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Abstract 

Divide and conquer algorithms are a good match for modern 
parallel machines: they tend to have large amounts of in- 
herent parallelism and they work well with caches and deep 
memory hierarchies. But these algorithms pose challenging 
problems for parallelizing compilers. They are usually coded 
as recursive procedures and often use pointers into dynami- 
cally allocated memory blocks and pointer arithmetic. All of 
these features are incompatible with the analysis algorithms 
in traditional parallelizing compilers. 

This paper presents the design and implementation of 
a compiler that is designed to parallelize divide and con- 
quer algorithms whose subproblems access disjoint regions 
of dynamically allocated arrays. The foundation of the com- 
piler is a flow-sensitive, context-sensitive, and interprocedu- 
ral pointer analysis algorithm. A range of symbolic analy- 
sis algorithms build on the pointer analysis information to 
extract symbolic bounds for the memory regions accessed 
by (potentially recursive) procedures that use pointers and 
pointer arithmetic. The symbolic bounds information al- 
lows the compiler to find procedure calls that can execute in 
parallel without violating the data dependences. The com- 
piler generates code that executes these calls in parallel. We 
have used the compiler to parallelize several programs that 
use divide and conquer algorithms. Our results show that 
the programs perform well and exhibit good speedup. 

1 Introduction 

Divide and conquer algorithms solve problems by breaking 
them up into smaller subproblems, recursively solving the 
subproblems, then combining the results to generate a so- 
lution to the original problem. A simple algorithm that 
works well for small problem sizes terminates the recursion. 
Good divide and conquer algorithms exist for a large va- 
riety of problems, including sorting, matrix manipulation, 
and many dynamic programming problems [5]. 

Divide and conquer algorithms have several appealing 
properties that make them a good match for modern paral- 
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lel machines. First, they tend to have a lot of inherent par- 
allelism. Once the division phase is complete, the subprob- 
lems are usually independent and can therefore be solved in 
parallel. Moreover, the recursive structure of the algorithm 
naturally leads to recursively generated concurrency, which 
means that even the divide and combine phases execute in 
parallel with divide and combine phases from other subprob- 
lems. This approach typically generates more than enough 
concurrency to keep the machine busy [3]. 

Second, divide and conquer algorithms also tend to have 
good cache performance. Once a subproblem fits in the 
cache, the standard recursive solution reuses the cached data 
until the subproblem has been completely solved. Because 
most of the work takes place deep in the recursive call tree, 
the algorithm usually spends most of its execution time run- 
ning out of the cache. Furthermore, divide and conquer al- 
gorithms naturally work well with a range of cache sizes and 
at all levels of the memory hierarchy. As soon as a subprob- 
lem fits into one level of the memory hierarchy, the algorithm 
runs out of that level (or below) until the subproblem haa 
been solved [7]. Divide and conquer programs therefore au- 
tomatically adapt to different cache hierarchies, and tend 
to run well without modification on whatever machine is 
available. 

It can be quite difficult, however, to parallelize programs 
that use divide and conquer algorithms. The natural formu- 
lation of these algorithms is recursive. For efficiency reasons, 
programs often use pointers into arrays and pointer arith- 
metic to identify subproblems. Our benchmark programs 
also tend to use dynamic memory allocation to match the 
sizes of the data structures to the problem size. All of these 
properties pose challenging analysis problems for the com- 
piler. Moreover, traditional analyses for parallelizing com- 
pilers are of little or no use for this class of programs - they 
are designed to analyze loop nests that access arrays using 
a&e array index expressions, not recursive procedures that 
use pointers and pointer arithmetic. 

Inspired by the appealing properties of divide and con- 
quer algorithms, we designed and implemented a paralleliz- 
ing compiler for programs that use these algorithms. This 
paper presents analysis algorithms and experimental results 
from this effort. To successfully parallelize divide and con- 
quer programs, we had to develop a new approach for par- 
allelizing compilers and a new set of sophisticated analyses 
that realize this approach. These analyses reason symbol- 
ically about how (potentially recursive) procedures access 
specific regions of dynamically allocated memory. 
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1.1 Analysis Overview 

Our compiler is designed primarily to parallelize algorithms 
whose subprograms use pointers and pointer arithmetic to 
access disjoint regions of dynamically allocated arrays. For 
these algorithms, the analysis usually proceeds as follows. 
The compiler first runs a flow-sensitive, context-sensitive, 
and interprocedural pointer analysis algorithm. The infor- 
mation extracted by this analysis is used in all successive 
analyses. The compiler then extracts symbolic expressions 
for the regions of memory accessed in the procedures that 
implement the base and combination phases of the divide 
and conquer algorithm. It uses these expressions in an in- 
terprocedural fixed-point analysis that extracts expressions 
for the regions of memory accessed by the recursive proce- 
dures that implement the divide phase of the algorithm. In 
effect, these expressions make explicit the memory access in- 
variants that drive the recursive structure of the algorithm. 

The compiler then runs a dependence testing analysis 
on the extracted expressions from adjacent calls. If the 
expressions represent disjoint regions of memory, the calls 
are independent and can execute in parallel. The depen- 
dence tester uses both pointer analysis information (to de- 
termine that expressions denote regions in different alloca- 
tion blocks) and logical reasoning (to determine that expres- 
sions denote nonoverlapping regions in the same allocation 
block). 

1.2 Other Applications 

Although we developed these analyses to parallelize divide 
and conquer algorithms, we believe they will be useful in 
other contexts. Fundamentally, our analysis extracts ex- 
pressions that characterize how pointer-based programs ac- 
cess regions of dynamically allocated memory. This tech- 
nology could easily be applied to symbolic array bounds 
checking, to detect data races in explicitly parallel programs, 
and as part of a program understanding system that helps 
programmers understand the behavior of complex, pointer- 
based programs. We also believe we have developed the ba- 
sic analysis technology necessary to fully extend traditional 
parallelizing compiler technology to heavily optimized pro- 
grams whose loops access memory using pointers rather than 
array references. 

Finally, we contrast the problem we are solving and our 
analysis techniques with the problem and analysis techniques 
for traditional parallelizing compilers. Traditional paralleliz- 
ing compilers are designed to exploit loop-level parallelism 
in computations that access dense matrices using affine ac- 
cess functions. This problem naturally leads to integer pro- 
gramming algorithms that analyze potential interferences 
between loop iterations. Our compiler is designed to ex- 
ploit recursively generated concurrency in divide and con- 
quer computations that use pointers to identify subproblems 
and manipulate data. Faced with this problem, we devel- 
oped a set of symbolic analysis algorithms. These algorithms 
use fixed-point techniques to extract invariants that describe 
the regions of memory that recursive procedures access. 

