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ABSTRACT

This paper develops a highly accurate LogGP model of a complex
wavefront application that uses MPI communication on the IBM
SP/2. Key features of the model include: (1) elucidation of the
principal wavefront synchronization structure, and (2) explicit
high-fidelity models of the MPI-send and MPI-receive primitives.
The MPI-send/receive models are used to derive L, o, and G from
simple two-node micro-benchmarks. Other model parameters are
obtained by measuring small application problem sizes on four SP
nodes. Results show that the LogGP model predicts, in seconds
and with a high degree of accuracy, measured application
execution time for large problems running on 128 nodes.
Detailed performance projections are provided for very large
future processor configurations that are expected to be available to
the application developers. These results indicate that scaling
beyond one or two thousand nodes yields greatly diminished
improvements in execution time, and that synchronization delays
are a principal factor limiting the scalability of the application.
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1. INTRODUCTION

This paper investigates the use of the parallel machine model
called LogGP to analyze the performance of a large, complex
application on a state-of-the-art commercial parallel platform.
The application, known as Sweep3D, is of interest because it is a
three-dimensional particle transport problem that has been
identified as an ASCI benchmark for evaluating high performance
parallel architectures. The application is also of interest because it
has a fairly complex synchronization structure. This
synchronization structure must be captured in the analytic model
in order for the model to accurately predict application execution
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times and thus provide accurate performance projections for larger
systems, new architectures, or modifications to the application.

One question addressed in this research is which of variants of the
LogP model [4] is best suited for analyzing the performance of
Sweep3D on the IBM SP system. Since this version of Sweep3D
uses the MPI communication primitives, the LogGP model [2]
which includes an additional parameter, G, to accurately model
communication cost for large pipelined messages, turned out to
provide the requisite accuracy. Possibly due to the blocking nature
of the MPI primitives, the contention at message processing
resources is negligible and thus recent extensions to LogP for
capturing the impact of contention [7,12] are not needed.

In previous work [4,6,7], the LogP models have been applied to
important but fairly simple kernel algorithms, such as FFT, LU
decomposition, sorting algorithms, or sparse matrix multiply.
Two experimental studies have applied the model to complex full
applications such as the Splash benchmarks [9, 11]. However, in
these studies, the effects of synchronization on application
performance and scalability were measured empirically rather than
estimated by the model. Many other previous analytic models for
analyzing application performance are restricted to simpler
synchronization structures than Sweep3D (e.g., [8]). One
exception is the deterministic task graph analysis model [1],
which has been shown to accurately predict the performance of
applications with complex synchronization structures. The
LogGP model represents synchronization structures more
abstractly than a task graph. A key question addressed in this
research is whether the more abstract representation is sufficient
for analyzing a full, complex application such as Sweep3D.

We construct a LogGP model that not only captures the
synchronization structure but also elucidates the basic
synchronization structure of Sweep3D. Similar to the approach in
[2], we use communication micro-benchmarks to derive the input
parameters, L, o, and G. However, as we show in section 3,
deriving these parameters is somewhat more complex for MPI
communication on the SP/2 than for the Meiko CS-2; thus explicit
models of the MPIl-send and MPl-receive primitives are
developed. Although the LogGP input parameters are derived
from four-processor runs of Sweep3d, the LogGP model projects
performance quite accurately up to 128 processors, for several
fixed total problem sizes and several cases of fixed problem size
per processor. The model also quickly and easily projects
performance for the very large future processor configurations
that are expected to be available to the application developers.
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Figure 1: Partitioning the 3D Grid in the i and j Dimensions

We show several interesting results that can be derived from the
analysis.

Section 2 provides a brief overview of the Sweep3D application.
Section 3 derives the models of MPI-send and MPI-receive and
the parameter values that characterize communication cost.
Section 4 presents the LogGP equations for Sweep3D, as well as

the modifications that are needed when the application utilizes the .

multiprocessor SMP nodes of the SP/2. In the latter case, there
are two types of communication costs: intra-cluster and inter-
cluster. Section 5 provides model validation results as well as
performance projections for future systems. Section 6 provides
the conclusions of this work.

