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Abstract

Traffic of Industrial Control System (ICS) between the Human Ma-
chine Interface (HMI) and the Programmable Logic Controller (PLC)
is known to be highly periodic. However, it is sometimes multiplexed,
due to asynchronous scheduling. Modeling the network traffic pat-
terns of multiplexed ICS streams using Deterministic Finite Automata
(DFA) for anomaly detection typically produces a very large DFA, and
a high false-alarm rate. In this paper we introduce a new modeling ap-
proach that addresses this gap. Our Statechart DFA modeling includes
multiple DFAs, one per cyclic pattern, together with a DFA-selector
that de-multiplexes the incoming traffic into sub-channels and sends
them to their respective DFAs. We demonstrate how to automatically
construct the statechart from a captured traffic stream. Our unsu-
pervised learning algorithms first build a Discrete-Time Markov Chain
(DTMC) from the stream. Next we split the symbols into sets, one per
multiplexed cycle, based on symbol frequencies and node degrees in the
DTMC graph. Then we create a sub-graph for each cycle, and extract
Euler cycles for each sub-graph. The final statechart is comprised of
one DFA per Euler cycle. The algorithms allow for non-unique sym-
bols, that appear in more than one cycle, and also for symbols that
appear more than once in a cycle.

We evaluated our solution on traces from a production ICS using
the Siemens S7-0x72 protocol. We also stress-tested our algorithms
on a collection of synthetically-generated traces that simulated multi-
plexed ICS traces with varying levels of symbol uniqueness and time
overlap. The algorithms were able to split the symbols into sets with
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99.6% accuracy. The resulting statechart modeled the traces with a
median false-alarm rate of as low as 0.483%. In all but the most
extreme scenarios the Statechart model drastically reduced both the
false-alarm rate and the learned model size in comparison with the
naive single-DFA model.

Index terms— ICS, SCADA, Network–intrusion–detection–system,
Statechart, Siemens, S7

1 Introduction

Industrial Control Systems (ICS) are used for monitoring and controlling
numerous industrial systems and processes. In particular, ICS are used in
critical infrastructure assets such as chemical plants, electric power gener-
ation, transmission and distribution systems, water distribution networks,
and waste water treatment facilities. ICS have a strategic significance due
to the potentially serious consequences of a fault or malfunction.

1.1 Background

ICS typically incorporate sensors and actuators that are controlled by Pro-
grammable Logic Controllers (PLCs), and which are themselves managed by
a Human Machine Interface (HMI). PLCs are computer-based devices that
were originally designed to perform the logic functions executed by electri-
cal hardware (relays, switches, and mechanical timer/counters). PLCs have
evolved into controllers with the capability of controlling the complex pro-
cesses used for discrete control in discrete manufacturing. The NIST Guide
to ICS Security [27] explains that ICS is a general term that encompasses
several types of control systems, including Programmable Logic Controllers
(PLC), Distributed Control Systems (DCS), Supervisory Control And Data
Acquisition (SCADA) systems, and other control system configurations. An
automation system within a campus is usually referred to as a DCS, while
SCADA systems typically comprise of different stations distributed over
large geographical areas.

ICS were originally designed for serial communications, and were built
on the premise that all the operating entities would be legitimate, prop-
erly installed, perform the intended logic and follow the protocol. Thus,
many ICSes have almost no measures for defending against deliberate at-
tacks. Specifically, ICS network components do not verify the identity and
permissions of other components with which they interact (i.e., no authen-
tication and authorization mechanisms); they do not verify message content
and legitimacy (i.e., no data integrity checks); and all the data sent over
the network is in plaintext (i.e., no encryption to preserve confidentiality).
Therefore, deploying an Intrusion Detection Systems (IDS) in an ICS net-
work is an important defensive measure.
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1.2 Related work

[5] describe different attack trees on ICS based on the Modbus/TCP proto-
col. They found that compromising the slave (PLC) or the master (HMI)
has the most severe potential impact on the ICS. For instance, an attacker
that gains access to the ICS could identify as the HMI and change data val-
ues in the PLC. Alternately, an attacker can perform a Man In The Middle
attack between a PLC and HMI and “feed” the HMI with misleading data,
allegedly coming from the exploited PLC.

While most of the current commercial network intrusion detection sys-
tems (NIDS) are signature-based, i.e., they recognize an attack when it
matches a previously defined signature, Anomaly-based Network Intrusion
Detection Systems (IDS) “are based on the belief that an intruder’s behavior
will be noticeably different from that of a legitimate user” [23].

[31] discussed these two potential types of IDS for ICS, stating that “sig-
nature detection recognizes an intrusion based on known intrusion or attack
characteristics or signatures. Anomaly detection identifies an intrusion by
calculating a deviation from normal system behavior”.

Different kinds of Anomaly Intrusion Detection models have been sug-
gested for SCADA systems. [31] used an Auto Associative Kernel Regression
(AAKR) model coupled with the Statistical Probability Ratio Test (SPRT)
and applied them on a SCADA system looking for matching patterns. The
model used numerous indicators representing network traffic and hardware-
operating statistics to predict the ‘normal’ behavior.

Several recent studies [3, 7] suggest anomaly-based detection for SCADA
systems which are based on Markov chains. However, [32] showed that
although the detection accuracy of this technique is high, the number of
False Positive values is also high, as it is sensitive to noise. [15] used the
logs generated by the control application running on the HMI to detect
anomalous patterns of user actions on process control application.

[13] have presented a state-based intrusion detection system for SCADA
systems. Their approach uses detailed knowledge of the industrial process’
control to generate a system virtual image. The virtual image represents the
PLCs of a monitored system, with all their memory registers, coils, inputs
and outputs. The virtual image is updated using a periodic active syn-
chronization procedure and via a feed generated by the intrusion detection
system (i.e., known intrusion signatures).

Model-based anomaly detection for SCADA systems, and specifically
for Modbus traffic, was introduced by [8]. They designed a multi-algorithm
intrusion detection appliance for Modbus/TCP with pattern anomaly recog-
nition, Bayesian analysis of TCP headers and stateful protocol monitoring,
complemented with customized Snort rules [25]. In subsequent work, [28]
incorporated adaptive statistical learning methods into the system to detect
for communication patterns among hosts and traffic patterns in individual
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flows. Later [4] integrated these intrusion detection technologies into the
EMERALD event correlation framework [24].

