problem of the original HMMs is 

that they cannot distinguish the dynamics between the inter-

segment and intra-segment. The problem was addressed by the 

siHMM, which learns various data streams and grasps the 

sequential relationships to determine the segment boundaries like 

our LSTM model. However, an event stream generated from the 

IoT environment has intrinsic order between its component events, 

so events are not independent of each other. Despite the fact that 

using the siHMM results in state-of-the-art accuracy in their dataset, 

the model can have low performance in the IoT environment. When 

we applied the siHMM to our testbed, the resulting accuracy was 

less than 50%, i.e., much lower than our LSTM method.  

Object recall (%) precision (%) F1-score (%) 

Basic LSTM 89.36 64.62 75.00 

People count 93.62 77.19 84.62 

Light 93.62 80 86.27 

Door 82.98 70.91 76.47 

Occupied seats count 91.49 93.48 92.47 

People count + Light 93.62 95.65 94.62 

People count + Door 93.62 77.19 84.62 

People count + 

Occupied seats count 
95.74 84.91 90.00 
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Figure 5. F1-score according to target vector weights 

Figure 6. Basic LSTM vs. LSTM with object status vs. 

Time interval algorithm 



6. CONCLUSION AND FUTURE WORK 
The IoT environment requires highly advanced activity recognition 

technology to provide proper services to multiple participants. 

Activity recognition technologies have advanced significantly, and 

they assumed that an event stream used for the recognition is given 

by the unit of one activity. So, a concatenated event stream that is 

generated from a series of multi-user activities should be 

segmented in advance according to the activities. In this paper, this 

activity segmentation problem was addressed, which is difficult 

because unpredictable actions by the individuals make the event 

stream patterns dynamic and confusing.  

In our contributions, we found important characteristics of the 

event streams and figured out major problems for activity 

segmentation: the inclusive event stream, the redundant events, and 

the shared events problems. To determine the segment boundaries 

in a concatenated event stream, we exploited the contextual 

relationships about the activity progress, which could be captured 

within the segment body and around the segment boundaries. For 

this purpose, the LSTM model was rendered for our environment 

via devising its input vector and target vector weight, and its 

resulting boundaries were validated by our lightweight yet efficient 

algorithm. Through these experiments, our study showed the 

surprising segmentation accuracy in our testbed and demonstrated 

its feasibility in the IoT environment. 

In the future work, we will consider the remaining possible 

situations where undefined activities may occur and a few multi-

user activities occur simultaneously. By developing our activity 

segmentation methodology, we will present more feasible and 

optimal approach for the IoT environment.  
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