This paper makes the following contributions: 

. Approach: It identifies a new approach for auto- 
matically parallelizing divide and conquer algorithms 
whose subproblems access disjoint regions of dynam- 
ically allocated arrays. The approach fully supports 
recursion and the heavy use of pointers and pointer 
arithmetic. 

l Algorithms: It presents a set of novel analysis algo- 
rithms that, together, enable a compiler to automati- 
cally parallelize divide and conquer programs. These 
algorithms are based on pointer analysis and symbolic 
analysis of the regions of dynamically allocated mem- 
ory accessed by (potentially recursive) procedures. 

l Experimental Results: It presents experimental re- 
sults for several automatically parallelized programs. 
These results show that the compiler is capable of com- 
piling divide and conquer algorithms and that the re- 
sulting parallel code performs well. 

The remainder of the paper is organized as follows. Sec- 
tion 2 presents an example that illustrates the actions of the 
compiler. Sections 3, 4, 5, 6, and 7 present the analysis al- 
gorithms. Section 8 presents the experimental results from 
our parallelizing compiler. Section 9 discusses related work; 
we conclude in Section 10. 

2 Example 

Figure 1 presents an example of the kind of programs that 
our analysis is designed to handle. The sort procedure 
on line 18 implements a recursive, divide-and-conquer al- 
gorithm written in C. It takes an unsorted input array d 
of size n, and sorts it, using the array t (also of size n) as 
temporary storage. The algorithm is structured as follows. 

In the divide part of the algorithm, the sort procedure 
divides the two arrays into four sections and, in lines 29 
through 32, calls itself recursively to sort the sections. Once 
the sections have been sorted, the combination phase in lines 
34 through 37 produces the final sorted array. It merges the 
first two sorted sections of the d array into the first half of 
the t array, then merges the last two sorted sections of d into 
the last half of t. It then merges the two halves of t back 
into d. The base case of the algorithm uses the insertion 
sort procedure in lines 9 through 17 to sort small sections. 

For efficiency reasons, the sort program identifies sub- 
problems using pointers into dynamically allocated memory 
blocks that hold the data and accesses these blocks via these 
pointers. This strategy leads to code containing significant 
amounts of pointer arithmetic and pointer comparison oper- 
ators. Note, for example, the pointer arithmetic in lines 24 
through 28 and the < pointer comparison operators in lines 
3, 6, and 7. This code will usually run faster than code that 
uses integer array indices to identify and solve subproblems. 

There are two sources of concurrency in this program: 
the four recursive calls to the sort procedure can execute in 
parallel, and the first two calls to the merge procedure can 
execute in parallel. 

The basic problem a parallelizing compiler must solve 
is to determine the regions of memory that each procedure 
accesses. In our example, the compiler determines that a 
call to merge(ll,h1,12,h2,d) reads the memory regions 
[ll, hl- l] and and [12, h2 - l] and writes the memory region 
[d, d + (hl - 11) + (h2 - 12) - 11.’ It also determines.that a 
call to insertionsort (1, h) reads and writes [l, h - 11, and 
a call to sort (d, t ,n) reads and writes [d, d + n - l] and 
[t,t+n-11. 

‘Here we use the notation [l,h] to denote the region of memory 
between the addresses 1 and h, inclusive. If h is less than 1, [Lh] 
denotes the empty region. As is standard in C, we assume continguous 
allocation of arrays, and that the addresses of the elements increase 
as the array indices increase. 
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1: void mergetint *ll, int *hl, 
2: int *12, int *h2. int *d) { 
3: while ((11 < hl) && (12 < h2)) 
4: if (*ll < *12) *d++ = *ll++; 
6: else *d++ = *12++; 
6: while (11 < hl) *d++ = *ll++; 

3: } 
while (12 < h2) +d++ = *12++; 

9: void insertionsort (int *l, int *h) { 
10: int *p, *q, k; 
11: for (p = l+l; p C h; p++) { 
12: k = *p; 
13: for (q = p-l; 1 <= q &% k < *q; q--l 
14: *(q+1) = *q; 
15: *(q+l) = k; 
16: } 
17: } 

18: void sortfint *d, int *t. int n) { 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 

29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 

int *dl. *d2, *d3, *d4, *d5, 
*tl, *t2, *t3. *t4; 

if (n < CUTOFF) { 
insertionsort (d. d+n) ; 

) ::ses (d; t1 I t; 
d2 = dl + n/4; t2 = tl + n/4; 
d3 = d2 + n/4; t3 = t2 + n/4; 
d4 = d3 + n/4; t4 = t3 + n/4; 
d5 = d4+ (n-3* (n/4) ) ; 

sortfdl, tl. n/4); 
sort(d2, t2, n/4); 
sort(d3, t3, n/4); 
sort(d4. t4, n-3*fn/4)); 

merge(d1. d2, d2, d3, tl); 
merge(d3, d4, d4, d5, t3); 

mergeftl. t3, t3, tl+n, d); 

1 
39: 1 

40: void main0 { 
41: int n; 
42: int *data, *tamp; 
43: scanf (*‘%d”, % n) ; 
44: if (0 < n) { 
45: 
46: 
47: 
48: 
49: 
50: } 
51: } 

data = (&it *) malloc(sizeof(int)*n); 
tamp = (int *) malloc(sizeofG.nt)*n); 
/* code to initialize the data array */ 
sortfdata, temp, n); 
/* code that uses the sorted array */ 

Figure 1: Divide and Conquer Sorting Example 

2.1 Region Expressions 

Roughly speaking, the compiler extracts these region expres- 
sions as fOll0wS. It first performs a flow-sensitive, context- 
sensitive, and interprocedural pointer analysis. The infor- 
mation from this pass is used at various places throughout 
the rest of the analyses. In some cases, the results are used 
to increase the precision of the analysis by determining that 
pointer assignments do not affect the values of local vari- 
ables; in other cases they are used to disambiguate expres- 
sions that denote regions of memory in different allocation 
blocks. 

The compiler next performs an analysis that extracts 
symbolic upper and lower bounds for each pointer or inte- 
ger variable at each program point. These bounds are rep- 
resented as expressions in the initial values of the procedure 
parameters. In our example, the analysis determines that 
at line 14, 1 5 q 5 h - 2; at line 15, 1 - 1 5 q 5 h - 2; and 
at line 12, 1 + 1 5 p < h - 1. 

The compiler next examines all of the load or store in- 
structions in the program. It uses the symbolic bounds to 
generate regions that the accesses must fall into. In our ex- 
ample, the analysis is able to place the reads via p at line 
12 in the region [l + 1, h - 11, the reads via q at lines 13 
and 14 in the region [l, h - 21, the writes via q at line 14 
in the region [l + 1, h - 11, and the writes via q at line 15 
in the region [l, h - 11. The compiler coalesces these re- 
gions to deduce that a call to insertionsort (l,h) reads 
and writes [l, h - 11. A similar analysis enables the compiler 
to determine that acall to merge(ll,h1,12,h2,d) reads the 
memory regions [ll, hl - l] and [12, h2 - l] and writes the 
memory region [d, d + (hl - 11) + (h2 - 12) - 11. 

