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Large and high-dimensional real-world datasets are being gathered across a wide range of application disci-

plines to enable data-driven decision making. Interactive data visualization can play a critical role in allowing

domain experts to select and analyze data from these large collections. However, there is a critical mismatch

between the very large number of dimensions in complex real-world datasets and the much smaller number

of dimensions that can be concurrently visualized using modern techniques. This gap in dimensionality can

result in high levels of selection bias that go unnoticed by users. The bias can in turn threaten the very valid-

ity of any subsequent insights. This article describes Adaptive Contextualization (AC), a novel approach to

interactive visual data selection that is specifically designed to combat the invisible introduction of selection

bias. The AC approach (1) monitors and models a user’s visual data selection activity, (2) computes metrics

over that model to quantify the amount of selection bias after each step, (3) visualizes the metric results, and

(4) provides interactive tools that help users assess and avoid bias-related problems. This article expands on

an earlier article presented at ACM IUI 2016 [16] by providing a more detailed review of the AC methodology

and additional evaluation results.
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1 INTRODUCTION

Large and complex datasets are being gathered across a wide range of application disciplines to
support data-driven decision making. From healthcare to advertising to business intelligence,
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these datasets are often gathered “in the wild” with large numbers of heterogeneous and diverse
variables.

Unlike data for traditional prospective studies—which is gathered narrowly according to a study
design determined a priori with the goal of supporting a specific analytical question—these real-
world datasets capture a vast and diverse sample of data from the system under investigation
without knowing in advance the types of questions that will be asked. The aim in these settings is
to gather data with enough variation and richness that a wide range of ad hoc, targeted analyses
can be performed retrospectively—after data has been collected— to quickly provide precision data-
driven evidence to decision makers or investigators.

As just one example, there is growing interest within the healthcare domain in using “Big Data”
to help personalize care and support precision treatment decisions [28]. The so-called Learning
Health System [23] concept is receiving heavy investment, with the aim of creating methods and
tools that enable a data-driven environment in which evidence that informs medical treatment can
be obtained via analysis of large populations of real-world patient data. The subsequent outcomes
from those decisions could then be added to the population-based dataset, with new analyses of
the updated data producing a powerful learning effect [1, 12, 13].

These sorts of large-scale data-driven analyses, regardless of domain, require analysts to select
subsets of data that can be further analyzed to answer a specific question of interest. This data

selection process is often accomplished using visual analysis technologies [41] that are designed to
leverage interactive visualization algorithms to help user quickly and intuitively navigate complex
datasets. For example, visual analysis techniques have been applied to problems in the healthcare
domain, allowing users to quickly identify and select a cohort of patients for further analysis during
population-based studies [44]. This form of visual data selection can be highly effective, supporting
an analysis workflow that is both intuitive and high speed.

However, there is a critical limitation that must be overcome when this approach is applied to
high-dimensional datasets. More specifically, there is a dramatic mismatch between the relatively
small number of dimensions displayed simultaneously even in “multi-dimensional” visualization
methods (e.g., most often less than 20) compared to the very high-dimensional nature of many
real-world datasets (e.g., tens of thousands of features in real-world medical data).

This significant difference in dimensionality means that users performing visual data selection
must apply filters with an exceptionally narrow view of the dataset they are manipulating. Unfor-
tunately, because the variables in many real-world, high-dimensional datasets are highly interde-
pendent, the filters applied during visual data selection can produce large amounts of selection bias
that—for the vast majority of variables that are omitted from the visualization—can occur invisi-
bly and go undetected. As a result, the bias that is introduced can be a silent yet critically limiting
factor that undermines the quality of all subsequent analyses of the selected data. For example, the
results of a medical study conducted using a heavily biased data sample could unknowingly en-
courage poor but seemingly evidenced-based treatment decisions. This is a recognized challenge
for data-driven techniques in the health domain [14] and is equally problematic in other fields.

In this article, we present Adaptive Contextualization (AC), a novel approach to interactive vi-
sual data selection that is specifically designed to combat the invisible introduction of selection
bias. Our approach (1) monitors and models a user’s visual data selection activity, (2) computes
metrics over the model to quantify the degree of selection bias introduced during the process,
(3) visually represents the results for contextual awareness, and (4) provides interactive tools that
help users assess bias when it is discovered and revert problematic filters to explore alternative
selections. Specifically, our work offers the following contributions:

• Algorithms for capturing and assessing the introduction of bias during data se-

lection. We define a context model that captures the sequence of steps performed by a
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user during the visual data selection process. We then define a multi-dimensional distance
metric that quantifies the shift in variable distributions between any pair of steps in our
context model. The metric is recomputed automatically as the model changes in response
to additional user activity.

• Visual representations and interaction techniques. We describe an interactive visual
representation for the results produced by the algorithms outlined earlier. The visualization
is updated automatically as users explore a dataset and provides interactive tools that allow
users to investigate the bias metrics and revise their data selection process.

• An evaluation of AC’s effectiveness. We include results and analysis from a 18-person
study evaluating AC as applied to a medical domain problem. The results show that a data
selection tool with AC (when compared to a baseline version without AC) improves aware-
ness of variable distribution changes within a dataset during selection and reduces the time
required to estimate levels of selection bias. We also share results from a qualitative evalu-
ation conducted with population health researchers.

This article is an extended version of the first article to describe AC, which was published at the
2016 ACM International Conference on Intelligent User Interfaces [16]. In addition to a revised and
expanded presentation of the AC methodology, this article complements the previously published
user study findings with new evaluation results derived from qualitative interviews with a team
of population health researchers (see Section 6). Finally, supplemental material is provided via the
ACM Digital Library. This material includes (1) a video figure demonstrating the system in action
and (2) an appendix documenting details of the evaluation process.

2 BACKGROUND AND RELATED WORK

The context-aware visualization methods proposed in this article are related to several different
areas of research including high-dimensional visualization methods, provenance modeling, and
previous approaches to intelligent visualization.

2.1 High-Dimensional Visualization

The application of interactive data visualization techniques to high-dimensional datasets has been
a focus and challenge for the research community since the mid-1990s [7]. The challenge is rooted
in constraints that derive from the very fundamentals of the data visualization concept. Visual-
ization uses a relatively small number of visual variables (position, shape, size, brightness, color,
orientation, texture, and motion) [43] to encode complex information and relies on humans’ visual
perception to interpret the resulting graphics to derive insight.