A survey of techniques related to learning and detection of anomalies in
critical control systems can be found in [2].

[26] discuss the surprising imbalance between the extensive amount of
research on machine learning-based anomaly detection pursued in the aca-
demic intrusion detection community, versus the lack of operational deploy-
ments of such systems. One of the reasons for that, by the authors, is that
the machine learning anomaly detection systems are lacking the ability to
bypass the “semantic gap”: The system “understands” that an abnormal
activity has occurred, but it cannot produce a message that will elaborate,
helping the operator differentiate between an abnormal activity and an at-
tack.

[11] developed an anomaly detection system that detects irregular changes
in SCADA control registers’ values. The system is based on an automatic
classifier that identifies several classes of PLC registers (Sensor registers,
Counter registers and Constant registers). Parameterized behavior models
were built for each class. In its learning phase, the system instantiates the
model for each register. During the enforcement phase the system detects
deviations from the model.

[14] developed a model-based approach (the GW model) for Network
Intrusion Detection based on the normal traffic pattern in Modbus SCADA
Networks using a DFA to represent the cyclic traffic.
Subsequently, [18] demonstrated that a similar methodology is successful
also in SCADA systems running the Siemens S7 protocol.

[6] proposed a methodology to model sequences of SCADA protocol mes-
sages as Discrete Time Markov Chains (DTMCs). They built a state ma-
chine whose states model possible messages, and whose transitions model
a “followed-by” relation. Based on data from three different Dutch utili-
ties the authors found that only 35%-75% of the possible transitions in the
DTMC were observed. This strengthens the observations of [14, 18] of a
substantial sequentiality in the SCADA communications. However, unlike
[14, 18] they did not observe clear cyclic message patterns. The authors
hypothesized that the difficulties in finding clear sequences is due to the
presence of several threads in the HMI’s operating system that multiplex
requests on the same TCP stream.

Modeling the network traffic patterns of multiplexed SCADA streams,
as observed by [6], using Deterministic Finite Automata (DFA) for anomaly
detection typically produces a very large DFA, and a high false-alarm rate.

1.3 Contributions

DFA-based models have been shown to be extremely effective in modeling
the network traffic patterns of SCADA systems [14, 19], thus allowing the
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creation of anomaly-detection systems with low false-alarm rates. However,
the existing DFA-based models can be improved in some scenarios.

In this paper we address two such scenarios: the first scenario is the
one identified in [6]: the HMI is multi-threaded, each thread independently
scans a separate set of control registers, and each thread has its own scan
frequency. The second scenario occurs when the SCADA protocol allows the
HMI to “subscribe” to a certain register range, after which the PLC asyn-
chronously sends a stream of notifications with the values of the subscribed
registers. The commonality between the scenarios is that the network traf-
fic is not the result of a single cyclic pattern: it is the result of several
multiplexed cyclic patterns. The multiplexing is due to the asynchronous
scheduling of the threads inside the HMI, or to the asynchronous scheduling
of PLC-driven notifications. Attempting to model a multiplexed stream by
a single DFA typically produces a very large DFA (it’s cycle length can be
the least-common-multiple of the individual cycle lengths), and also a high
false-alarm rate because of the variations in the scheduling of the indepen-
dent threads.

Our solution to both scenarios is the same: instead of modeling the
traffic of an HMI-PLC channel by a single DFA, we model it as a Statechart
[16] of multiple DFAs, one per cyclic pattern, with a DFA-selector that de-
multiplexes the incoming stream of symbols (messages) into sub-channels
and sends them to their respective DFAs.

In the most simple cases, the number of cyclic patterns is known and
each of the cyclic patterns contains easy-to-identify distinct symbols, i.e.,
symbols that do not appear in any of the other cyclic patterns. In these
cases, each cyclic pattern can be learned individually based on some easy
to detect meta data, e.g., the SCADA traffic can be demultiplexed to sub
streams, each containing traffic of individual cyclic pattern, and then each
of the cyclic pattern can be learned out of its corresponding sub-stream.
In more complex cases the same symbols appear in several cyclic pattern,
thus some of the patterns overlap. Our design supports both the simple
cases, in which each sub-channel has a unique set of symbols—and also the
complex cases in which some symbols belong to multiple cyclic patterns.
We suggest a new method to identify the number of cycles and to learn
each of the multiplexed cyclic patterns even in cases where there is symbol
overlaps between different patterns. Our learning algorithms first build a
Discrete-Time Markov Chain (DTMC) from the stream. Next we split the
symbols into sets, one per multiplexed cycle, based on symbol frequencies
and node degrees in the DTMC graph. Then we create a sub-graph for each
cycle, and extract Euler cycles for each sub-graph. The final Statechart is
comprised of one DFA per Euler cycle.

We evaluated our solution on traces from a production SCADA system
using the latest variant of the proprietary Siemens S7 protocol, so called
S7-0x72. Unlike the standard S7-0x32 protocol, which is fairly well under-
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stood, little is published about the new variant. Based on recent advances
in the development of an open-source Wireshark dissector for this variant,
we were able to model S7-0x72 in the Statechart framework, including its
subscribe/notify capability. A naive single-DFA model caused a false-alarm
rate of 13–14% on our traces, while the Statechart model reduced the false-
alarm rate by two orders of magnitude, down to at most 0.11%. A separate
contribution is our description of the S7-0x72 protocol, with its complex
message formats and advanced semantics.

We also stress–tested our solution on a collection of synthetically–generated
traces, with intentionally difficult scenarios multiplexing up to 4 periodic
patterns and with up to 56% symbol overlap between patterns. Our learn-
ing algorithms were able to correctly identify the set of symbols in each cycle
in 99.6% of the cases. In all but the most extreme scenarios the Statechart
model drastically reduced both the false-alarm rate and the model size in
comparison with the naive single-DFA model. The resulting Statecharts
were able to model the multiplexed stream with an average of only 3.3%
more false alarms than the ideal Statechart (in which the true cycles are
known) even when the cycles did not have unique symbol sets, and when a
symbol appears multiple times in the cycles. The overall median false-alarm
rate was as low as 0.483%.