2. Sweep3D

Sweep3D is described in [10]. A detailed task graph showing the
complex synchronization among the tasks in the version of the
code that is analyzed in this paper, is given in [5]. Here we give a
simple overview of this version of Sweep3D, including only the
aspects that are most relevant to the LogGP model. The structure
of the algorithm will be further apparent from the LogGP model
presented in section 4.

As its name implies, the Sweep3D transport calculations are
implemented as a series of pipelined sweeps through a three
dimensional grid. Let the dimensions be denoted by (i,j,k). The
3D grid is mapped onto a two-dimensional array of processors, of
size mxn, such that each processor performs the calculations for a
partition in the i and j dimensions of size irxjixk, as shown in
Figure 1. Note that, due to the problem mapping in Figure 1, the
processors in the processor grid of Figure 2 will be numbered p;;
where i varies from 1 to n and indicates the horizontal position of
the processor.

A single iteration consists of a series of pipelined sweeps through
the 3D grid starting from each of the 8 corners (or octants) of the
grid. The mapping of the sweeps to the two dimensional processor
grid is illustrated in Figure 2. If mo denotes the number of angles
being considered in the problem, then each processor performs
itxjtxkxno calculations during the sweeps from each octant. To
create a finer granularity pipeline, thus increasing parallelism in
the computation, the block of data computed by a given processor
is further partitioned by an angle blocking factor (mmi) and a k-
plane blocking factor (k). These parameters specify the number
of angles and number of planes in the k-dimension, respectively,
that are computed before boundary data is forwarded to the next
processor in the pipeline. Each processor in the interior of the
processor grid receives this boundary data from each of two
neighbor processors, computes over a block based on these
values, and then sends the results of its calculations to two
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Figure 2: The Sweeps for each Octant

neighbor destination processors, determined by the direction of
the sweep.

In the optimized version of Sweep3D that we analyze, once all
blocks at a given processor are calculated for the sweeps from a
given pair of octants, the processor is free to start calculating
blocks for sweeps from the next pair of octants. For example, the
lower left corner processor can start to compute the first block of
the sweep for octant 7 after it has computed its last block of the
sweep originating from octant 6. This will be shown in greater
detail in the LogGP mode! of Sweep3D in section 4.

The pipelined sweep for octant 8 completes one iteration of the
algorithm for one energy group. In the code we analyze, twelve
iterations are executed for one time step. The target problems of
interest to the ASCI program involve on the order of 30 energy
groups and 10,000 time steps, for grid sizes on the order of 10
(1000x1000x1000) or twenty million (e.g., 280x280x255). We
can scale the model projections to these problem sizes, as shown
in section 3.

3. Communication Parameters: L, 0, G

Before we present the LogGP model of Sweep3D for the SP/2, we
derive models of the MPI-send and MPI-receive communication
primitives that are used in the application. The MPI-send/receive
models are needed in the LogGP model of Sweep3D, and are also
needed to derive two of the communication parameters values,
namely the network Latency (L), and the processing overhead (o)
to send or receive a message. The communication structure of
Sweep3D is such that we can ignore the gap (g) parameter, as the
time between consecutive message transmissions is greater than
the minimum allowed value of inter-message transmission time.

Below we give the roundtrip communication times for MPI
communication on the IBM SP, which are measured using simple
communication micro-benchmarks. The value of G (Gap per byte)
is derived directly from these measurements. We then discuss
how we modeled the SP/2 MPI-send and MPI-receive primitives
using the L, o, and G parameters, followed by a description of
how the values of L and o are derived. A significant result is that
we derive the same values of L and G (but different values of o)
from the Fortran and the C micro-benchmark measurements. This
greatly increases our confidence in the validity of the MPI
communication models.
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Figure 3: MPI Round Trip Communication Times.

3.1 Measured Communication Times

The roundtrip communication time as a function of message size
for a simple Fortran communication micro-benchmark is given in
Figures 3 (a) and (b). For each data point, a message of the given
size is sent from processor A to processor B, received by a process
on processor B, and immediately sent back to A. The roundtrip
time is measured on A by subtracting the time just before it calls
MPI-send from the time that its MPI-receive operation completes.
Each figure also includes the results of our model of the roundirip
communication, which is used to derive the L and o parameters,
as discussed below.