Using clever graphical arrangements (e.g., parallel coordinates [22] and scatterplot-matrices [9])
as well as multiple coordinated views [42], a single visual variable can be leveraged to encode more
than one data variable at the same time. However, even advanced applications of these techniques,
as shown in the a recent survey of state-of-the-art parallel coordinates techniques [19] are able to
concurrently visualize only a relatively small number of dimensions (most often less than 20).

Given this restriction on the dimensionality of visual representations, research in this area of-
ten focuses on data summarization, projection, or ranking. This includes traditional projection
methods like principle component analysis (PCA) and multi-dimensional scaling (MDS), visual
clustering (e.g., Refs. [3, 8, 10, 34]), and a variety of hierarchical summarization methods [11].
Optimization-based techniques can then support algorithmic configuration of these approaches
based on specific quality criteria [6]. However, summarization methods result in loss of informa-
tion due to the reduction in dimensionality. Ranking-based methods, meanwhile, can prioritize
dimensions for viewing but do not overcome the limited number of visualized dimensions. As a
result, a majority of dimensions can remain invisible.
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2.2 Provenance Modeling

Visual queries are a key benefit of many interactive visualization systems [35]. User interface con-
trols allow users to change query constraints, while visualization is used to interactively depict
the updated dataset. Visual queries can be combined with direct manipulation of the visualiza-
tion’s graphical objects [20] to make exploratory data selection fast and intuitive. Together, these
methods can support an exploratory selection process through which users can quickly and inter-
actively focus a visual analysis on a data subset of interest (e.g., healthcare domain examples [15,
32, 44]).

In recognition of the exploratory and ad hoc nature of these tools, researchers have developed
a variety of visual provenance models. These models are designed to capture and record the often
complex chain of visual data transformations that users can apply as they explore a dataset [18,
24, 27, 29, 39]. In these most basic form, these models capture trails of user activity to document
the origin of a dataset [25] or to allow re-use of a previously saved sequence of analysis operations
[4]. This article adopts a similar approach to monitoring and capturing user activity but uses these
data interactively to actively contextualize a user’s ongoing exploratory data selection process.

2.3 Intelligent Visualization

The provenance models described earlier are often captured as evidence documenting how spe-
cific visualizations were constructed or how insights were discovered. However, the same models
capture detailed information about a user’s analytic activity that can support a wide range of intel-
ligent visualization algorithms. For example, algorithms have been designed to compare a user’s
currently visualized dataset with a representation of his/her visualization history. These have en-
abled, for example, user interfaces that recommend past visualizations that are most relevant to a
user’s current activity [37]. A similar approach has allowed for the ranking and recommendation
of relevant notes captured by a user in a visualization notebook [38].

Using sequences of steps along a provenance model can also support intelligent visualization
applications. For example, behavior-driven visualization recommendation [17] is a technique that
analyzes user activity as it is performed to detect patterns that suggest user intent. Alternative
visualizations are then recommended with the aim of better supporting a user’s analytic needs. In
addition, models can be collected and indexed for subsequent searching, supporting collaboration,
and re-use of visualization-based data selection procedures [27]. At a high level, the AC approach
outlined in this article is perhaps most similar to these intelligent visualization techniques. How-
ever, the goal is quite distinct given AC’s focus on data quality and bias as introduced during
high-dimensional data selection.

3 MOTIVATING SCENARIO AND BASELINE SYSTEM

As a motivating example for the challenges of high-dimensional data selection, consider the In-
tegrated Cancer Information and Surveillance System (ICISS) managed by the UNC Lineberger
Comprehensive Cancer Hospital [26]. Like similar “Big Data” resources in other domains, ICISS
gathers large volumes of complex real-world data from multiple sources to build a detailed repos-
itory for retrospective analysis. In particular, ICISS integrates the North Carolina Central Cancer
Registry (containing a nearly complete sample of all cancer cases in the state) with administrative
and claims data for roughly 60% of “general population” patients from across the state. In total,
ICISS contains electronic health data for more than six million patients.

ICISS contains a wide variety of data about these patients including demographic data, insurance
information, and longitudinal medical data (including diagnoses, lab tests, medications, and pro-
cedures). Other variables include census and environmental data, behavioral data, and economic
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data. All together, this results in a very high dimensional dataset, with the number of distinct
variables easily exceeding 100,000.

Researchers hoping to use this data resource to retrospectively study the impact of various
cancer treatments or interventions must begin with a critical but challenging first step: they must
select—from this complex pool of over six million patients—a representative cohort of patients
to study. This is generally accomplished by specifying a series of inclusion/exclusion criteria to
whittle the population down to a group that is (1) a manageable size, (2) appropriate for given
clinical question, and (3) representative of the larger population being studied.

Typically, this involves a long and extracted process where investigators attempt to communi-
cate their data needs to a staff of technologists who then work to identify an appropriate cohort for
a given study. This repeats iteratively as the clinical investigators (1) wait for the technical team to
extract and refine a cohort from the database, (2) vet the results to see if the resulting cohort meets
their needs, (3) make judgements about how criteria should be modified to improve the results,
and (4) repeat the process until satisfied.

For example, to support one recent study at ICISS, researchers studying breast cancer narrowed
in on a study cohort by along 12 dimensions, resulting in a study cohort of just 2,640 patients
(from the over six million overall). Using traditional methods (without the visual selection tools
described later), this type of iterative selection process can take months of effort, require high
levels of technical staff support, and result in a large number of complex custom-built SQL queries
and statistical analyses.

3.1 Baseline Visual Data Selection System

To support the scenario earlier in the text, a visualization-based data selection system was de-
veloped with a design similar to the recently introduced DecisionFlow system from Gotz and
Stavropoulos [15]. Both DecisionFlow and our prototype adopt a design specifically created to
allow ad hoc exploration of high-dimensional temporal event data, making it a good match for
the electronic health data. Our baseline system, however, provides more capabilities than Deci-
sionFlow. In particular, our baseline system allows users to iteratively apply inclusion/exclusion
criteria, more closely matching the workflow outlined in the motivating scenario.