2 Preliminaries

2.1 The DFA-based model for Modbus

The GW model [14] was developed and tested on Modbus traffic. Modbus
is a simple request-response protocol widely used in SCADA networks. A
typical SCADA HMI sends a request to a PLC. The request includes a
function code specifying the service, and the address range of data items.
After the PLC processes the request, it sends a response back to the HMI.

In the GW model, the key assumption is that traffic is periodic, there-
fore, each HMI-PLC channel is modeled by a Mealy Deterministic Finite
Automaton (DFA). The DFA for Modbus has the following characteristics:

(a) A symbol is defined as a concatenation of the message type, function
code, and address range, totaling 33-bits;

(b) A state is defined for each message in the periodic traffic pattern.
The GW model suggests a network anomaly detection system that com-

prises two stages: An unsupervised learning stage, and an enforcement
stage. In the unsupervised learning stage a fixed number of messages is
captured, the pattern length is revealed, and Mealy DFA is built for each
HMI-PLC channel. The channel’s input-symbols are categorized into two
groups: Known and Un-known. The Known group consists of all the input
symbols that were observed during the learning phase, and have a matching
DFA state. The Unknown symbols are all the rest.
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We denote current position as Si and the received input symbol as sj .
Four transition types (output symbols) are defined in the DFA (as depicted
at Figure 1):

• Normal - A “normal” transition occures on a known symbol that
leads to the next state in the periodic sequence. I.e., sj = Si+1. As
a result of a “normal” event the DFA is transitioned to its next state
Si+1.

• Retransmission - A “retransmission” is an occurrence of a known
symbol that is identical to the previous symbol. I.e., sj = Si. As a
result of a “retransmission” event the DFA remains in its current state
Si. Note that if the pattern includes two identical symbols it would
lead to a state with 2 different transitions for the same symbol (a
“normal” transition forward, and a “retransmission” self loop). This
non-determinism is resolved in run-time by preferring the “normal”
transition over the self-loop “retransmission” transition.

• Miss - A “miss” is an occurrence of a known symbol sj which appears
at state Si out of its expected position in the pattern. I.e., sj 6=
Si+1. As a result of a “miss” event the DFA is transitioned to the
closest forward state (modulu Pattern Length) that follows the normal
sj symbol.

• Unknown - An “unknown” is an occurrence of an unknown symbol.
As a result of an “unknown” event the DFA remains in its current
state Si.

The learning assumes that the sniffed traffic is benign. In the enforce-
ment stage, traffic is monitored for each channel (according to its DFA), and
proper events are triggered.

Based on traffic captured from a production Modbus system, the authors
discovered that over 97% of Modbus traffic is well modeled by a single DFA
per HMI-PLC channel. However they also discovered a phenomenon that
challenges the DFA-based approach: In addition to a frequent scan cycle
that occurs multiple time per second, they found a second periodic pattern
with a 15-minute cycle. Attempting to model both cycles by a single DFA
produces a very large, unwieldy model: Its normal pattern consists of hun-
dreds of repetitions of the fast scan cycle followed by one repetition of the
slow cycle. Such a pattern is also inaccurate since the slow cycle does not
always interrupt the fast cycle at the same point, and while the slow pattern
is active, symbols from both patterns are interleaved.

2.2 Adversary model

In this work we assume the existence of a semantic adversary who has unre-
stricted physical access to the SCADA network and has thus nearly complete
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Figure 1: A DFA representing a 2-Query SCADA traffic pattern.

control of the communications channel between the HMI and the PLCs. Our
underlying threat model is based on the Dolev-Yao threat model [9]. The
adversary, may overhear and intercept all traffic regardless of its source and
destination. The adversary can inject arbitrary packets with any source and
destination addresses. Consequently, the adversary can also replay previ-
ously overheard messages. In particular the adversary can take over the
HMI and issue control messages. The objective of the adversary is to ma-
nipulate the SCADA network to achieve an impact on the physical world.

Currently, most SCADA protocols do not include cryptographic algo-
rithms (e.g., ciphers and hash functions). Our adversary model assumes
that when such security measures are deployed, their associated crypto-
graphic keys are known to (or can be broken by) the adversary. However,
the adversary is limited by the cryptographic methods employed by the com-
municating hosts. Hence, the adversary cannot subvert the cryptographic
algorithms. We similarly require that in the presence of secure SCADA pro-
tocols, our NIDS will be configured with the necessary cryptographic keys
so it would be able to decrypt the examined traffic.

Our sensor would be located in the network segment where it can pas-
sively monitor traffic that was already modified by the adversary and just
before the PLC as illustrated in Figure 2. The sensor is not located inline
so it does not affect the normal network operation (e.g., port mirroring or
similar mechanism is used to instruct the switch to send copies of network
traffic to the NIDS).

We further assume that the adversary has in-depth knowledge of the ar-
chitecture of the SCADA network and the various PLCs as well as sufficient
knowledge of the physical process and the means to manipulate it via the
SCADA system. Thus the adversary has the ability to fabricate messages
that would result in real-world physical damage. Fovino et al. illustrated
such an attack by describing a system with a pipe in which high pressure
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Figure 2: Placing the Network Intrusion Detection System (NIDS) in a
SCADA network

steam flows [13]. The pressure is regulated by two valves. An attacker
capable of sending packets to the PLCs can force one valve to complete clo-
sure, and force the other to open. Each of these ICS commands is perfectly
legal when considered individually, however when sent in a certain order
they bring the system to a critical state. [22] presents an attack scenario
where a system-wide water hammer effect is caused simply by opening or
closing major control valves too rapidly. This can result in a large number
of simultaneous main breaks.

Digital attacks that cause physical destruction of equipment do occur.
Perhaps most notably is the attack on an Iranian nuclear facility in 2010
(Stuxnet) to sabotage centrifuges at a uranium enrichment plant. The
Stuxnet malware [12, 20] implemented a water–hammer attack by changing
centrifuge operating parameters in a pattern that damaged the equipment
– while sending normal status messages to the HMI to hide the fact that an
attack is under way. [21] describes a more recent event, where hackers had
struck an unnamed steel mill in Germany, by manipulating and disrupting
control systems to such a degree that a blast furnace could not be properly
shut down, resulting in massive-though unspecified-damage.

Fundamentally all these attacks work by injecting messages into the com-
munication stream—possibly legitimate messages—on an attacker-selected
pattern and schedule. Hence a good anomaly detection system needs to
model not only the messages in isolation but also their sequence and timing.