As can be seen in the figures, the measured communication time
increases significantly with message size. Hence, the G parameter
is required to accurately model communication cost. Two further
points are worth noting from the Figure:

e The communication cost changes abruptly at message size
equal to 4KB, due to a handshake mechanism that is
implemented for messages larger than 4KB. The handshake
is modeled below.

e The slope of the curve (G) changes at message size equal to
1KB.

The message processing overhead (o) is also different for
messages larger than 1 KB than for messages smaller than 1KB,
due to the maximum IP packet size. Thus, we will derive separate
values of G,/ G; and of o, / o, for "small" (<1KB) and "large"
(>1KB) messages.

3.2 Models of MPI-send and MPI-receive

The models developed here reflect a fairly detailed understanding
of how the MPI-send and MPI-receive primitives are implemented
on the SP/2, which we were able to obtain from the author of the
MPI software. It might be necessary to modify the models for
future versions of the MPI library, or if Sweep3D is run on a
different message-passing architecture or is modified to use non-
blocking MPI primitives. The models below illustrate a general
approach for capturing the impact of such system modifications.

Since the SP/2 system uses polling to receive messages, we can
assume the overhead to send a message is approximately the same
as the overhead to receive a message, 0.

For messages smaller than 4KB, no handshake is required, and the
total end-to-end cost of sending and receiving a message is
modeled simply as:

Total_Comm = o + (message_sizex G)+ L +0 (1)

where the values of G and o depend on whether the message size
is larger or smaller than 1KB.

For messages larger than 4KB, the end-to-end communication
requires a "handshake" in which just the header is initially sent to
the destination processor and the destination processor must reply
with a short acknowledgment when the corresponding receive has
been posted. If the receive has been posted when the header
message is sent, the end-to-end cost is modeled as follows:

Total_Comm=o0,+L +o0;+0,+L + 0

+ (message_size X G)) + L + o, 2)

Note that the processing overhead for receiving the ack is
modeled as being subsumed in the processing overhead for
sending the data. If the corresponding receive has not yet been
posted, a additional synchronization delay will be incurred. This
delay is modeled in the next section.

In addition to the total cost for communication given above, the
L.ogGP model for Sweep3D requires separate costs for sending
and receiving messages. For message size less than 4KB:

Send = o (3a)
Receive = o (3b)

where the value of o depends on the message size. For message
size greater than or equal to 4KB:

Send=o,+ L +o,+0,+L + 0 (4a)
Receive = o, + L + o; + (message_size X G)) + L. + o; (4b)

The receive cost includes the time to inform the sending processor
that the receive is posted, and then the delay for the message to
arrive.

3.3 Communication Parameter Values

Using the above equations for Total_ Comm and the measured
round-trip communication times, we can derive the values of L,
o,, 05, G, and G), which are given in Table 1. The values of G; and
G, are computed directly from the slope of the curve (in Figure 3)
for the respective range of message sizes. To derive L and o, we
solve three equations for Total_Comm (for message sizes less
than 1KB, between 1-4KB, and greater than 4KB, respectively) in
three unknowns (L, o, and o;). Applying this method to the
roundtrip time measurements obtained with C micro-benchmarks
yields the same values of L and G as for the measurements



Message Size: <1024 > 1024
L 23 usec 23 psec
o (Fortran) 23 psec 47 usec
0o (C) 16 pisec 36 pisec
G 0.07 usec 0.03 usec

Table 1. SP/2 MPI Communication Parameters

obtained with Fortran benchmarks, although the value of o is
different, as shown in Table 1.  This greatly increases our
confidence in the validity of the above models of the MPI
communication primitives. Using the parameter values derived in
this way, the measured and modeled communication costs differ
by less than 4% for messages between 64-256KB, as shown in
Figure 3. Note that although the measured and modeled values
seem to diverge at message size equal to 8KB in figure 2(a),
figure 2(b) shows that the values for message sizes above 8KB are
in good agreement.