The baseline visualization system, shown in Figure 1, combines (a) a visual query panel for re-
trieving an initial cohort of patients from a large-scale database, (b) a visual breadcrumb showing
the sequence of inclusion/exclusion constraints added during the selection process, (c) an inter-
active temporal event visualization panel that supports direct manipulation for defining new con-
straints, and (d) an interactive patient event/demographic panel that visualizes a variety of basic
statistics to help users identify interesting variables within the high-dimensional data.

This baseline visualization design allows users to quickly and intuitively select focused cohorts
for subsequent analysis. This approach promises to dramatically speed the cohort selection process
described in our motivating scenario.

However, the increased visibility and use of correlations made possible by these visual meth-
ods means that selection bias an even more salient concern as users identify cohorts of interest.
For example, filtering to include only patients with emergency admissions will skew data toward
certain diseases with acute manifestations, while filtering to include patients with certain medi-
cations can result in a strong age bias. These changes are often hidden from user’s view, however,
because—due to the high dimensionality—they are not included in the visualization. In this way,
the iterative application of multiple filters, as is typical in the motivating scenario, can produce
a final cohort that is dramatically—and invisibly—different than the original. This is a recognized
challenge [14] and one that the AC methods in this article are designed to help address. Moreover,

ACM Transactions on Interactive Intelligent Systems, Vol. 7, No. 4, Article 17. Publication date: November 2017.



17:6 D. Gotz et al.

Fig. 1. The baseline visualization-based data selection system with four panels: (a) a query/constraint panel,

(b) a visual breadcrumb showing steps in the data selection process, (c) an interactive visualization panel

allowing user-driven patient subgrouping and inclusion/exclusion constraint definition, and (d) a panel vi-

sualizing demographic and clinical event statistics for the selected cohort.

this motivates the evaluation design presented in Section 5, which compares the baseline visual
cohort selection system described here with an AC-enabled version of similar design.

4 ADAPTIVE CONTEXTUALIZATION METHODS

This section provides a detailed description of AC. It begins with a definition of a provenance
model designed to model user’s behavior and the evolving chain of datasets that are created dur-
ing user interaction. A metric is then defined over this model to quantify differences in variable
distributions across the high-dimensional space. Intelligent user interaction capabilities are then
adopted automatically update the model, recompute the metrics, and surface the results for visual
inspection and manipulation. Together, this AC approach provides users with clear and actionable
feedback about the location and degree of bias introduced in response to their interactive data
selection activity.

4.1 Provenance Model

At the core of the AC method is a data structure designed to capture the provenance behind the
dataset currently being visualized by the user. This provenance model must capture each of the
datasets visited by a user over the course of the data selection process with sufficient detail to
support the metric defined later in this section.

As shown in Figure 2, the provenance model is represented as a sequential chain of datasets
di linked by filters fi . Each filter includes one or more constraints defined by users’ interaction
with the visualization. The very first dataset visualized by a user, d0, is the dataset returned by
the user’s initial query. The final dataset in the chain, noted as dactive , corresponds to the user’s
currently visualized dataset. All other di represent datasets created as intermediate steps by the
user as part of the interactive data selection process. We note that this structure represents the
minimally required provenance model for AC. This representation can be extended as required to
support additional provenance-based user interaction capabilities.

Given this basic representation, a visualization system can be instrumented to build and main-
tain the provenance model in response to user interaction. As new constraints are applied via
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Fig. 2. The provenance model captures the sequence of user activity that led to the current dataset. It cap-

tures both the datasets at each step (di ) as well as the filters (fi ) used to arrive at those datasets. When

users revert to earlier steps to undo filters, the model is pruned (gray circles). A new branch is then created

to reflect any subsequent filters. The dataset at the end of the model (in this case, d6) is the active dataset,

dactive .

direct manipulation with the visualization, new datasets are defined and added to the end of the
chain. The model supports reversion, allowing users to undo one or more filters from the end of
the chain. In response to a reversion, the chain of datasets is first pruned back to the selected point
while new filters are extended along a new branch within the model. This is illustrated in Figure 2
which shows a model that was reverted to d1 (resulting in the pruning of d2, d3, and d4) before
being extended with two new filters to arrive at the active dataset d6.

Except for small datasets, it can be impractical to store a complete copy of each dataset along
the chain. Fortunately, AC does not require that the actual data be stored in full at each node in the
provenance model. Efficient visualization requires dactive , and intermediate datasets can be repro-
duced as needed by applying the corresponding chain of filters to d0. AC does require, however, a
detailed characterization of the distribution of values for each variable in each datasetdi . These dis-
tributions are used as input to the metric defined in the next section. Therefore, each time dactive

is updated in response to user interaction, a process runs to compute a detailed high-dimensional
variable distribution vector for the newly created dataset, which we note as �vi = {v1

i ,v
2
i , . . . ,v

n
i }.

This vector contains a discrete probability distribution v j
i for each individual variable j in the n

dimensional dataset di .

4.2 Pairwise Dataset Comparison Metric

The provenance model documents each of the steps in the data selection process by which a user
transforms d0 to dactive . To quantify the amount of selection bias introduced, we construct a pair-
wise dataset comparison metric, δ (dj ,dk ), which varies from zero (to indicate that two datasets
have identical variable distributions) to 1 (indicting maximally different variable distributions be-
tween datasets).

The δ metric builds on the Hellinger distance [31, 40], a statistical measure designed to quan-
tify the similarity between two probability distributions. For discrete datasets, such as those
found in typical visualization applications, a discreet probability version of the Hellinger dis-
tance can be computed as follows. For two discrete probability distributions A = (a1, . . . ,an ) and
B = (b1, . . . ,bn ):

H (A,B) =

√√
1

2

n∑
i=1

(
√
ai −
√
bi )2, (1)

where n is the number of discrete values for A and B.
Conceptually, this measure will be used in our algorithm to quantify the difference between the

distribution of values observed for the same variable in one dataset versus another dataset (e.g.,
gender distribution in d0 versus dactive ). The uni-variate H evaluates to zero when A and B are
identical and produces a value of one when A and B are maximally different.

ACM Transactions on Interactive Intelligent Systems, Vol. 7, No. 4, Article 17. Publication date: November 2017.



17:8 D. Gotz et al.