Note that our anomaly detection approach does not distinguish between
malicious events and faulty events.

3 A Statechart-based Solution

Our first observation is that, as hypothesized by [6] modern HMIs employ
thread-based architecture (e.g., this is how the Afcon’s Pulse HMI [1] is
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Figure 3: A Statechart DFA model

built): While each thread is responsible for certain tasks (e.g., controlling
access to a range of registers on a PLC), the threads run concurrently with
different scheduling frequencies, and share the same network connections.
Hence, to accurately model the traffic produced by such an HMI (with the
PLC’s responses), we should use a formalism that is more descriptive than
a basic DFA. Our choice is to base our model on the concept of a Statechart
[16]: the periodic traffic pattern driven by each thread in the HMI is modeled
by its own DFA within the Statechart, see Figure 3. Each DFA is built
using the unsupervised learning stage of the GW model. The Statechart
also contains a DFA-selector to switch between DFAs.

3.1 The Statechart Enforcement Phase

During the enforcement stage, each DFA in the Statechart maintains its own
state, from which it transitions based on the observed symbols (messages).

The DFA-selector’s role is to send the input symbol s to the appropriate
DFA. To do so it relies on a symbol-to-DFA mapping φ: φ(s) denotes the set
of DFAs that have symbol s in their pattern. If each pattern has a unique
set of symbols then φ is 1-1. However, in the general case, a symbol may
appear in multiple patterns and φ is one-to-many. Upon receiving a symbol
s the DFA-selector uses the following algorithm:

• If φ(s) = ∅ the DFA-selector reports an “Unknown” symbol.
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• If φ(s) = {D}, i.e., the symbol is a unique symbol of a single DFA D,
then s is sent to D, which handles it using its own transition function.

• Else, if |φ(s)| > 1, the selected DFA is the member of φ(s) for which the
absolute difference between the current time and the predicted arrival
time of s is minimal.

In order to implement this policy:

• During the DFA learning stage of the GW model, for each state r in
the DFA’s pattern we calculate the average time difference to its imme-
diate successor in the cyclic pattern (along the “Normal” transition).
We denote this Time to Next State by TNS(r).

• During the enforcement phase, each DFA D retains the time-stamp
Tlast(D) of the last symbol that was processed by it (in addition to
the identifier of the current state).

The predicted arrival time Tpred(s,D) of a symbol s for a DFA D ∈ φ(s)
which is currently at state q, is calculated as follows:

1. Identify the tentative state q′ that DFA D transitions to from state q
upon symbol s. Note that q′ is not necessarily the immediate successor
of q in the pattern—the transition from q to q′ may be a “Miss” or a
“Retransmission”.

2. Let P (q, q′) denote the path of DFA states starting at q and ending at q′

along the “Normal” transitions (not including q′). Then Tpred(s,D) =
Tlast(D) +

∑
r∈P (q,q′) TNS(r): The predicted arrival time is the sum

of inter-symbol delays along the “Normal” path between q and the
tentative transition-to state q′ added to the time-stamp of the last
symbol processed by DFA D.

3.2 The Statechart Unsupervised Learning Phase

The goal of the learning phase is to construct the Statechart for a specific
HMI-PLC channel, given a captured stream of symbols from the channel.
For this we need to create the symbol-to-DFA mapping φ, for the use of the
DFA selector, and we need to create the individual DFAs themselves. In
[19] we treated the simple cases and constructed the Statechart as follows:

1. Split the channel’s input stream into multiple sub-channels.

2. For each sub-channel use the GW unsupervised learning algorithm to
create a DFA.

3. Create the DFA-selector’s mapping φ from the sub-channel DFAs.
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Figure 4: A DTMC of SCADA Traffic (47,473 symbols captured along 1000
sec). The node frequencies are in thousands, for the first 16.82 sec captured
trace comprised of 800 symbols.

The sub-channel splitting (step 1) can be implemented when we know
how many sub-channels can exist, each sub-channel has a unique set of sym-
bols, and there is a filter criterion to recognize them. However, a difficult
case is when we don’t know in advance how many sub-channels exist, and
the sub-channels potentially have overlapping symbols. In this paper we
introduce a new sub-channel splitting algorithm that performs well even in
the more challenging cases. It uses a Deterministic Time Markov Chain
(DTMC) and graph theory concepts to create a DFA, or several DFA al-
ternatives, for each cyclic pattern in a PLC-HMI channel. Then, for each
PLC-HMI channel, a statechart is built out of any combination of the mul-
tiple DFAs and the best-performing combination is used.
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3.3 Building a DTMC

For our purposes a Discrete Time Markov Chain (DTMC) M is a tuple
(S, P ) where:

• S is a countable nonempty set of states

• P: S x S→ [0, 1], is the transition probability function s.t., Σs′P (s, s′) =
1 : P(s,s’) is the probability to jump from s to s′ in one step

A state graph of DTMC M is a directed graph G = (V,E) where vertices
in V are states of M , and (s, s′) ∈ E iff P (s, s′) > 0. Henceforth we refer to
the state graph of the DTMC simply by DTMC.

In our model the nodes V represent the symbols (messages) observed
in the SCADA trace. A directed edge e = (u,v) represents a “followed-by”
relation: symbol u is followed by symbol v in the learned trace. For e=(u,v)
the probability P(e) represents the fraction of time that the transition u→v
was traversed, out of all transitions exiting u.

We also assign a frequency freq(v) to the nodes v∈V, representing the
total number of time that v was observed in the learned trace.

Following [14, 18], in order to construct the model’s DFAs and Stat-
echart, there is a need to define the symbols. [14] defined a symbol for
Modbus as a concatenation of the message type, function code, and ad-
dress range, totaling 33-bits; [18] selected several PDU fields of the S7-0x32
protocol, that were then hashed into 64-bit symbols.

After selecting which fields of a SCADA message constitute a symbol
in the DFA’s alphabet, we generate a symbol out of each SCADA message
that is captured. We count the number of occurrences of each symbol as
well as the number of occurrences of each bigram (contiguous sequence of 2
symbols).