The compiler next uses the region expressions from the 
analysis of merge and insertionsort as the basis for a fixed- 
point algorithm that determines the memory locations that 
the sort procedure accesses. The algorithm repeatedly an- 
alyzes the sort procedure, incrementally deriving more pre- 
cise information about the regions of memory that it ac- 
cesses. 

In our example, the analysis proceeds as follows. The 
algorithm uses the analysis results for insertionsort and 
merge to determine that the call to insertionsort on line 
22 reads and writes [d, d + n - 11, and the call to merge on 
line 34 reads [dl, d2 - l] and [d2, d3 - l] and writes [tl, tl + 
(d2 - dl) + (d3 - d2) - 11. It simplifies the upper and lower 
bound expressions to determine that the call to merge reads 
[d, d + n/4 - l] and [d + n/4, d + n/2 - l] and writes [t, t + 
n/2 - 11. It then coalesces adjacent regions to derive a read 
region of [d,d+n/2 - l] and a write region of [t, t +n/2 - I]. 
A similar analysis for the other merge call sites combined 
with the previously described information yields the final 
read and write regions [d, d + n - l] and [t, t + n - l] for a 
call to sort(d,t,n). 

The algorithm then analyzes the sort procedure un- 
der the assumption that each call reads and writes the re- 
gions described above. This analysis derives that a call to 
sort(d,t.n) reads andwrites [d,d+n-l] and [t,t+n-11. 
The algorithm has therefore reached a fixed point and con- 
verges. 

2.2 Parallelization 

To parallelize the program, the algorithm uses the extracted 
region expressions to perform dependence tests between ad- 
jacent call sites. If there is no dependence, the compiler 
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generates code that executes the calls in parallel.2 In our 
example, the dependence test between the recursive calls to 
sort in lines 29 and 30 proceeds as follows. The compiler 
uses the region expressions for sort to determine that the 
first call reads and writes [d, d + n/4 - l] and [t, t + n/4 - l], 
while the second call reads and writes [d + n/4, d + n/2 - l] 
and [t + n/4, t + n/2 - 11. The compiler checks all pairs 
of region expressions from the two call sites to see if they 
are independent. If so, the calls axe independent and can 
execute in parallel. 

There are three ways for region expressions to be inde- 
pendent: either they denote regions in different allocation 
blocks, they both denote regions that are read, or they de- 
note nonoverlapping regions of the same block. The com- 
piler uses the pointer analysis information to determine if 
region expressions denote regions of different blocks and to 
determine if the region expressions both denote regions that 
are read. It reasons logically about the upper and lower 
bound expressions to determine if region expressions denote 
nonoverlapping regions of the same block. In our example, 
the compiler uses pointer analysis information to determine 
that [d,d+n/4 - l] and [t + n/4, t + n/2 - l] denote mem- 
ory regions in different blocks. It uses logical reasoning to 
determine that [d, d + n/4 - l] and [d + n/4, d + n/2 - l] 
denote nonoverlapping regions of the same block. It can use 
similar strategies to determine that all of the other pairs are 
independent, and that the calls can execute in parallel. 

Using this basic approach, the compiler can determine 
that all four recursive calls to sort can execute in parallel, 
and that the first two calls to merge can execute in parallel. 
It therefore generates Cilk code that executes these calls 
in parallel. Figure 2 contains the generated code for the 
sort procedure in our example. This code uses the Cilk 
spawn construct to execute calls in parallel, and the Cilk 
sync construct to synchronize after the parallel calls. 

3 Analysis Overview 

The primary goal of the analysis is to obtain, for each pro- 
cedure, a set of symbolic region expressions that character- 
ize how the procedure accesses memory. The compiler uses 
these region expressions to find independent procedure calls, 
then generates code that executes independent calls in par- 
allel. 

Each region expression contains a symbolic lower bound 
and a symbolic upper bound. These bounds are expressed 
in terms of a reference set of variables. The reference set 
for each procedure consists of a set of variables that denote 
the initial values, or values at the start of the execution 
of the procedure, of the parameters and referenced global 
variables. We denote the initial value of a parameter or 
global variable p by po. For example, the reference set for 
the sort procedure in Figure 1 is {do, to, no}. The analysis 
consists of several steps: 

. Pointer Analysis: The pointer analysis extracts in- 
formation used by all succeeding analyses. 

l Bounds Analysis: The intraprocedural bounds anal- 
ysis extracts symbolic upper and lower bounds for the 

‘More precisely, the compiler generates code that exposes the 
concurrency to the run-time system. Actually creating a full-blown 
thread at each call site would generate an excessive amount of over- 
head. We generate code in the Cilk parallel programming language; 
the Cilk run-time system uses lazy task creation [15, 3] to generate 
only as many threads required to keep the machine busy. 

18: void sortcint *d, int *t. int n) { 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 

29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 

int *dl, *d2, *d3, *d4, *d5, 
*t1, *t2, *t3, *t4; 

if (n < CUTOFF) { 
insertionsort (d, d+n) ; 

I;:“” 1 
= d; tl = t; 

d2 = dl + n/4; t2 = tl + n/4; 
d3 = d2 + n/4; t3 = t2 + n/4; 
d4 = d3 + n/4; t4 = t3 + n/4; 
d5 = d4+ (n-3* (n/4) 1; 

spawn sort(d1, tl, n/4) ; 
spawn sort (d2, t2, n/4) ; 
spawn sort (d3, t3, n/4) ; 
spawn sort (d4, t4, n-3* (n/4) > ; 
sync ; 
spawn mergecdl, d2, d2, d3, tl); 
spawn merge(d3. d4, d4, d5, t3); 
sync ; 
merge(t1, t3, t3, tl+n. d); 

1 
39: } 

Figure 2: Generated Parallel Code for Sorting Example 

values of pointer variables at each point in the pro- 
gram. These bounds are expressed in terms of the 
reference set of the enclosing procedure. 

Region Analysis: The region analysis extracts the 
set of regions accessed by each procedure. It first uses 
the results of the bounds analysis to extract a region 
expression for each pointer dereference. It then coa- 
lesces region expressions from the same procedure to 
obtain a minimal set of regions that each procedure 
accesses directly. An interprocedural fixed-point algo- 
rithm derives region expressions for the entire (poten- 
tially recursive) computation of each procedure. 

Parallelization: The concurrency extractor compares 
region expressions to find independent procedure calls 
(two calls are independent if neither’s computation ac- 
cesses memory that the other’s computation writes). 
The code generator then generates code that executes 
independent calls in parallel. 