4. The LogGP Model of Sweep3D

In this section we develop the LogGP model of Sweep3D, using
the models of the MPI communication costs developed in section
3. We first present the model that assumes each processor in the
mxn processor grid is mapped to a different SMP node in the
SP/2. In this case, network latency is the same for all
communication. We then give the modified equations for the case
that 2x2 regions of the processor grid are mapped to a single
(four-processor) SMP node in the SP/2. The round-trip times and
parameter values computed in section 3 were for communication
between processors in different SMP nodes. The same equations
can be used to compute intra-node communication parameters.

4,1 The Basic Model

The LogGP model takes advantage of the symmetry in the sweeps
that are performed during the execution, and thus calculates the
estimated execution time for sweeps from one octant pair and then
uses this execution time to obtain the total execution time for all
sweeps, as explained below.

During a sweep, as described in section 2, a processor waits for
input from up to two neighbor processors and computes the values
for a portion of its grid of size mmi X mk X it X jt. The processor
then sends the boundary values to up to two neighbor processors,
and waits to receive new input again. Using costs associated with
each of these activities, we develop the LogGP model summarized
in Table 2, which directly expresses the precedence and

send/receive
algorithm.

synchronization constraints in the implemented

The time to compute one block of data is modeled in equation (5)
of Table 2. In this equation, W, is the measured time to compute
one grid point, and mmi, mk, it and jt are the input parameters,
defined in section 2, that specify the number of angles and grid
points per block per processor.

Consider the octant pair (5,6) for which the sweeps begin at the
processor in the upper-left corner of the processor grid, as shown
in Figure 2. Recall that the upper-left processor is numbered p, ;.
To account for the pipelining of the wavefronts in the sweeps, we
use the recursive formula in equation (6) of Table 2 to compute
the time that processor p;; begins its calculations for these sweeps,
where i denotes the horizontal position of the processor in the
grid. The first term in equation (6) corresponds to the case where
the message from the West is the last to arrive at processor p;; In
this case, the message from the North has already been sent but
cannot be received until the message from the West is processed
due to the blocking nature of MPI communications. The second
term in equation (6) models the case where the message from the
North is the last to arrive. Note that StartP;; = 0, and that the
appropriate one of the two terms in equation (6) is deleted for
each of the other processors at the east or north edges of the
processor grid.

The Sweep3D application makes sweeps across the processors in
the same direction for each octant pair. The critical path time for
the two right-downward sweeps is computed in equation (7) of
Table 2. This is the time until the lower-left corner processor py
has finished communicating the results from its last block of the
sweep for octant 6. At this point, the sweeps for octants 7 and 8
(to the upper right) can start at processor p;, and proceed toward
pn1- Note that the subscripts on the Send and Receive terms in
equation (7) are included only to indicate the direction of the
communication event, to make it easier to understand why the
term is included in the equation. The send and receive costs are
as derived in section 3.2.

The critical path for the sweeps for octants 7 and 8 is the time
until all processors in the grid complete their calculations for the
sweeps, since the sweeps from octants 1 and 2 (in the next
iteration) won’t begin until processor p,; is finished. Due to the
symmetry in the Sweep3D algorithm, mentioned above, the time
for the sweeps to the Northeast is the same as the total time for the
sweeps for octants 5 and 6, which start at processor py and move
Southeast to processor p,n, Thus, we compute the critical path
time for octants 7 and 8 as shown in equation (8) of Table 2.

Equation (8) represents the time until processor p,, has finished
its last calculation for the second octant pair. The processor

W;; = W, X mmi X mk x it x jt (5)
StartP;; = max (StartP;_,; + Wi_y; + Total_Comm + Receive, StartP;; ; + W;; ; + Send + Total_Comm) (6)
Ts 6 = startPy .+ 2[(W; o+ Sendp+ Receivey + (m-1)L) x #k-blocks x #angle-groups] @)

Tqg = startPo ;m+ 2[(Wy.1,m+ Sendg+ Receivew+ Receiven+ (m-1)L+ (n-2)L) X #k-blocks X #angle-groupsl+ Receivey + Wy, (8)

T=2(Ts6 + Trg) ®

Table 2 LogGP Model of Sweep3D




directly to its East, p,,m, Mmust start computing, calculate and
communicate all needed results from the blocks for both octants,
and then wait for processor p,, to receive the results from the last
block of these calculations and compute the results based on this
block.