We then construct the DTMC using the symbols as the DTMC states,
and defining the transition probability by normalizing the bigram count over
all edges exiting a symbol. The construction of a DTMC is independent of
the SCADA protocol and is completely automated. Figure 4 shows a DTMC
of SCADA traffic (that was constructed according to scenario #6 of the
sequences used to generate the synthetic datasets, see Table 1). Each circle
in the Figure represents a vertex of the DTMC graph with its id number
and its occurrence frequency. A DTMC edge is represented by an arrow
between two circles.

We noticed that in our data there are bigrams that occur rarely and rep-
resent transitions between different cycles rather than transition between
symbols of a certain cycle. This happens due to the multiplexing of the
different cycles within the traffic stream. Consequently, we decided to fil-
ter out bigrams that occur rarely, i.e., bigrams that occur below a certain
threshold of the maximum occurrences for the target vertex. We used a
threshold Trare of 10%.
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Table 1: Overview of the sets of sequences used to generate the synthetic
datasets
ID Len. Uniq. Period ID Len. Uniq. Period ID Len. Uniq. Period

1
6 6 300

7
10 8 300

11

10 8 250
4 4 950 8 7 350 4 2 650

2
6 6 300 10 9 400 6 4 1100
4 4 950

8
10 8 300 8 7 420

3
6 4 300 8 7 850

12

6 4 250
4 1 400 10 9 1300 4 4 350

4
6 4 300

9
10 7 300 10 9 550

4 2 950 8 4 350 8 7 420

5
10 9 300 10 8 400

13

10 9 300
4 2 600

10
6 3 300 4 2 600

4 3 200 4 2 350 4 2 200

6
10 7 300 6 2 400 6 3 350
10 7 950
10 7 2000

3.4 Identifying a Symbol Set for each Cycle

In order to identify the set of symbols for each cyclic pattern out of the
DTMC, we designed and applied an iterative algorithm. The major steps of
the algorithm are depicted in Algorithm 3.1. The algorithm starts by select-
ing all the vertices with only one incoming edge and one outgoing edge. The
motivation to start with these vertices is based on the assumption that each
of these vertices belongs only to one set. Attached to each vertex is the oc-
currence frequency of its associated SCADA symbol vfreq. Consequently, it
is assumed that vfreq is the frequency of the cycle to which that symbol be-
longs to. These vertices are classified to sets where each set contains vertices
of similar frequency F. A vertex is added to a certain set S if its frequency
is “similar” (denoted by ') to the frequency of the set. In the algorithm we
use the ' operator to denote frequency extended with a threshold Tsim, i.e.,
Sfrequency×(1−Tsim) < vfreq < Sfrequency×(1+Tsim), where Tsim is a con-
figurable threshold. In our experiments we used a threshold of Tsim=0.05.
The first vertex V that does not belong to any of the existing sets “creates”
a new set with a frequency vfreq.

A vertex can be a member of multiple sets, signifying the occurrence of
a symbol in multiple cyclic patterns. We call each of these memberships -
another instance of the vertex.

In steps 2 - 5 vertices that do not yet belong to any set (or that have
some instances that have not been classified yet) are added to existing sets.
In steps 2 vertices that have only one incoming edge or outgoing edge as well
as a frequency that is similar to a frequency of one of the existing sets, are
added to the corresponding set. In steps 3 vertices whose frequency is the
sum of their adjacent (connected by an entering edge or by an exiting edge)
vertices (as long as each of the adjacent vertices belongs to only one set) are
added to the corresponding sets of the adjacent vertices. In step 4 several
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combinations are created out of adjacent vertices whose frequencies sum up
to the vertex frequency. When more than one combination is created, each
one of them is considered separately and multiple symbol-set alternatives
may be created for the specific pattern cycle. In step 5 each of the remaining
vertices is examined. If a vertex has both an incoming edge and an outgoing
edge from/to the same set, and one of the adjacent vertices that belongs
to that set has both in-degree = 1 and out-degree = 1, then the vertex is
added to that set.

Note that in steps 2 - 5 new sets are not created. Instead the remaining
vertices are classified into the existing sets. An exception is the 6th step
where a new set is formed for vertices that could not be classified to any
other set. The frequency of this set is fixed to the minimal frequency among
its vertex members. Then, in the last step (step #7) this frequency is
deducted from each of the vertices that are members of the new set, and
the algorithm tries to classify additional instances of those vertices with
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remaining frequency F > 0.

Algorithm 3.1: Get Symbol Sets for Cycles( )

Let v represent a vertex, S represent set of vertices
Step 1: Basic in and out degree 1
∀i, vi | vi.inDegree = 1, vi.outDegree = 1,
if ∃Sj | Sj .freq ' vi.freq
then Sj ← Sj ∪ {vi}
else k ← max(j) + 1, Sk ← {vi}

Step 2: Additional degree 1
RemainV rtx← {∀i,∀j, vi | vi 6∈ Sj}
for each v ∈ RemainV rtx

do

{
if (v.inDegree = 1 or v.outDegree = 1)

and ∃Sj | Sj .freq ' v.freq
then Sj ← Sj ∪ {v}

Step 3: Unique adjacents
RemainV rtx← {∀i,∀j, vi | vi 6∈ Sj}
for each v ∈ RemainV rtx

do



Vin ← {∀i, vi | (vi, v) is an incoming edge
of v, vi ∈ Sj , vi 6∈ Sk, k 6= j}

if (
∑

∀Sl∈Vin
Sl.freq) ' v.freq

then for each Sl ∈ Vin Sl ← Sl ∪ {v}

else


Vout ← {∀i, vi | (v, vi) is an outgoing

edge of v, vi ∈ Sj , vi 6∈ Sk, k 6= j}
if (
∑

∀Sl∈Vout
Sl.freq) ' v.freq

then
for each Sl ∈ Vout Sl ← Sl ∪ {v}

Step 4: Permutations of adjacents
RemainV rtx← {∀i,∀j, vi | vi 6∈ Sj}
Vadj ← {∀i, vi | ((vi, v) is an incoming edge of v) or