There are many potential distance or similarity measures that could be used to quantify changes
in distributions. We chose to adopt the Hellinger distance as the basis for our approach for several
reasons. First, it is an established measure for comparing distributions, used widely within the sta-
tistics community. Second, the Hellinger distance provides a normalized value in the range of [0, 1],
which supports its application across heterogeneous variable types. Third, the Hellinger distance
is symmetric, meaning that H (A,B) = H (B,A). Finally, the Hellinger distance can be computed
very efficiently for discrete probability distributions. The speed of calculation is critical, because,
as described later in this section, it is computed a very large number of times in response to a
user’s interaction with the visualization system.

Within our AC algorithm, this discrete form of the Hellinger distance can be applied directly to
categorical and ordinal values. Ratio variables, meanwhile, should typically be binned to convert
them to ordinal measures before computing the discrete probability distribution. This binning step
can prevent n values that are relatively large in comparison to the dataset size. As n grows larger,
there is risk of over-sensitivity to small changes in variable distributions.

While H provides a uni-variate measure of similarity, the datasets in our work are high dimen-
sional in nature, often containing tens of thousands of unique dimensions. We therefore define the
multi-variate distance measure δ using a weighted average of the uni-variate Hellinger distances
across all dimensionsm in our dataset,

δ (dj ,dk ) =

∑m
i=1wi ∗ H (vi

j ,v
i
k

)∑m
i=1wi

, (2)

wherevi
j andvi

k
are the discrete probability distributions for the ith variable datasetsdj anddk ; and

wi ∈ {0, 1} is the weight for the ith variable. This produces a measure which, like the traditional
uni-variate Hellinger distance, ranges from zero (for datasets with identical variable distributions)
to 1 (for datasets whose variable distributions are maximally different).

The weights in this measure are used to ignore distances contributed by dimensions that have
been explicitly filtered by the user. More specifically, variables that have been explicitly constrained
within of filters fi found prior to the datasets dj and dk within the provenance model are assigned
weights of zero. All other variables are assigned weights of 1. In this way, the δ measure only
considers differences in variable distributions that occur implicitly as a confounding side effect.

For example, consider the motivating medical scenario. If a dataset containing patient medical
data was filtered by a user to contain only men, then the gender variable would be assigned a
weight of zero when comparing the two datasets (all patients vs. men only). This would ensure that
the expected differences in gender distribution would not contribute to the result of the distance
measure. However, hidden differences in correlated variables (e.g., differences in the prevalence of
maternity-related procedures) would be detected.

4.3 Metric Visualization and Interaction

As users go about the data selection process using an AC-enabled visualization system, the AC
algorithm monitors user interaction and dynamically updates the data provenance model after
each filter. As dactive changes, new δ values (Equation (2)) are computed for each new pair of
datasets in the model. The δ values, along with the individualH values computed for each variable
(Equation (1)), are then made available via the user interface to highlight for users where the largest
biases have been introduced.

The δ and H metrics are then used to highlight and prioritize areas of emerging selection bias
for the user. To present this information, the baseline user interface shown in Figure 1 is expanded
to include two new intelligent visualization capabilities. First, highlighted in Figure 3(a), a con-
textualized breadcrumb view provides additional contextual information compared to the baseline
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Fig. 3. The user interface for our AC-based visualization system extends the baseline interface of Figure 1 in

two key ways. First, (a) the breadcrumb panel showing the user’s history of datasets includes a visualization

of the δ metric and supports new interactions to support dataset comparisons. Second, (b) a new Balance

Panel has been added to visualize detailed ranked lists of univariate differences between datasets.

breadcrumb design and supports a new set of user interaction capabilities. Second, highlighted
in Figure 3(b), a new Balance Panel supports detailed univariate comparisons for selected pairs of
datasets. A high-level representation of the two main interaction paths supported by these panels
is shown in Figure 4.

4.3.1 The Contextualized Breadcrumb. The contextualized breadcrumb panel is designed to
help users understand (1) the filters that have been applied at each step of the data selection pro-
cess and (2) how the dataset dactive compares to those previously visualized datasets in terms of
underlying variable distributions. To achieve this goal, a glyph-based design has been developed
as illustrated in Figure 5. In this design, each dataset in the provenance model, starting with d0

and continuing to dactive , is represented by its own glyph. The glyphs are positioned from left to
right, with d0 appearing first. As new datasets are visited, the chain of glyphs is extended to the
right as shown in Figure 6.

Each glyph shows the size of the dataset with both a number and a blue indicator whose height
is proportional to the size of the dataset. This provides a simple bar-chart view of the changing
dataset size as filters are applied. In addition, a color-coded rectangle, which we call a δ bar, is posi-
tioned at the bottom of each dataset’s glyph. For each dataset di , the color of the bar is determined
by the value of δ (di ,dactive ). This value is then mapped to a green-to-yellow-to-red color scale.
A red δ bar represents a dataset that has major differences in variable distributions compared to
the active dataset. A green bar, meanwhile, represents a dataset that is very similar to the active
dataset. This explains, for example, why the active dataset (highlighted with the gold border) has
a pure green δ : It shows no bias when compared to itself (i.e., δ (dactive ,dactive ) = 0).

Users can access additional information via interaction. Mousing over the portion of the glyph
containing the blue size indicator shows the specific filter applied to arrive at the corresponding
dataset. Meanwhile, mousing over the δ bar provides a high-level summary of the bias detected
between the dataset and dactcive . In particular, as shown in Figure 6(f), users can see the actual δ
score as well as a list of the three variables with the largest difference in distributions as measured
by Equation (1).
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Fig. 4. Users interact with the system via one of two main interaction paths. (a) Normal data selection is per-

formed via the visualization panel. Users navigate the active dataset and apply filters via direct manipulation

of the visualization’s graphical elements. In response, the system updates the provenance model, calculates

new distance measures, and renders the updated visualization and breadcrumb views. (b) The user interacts

with the breadcrumb to initiate a comparison between the active dataset and a user-selected baseline.

Finally, users can click on any glyph in the breadcrumb to select the corresponding dataset. If the
selected dataset is not dactive , then the breadcrumb view is updated with a dotted black selection
line (see Figure 5) that connects the selected dataset with dactive . Coordinated with this selection,
the user interface displays the Balance Panel described later to support detailed investigation of
the differences between the datasets. Clicking on the active dataset returns the visualization to its
normal exploratory data selection model. Right-clicking on a dataset brings up a context menu
that allows users to “go back” to an earlier dataset to explore alternative selections.