Due to the symmetry between the sweeps for octants I through 4
and the sweeps for octants 5 through 8, the total execution time of
one iteration is computed as in equation (9) of Table 2.

The equation for Tsg contains one term [(m-1)L], and the
equation for Tyg contains two terms [(m—I)L and (n-2)L], that
account for synchronization costs. These synchronization terms
are motivated by the observation that measured communication
times within Sweep3D are greater than the measured MPI
communication cost discussed in section 3. The (m-1)L term in
Ts and Ty g captures the delay caused by a send which is blocked
until the destination processor posts the corresponding receive.
This delay accumulates in the j direction; thus the total delay at
p1m depends on the number of processors to its North (m-1).
Furthermore, this synchronization cost is zero for the problems
with message sizes smaller than 4KB, since in this case, the
processor sends the message whether or not the corresponding
receive has been posted. The second synchronization delay in Ty,
(n-2)L, represents difference between when a receive is posted,
and when a message is actually received from the sending
processor. Since a processor receives from the North after the
West on a southeast sweep, it is more likely to wait for the
message from the West. Since this delay is cumulative over all
processors in the i dimension, at processor Pg.1,m We model this
delay as (n-2)L. Notice that this receive synchronization term is 0
for processors on the west edge of the processor grid since there
are no processors to its West from which to receive a message.
This is why it was not included in the Tsgexpression above.

4.2 The Model for the Clustered SMP Nodes

A few modifications to the above model are needed if each 2x2
region of processor grid is mapped to a single four-processor SMP
cluster in the IBM SP/2, rather than mapping each processor in
the grid to a separate SMP node. These changes are outlined
here, in anticipation of the next generation of MPI software for
the SP that will support full use of the cluster processors.

Let Ly, denote the network latency for an intracluster message,
L,emore denote the latency for an intercluster message, and L, =
(Licat + Lyemore)/2. 1n the following discussion, o and G are
assumed to be the same for intra-cluster and inter-cluster
messages, but the equations can easily be modified if this is not

the case. Let L and R be subscripts that denote a model variable
(e.g,. TotalComm, Send, or Receive) that is computed using Ligea
or Lyoe respectively.  Using this notation, the modified
equations that compute the execution time of Sweep3D are given
in Table 3 and described below.

Recall that processor numbering starts from 1 in both the i and j
dimensions. Also recall that, for processor p;;, i denotes its
horizonal position in the processor grid. If both i and j are even,
then all incoming messages are intra-cluster and all outgoing
messages are inter-cluster. The vice versa is true if both i and j
are odd. This means that StartP;; is computed with TotalCommy,
Receive;, and Send; (for the incoming messages) in the former
case, and with TotalCommyg, Receiveg, and Sendy in the latter
case. For i odd and j even, the variables in the first term of
StartP;; are for inter-cluster communication and the
communication variables in the second term are for intra-cluster
communication. The vice versa is true for i even and j odd.

The Send and Receive variables in the equations for Tsg and Ty
are all intra-cluster variables, assuming that the number of
processors in each of the i and j dimensions is even when
mapping 2x2 processor regions to the SMP clusters. The
synchronization terms in Tsg and Ty are computed using Ly,
These are the only changes required in the model.

The modified model has been validated against detailed
simulation {3]. However, since we cannot yet validate them with
system measurements (because efficient MPI software for intra-
cluster communication doesn't yet exist), only results for the case
that each processor is mapped to a separate SMP node are given
in this paper. Nevertheless, the changes to the model for full
cluster use are simple and illustrate the model’s versatility.
Furthermore, these equations can be used to project system
performance for the next generation MPI software.