Figure 3 illustrates how all of these analyses come to- 
gether in the overall structure of the compiler. 

4 Pointer Analysis 

We use a flow-sensitive, context-sensitive, and interproce- 
dural pointer analysis algorithm [18]. The analysis works 
for both sequential and multithreaded programs, although 
in the research presented in this paper, we use it only for 
sequential programs. The algorithm uses location sets to 
represent the memory locations accessed by statements that 
dereference pointers and caches the results of previous anal- 
yses to avoid performance problems caused by repeatedly 
analyzing the same procedure in the same context [21, 61. 

The pointer analysis serves two main purposes. First, 
it provides the pointer disambiguation information required 
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Figure 3: The Structure of the Compiler 

for other dataflow analyses to give accurate results on pro- 
grams that use pointers. Most of the succeeding analyses 
reason symbolically about the computed pointer values, and 
a single write via an unresolved pointer reference would de- 
stroy all of the extracted information. The analysis results 
are also used in the dependence testing phase to determine 
that region expressions denote regions in different allocation 
blocks. 

5 Bounds Analysis 

The bounds analysis consists of three subanalyses: an or- 
der analysis that extracts information about the order rela- 
tionships between variables at each program point, an ini- 
tial value analysis that expresses the order relationships in 
terms of the reference set, and a correlation analysis that 
improves the precision of the other analyses. At the end of 
the bounds analysis, the compiler has generated symbolic 
upper and lower bounds for each pointer dereference. These 
bounds are expressed in terms of the reference set of the 
enclosing procedure, and are used by the region analysis to 
derive region expressions for each procedure. The analysis 
uses the special lower bound -oo or the special upper bound 
+03 if it is unable to derive a lower or upper bound in terms 
of the reference set. 

5.1 Order Analysis 

The order analysis extracts two kinds of information. For 
integer variables, the zero order analysis maintains infor- 
mation about the values of the variables relative to zero. 
For pointer and integer variables, the relative order analy- 
sis maintains information about the values of the variables 
relative to other variables. Both analyses are predicated in- 
traprocedural dataflow analyses with the order information 
generated both at assignments and at conditionals. 

The zero order analysis maintains information for each 
integer variable i. It uses a lattice that can represent any 
disjunction (logical or) of the following atomic relations: 
i 5 -2, i = -1, i = 0, i = 1, and i 2 2. The analysis 
formally represents these atomic relations using the set 0 = 
{O-2,0-i,Oo,Oi,Oz}. The lattice is the power set P(0) 
of 0, and the meet operation is set union. At each program 
point p, the analysis produces a function Zero, : V + P(0); 
Zero,(i) represents the order relation for i relative to zero. 

Similarly, the relative order analysis maintains informa- 
tion for each pair of integer or pointer variables i and j. 
It uses a lattice that can represent any disjunction (logi- 
cal or) of the following atomic relations: i 5 j - 2, i = 
j - 1, i = j, i = j + 1, and i 2 j + 2. The analy- 
sis formally represents these atomic relations using the set 
R = (R__P,R-~,&, Rl,Rz). The lattice is the power set 
P(R) of R, and the meet operation is set union. At each 
program point p, the analysis produces a function Rel, : 
V x V -+ P(R); ReZ,(i, j) represents the order relation be- 
tween i and j. 

When the analysis starts, both the zero order and rela- 
tive order information is initialized to the empty set for all 
variables at all program points. The exception is the initial 
program point, which starts out with the zero order infor- 
mation initialized to 0 and the relative order information 
initialized to R for all variables. 

We next consider how assignments affect the order infor- 
mation. Each assignment to a variable i kills all zero order 
relations for i and all relative order relations that involve i. 
If the assignment is of the form i=n or i=j+n, where i and 
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j are program variables and n E N is an integer constant, 
the analysis uses an abstract interpretation to generate new 
order relations. 

Figure 4 presents the abstraction functions used in the 
analysis. The functions go and gs map integers to their ab- 
stract representations in the analysis lattices; the functions 
ho and hR are the corresponding abstractions for integer 
addition. 

QR : Z+R 
R-2 ifns-2 

g&) = 2 if n E {-l,O, 1) 
ifn>2 

h : Z x (-2, -l,O, 1,2} + P(R) 

{gR(k) 1 k<n+m} ifm=-2 
h(%m) = bl& + m>) if m E {-l,O, 1) 

{gR(k) Ik>n+m} ifm=2 

go : z-b0 

{ 

O-2 ifns-2 
gob> = 

2 
if n E (-1, 0, I] 
ifn>2 

ho : zx{-2,-1,0,1,2}+P(0) 

{go(k) Ik<n+m} ifm=-2 
ho(n,m) = blo(n + 41 if m E {-l,O, 1) 

{go(k) 1 k 2 n + m} if m = 2 

Figure 4: Abstraction Functions for Order Analysis 

Figure 5 presents the analysis rules for assignment state- 
ments. These rules assume that p is the program point be- 
fore the assignment and p + 1 is the program point after 
the sssigment. The basic idea is that the rules reconstruct 
as much of the order information as the abstraction allows. 
For example, the analysis of the assignment i-6 will pro- 
duce, by rule 1, Zero,+i (i) = Oz. In other words, i 2 2 
after the execution of i=5. Moreover, if before the execu- 
tion of i=5, 01 E Zero=(j) (i.e., j = l), then rules 2 and 3 
require that 02 E Reb+i(i, j) and 0-z E Re&+i(j,i). In 
in other words, i 2 j + 2 and j 5 i - 2 after the assignment. 

Next consider the analysis of the assignment i=j+l with 
i # j. Rules 1 and 2 require that RI E Re&+l (i, j) and 
R-1 E ReC+i(j,i) - i.e., after the execution of i=j+l, 
i = j + 1 and j = i - 1. If 0-i E Zero,(j) (i.e., j = 
-l), then by rule 3, 00 E Zero,+i(i) (i.e., i = 0 after the 
execution of i=j+l). If R-2 E Reh(j ,k) (i.e., j 5 k - 2) 
then by rules 4 and 5, (R-2 U R-1) E Reb+l(i, k) and 
{Ra U RI} E Reb+i(k, i). In other words, i 5 k - 1 and 
k 2 i + 1 at the program point after the assignment. 

We next consider how conditionals affect the order infor- 
mation. Conceptually, the order information that flows into 
the true branch is the conjunction (logical and) of the order 
information in the condition and the order information flow- 
ing into the conditional. The order information that flows 
into the false branch is the conjunction of the negation of the 
order information in the condition and the order informa- 
tion flowing into the conditional. In our lattices P(0) and 

P(R), the conjunction corresponds to the set intersection 
operation. 