4.3.2 The Balance Panel. When a dataset di (other than dactive ) is selected in the contextual-
ized breadcrumb view, the Balance Panel (Figure 3(b)) is presented to the user with the aim of sup-
porting detailed comparisons between the selected dataset and the user’s currently active dataset.
This panel, in essence, provides users with a prioritized visualization of the individual univariate
H scores (Equation (1)) that contribute to the overall δ value.

The top of the balance panel provides a list of constrained dimensions. While a detailed list of
active constraints are also included in the leftmost sidebar of the user interface (where the query is
performed), this section of the panel provides users with a reminder that the listed variables have
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Fig. 5. The contextualized breadcrumb view uses color-coded bars at the bottom of each glyph to encode the

δ measures. Interaction capabilities revert to prior datasets or select a prior dataset for detailed comparison

in the Balance Panel.

been explicitly constrained and are therefore omitted from the data that is displayed below it. In
particular, these are the dimensions for which wi is set to zero in Equation (2).

The remainder of the balance panel provides a ranked list of univariate visualizations. The visu-
alizations are sorted byH score, placing at the top of the list the variables whose distributions have
been changed the most given the filters that created dactive from di . For each variable, two distri-
butions of values are visualized: (a) the values from the active dataset and (b) the values from the
baseline dataset. By visualizing the two distributions in juxtaposition with each other, the panel
allows users to quickly “drill down” into a given H score and see what specific differences there
are in values between the two datasets.

An example of the univariate visualizations included in the balance panel is shown in Figure 3(b).
This example shows that the Age variable exhibits the largest change in distribution given its lo-
cation at the top of the panel. The histograms illustrate the reason for the high ranking: The active
cohort (in blue) has far fewer young patients. This produces a distribution with a much higher
average and lower variance. The second largest shift takes place within the ethnicity variable. The
detailed view of the distribution of values, however, shows an interesting pattern. While there are
fewer patients identified as simply “Asian,” there are more patients identified as “Asian–Chinese.”
This manifests itself as a large change in distribution, but in practice the difference may not be
semantically meaningful. This example shows a key benefit of providing these tools to domain
expert users. What appears statistically meaningful may in fact be semantically insignificant, and
including visualization tools within the process can help users make more informed analytical
decisions.

The balance panel is critical for users, because it allows them to understand why a large δ has
developed during the data selection process. An example workflow from our motivating scenario
is illustrated in Figure 7. First, a user is shown iteratively applying multiple filters (Figures 7(a)–
(c)) before clicking on the contextual breadcrumb to learn which variables have been most biased
(Figure 7(d)). The balance view tells the user that the age variable is most biased variable. Using the
balance view to look at other datasets in the breadcrumb, the user learns that this bias introduced
by a filter to a specific type of hospital admission.

5 USER STUDY FOR TASK PERFORMANCE EVALUATION

To evaluate the benefits of AC to users during high-dimensional data selection, we conducted a
user study comparing our AC-based visual data selection prototype to a baseline system in which
AC features were disabled. The study required users to perform tasks related to the selection of a
patient cohort from a database [30, 33] containing electronic medical record data for approximately
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Fig. 6. The contextualized breadcrumb view grows the right as users apply new filters. ((a)–(d)) The color-

coded δ bars are updated in response to these new datasets, providing up-to-date representation of the

measured bias. (e) Mousing over the main glyph area shows the filters applied at that step, while (f) hovering

over the δ bar.

30,000 patients with over 3,000 variables.1 We note that while the data was medical in nature, the
study tasks were designed to require no medical knowledge or background.

5.1 Participants and Testing Environment

A total of 18 users (12 female, 6 male) were recruited to participate in the study, with ages within
the range of 21–50. All participants were college educated with degrees in science, technology,
engineering, or math (STEM) fields. As a result, all were familiar with the basic statistical concepts
relevant to the study. Moreover, all participants had either completed or were currently enrolled
in a graduate degree program. Backgrounds included public health, statistics, and information
science. However, none of the participants were epidemiologists or clinicians at ICISS. The study
tasks (see the Electronic Appendix for this article) were designed to be completed by users without
detailed domain knowledge.

The 18 participants were randomly assigned into two groups of nine: a Baseline group and an AC

group. None of the participants had any prior experience with any of the software evaluated in the

1Variables include demographics, thousands of distinct medical procedures, and other medical events (e.g., admission and

discharge).
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study. The study tasks were performed on a 13.3-inch laptop computer with a display resolution
of 1,280 × 800 pixels and a 60Hz refresh rate.

5.2 Procedure

Each user took part in single study session lasting roughly one hour. Each session began with a
brief introduction to the data that would be used during the study, followed by a tutorial during
which the moderator described the various features of the software that would be used to complete
the study tasks. Users in the AC group were given access to the advanced AC features described
in this article. Users in the Baseline group were given access to a version of the same software but
with the AC-related features disabled (see Figure 1). Regardless of group, participants were then
instructed to practice with their assigned software tool and asked to perform six specific practice
tasks. The moderator provided additional help and instruction when needed during these practice
tasks.

Once a user was comfortable using the software assigned to her/his group, the experimental
portion of the study began. The participant was asked to perform six formal study tasks that were
very similar to the six practice tasks but focused on different subsets of the study dataset. Both
groups of users performed identical tasks with identical data, but with different versions of the
software.

While the formal study tasks were performed, the moderator did not provide any assistance
or instruction in how to use the system. The moderator recorded both accuracy and time-to-
completion for Tasks T1–T4. Tasks T5 and T6 focused on the more subjective tasks of bias as-
sessment and confidence, respectively. Once finished with the study tasks, users completed a post-
session questionnaire with nine 5-point Likert scale questions (Q1–Q9) and two free-response
questions that asked users to comment regarding the most and least helpful aspects of the soft-
ware they were given to perform the tasks.

Finally, after the questionnaire, participants in both groups were debriefed by the moderator to
gather additional qualitative feedback. Moreover, users in the Baseline group were given a demon-
stration of the full AC prototype and asked to comment regarding the additional features. More
details, including the full text for all tasks and questions used in the study are provided in the
Electronic Appendix for this article.

5.3 Results and Discussion

The results from our study show that AC can help contextualize the visual data selection pro-
cess, and help users more effectively detect and characterize emerging selection bias. This section
presents the results obtained from our study and discusses the implications of those results for
AC-based visualization systems.