4.3 Measuring the Work (W)

The value of the work per grid point, W,, is obtained by
measuring this value on a 2x2 grid of processors. In fact, to obtain
the accuracy of the results in this paper, we measured W, for each
per-processor grid size, to account for differences (up to 20%)
that arise from cache miss and other effects. Since the Sweep3D
program contains extra calculations (“fixups”) for five of the
twelve iterations, we measure W, values for both of these iteration
types. Although this is more detailed than the creators of
LogP/LogGP may have intended, the increased accuracy is
substantial and needed for the large scale projections in section 3.
Furthermore, our recursive model of Sweep3D only represents the

i even, j even:

i odd, j even:

i even, j odd:

StartP;; = max (StartP;_,; + Wi + Total_Commy, + Receiver , StartP;;_; + W;;; + Send,, + Total_Commy)

iodd,jodd: StartP;; = max (StartP;_;;+ Wiy + Total_Commyg + Receiveg, StartP;;_; + W, + Sendg + Total_Commg)

StartP;; = max (StartP;_,; + Wi + Total_Commg + Receiveg, StartP;; ; + W;;_; + Send,, + Total_Comm;)

StartP;; = max (StartP;.;;+ Wiy + Total_Commy, + Receivey , StartP;; ; + W;;_; + Sendy + Total_Commg)
Ts6 = startPy g+ 2[(Wy i+ Sendg+ Receivey + (m-1)1,y,) X #k-blocks X #angle-groups]

Trg = startP,.p t+ 2[(Wogm+Sendp+Receivew+ Receiven+ (m=1)Lyg+ (n-2)Ls,,,) % #k-blocks x #angle-groups]+ Receivey + Wy,

Table 3: Modified LogGP Equations for Intra-Cluster Communication on the SP/2
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sweeps of the Sweep3D code.

Figure 5: Sweep3D Speedups for Fixed Total Problem Sizes in Figure 4

In addition, we measure the

(Fortran Code, mk=10, mmi=3)

version of Sweep3d on up to 128 SP/2 processors, for fixed total

computation time before and after this main body of the code (i.e.,
between the iterations for a time step). These computation times,
denoted Wy and Wy, are measured during a single processor
run of a specific problem size. All model parameters are thus
measured using simple code instrumentation and relatively short
one, two, and four-processor runs. In the next section we
investigate how accurately the model predicts measured execution
time for the Sweep3D application.

5. Experimental Results

In this section we present the results obtained from the LogGP
model. We validate the LogGP projections of Sweep3D running
time against measured running time for up to 128 processors and
then use the LogGP model to predict and evaluate the scalability
of Sweep3D to thousands of processors, for two different problem
sizes of interest to the application developers. Unless otherwise
stated the reported execution times are for one energy group and
one time step with twelve iterations in the time step.

In Figure 4 we compare the execution time predicted by the
LogGP model to the measured execution time for the Fortran

problems sizes (150x150x150 and 50x50x50), and k-blocking
factor, mk, equal to 10. As the number of processors increases, the
message size and the computation time per processor decrease,
while the overhead for synchronization increases. For these
problem sizes and processor configurations, the message sizes
vary from over 16KB to under 1KB; there is remarkably high
agreement between the model estimates and the measured system
performance across the entire range. Figure 5 shows that the
larger problem size achieves reasonably good speedup (i.e., low
communication and synchronization overhead) on 128 processors
while the smaller problem size does not. Note that the model is
highly accurate for both cases.

In Figure 6, we show the predicted and measured application
execution time as a function of the number of processors on the
SP/2, for two different cases of fixed problem size per processor.
In Figure 6(a) each processor has a partition of the three-
dimensional grid that is of size 20x20x1000. In Figure 6(b), each
processor has a partition of size 45x45x1000. In these
experiments, the total problem size increases as the number of
processors increases. The agreement between the model estimates
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and the measured execution time is again generally excellent for
the level of abstraction in the model. However these results show
that the model is less quantitatively accurate when mk=1. We
have verified for many configurations that the LogGP model is
qualitatively accurate in determining whether the execution time
with mk=1 is higher or lower than the execution time with mk=10.
We have also verified that the model is quantitatively accurate for
values of mk larger than 10. The results for 45x45x1000 also
illustrate that the C version of the code (which was created from
the Fortran version using f2¢) is somewhat slower than the
Fortran code. Although the absolute performance for C differs,
the performance frends that we report in this paper for the Fortran
code are also observed in the C code and model projections.