The analysis extracts additional order information from 
conditionals of the form i 5 n, i 1 n and i < j + n, where 
i and j are program variables and n E N is an integer 
constant. Other conditionals such as i < n or i 2 j +n can 
easily be reduced to these conditionals. The analysis also 
supports conditionals with equality tests by replacing them 
with two conditionals with inequality tests: i = n is replaced 
byi<nandi>n,andi=j+nisreplacedbyi<j+n 
andjsi-n. Figure 6 shows the analysis rules for a 
conditional statement at program point p with a true branch 
at program point t and a false branch at program point f. 
For conditionals of the form i < n and i 2 n, only the zero 
ordering information of i is modified; for conditionals of the 
form i $ j + n, only the relative ordering information of 
i and j IS modified. In other words, the analysis does not 
perform the full transitive closure of the additional ordering 
information generated at the conditional. 

The analysis rules in Figures 5 and 6 define analyses that 
are monotonic under the subset inclusion ordering - if the 
analysis extracts more information about the ordering at a 
program point p (i.e., it can use fewer atomic relations to 
represent the order information), it generates more informa- 
tion at p + 1 (if there is an assignment at p) and at t and f 
(if there is a conditional at p). 

5.2 Initial Value Analysis 

The order analysis produces relations that can be used to 
derive upper and lower bounds for each variable at each 
program point. But the order relations are expressed in 
terms of the values of the variables at the current program 
point. The region analysis needs the bounds to be expressed 
in terms of the reference set of the procedure (i.e., the initial 
values of the parameters and the globals). 

The initial value analysis propagates the initial values of 
the parameters and the globals into the procedure. When- 
ever possible, it generates, for each variable at each program 
point, a mapping from that variable to an expression with 
variables from the reference set. The analysis is structured 
as a dataflow analysis on the flat lattice of expressions with 
least element I and greatest element T. If the analysis is un- 
able to represent the value of a variable using an expression 
with variables from the reference set, it maps the variable 
to T. 

The transfer function for a statement p=exp generates 
a new mapping for p. It first examines all of the variables 
in exp. If any of these variables are currently mapped to 
I, the analysis maps p to 1. If none of the variables are 
mapped to I, but at least one is mapped to T, the analysis 
maps p to T. Otherwise, it derives a new expression from 
exp by mapping all of the variables in exp to their current 
expressions. The analysis maps p to this new expression. 

The merge operation is defined as follows. The merge of 
I with any expression exp is exp, the merge of two identical 
expressions exp is exp, the merge of two different expressions 
is T, and the merge of T with any expression is T. 

When the analysis starts, the mapping at the first pro- 
gram point maps each parameter and global variable to its 
corresponding variable from the reference set. All other vari- 
ables are mapped to T. The mappings at all of the other 
program points start out mapping all of the variables to 1. 
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Rules for statement i = j + n : Rules for statement i = n : 

1. if i # j then Reb+i(i, j) = {gR(n)} 1. Zero,+r(i) = {go(n)} 

2. if i # j then ReZr+i(j ,i) = {gn(-n)} 2. if 0, E zero,(j), i # j then hR(n, -m) C Re&+i(i, j) 

3. if 0, f Zeror(j) then ho(n,m) c Zeror+i(i) 3. if 0, E Zero,(j), i # j then hR(-n,m) C Re&+i(j,i) 

4. if & E Rel(j.k), i fk then hR(n,m) C Reb+i(i.k) 

5. if R, E Rel(j ,k), i # k then hR(-n, -m) E Reb+i(k,i) 

Figure 5: Analysis rules for an assignment at program point p. 

Rules for condition i 5 n : 

Zero (i) n hR(n + 2, -2) l. Zero&) = { ZeroE(k) 
if k = i 
ifk#i 

2. Re&(k. j) = Re&(k, j) for any k # j 

Zeror(i) n hR(n - 1,2) 
3. Zero+) = { Zero,(k) 

if k = i 
ifk#i 

4. Relf(k, j) = Reb(k. j) for any k # j 

Rules for condition i 2 n : 

zero,(i) n hR(n - 2,2) 
1. Zefdk) = { zerop(k) 

if k = i 
ifk#i 

2. Re&(k, j) = Re&(k, j) for any k # j 

Zero,(i) n hR(n + 1, -2) 
3. Zew(k) = { Zero,(k) 

if k = i 
ifk#i 

4. Relf(k, j) = Reb(k, j) for any k # j 

Rules for condition i 5 j + n : 

Reb(i, j) f-I hR(n + 2, -2) if k = i, 1 = j 
Reb(j.i)nhR(-n-2,2) ifk= j,l=i 
R4dk.l) otherwise 

2. Zerpt(k) = Zero,(k) for any k 

I Re&(j,i)nhR(-n+l,-2) ifk= j,l=i 
3. Rel.f(k.1) = Reb(i,j)nhR(n- l,2) ifk=i,l= j 

R4dk.l) otherwise 

4. Zero!(k) = Zero,(k) for any k 

Figure 6: Analysis rules for a conditional at program point p, with true branch at program point t and false branch at program 
point f, 

5.3 Pointer Disambiguation in Order and Initial Value 
Analyses 

The order and initial value analyses use the pointer analy- 
sis information to maintain precision in the face of pointer 
dereferences. Consider, for example, an assignment *p=exp. 
If the pointer analysis determines that p always points to a 
specific variable v, the compiler can conceptually replace *p 
with v in the assignment. This conceptual transformation 
allows the compiler to analyze *p=exp as v=exp. The order 
analysis can therefore generate precise order information for 
v and the initial value analysis can map v to an accurate 
expression derived from exp. A similar approach preserves 
precision in the presence of reads via pointers. 

The compiler falls back on conservative approaches if it 
is unable to completely disambiguate a pointer. Assume 
that the compiler is only able to determine that, at the as- 
signment *p=exp, p points to one of several variables. In 
this case, the initial value analyis conservatively maps all 
of the potentially updated variables to ‘T when it analyzes 
the assignment. Similarly, the order analysis kills all of the 

order information involving any of the potentially updated 
variables. 

Finally, it is possible for a callee procedure to change 
the order or initial value information in the caller. This can 
happen, for example, if the caller passes a pointer variable by 
reference, and the callee modifies the pointer variable. An 
unmapping process similar to that used in standard pointer 
analysis algorithms ensures that the analyses conservatively 
model this possibility. 

5.4 Correlation Analysis 

The compiler uses correlation analysis to improve the preci- 
sion of the bounds analysis in cases, such as for the variable 
d in the merge procedure from Figure 1, when the order and 
initial value analyses fail to derive accurate bounds. Cor- 
relation analysis is designed to detect relationships of the 
following form: “whenever p is incremented, exactly one of 
q, r, or s is also incremented”. In this case, we say that 
p is the target variable, and that q, r, and s are the cowe- 
lated variables. The compiler uses this information to derive 
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bounds for the target variable in terms of the bounds and 
initial values of the correlated variables. 