5.3.1 Study Tasks. Each participant in the study completed six study tasks T1–T6 (see the
Electronic Appendix for this article). The first four tasks (T1–T4) were designed to reflect the iter-
ative “assess, revise criteria, assess, revise criteria” workflow that is typical of the cohort selection
process. Overall, users from both the AC and Baseline groups completed these four timed tasks
(T1–T4) with high accuracy. However, there were statistically significant2 differences observed in
task completion time for two of the four timed tasks as illustrated in Figure 8.

T1: Users were asked to compare the mortality rate for across different patient subgroups within
the same dataset. This is a task for which AC was not expected to provide any meaningful benefit,

2Statistical significance for tasks T1–T6 was determined using a standard t -test comparing results between AC and Baseline.

A total of 18 observations were used for each t -test (one for each participant) with nine observations in each group.
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Fig. 8. Mean time-to-completion (in seconds) for the four timed tasks in our study (T1–T4). Error bars show

the standard error. Tasks T3 and T4 were performed significant faster by the AC group (p < 0.01).

and therefore similar performance was expected across groups. Indeed, both groups answered
accurately well with only one incorrect answer. A user in the AC group arrived at the wrong answer
after confusing the variable “Admission Type” with “Admission Source” and therefore selected the
wrong variable for comparison. However, the user did perform the task correctly even if the final
response did not provide the correct answer.

T2: Users were asked to apply a filter to create a new dataset, then compare the values observed
for a single variable across the “before” and “after” datasets. Users in all groups arrived at the
correct answer, while AC user performed the task more quickly. The difference in timing, however,
was not statistically significant given our sample size. We hypothesize that the Balance Panel
proved useful for those that completed this task in the least amount of time, but more study is
required to reach a stronger conclusion.

T3: Users were next asked to compare more broadly the two datasets produced after T2, compar-
ing all variables rather than a single specific dimension. All users were again able to provide accu-
rate answers. However, the AC group arrived at their answers in significantly less time (p < 0.01).
This result suggests that the Balance Panel was highly beneficial in helping users characterize
differences between datasets.

T4: Users were asked to apply an additional filter, resulting in three datasets in the breadcrumb
panel. Users were then asked to identify which of the first two datasets was most similar to the new
active dataset that was just created. AC proved most useful in this case. Participants in the AC group
performed the task significantly faster and provided accurate answers. Meanwhile, participants
in the Baseline group faced far more difficulty resulting in significantly slower times (p < 0.01).
Moreover, one user in the Baseline group simply abandoned the task claiming it was not possible
to answer. The task completion time for this user were therefore omitted from the results shown
in Figure 8 and our statistical analysis. The user did remain to complete the study session, but
including his results for T4 would have produced an even stronger effect. Moreover, we believe
that this user’s behavior is emblematic of the much more difficult cognitive work required by
participants in the Baseline group to complete this task.

T5 and T6: Unlike the previous tasks, T5 and T6 asked participants for subjective assessments.
Users asked (T5) to state how representative the final dataset was with respect to the original query
result; and (T6) state how confident they were in their assessment. Interestingly, both responded
similarly that the final dataset was quite biased (AC: mean of 1.89; Baseline: mean of 1.69; on a
5-point scale with 1 = “very biased” and 5 = “highly representative”) and had similar levels of
confidence in their assessments (AC: mean of 3.44; Baseline: mean of 3.88; on a 5-point scale with
1 = “very unsure” and 5 = “highly confident”). The differences were not statistically significant,
making it impossible to draw any firm conclusions. However, we do note that the AC user were less
extreme, reporting in answers for both questions which, on average, were closer to the midpoint
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Fig. 9. Average responses for each of the nine 5-point Likert scale questions (Q1–Q9). Error bars show the

standard error. Questions Q5 (p < 0.05) and Q7 (p < 0.1) show statistically significant differences between

groups.

of the scale. The subjective feedback reported in the next section provides a more nuanced view
of the participants’ opinions.

5.3.2 Questionnaire and Moderator Debriefing. Users’ feedback gathered via the questionnaire
(see Figure 9) suggests that users clearly recognized certain benefits of using an AC-enabled visu-
alization system for data selection. Moreover, these benefits appear to come without any penalty
in terms of ease-of-use. Because the questionnaire collected user responses via a 5-point Likert
scale, a non-parametric Mann-Whitney analysis was performed to analyze the results.3

Q1–Q4: Q1 asked users how easy or hard it was to “learn how to interpret” the visualization,
while Q2 as how easy or hard it was to “learn how to interact with” the visualization tool. Q3
asked users to score how easy the system was to use after the initial learning curve. The responses
were similar for both the AC and Baseline groups for all three questions, falling in the middle of
the range. This suggests the inclusion of AC capabilities does not have any meaningful impact on
either the learning-curve of ease-of-use for the system.

From the moderator debriefings, it was observed that users with prior experience with other
data visualization tools found the interface very easy and convenient to use, while others took
more time to become comfortable. However, even the participants with a steeper learning curve
were able to complete the study session within the expected time.

Q5–Q7: The next three questions all suggested that the AC group felt more empowered for key
selection bias assessment tasks. Q5 asked if it was easy to compare a dataset from one step to a
dataset from another step in the selection process. Users in the AC group were far more likely to
agree, and the difference was statistically significant (p < 0.05). Similarly, participants from the AC

3Statistical significance for Q1–Q9 was determined using a Mann-Whitney U test comparing results between the AC and

Baseline groups. A total of 18 responses were used for each of these U tests (one for each participant) with nine responses

in each group.
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group were in stronger agreement with Q6, which asked users if the system made it easy to detect
when a filter produce datasets that exhibited large amounts of selection bias. The difference for
Q6, however, was not statistically significant given our relatively small sample size. Finally, the AC

group was significantly (p < 0.10) more likely to agree with Q7, which asked if the visualization
made it easy to learn which dimensions were most biased from the original dataset after applying
multiple filters.

Q8: Participants responded similarly across groups to Q8, which asked about comparing variable
distributions across any arbitrary pair of datasets rather limiting the comparisons to dactive . In
both the Baseline and AC software prototypes, users would need to revert to a prior dataset using
the breadcrumb view, which made this task harder to perform than other comparisons.