Figure 7 shows the projected execution time of Sweep3D with a
fixed problem size per processor, as the system is scaled to the
thousands of processors that are expected to be available at ASCI
sites in the near future. Two fixed per-processor problem sizes
are considered: 6x6x1000 and 14x14x255. In both cases, the
model predictions have been validated to 2500 processors using
simulation (not shown). The measured execution times for the

6x6x1000 case illustrate an unexplained system anomaly in which
measured execution time suddenly increases for a given small
increase in the number of processors. This anomaly has occurred
for only a couple of the fixed per-processor grid sizes we have
examined. Note that the anomaly occurs even though the problem
size per processor is fixed, and thus it seems unlikely that it can
be explained by cache behavior or message size. One of the
hazards of modeling (analytic or simulation) is that such
anomalous system behavior cannot be predicted. However, the
model estimates show that the jump in execution time is not due
to expected communication or synchronization costs. Detailed
examination of the system implementation is required to discover,
and hopefully correct, the cause of the anomaly.

As in figure 6, figures 7(a) and (b) predict excellent scaling in the
case where memory usage per processor is kept constant.
Nevertheless, solving the 10° problem size with 6x6x1000 grid
points per processor requires 27,000 processors. The results in
Figure 7(a) suggest that the execution time, scaled up to 30 energy
groups and 10,000 time steps will be prohibitive for this problem
configuration.
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Figure 8 gives the projected execution time of Sweep3D as the
system is scaled to 20,000 processors, for two different tofal
problem sizes of interest to the application developers. In this
case, the projected execution times, for a single time step
involving 12 iterations, are scaled up by a factor of 30 to reflect
the fact that the computation of interest to the scientists involves
30 energy groups rather than one. Note that the problem size per
processor decreases as the number of processors increases, and
thus the Sweep3D configurations with larger mk have higher
performance. The LogGP model can be used to determine which
values of the Sweep3D configuration parameters (i.e., mmi and
mk) yield the lowest execution time for given processor
configurations and problem sizes.

One key observation from the results in Figure 8 is that there is a
point of greatly diminishing improvement in execution time as the
number of processors is increased beyond one or two thousand. A
second key observation from Figure 8(b) is that even for optimal
values of the Sweep3D configuration parameters and an unlimited
number of processors, solving the billion grid point problem for

10,000 time steps appears to require a prohibitive execution time
using the current algorithm.

To investigate the causes of the limited scalability in Figures 7
and 8, Figure 9 shows a breakdown of the execution time for each
of the problem sizes in Figure 8. This breakdown shows how
much of the critical path execution time is due to computation,
non-overlapped synchronization, and non-overlapped
communication. A key observation is that as the system is scaled
up, synchronization delays become a significant and then
dominant factor in execution time. (These synchronization delays
are modeled by the (m-1)L and (n-1)L. terms in equations (7) and
(8) of Table 2.) Modifications that reduce the synchronization
costs would be highly desirable for solving the very large
problems of interest. For example, a simple modification that
might be explored is to use a non-blocking form of MPI-send.
However, more fundamental algorithmic changes that reduce
synchronization delays may be needed. Figure 10 shows that this
could yield greater benefit than improved processor technology,
due to the difficulty of speeding up communication latencies.
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6. Conclusions

The principal contribution of this research is the LogGP model for
analyzing and projecting the performance of an important
application that has a complex synchronization structure. For this
wavefront application, the LogGP equations that capture the
principal synchronization costs also elucidate the basic pipelined
synchronization structure, illustrating an abstraction capability in
this domain that is comparable to the simplicity of the
communication parameters (L, o, and G). This research provides a
case study in which the model validates extremely well against
measured application performance, and further illustrates the
potential of the LogGP model for analyzing a wide variety of
interesting applications including the important class of wavefront
applications.

The most significant results obtained for the Sweep3D application
studied in this paper are as follows. First, scaling beyond one or
two thousand processors yields greatly diminished returns in
terms of improving execution time, even for very large problem
sizes. Second, solving problem sizes on the order of 10 grid
points with 30 energy groups and 10,000 time steps appears to be
impractical with the current algorithm. Finally, synchronization
overhead is a principal factor in limiting scalability of the
application.

Future work includes generalizing the model presented in this
research to create a re-usable analytic model of wavefront
applications executing on production parallel architectures,
developing a model to the shared-memory version of Sweep3D,
and developing LogGP models of applications with other complex
synchronization structures.
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