The analysis is triggered whenever the compiler is un- 
able to derive bounds for a target variable using the order 
and initial value analyses. For each target variable and each 
program point, the analysis produces two sets of variables: 
a set of correlated variables with which the target variable 
is correlated, and a set of uncorrelated variables with which 
the target variable is known to be not correlated. The anal- 
ysis maintains the invariant that these two sets are disjoint. 
Once a variable enters the set of uncorrelated variables, it 
never moves back into the set of correlated variables at any 
subsequent point in the program. 

5.4.1 The Analysis Algorithm 

The analysis starts by examining the basic blocks to match 
each increment of the target variable with an increment in 
the same basic block of a correlated variable whose sym- 
bolic bounds are already known from the order and initial 
value analyses. The initial value analysis must also have 
successfully extracted a symbolic initial value for the corre- 
lated variable at the start of the procedure in terms of the 
reference set of the procedure. In the example in Figure 1, 
each increment of d is matched with the increment of 11 or 
12 from the same line in the program. Because 11 and 12 
are parameters, their initial values are simply their values 
at the start of the merge procedure. 

This matching is used to define the transfer functions for 
basic blocks. The output set of uncorrelated variables that 
flows out of a basic block is the input set of uncorrelated 
variables that flows into the basic block plus all variables 
updated in the block whose updates are not matched. The 
output set of correlated variables is computed as follows. 
The compiler first augments the input set of correlated vari- 
ables to include all variables with matched increments in 
the basic block. It then removes all variables that are in the 
output set of uncorrelated variables. 

The merge operation is defined as follows. The output 
set of uncorrelated variables is the union of the input sets 
of uncorrelated variables. The output set of correlated vari- 
ables is the union of the input sets of correlated variables 
minus the output set of uncorrelated variables. The sets of 
correlated and uncorrelated variables are empty when the 
analysis starts, and monotonically increase to their final val- 
ues as the analysis proceeds. 

For the target variable d in the example in Figure 1, the 
sets of correlated variables for the basic blocks in lines 4 and 
5 are (11) and {12}, respectively. The sets of uncorrelated 
variables are empty. The merge operation at the top of the 
while loop in line 3 will compute {11,12} as the correlated 
set for d, and will leave the uncorrelated set empty. The 
analysis reaches a fixed point with (11, 12) as the corre- 
lated set for d at the beginning of each basic block that 
dereferences d. 

5.4.2 Using Correlation information 

The correlation information establishes equations for the 
values of reference variables in terms of the correlated vari- 
ables. Whenever a target variable is correlated with a set 
of variables at a certain program point, the difference be- 
tween the value of the target variable and its initial value 
is equal to the sum of differences between the values of the 
correlated variables and their initial values. The compiler 
uses this equation to derive bounds for the target variable 
in terms of the bounds for the correlation variables. 

In the example in Figure 1, the equation between the 
values of the target variable d and the correlated variables 
11 and 12 is d - do = (11 - 110) + (12 - 12s) at the start 
of each basic block that dereferences d. This equation can 
be combined with the bounds 110 5 11 < hlo for 11 and 
120 _< 12 < h2o for 12 to obtain the bounds de _< d < 
de + (hle - 110) + (h2e - 120) for d. 

The compiler uses the bounds at the start of each basic 
block to obtain bounds at each program point within the 
basic block. It simply propagates the bounds from the start 
of the block into the block, incrementing the lower and upper 
bound whenever the target variable is incremented. 

6 Region Analysis 

The region analysis extracts symbolic region expressions that 
characterize how each statement and the computation rooted 
at each call site access data. Throughout the analysis, the 
compiler keeps reads and writes separate, generating a set 
of read region expressions and a separate set of write region 
expressions for each statement and each call site. Because 
the variables in these expressions are all from the reference 
set of the enclosing procedure, the dependence tester can di- 
rectly compare the region expressions to see if they overlap. 

The region analysis starts with the results of the bounds 
analysis, which generates an upper and lower bound for each 
pointer dereference in terms of the reference set of the en- 
closing procedure. For each procedure, the region analysis 
coalesces adjacent and overlapping regions from the proce- 
dure’s pointer dereferences to obtain a minimal set of re- 
gions that the procedure directly accesses. It then uses an 
interprocedural fixed-point algorithm to extract the regions 
accessed by the entire computation of the procedure. This 
algorithm analyzes call sites and propagates region expres- 
sions from callees to callers. 

When the interprocedural analysis terminates, it has com- 
puted a set of region expressions for each procedure. These 
region expressions are given in terms of the reference set of 
the procedure and characterize how that procedure accesses 
data. As a byproduct of the interprocedural analysis, the 
compiler also generates a set of symbolic region expressions 
that characterize how each statement and call site in the 
program access data; these region expressions are given in 
terms of the reference set of the enclosing procedure. The 
dependence testing phase uses these region expressions to 
extract the concurrency. 

6.1 Region Expressions 

Each region expression is represented in the form [l, u], where 
1 is the lower bound and u is the upper bound. Both 1 and 
u are symbolic expressions in terms of the reference set of 
the currently analyzed procedure. These expressions are of 
the form p + exp, where p is a pointer into the accessed al- 
location block and exp is an integer expression representing 
the pointer offset. 

If the region expression summarizes how a statement or 
procedure reads data, it is marked as a read expression; if 
it summarizes how a statement or procedure writes data, it 
is marked as a write expression. It is important to realize 
that each region expression identifies a region of memory 
within a specific set of allocation blocks. The pointer anal- 
ysis determines the set of allocation blocks for each region 
expression. So even if the symbolic analysis is unable to 
generate symbolic bounds for a region expression in terms 
of the reference set, the region expression does not denote 
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all of memory. It merely denotes all of the memory in the 
allocation blocks that the pointer analysis extracted for that 
region expression. 

6.2 lntraprocedural Region Analysis 

The intraprocedural region analysis generates the local m- 
gion set of the procedure, or a minimal set of region ex- 
pressions that characterize how the procedure accesses data. 
The local region set is expressed in terms of the procedure’s 
reference set. The analysis starts by using the results of 
the bounds analysis to extract a region expression for each 
pointer dereference in the procedure. At each pointer deref- 
erence, it uses the order information (as translated by the 
initial value analysis into the reference set of the procedure) 
to obtain upper and lower bounds for the region that the 
dereference accesses. Together, these bounds make up the 
region expression for that dereference. The special bound 
-oo is used as the lower bound for dereferences with no 
lower bound from the bounds analysis; +oo is used as the 
upper bound for dereferences with no upper bound from the 
bounds analysis. 