Q9: Perhaps surprisingly, users from the Baseline group agreed more strongly that the system
they used in their study session provided sufficient information to properly assess the validity of
the dataset they selected. The differences were not statistically different. However, we believe that
the users with AC were provided with a more nuanced view that highlighted areas of bias. This
in turn fosters deeper suspicion—and rightly so—within the user population about the quality of
their data selection.

These results show that users in the Baseline group were equally or more confident in their
final data selection. However, this confidence is misplaced as Baseline users also found it harder
to compare datasets, harder to assess differences in individual dimensions across steps of a data
selection process, and performed tasks more slowly and with more cognitive effort. We believe
that this highlights the critical benefits AC, without which users may dangerously proceed with
an analysis of a dataset both confident of its quality and ignorant of any underlying bias which
may threaten then validity of subsequent analysis results.

These conclusions were further supported by the feedback in the open-ended questions at the
end of the questionnaire. Users in the AC group said the color-mapped indicators for the δ measure
of each dataset “useful”/“very helpful” for dataset comparison. Meanwhile, five of the eight users
in the Baseline group expressed a wish for more straightforward ways to compare the datasets
rather than manually going back and manually comparing variable by variable.

Finally, at the very end of the study session for members of the Baseline group, the moderator
revealed the AC features that were made available to users in the AC group. Every Baseline user
said the study tasks would have been much easier with these new features. Comments from these
users after the reveal included “nice!,” “that’s cool,” and “a significant improvement if you want
to compare between cohorts.” Meanwhile, users in the AC group felt the tasks would have been
impossible without the added features, or at least would have been much harder and taken much
longer.

Interestingly, one user in the AC group brought up in the discussion that he would have had less
confidence in his assessments (e.g., T6, Q9) if he had been in the Baseline group without access to
the AC-based features. However, as already discussed, the study results don’t support his assertion.
Instead, we believe that users without AC—rather than wishing for features such as those that AC
provide—simply proceed with false confidence, because the bias being introduced during selection
is often hidden within the many variables that have been omitted from the visualization.

6 QUALITATIVE EVALUATION VIA PRACTITIONER INTERVIEWS

To complement the results from our formal user study, we collaborated with a team of population
health researchers from the UNC Lineberger Comprehensive Cancer Center to conduct a real-
world evaluation of our methods. We applied our AC-enabled visualization software (as used by
the AC group in Section 5) within the ICISS system first described in the motivating scenario of
Section 3, and conducted semi-structured interviews with the researchers to better understand
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how AC techniques align with their day-to-day needs and how such tools could be extended in
the future.

6.1 Procedure and Participants

As described in Section 3, ICISS is a “Big Data” resource that is built and maintained by the UNC
Lineberger Comprehensive Cancer Center to support a range of retrospective analysis studies.
While the full system contains data for over six million patients, the typical workflow for ICISS
analysts begins with a “rough cut” of the overall population, which is then further narrowed down
with a series of filters to produce the final cohort for a specific study. Therefore, the first step in
evaluating the AC prototype with ICISS analysts was to import a rough cut of data into the visual
analytics system.

We obtained an existing rough cut dataset of 18,945 breast cancer patients that was being ac-
tively used within a research study supported by ICISS. In the conduct of that study ICISS analysts
further refined the rough cut cohort, eventually producing a formal study cohort of 2,640 patients.
That smaller subset (about 14% of the original rough cut) was obtained by iteratively applying
further inclusion or exclusion criteria based on exploratory analyses of the remaining data.

To help analysts to more directly compare and contrast our AC-based visualization tools with
their existing set of tools, we exported data for the full set of 18,945 patients from a SAS-based data
repository and transformed the data into the format required by our prototype. We then ingested
those data files into our software prototype.

Once the prototype software was ready to use with the ICISS dataset, we conducted a series of
semi-structured interviews with seven ICISS analysts over a period of four days. All seven sub-
jects were full-time employees of the UNC Lineberger Comprehensive Cancer Center and had at
least Masters-level education in a quantitative discipline. Reflecting the interdisciplinary needs
of a data-driven population-based surveillance system, employees were trained in fields such as
epidemiology, biostatistics, computer science and medicine. All seven employees had real-world
experience working with ICISS data within a variety of population health activities.

During the interviews, analysts were first briefed on the software prototype’s design and capa-
bilities. This briefing included a demo of basic functionality as well as some hands on exercises.
The analysts were then asked to perform free-form data exploration and selection using the soft-
ware. While the analysts used the software to explore their dataset, a moderator took notes about
their behavior with the system and recorded users’ feedback.

6.2 Results and Discussion

The interviews captured a wide range of feedback from ICISS analysts. Given the analysts
focus on their daily workflow (rather than the comparatively narrow contributions of the novel
methods outlined in this article), many comments were focused on specific user interface design
suggestions or missing features that would make the software more suitable as a day-to-day tool.
This focus was expected given the analysts’ perspective that were showing them a new tool,
rather than evaluating a single feature. This tendency was exacerbated by the fact that we asked
the users to examine their own data with the new tool.

High level feedback suggested that the prototype was “easy to understand” and that it was “easy
to interact with” the software. The analysts also felt that the cohort comparison features were
valuable. The results here in general reflected the findings of the user study described in Section 5.

However, the users also suggested certain features which our prototype did not support. First,
multiple users requested the ability to compare included versus excluded patients at each step. For
example, suppose a user starts with one dataset which they then filter to include only men. The
current prototype allows users to compare the overall cohort with the cohort of men. However,
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there is no way in the current prototype to compare the cohort of men with the cohort of pa-
tient excluded by the gender filter: the corresponding cohort of women. Given this feedback, this
would be a very valuable feature to explore in future work. Such a feature would also result in a
stronger alignment between the AC method’s breadcrumb view and the CONSORT flow diagram
used widely for the reporting of clinical trials [2, 5, 21].

Related to this, users expressed the desire for a richer provenance model that captured more
than a linear chain of cohorts. In particular, while the ability to revert to prior cohorts to explore
new alternatives was valued, users expressed dissatisfaction with the fact that pruned datasets
were lost. Such a change would increase the power of the tool, but come at the expense of a more
complex user interface. For power users such as those at ICISS, a more complex interface may be
acceptable and the idea will be explored in future work.