((v, vi) is an outgoing edge of v)}
Find all Vadjp | Vadjp ⊆ Vadj ,

(
∑

∀Sl∈Vadjp
Sl.freq) ' v.freq

for each Vadjp

{
Keep a permutation of all its sets
for each Sl ∈ Vadjp Sl ← Sl ∪ {v}

Step 5: Include ”via-vertices”
RemainV rtx← {∀i,∀j, vi | vi 6∈ Sj}

for each Sj



if vi ∈ Sj and vj ∈ Sj and ((vi, v) is
an ingoing edge of v) and (v, vj) is
an outgoing edge of v and
((vi.inDegree = 1 and vi.outDegree = 1) or
(vj .inDegree = 1 and vj .outDegree = 1))

then

{
v.freq ← v.freq − Sj .freq
Sj ← Sj ∪ {v}

Step 6: Collect all remains in a separate set
RemainV rtx← {∀i,∀j, vi | vi 6∈ Sj}
k ← max(j) + 1, Sk ← RemainV rtx
MinFreq ←Min∀i,vi∈Sk

(vi.freq)
for each vi ∈ Sk

Si.freq ← vi.freq −MinFreq
Step 7: Add remained instances to existing sets
RemainV rtx← {∀i, vi | vi ∈ RemainV rtx, vi.freq 6' 0}
for each v ∈ RemainV rtx

do

{
if ∃Sj | Sj .freq ' v.freq
then Sj ← Sj ∪ {v}
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3.5 Constructing the Cycles

Once we identified the symbol sets for each cyclic pattern, we construct a
subgraph per each cyclic pattern. We add to each subgraph every identified
symbol as a vertex and every DTMC edge between symbols of the cycle
as an edge. After a subgraph is constructed, we check whether it contains
an Euler cycle/s by testing the requirement that each of its vertices has an
in-degree that is equal to its out-degree. In case there are vertices with an
in-degree that is different from the out-degree, we try to “fix” the graph by
dropping redundant edges and/or adding a missing edge as follows:

• We use the observation that the SCADA messages of each cycle are
sent in a burst, followed by a long delay (during which other cycles
can appear). Therefore sometime the edge between the last message
of the cycle and the first message of the cycle will be absent from the
DTMC and consequently missing in the constructed subgraph of the
pattern cycle. We call such an edge a missed edge.

• In some cases the resulting DTMC would includes edges which we call
redundant edges. An edge is considered a redundant edge if it connects
vertices that represent symbols that are, in turn, representing SCADA
messages that are not sent sequentially within a certain cyclic pattern.
In addition the DTMC may include edges between vertices that are
not unique to specific cyclic pattern, i.e., vertices that occur in several
cyclic patterns. These edges may represent SCADA messages that
are sent sequentially within a certain cyclic pattern but may not be
sent sequentially within other cyclic pattern/s even though these cyclic
patterns include the same edge vertices. Consequently these edges are
redundant edges in those other patterns.

Therefore, in order to construct the different cycles, we examine all the
vertices with an in-degree that is not equal to their out-degree, and we take
the following actions:

• In order to add missed edges in a certain subgraph, we look for a pair
of vertices (of the subgraph) where one has an in-degree greater by
one than its out-degree, while the other has an out-degree greater by
one than its in-degree. We add an edge from the vertex with a missing
outgoing edge to the vertex which lacks one incoming edge.

• In order to eliminate redundant edges for a certain subgraph, we cal-
culate the median of the number of edge (bigram) occurrences for that
subgraph. Then we drop all the edges of the subgraph with number of
occurrences that is below (or above) the median edge occurrences (mi-
nus, or plus, respectively, of a certain threshold. In our experiments
we used a threshold of 5%).
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Figure 5: One of the detected cycles of scenario #6, for a set with frequency
0.88

The addition of missed edges and the removal of redundant edges are
illustrated in Figure 4. This Figure describes the construction of the three
cycles of scenario #6 (see Table 1). It depicts three subgraphs. The cycles of
each of the subgraphs are denoted by the type and color of its arrow lines:
dashed blue, dotted red, and dotted-dashed green. The redundant edges
are denoted by arrow-lines that are solid and black. The missed edges are
denoted by double lines.

Figure 5 is derived from Figure 4. It shows one of the three cycles,
that consists of 10 vertices and 9 edges. Our algorithm successfully detects
the missing edge (5 → 6) and adds it to the graph in order to enable the
discovery of an Eulerian cycle.

In order to find Euler cycle/s we implemented Hierholzer’s algorithm [17].
In certain cases several Euler cycles can be found for a given subgraph. Con-
sequently, we keep all the discovered cycles and create several combinations
of the discovered cycles of different sub-graphs. For each combination we
create a corresponding Statechart. We then run the DFA learning validation
process for each of the Statecharts separately, and decide which Statechart
to select for the enforcement stage, based on the best validation result.

3.6 Deducing the Time Gaps

The last thing we need for the Statechart is information on the average
time gap between successive symbols in each of the cyclic patterns, i.e.,
for each state r in the DFA’s pattern we need to calculate the average
time difference to its immediate successor in the cyclic pattern (along the
“Normal” transition). This is needed since during the enforcement phase,
each DFA D retains the time-stamp Tlast(D) of the last symbol that was
processed by it (in addition to the identifier of the current state). In cases
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Figure 6: One of the detected cycles of scenario #6, for a set with frequency
0.88

of symbol overlap between different patterns, it is this time gap information
that helps the Statechart to decide on the next state to move to. The time
gap between successive symbols of the same pattern is usually very small
except the time gap between the last symbol of the pattern and the first
symbol of the pattern (of the next burst). The time difference between an
occurrence of the first symbol after the last symbol, and its next occurrence
after the last symbol, equals to the time period of the pattern cycle.

4 The S7-0x72 Protocol

The S7 PLC Platform. The Siemens SIMATIC S7 product line is es-
timated to have over 30% of the worldwide PLC market [10]. It includes
both standard PLC models (S7-200, S7-300 and S7-400), and new genera-
tion PLCs (S7-1200 and S7-1500). Siemens has its own HMI software for
its SIMATIC products called STEP7 and uses its own S7 communication
protocol, over TCP port 102.

Two different protocol flavours are implemented by SIMATIC S7 prod-
ucts: The standard SIMATIC S7 PLCs implement a legacy S7 flavor, iden-
tified by the value 0x32, while the new generation PLCs implement a very
different S7 flavor identified by 0x72. Among other changes, the newer S7-
0x72 protocol also supports security features.

The standard S7-0x32 protocol is quite well understood, and a standard
Wireshark dissector is available for it. The newer S7-0x72 protocol is not yet
fully described in open literature. There is, however, a Wireshark dissector
for it which is still in beta status [29].