The local region set is initialized to the union of the re- 
gion expressions from all of the pointer dereferences in the 
procedure. An iterative algorithm repeatedly finds two re- 
gion expressions in this set whose upper and lower bounds 
are either adjacent or overlap. It then merges the regions 
into a new region as follows. The lower bound of the new 
region is the minimum of the lower bounds of the original 
regions, and the upper bound is the maximum of the upper 
bounds of the original regions. The original regions are re- 
moved from the local region set, the new region is inserted 
into the set, and the algorithm iterates until there are no 
more adjacent or overlapping regions. 

This algorithm assumes that the analysis can compare 
the upper and lower bounds of region expressions and gen- 
erate the minimum and maximum of two bounds. These 
bounds are symbolic expressions in the reference set of en- 
closing procedure. During the bounds analysis, each bounds 
expression is transformed into a sum of terms; each term is a 
product of a coefficient and a variable from the reference set. 
The algorithm compares two such expressions by comparing 
corresponding terms: one expression is larger than another 
if all of its terms are larger. The algorithm compares terms 
by comparing their coefficients. If the variable from the ref- 
erence set is positive or zero, the compiler chooses the term 
with the larger coefficient as the larger term. If the variable 
is negative, the term with the larger coefficient is the smaller 
term. This approach requires that the compiler know the 
sign of the integer variables in the reference set. The cur- 
rent implementation relies on the programmer to declare all 
such variables as C unsigned variables, which forces them to 
be nonnegative. It would be straightforward to implement 
an interprocedural abstract analysis to determine the sign 
of variables in the reference set. 

The algorithm that computes the minimum and msxi- 
mum of two bounds expressions also operates at the granu- 
larity of terms. The minimum of two bounds expressions is 
the sum, over all pairs of corresponding terms, of the smaller 
term in the pair; the maximum is the sum of the larger terms 
in corresponding pairs. 

For the example in Figure 1, the local region sets for main 
and sort are empty. The local region set for merge reads 
[lle, hle - l] and [120, h2o - l] and writes [do,do + (hlo - 
llo) + h20 - 120 - l]. The local region set for insertionsort 
reads and writes [lls, hlo - 11. 

6.3 interprocedural Region Analysis 

For each procedure, the interprocedural region expression 
analysis uses the local region sets to derive a global region 
set, or a minimal set of region expressions that characterize 
how the entire execution of the procedure accesses data. 

6.3.1 Non-Recursive Procedures 

For non-recursive procedures, the analysis extracts the global 
region sets by propagating region sets up from the leaves of 
the call graph towards the root. For each procedure, the 
global region set is initialized to the procedure’s local region 
set. At each propagation step, the analysis performs a sym- 
bolic unmapping as follows. It first translates the region ex- 
pressions from the reference set of the callee to expressions in 
the variables of the caller. It then translates the expressions 
from the variables of the caller to expressions in the refer- 
ence set of the caller. The resulting expressions are added 
to the current global region set of the caller, with adjacent 
or overlapping regions coalesced as discussed in Section 6.2. 

Consider, for example, the call site at line 34 in Figure 1 
where sort calls merge. The global region set for merge con- 
tains the read region expression [Ilo, hlo - l]. The analysis 
first unmaps this region expression into the variables of the 
sort procedure to obtain the region expression [dl, d2 - 11. 
It then uses the bounds analysis information to obtain the 
lower bound do for dl and the upper bound de +no/4 - 1 for 
d2-1. Note that both bounds expressions are in terms of the 
reference set for sort. The compiler combines these bounds 
to obtain the region expression [de,de + no/4 - 11, which 
is the translation of the original region expression from the 
global region set of merge into a region expression that char- 
acterizes, in part, how a specific call to merge accesses data. 

6.3.2 Recursive Procedures 

The analysis uses a fixed point algorithm to handle recur- 
sive procedures. For each recursive procedure, the analysis 
initially sets the procedure’s global region set to its local re- 
gion set. It then applies the bottom-up symbolic unmapping 
algorithm described above to propagate region expressions 
from callees to callers. It terminates the recursion by using 
the procedure’s current global region set in the unmapping 
as an approximation of its actual global region set. When- 
ever possible, the unmapped region expressions are coalesced 
into the current global region set of the caller. The analysis 
uses the coalescing algorithm discussed above in Section 6.2. 
The algorithm continues until it reaches a fixed point. 

In some cases, this analysis generates an unbounded num- 
ber of region expressions that cannot be coalesced. This 
may happen, for instance, when the recursive function ac- 
cesses a statically unbounded number of disjoint regions. In 
this case, the analysis as described above will not terminate. 
Even if the analysis is always able to coalesce the region ex- 
pressions from recursive calls into the current global region 
set, the analysis as described above may not terminate if the 
bounds always increase or decrease. 

The compiler therefore imposes a finite bound on the 
number of analysis iterations. If the analysis fails to con- 
verge within this bound, we replace the extracted region 
expressions with corresponding region expressions that iden- 
tify the entire allocation blocks as potentially accessed. 

In the example in Figure 1, the global region set for 
sort starts out empty. The interprocedural region analysis 
for non-recursive procedures propagates the region expres- 
sions from the calls to insertionsort and merge into the 
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sort procedure, and coalesces the resulting region expres- 
sions to add the read region [do,ds + no - l] and the write 
region [to, to + no - l] to the global region set for sort. 
The interprocedural region analysis for recursive procedures 
uses this global region set as an approximation to derive re- 
gion expressions that characterize how the recursive calls to 
sort access data. After coalescing these region expressions 
back into the current global region set for sort, the analysis 
reaches a fixed point. 

7 Parallelization 

The goal of the compiler is to find sequences of procedure 
calls that can execute in parallel. The primitives the com- 
piler works with are the Cilk spawn and sync primitives [3]. 
The spawn primitive generates a parallel call - the spawned 
procedure executes in parallel with the rest of caller, includ- 
ing any subsequent parallel calls. The sync primitive blocks 
until all of the caller’s outstanding parallel calls terminate. 
The output of the concurrency extraction phase of the com- 
piler consists of a set of spawn points (each spawn point 
corresponds to a parallel call) and a set of sync points. The 
compiler inserts these constructs to maximize concurrency 
subject to the constraint that the parallel program preserve 
the data dependences of the original serial program. 

7.1 Dependence Testing 

Given the Cilk primitives, the relevant data dependences 
exist between a callee and subsequent statements in the 
caller, and between multiple callees. The compiler enforces 
these dependences by comparing the region expressions from 
callees with region expressions from statements or other 
callees. If a write region from one of the two has a nonempty 
intersection with a write or read region from the other, then 
there is a potential data dependence. Otherwise, there is no 
dependence. 