Users also recognized the value of seeing a ranked list of shifted variables. However, some also
expressed the opinion that treating all variables as equal was not appropriate. The methods de-
scribed in this article do indeed treat all variables as equal contributors to the distance measure.
However, the distance measure defined in Equation (2) can be easily extended to support a per-
variable weighting factor. As described in this article, the δ measure restricts values of the weight
wi to either zero or one. This is used to ensure that shifts to explicitly filtered variables are not
reflected in the measure’s value.

In practice, however, the same weighting algorithm could be used to allow users to explicitly
ignore variables even if they have not been used in a filter operation. In this way, users could
manually mark variables as unimportant to have them excluded from the distance calculations.
Moreover, the algorithms for computing δ allow, in theory, for weights of any value in the range
[0, 1]. This could allow relative weighting between variables. The real challenge to overcome in
address this concern, however, is not algorithmic. Instead, it is a user interface challenge. We plan
in future work to experiment with alternative ways of allowing users to define per-variable weights
in an intuitive and efficient manner. The manual configuration of a large number of weights is a
difficult user interface challenge, so the use of intelligent interface methods for this purpose has
significant potential.

7 CONCLUSION

Large-scale datasets are being gathered in many domains with the goal of supporting data-driven
decision making. While interactive data visualization can play a critical role in this process, there is
a critical mismatch between (1) the very large number of dimensions in many complex real-world
datasets and (2) the much smaller number of dimensions that can be concurrently visualized
using modern techniques. This gap in dimensionality can place an analysis at high risk of hidden
selection bias during exploratory data selection tasks. This article described AC, a novel approach
to interactive visual data selection that is specifically designed to combat this challenge. The AC
approach (1) captures a model of users’ visual data selection activity, (2) computes metrics over that
model to quantify the amount of selection bias after each step, (3) visualizes the metric results, and
(4) provides interactive tools that help users detect and assess sources of bias as they emerge.

The results from our formal user study provide evidence for the benefits of our approach. How-
ever, there remain many avenues for future work. In particular, we plan to examine intelligent
ways to help users minimize the impact of bias through the use of intelligent data transformation
operations. In addition, we plan to explore other data quality measures which can be computed
in similar ways to address challenges beyond selection bias. We also plan to expand our metric
to account for differences in variable importance as requested by analysts in our expert user in-
terviews. Finally, we plan to conduct more thorough, longitudinal evaluations of our approach
through a series of multi-dimensional long-term case studies [36].
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APPENDIX

A USER STUDY TASKS

The user study described in Section 5 included 18 participants split into two groups. As described in
Section 5.2, each participant was asked to perform six practice tasks and six study tasks. The tasks
were designed to be similar to each other, but focused on different subsets of the study dataset.
This section of the appendix includes the actual tasks used during the study.

A.1 Practice Tasks

The six practice tasks were as follows:
Practice Task 1:

• Moderator: Query for a cohort of patients where “Race = Hispanic”
• Question: Which admission type has the best outcome (fewest deaths)?

Practice Task 2:

• Moderator: Add a filter for “Emergency Admissions”
• Question: How does age compare between the two cohorts (just “Emergency Admissions”

versus all admission types)?

Practice Task 3:

• Question: What other differences exist between these two cohorts (just “Emergency Ad-
missions” versus all admission types)?

Practice Task 4:

• Moderator: Starting with the emergency admissions cohort, apply a new filter for “VE-
NOUS CATHETER NEC = Yes”

• Question: This new cohort is most similar to (a) the original query cohort, (b) the emer-
gency admissions cohort, or (c) not sure/I’d have to guess.

Practice Task 5:

• Question: How representative is this cohort of the overall population? [Asked with a scale
of 1 through 5, where 1 = very biased and 5 = highly representative]

Practice Task 6:

• Question: How confident are you in your assessment (in Practice Task 5)? [Asked with a
scale of 1 through 5, where 1 = very unsure and 5 = highly confident]

A.2 Study Tasks

The six study tasks (referred to as T1 through T6 in the article) were as follows:
Study Task 1 (T1):

• Moderator: Query for a cohort of patients where “Race = Asian”
• Question: Which admission type has the best outcome (fewest deaths)?

Study Task 2 (T2):

• Moderator: Add a filter for “Emergency Admissions”
• Question: How does age compare between the two cohorts (just “Emergency Admissions”

versus all admission types)?
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Study Task 3 (T3):

• Question: What other differences exist between these two cohorts (just “Emergency Ad-
missions” versus all admission types)?

Study Task 4 (T4):

• Moderator: Starting with the emergency admissions cohort, apply a new filter for “VE-
NOUS CATHETER NEC = Yes”

• Question: This new cohort is most similar to (a) the original query cohort, (b) the emer-
gency admissions cohort, or (c) not sure/I’d have to guess.

Study Task 5 (T5):

• Question: How representative is this cohort of the overall population? [Asked with a scale
of 1 through 5, where 1 = very biased and 5 = highly representative]

Study Task 6 (T6):

• Question: How confident are you in your assessment (in Practice Task 5)? [Asked with a
scale of 1 through 5, where 1 = very unsure and 5 = highly confident]

B POST-SESSION QUESTIONNAIRE

As described in Section 5.2, every participant in the user study completed a post-session question-
naire. The first nine questions (referred to as Q1 through Q9 in the article) all asked the user to
answer using the same five-point scale: Strongly Disagree, Somewhat Disagree, Neither Agree nor
Disagree, Somewhat Agree, and Strongly Agree.

• Q1: It was easy to learn how to interpret the visualization’s graphic design.
• Q2: It was easy to learn how to interact with the visualization system.
• Q3: Once I was finished learning how the visualization system worked, I found it easy to

use.
• Q4: It was easy to remember the sequence of cohorts that were visualized as new filters

were applied.
• Q5: It was easy to compare cohorts from one step of the analysis to another.
• Q6: It was easy to detect when a filter produced cohorts that exhibited large amounts of

selection bias.
• Q7: The visualization made it easy to learn which dimensions were most biased with respect

to the original dataset after applying multiple filters.
• Q8: The visualization made it easy to learn which dimensions were most biased when com-

paring any arbitrary pair of cohorts.
• Q9: The visualization system provided me with valuable information that could help me

improve the validity of my analysis result.

The post-session questionnaire concluded with two free-response questions.

• Q10: What did you like best about the visualization system?
• Q11: What did you dislike most about the visualization system?
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