A unique feature of the S7-0x72 protocol is its optional subscription
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model (in addition to the traditional request-response pattern). The HMI
can send a special “subscribe” message, referring to certain control variables,
to a PLC. Subsequently the PLC sends back a periodic stream of “notifica-
tion” messages with the values of the subscribed variables. The challenge
that this subscription model poses to a DFA-based anomaly detection sys-
tem is that the notification messages are sent asynchronously, and are not
part of the HMI-driven request-response pattern.
Experimenting with the S7-0x72 Data. Due to the proprietary nature
and potential sensitivity of SCADA operations, real SCADA network data
is rarely released to researchers. An important aspect of this work is that
we were able to collect and analyze traces from a production S7 network
running the S7-0x72 protocol from a control network of a solar power plant.

In these traces we observed a single channel between the HMI and
a Siemens S7-1500 PLC. We observed both the request-response and the
unique subscribe/notification communication patterns. An overview of the
S7 datasets can be found in Table 2. During our recordings the infrastruc-
ture was running normally without any intervention of operators.

The message format and protocol semantics described here are based
on the reverse engineering work of Wiens [29]. Somewhat surprisingly the
S7-0x72 message formats are very different from those of the older S7-0x32
protocol, even though the overall protocol semantics are quite similar. An
S7 0x72 packet is composed of the following parts:

• Header: ‘magic ID’ byte with a value of 0x72, a PDU type (one byte)
and the length of the data part.

• Data part: includes meta data fields describing the data, data values,
and an optional integrity part that is supported only by the newest
S7-1500 PLCs (it contains two bytes representing an ID, one byte for
the digest length and a 32 byte message digest, which is apparently a
cryptographic hash or MAC, details are yet unknown).

• Trailer: utilized to enable fragmentation.

Unlike the packet structure of the S7-0x32 protocol, nearly every field
inside the S7-0x72 data part may be composed of recursively defined data
structures. Further, elementary components such as numeric values are
encoded using the variable-length quantity (VLQ) encoding [30], a universal
code that uses an arbitrary number of binary octets. The precise S7-0x72
packet structure depends on the type of the command and the information
it is instructed to carry. The beta Wireshark dissector [29] is able to parse
the structure of over 30 different S7-0x72 commands.

To use the GW model we need to hash the meta-data fields of a SCADA
packet into a symbol while ignoring the actual data values. In order to model
the S7-0x72 packets we relied on the deep understanding embedded in the
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Dataset # 1 2

Duration 560 Sec. 2632 Sec.
TCP Packets 15875 67585
S7 Packets 4600 23553
AER 9.19 9.16

Dataset # 1 2

DFA type N S N S

Model size 62 3 12 3

False alrm % 14.54 0.11 12.98 0

Table 2: Results of applying both models

Wireshark dissector [29] to identify the structural meta-data components in
the packets (command codes and arguments, register types and reference
ids, etc.). In total we extracted 11–17 meta-data fields, comprising of 17–26
bytes, out of typical S7-0x72 packets, which were hashed into 64-bit symbols.

Figure 6 shows the false alarm rate over time of the naive DFA model
applied to S7 dataset #1. Table 2 summarizes the results on the two S7
traces, comparing the Naive and Statechart models. We can see that the
naive DFA model has high false-alarm rates: 14.54% and 12.98%. The
Statechart model successfully reduced the false-alarm rate by two orders of
magnitude, down to at most 0.11%. The Table shows that the model sizes
dropped from the incorrect sizes of 62 and 12 by the naive DFA model
down to the correct size of 3 (a request-response pattern of 2 symbols and
a notification pattern of 1).

5 Stress Testing with Synthetic Data

In the S7-0x72 traces we observed the easy case of sub-channel splitting: the
channel consisted of 2 sub-channels, one for request and response messages,
and the other for notification messages. Since the message types are in the
packet meta-data it is easy to split the input stream. Similarly, [14] reported
that in their Modbus traces the slow and fast cycles had distinct symbols.

However, it seems that in the Modbus data set analyzed by [6] the num-
ber of sub-channels is not clear in advance, and sub-channel symbols may
be overlapping. Since this data set was not available to us we chose to
stress-test the capabilities of our Statechart approach in this scenario using
synthetic data (see Section 5.2).

5.1 Generation of synthetic data

In order to test our model in different scenarios, we implemented a multi-
threaded generator, where each of the threads simulates an HMI thread
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transmitting a cyclic pattern of SCADA commands. Each simulated thread
has a pattern P of symbols, and a frequency f . Every f msec the thread
wakes up and emits the pattern P as a burst, at a 1-msec-per-symbol rate,
and returns to sleep. The thread’s true timing has a jitter caused by the OS
scheduling decisions. Further, when multiple threads are active concurrently
then their emitted symbols are arbitrarily serialized.

The 13 generated scenarios, vary the number of patterns, the number of
unique symbols per pattern, and their frequency. the simpler scenarios (1-4)
have 2 patterns each - and the most complex multiplex 4 patterns. Table 1
shows the parameters of the scenarios that were used in our simulations.

In 12 of the 13 scenarios the algorithms were able to split the symbols into
sets with 100% accuracy. Only in one case the algorithms did not identify
one of the occurrences of a specific symbol. So in total the algorithms were
able to split the symbols into sets with 99.6% accuracy.

For the purpose of our evaluation and analysis we defined the following
metrics:

• The Symbol Uniqueness of a channel =
∑n

i=1 Ui/
∑n

i=1 Li, where Li is
the length of the cyclic pattern of sub-channel i and Ui is the number
of symbols unique to that sub-channel.

• A channel’s Time Overlap is the percentage of 1-msec time slots at
which multiple packets where scheduled to be sent over the communi-
cation link during the time of the trace.

• The model size of a DFA is its number of states, and the model size of
a statechart is the sum of the model sizes of its DFAs.

The statechart introduces only very modest memory footprint. Let Ms

denotes the model size of a statechart, Ndsym denotes the number of distinct
symbols that were learned during the learning stage, and Ndfas denotes the
number of DFAs in the statechart. For each state the statechart needs to
keep:

• The estimated time to the next state (8 Bytes).

• For each distinct symbol: the next state and the corresponding event
(8 Bytes).

For each DFA the statechart needs to keep its current state and the times-
tamp of the packet / symbol instance that led to that state (12 Bytes).