The intersection test between two regions is performed 
as follows. The compiler first uses the pointer analysis infor- 
mation to check if the expressions denote regions in different 
allocation blocks. If so, their intersection is empty and there 
is no dependence. If not, the compiler does a symbolic check 
of the expressions for the lower and upper bounds of the two 
regions. If the upper bound for one region is less than the 
lower bound of the other, then the regions have an empty 
intersection and there is no dependence. If the compiler is 
unable to determine that the upper bound for one region is 
less than the lower bound of the other, it must conservatively 
assume that the intersection is nonempty. The bounds com- 
parison checks are done symbolically using the expression 
comparison algorithm described in Section 6.2. 

7.2 Concurrency Extraction 

The compiler uses the dependence test outlined above as the 
foundation of an algorithm that identifies parallel sections of 
the program, or sections in which each procedure call can 
execute in parallel with all subsequent statements and all 
other procedure calls in the section. 

The parallel section algorithm starts with an initial call 
site. It then traverses the control flow graph of the pro- 
gram to grow the parallel section as follows. It repeatedly 
visits a candidate statement or call site on the control flow 
frontier of the parallel section. To visit a candidate, the 
compiler performs a dependence test between the symbolic 

region expressions of of the candidate and the symbolic re- 
gion expressions of the call sites in the current parallel sec- 
tion. These symbolic region expressions are generated by 
the region analysis, and are all expressed in terms of the 
reference set of the enclosing procedure. 

If all of the dependence tests indicate that there is no 
dependence, the candidate statement or call site is added to 
the parallel section. Otherwise, the program point before 
the statement or call site is marked as a sync point. The 
algorithm continues until all of the statements or call sites 
on the frontier either have been visited or are the end node 
of the procedure. 

The analysis of the procedure generates multiple (poten- 
tially overlapping) parallel sections as follows. The compiler 
first traverses the call graph to find an initial call site. It 
then performs the parallel section algorithm described above 
to generate a set of sync points. The algorithm next finds 
another call site that is not yet in any parallel section, and 
repeats the parallel section algorithm using that call site as 
the initial site. The algorithm terminates when every call 
site is in a parallel section. All call sites in parallel sections 
that contain at least two call sites are identified as spawn 
points. 

7.3 Code Generation 

Once the compiler has determined the spawn and sync points, 
code generation is straightforward. The compiler inserts a 
spawn construct at each spawn point and a sync construct 
at each sync point. 

8 Experimental Results 

We have implemented a parallelizing compiler based on the 
analysis algorithms presented in this paper. This compiler 
was implemented using the SUIF compiler infrastructure [l]. 
We implemented all of the analyses, including the pointer 
analysis, from scratch starting with the standard SUIF dis- 
tribution. The compiler generates code in the Cilk parallel 
programming language [3]. We present experimental results 
for two programs: a version of the sorting program pre- 
sented in Section 2 and a divide and conquer matrix mul- 
tiplication program. The matrix multiplication program is 
representative of matrix manipulation programs; the sorting 
program is representative of less regular divide and conquer 
algorithms. 

We ran the generated programs on an eight processor 
Sun Ultra Enterprise Server. Table 1 presents the execution 
times and self-relative speedups for the automatically par- 
allelized matrix multiply program. The input is a 1024 by 
1024 matrix of doubles. For comparison purposes, the exe- 
cution time of the standard naive, triply-nested matrix mul- 
tiply loop is 316 seconds, as opposed to 28.5 seconds for the 
automatically parallelized version running on one processor. 
We attribute the performance difference to cache improve- 
ments from blocking and from an efficient, hand-unrolled 
implementation of the base case in the automatically paral- 
lelized version. 

Table 2 presents the execution times and self-relative 
speedups for the automatically parallelized sort program 
presented in Section 2. The input is four million randomly 
generated integers. For comparison purposes, the execution 
time of the sequential version of this program is 9.23 sec- 
onds. 
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Table 1: Execution Times and Speedups for Divide and Con- 
quer Matrix Multiply 

7iijtet 

Time (seconds) 9.24 4.94 2.99 2.36 2.11 

Table 2: Execution Times and Speedups for Divide and Con- 
quer Sort 

9 Related Work 

Many tree traversal programs can be viewed as divide and 
conquer programs. For this class of programs there is a sig- 
nificant body of research in the area of shape analysis, which 
is designed to discover when a data structure has a certain 
“shape” such as a tree or list [4, 19, 81. Several researchers 
have used shape analysis algorithms as the basis for com- 
pilers that automatically parallelize divide and conquer pro- 
grams that manipulate linked data structures [9,13,14]. We 
are aware, however, of no previous research on parallelizing 
compilers for divide and conquer programs (such as those 
in our benchmark set) that use pointers to access disjoint 
regions of large, contiguously allocated blocks of memory. 

Several researchers have developed symbolic analysis tech- 
niques for various parallelization approaches. Blume and 
Haghighat [2, lo] have independently developed symbolic 
analysis techniques for parallelizing loop nests that manip- 
ulate dense matrices [2, lo]. Rinard and Diniz have devel- 
oped symbolic analysis techniques for detecting commuting 
operations on objects and using the commutativity infor- 
mation to automatically parallelize irregular, object-based 
programs [17]. 

Moon, Hall and Murphy have developed a data-flow anal- 
ysis that uses the conditions in flow of control statements to 
obtain extra precision. They use the analysis to generate 
conditions that guard conditionally optimized code, and to 
generate conditions that use run-time information to iden- 
tify parallel loops [IS]. 

There has been a significant amount of research on ex- 
tracting array sections in scientific programs that manipu- 
late dense matrices [20, 12, 11). These techniques are all 
designed to work for programs with loop nests that access 
matrices using afhne access functions. The techniques pre- 
sented in this paper, on the other hand, are designed to work 
for pointer references in recursive procedures with general 
control flow. 

10 Conclusion 

Traditional parallelizing compilers have focused on an im- 
portant, but narrow, form of concurrency: the concurrency 
available in loop nests that manipulate dense matrices us- 
ing affine access functions. This paper presents algorithms 
and experimental results from a parallelizing compiler that 

focuses on a more general and no less important form of con- 
currency: the recursively generated concurrency available in 
divide and conquer algorithms. 

To exploit this form of concurrency, we found that we had 
to implement both pointer analysis and a set of new symbolic 
analysis algorithms. These algorithms allow the compiler to 
reason statically about the regions of memory accessed in 
(potentially recursive) procedures that heavily use pointers 
and pointer arithmetic. The compiler uses this region access 
information to detect independent calls to these procedures 
and to generate code that executes the independent calls in 
parallel. 

We have implemented a parallelizing compiler based on 
this general approach; our experimental results show that 
this compiler is capable of automatically extracting concur- 
rency from optimized implementations of divide and conquer 
algorithms. 
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