The memory size needed for keeping the modelModelmem is thus bounded
by: Modelmem = Ms · (Ndsym + 1) · 8 +Ndfas · 12.
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Figure 7: Results after applying the Naive DFA model
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Figure 8: Results after applying the Statechart model

5.2 Experiments with the Synthetic Data

We started our evaluation by running the DFA described by [14], which we
henceforth call the “naive-DFA”. We ran the model’s learning stage on the
synthetic datasets with a maximum pattern length of 100 symbols and a
validation window of 400 (100 · 4) symbols. Then we ran the enforcement
stage on the full datasets using the learned patterns.

When we applied the naive DFA model on the synthetic datasets it
learned model sizes that are on average 3.5 times longer than the statechart
model sizes for the same traces. Moreover, the Statechart model produced a
much lower false-alarm rate on the same datasets. E.g, Figure 7 and Figure
8 illustrate the results of applying the two models on synthetic dataset #11.
Each time frame on the X axis represents 5 seconds. The Y axis shows the
false alarm frequency as a percentage of the Average Event Rate (AER) for
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Figure 9: The false alarm rates as a function of the Symbol Uniqueness over
the synthetic datasets.
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Figure 10: The false alarm rates as a function of the Time Overlap over the
synthetic datasets.

each time period.
Figure 9 and Figure 10 show that the Statechart managed to model the

benign traffic successfully with very low false-alarm rate: up to 0.9% in
nearly all our intentionally complex scenarios. The two exception cases are
of datasets #10 (the worst result) and #13 (second worst result) that have
very low symbol uniqueness (44% and 67% respectively, compared to an
average of 77% for the successful cases) and a high time overlap (19.13%
and 17.74% respectively, approximately twice the average of the successful
cases of 9.76%). In other words, only when around half of the symbols are
not unique to a single pattern, and there is significant time overlap between
patterns, does the Statechart model’s performance deteriorate. In the more
realistic scenarios, when symbol uniqueness is high or when the time overlap
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Figure 11: Performance of the different models

is low, the model performs extremely well.
However, this good performance was achieved when the patterns of all

the multiplexed cycles were known. Hence we call this model an ideal Stat-
echart. Next we examined scenarios where the multiplexed cycles are not
known. We evaluated the performance of our Statechart model with the al-
gorithm of sub-channel splitting. We call this model the practical Statechart
model.

5.3 Evaluating the Statechart with sub-channel splitting model

We ran the model’s learning stage on the synthetic datasets with a maximum
pattern length of 200 symbols and a validation window of 800 (200 · 4)
symbols. Then we ran the enforcement stage on the full datasets using the
learned patterns.

When we applied the naive DFA model on the synthetic datasets it
learned model sizes that are on average 3.5 times longer than the statechart
model sizes for the same traces. The memory footprints of the statecharts
were of sizes between 104 – 1164 Bytes with an average size of 495 Bytes.

To test the effectiveness of our algorithms, we ran them on 800 symbols
of each scenario for the learning phase, and than ran the Statechart enforce-
ment phase on the remaining symbols of the trace. For comparison we also
created the ideal Statechart using the correct cycles.

Figure 11 shows comparison of the results of the three models (Naive
DFA, Practical Statechart, and Ideal Statechart) of periodic traffic after
applying each of the models on the SCADA traffic of each of the 12 sce-
narios whose characteristics are depicted in Table 1 (scenarios #1-#9 and
#11-#13, in the case of scenario #10 the algorithm that built the Practical
Statechart did not identify one of the occurrences of a specific symbol, so
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it could not build the Statechart for this scenario). The median percentage
of detected abnormal (false alarms) on benign traffic over all the scenar-
ios were: 5.3%, 0.48%, 0.28% respectively. While the Practical Statechart
model performs much better than the Naive DFA model, there is still room
for improvement to achieve detection results that are closer to the impressive
performance of the Ideal Statechart model.

Next we tried to evaluate what factors influence the success of the Stat-
echart model, and the ability of our algorithms to construct it correctly.

Figure 9 shows the false-alarm rate of the scenarios as a function of the
symbol uniqueness: the Figure shows that above 80% symbol uniqueness
the practical Statechart has excellent results - and as the symbol uniqueness
drops the false alarm rate grows.

Figure 10 shows the same data points, as a function of the time overlap.
The Figure shows that in general when the cycles overlap each other in time
the algorithms performance degrades.

We hypothesize that in real multiplexed SCADA traces, the symbol
uniqueness will be rather high (this is certainly the case for the S7 traces
of [18, 19] and for the Modbus traces of [14]. Hence we are optimistic that
the algorithms performance on real traces will be much better than on the
synthetic traces.

6 Conclusion

In this paper we developed, applied, and evaluated the Statechart DFA
model, which is designed specifically for anomaly detection in ICS networks.
The model includes a methodology for learning individual patterns of a mul-
tiplexed cycle patterns of a ICS traffic. It uses Deterministic Time Markov
Chain (DTMC) and graph theory concepts to create a DFA, or several DFA
alternatives, for each cyclic pattern in a PLC-HMI channel. The result
patterns are then merged to create few alternative Statechart DFAs. The
alternative Statechart DFAs are then evaluated using the validation phase
of the GW model, and the best Statechart DFA is selected as the Practical
Statechart to be used in the enforcement phase of the ICS NIDS.

Our methodology allows automatic unsupervised learning of the individ-
ual patterns even when the number of cycles is unknown a-priori, there is no
clear indication on which cycle each symbol belongs to, symbols can appear
more than once in a cycle, and can appear in multiple cycles. Our experi-
ments demonstrate that the selected Statechart model handles multiplexed
ICS traffic patterns very well.

The Statechart DFA model has three promising characteristics. First, it
exhibits very low false positive rates despite its high sensitivity. Second, it is
extremely efficient: it has a compact representation, it keeps minimal state
during the enforcement phase, and can easily work at line-speed for real-
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time anomaly detection. Third, its inherent modular architecture makes it
scalable for protecting highly multiplexed ICS streams.

The methodology for the automatic construction of the model, the char-
acteristic of the model, and the validation of the model by our experiments
suggest that this model can be very useful for anomaly detection in ICS
networks.

We still need to test the algorithms’ performance on real traces - and
also test the Statechart’s ability to detect true attacks. Last but not least,
we need to find ways to further reduce the false positive rate.
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