
Performance Prediction of Large Parallel Applications
Using Parallel Simulations

Rajive Bagrodia Ewa Deelman
Computer Science Department

University of California Los Angeles, CA 90024

I-31 O-825-0956 I-31 O-825-2091

rajive@cs.ucla.edu deelman@cs.ucla.edu

ABSTRACT
Accurate simulation of large parallel applications can be
facilitated with the use of direct execution and parallel discrete
event simulation. This paper describes the use of COMPASS, a
direct execution-driven, parallel simulator for performance
prediction of programs that include both communication and I/O
intensive applications. The simulator has been used to predict the
performance of such applications on both distributed memory
machines like the IBM SP and shared-memory machines like the
SGI Origin 2000. The paper illustrates the usefulness of
COMPASS as a versatile performance prediction tool. We use
both real-world applications and synthetic benchmarks to study
application scalability, sensitivity to communication latency, and
the interplay between factors like communication pattern and
parallel tile system caching on application performance. We also
show that the simulator is accurate in its predictions and that it is
also efficient in its ability to use parallel simulation to reduce its
own execution time which, in some cases, has yielded a near-
linear speedup.
Keywords
Parallel Program Simulation, Application Scalability, MPI, MPI-
IO, Parallel Discrete Event Simulation, Direct Execution.

1. INTRODUCTION
Accurate and efficient performance prediction of existing parallel
applications on multiple target architectures is a challenging
problem. Both analytical and simulation approaches have been
used successfully for this purpose. Whereas analytical solutions
have the advantage of efficiency, they also suffer from the
limitation that many complex systems are analytically intractable.
Although simulation is a widely applicable tool, its major
limitation is its extremely long execution time for large-scale
systems. A number of simulators, including Parallel Proteus
[22], LAPSE [13], SimOS [30], Wisconsin Wind Tunnel [28],
and MPI-SIM [26] have been developed to control the execution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise. to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
PPoPP ‘99 5/99 Atlanta, GA., USA
0 1999 ACM l-58113-100.3/98/0004...$5.00

Steven Docy Thomas Phan
Computer Science Department

University of California Los Angeles, CA 90024

I-31 O-825-4885

sdocy@cs.ucla.edu phantom@cs.ucla.edu

time of simulation models of parallel programs. The simulators
typically use direct execution to reduce the cost of simulating
sequential instructions and use parallel discrete event simulation
to exploit parallelism within the simulator to reduce the impact of
scaling up the target configuration being simulated. Most
existing program simulators were designed to study CPU-
intensive parallel programs. However, inadequate parallel I/O
performance has become a significant deterrent to the overall
performance of many applications and a number of solutions have
been proposed to improve parallel I/O performance [10, 29.1. The
ability to include I/O and CPU-intensive applications in a unified
performance prediction environment thus appears to have
significant value. We have developed COMPASS (COMponent-
based PArallel System Simulator), a portable, execution driven,
asynchronous parallel discrete event simulator that can be used to
predict the performance of large-scale parallel programs,
including computation and I/O intensive applications, targeted for
execution on shared-nothing and shared memory architectures, as
well as SMP clusters.

In particular, simulation modules have been developed to predict
the performance of applications as a function of communication
latency, number of available processors on the machine of
interest, different caching strategies for parallel I/O, parallel file
system characteristics, and alternative implementations of
collective communication and I/O commands. The simulator is
being used for detailed program simulations within the POEMS
project [12]. POEMS (Performance Oriented End-to-end
Modeling System) is a collaborative, multi-institute project whose
goal is to create and experimentally evaluate a problem solving
environment for end-to-end performance modeling of complex
parallel/distributed systems. This paper describes the simulator
and its use in evaluating the performance of large-scale, complex
applications as a function of various system characteristics. As
we demonstrate, the simulator is not only accurate, but is also fast
due to its ability to run in parallel. Where we can, we use real
world applications; however, in some cases we have used
synthetic benchmarks to highlight a particular feature of the
simulator. We show the simulator’s portability and accuracy by
validating the tool on two platforms (the distributed memory IBM
SP and the shared memory SGI Origin 2000) for a range of
synthetic and real world applications. For instance, we show that
the predicted execution time of an ASCI kernel called Sweep3D
[32] was within 5% of the measured execution time on both
architectures.

151

http://crossmark.crossref.org/dialog/?doi=10.1145%2F301104.301118&domain=pdf&date_stamp=1999-05-01

Second, we demonstrate the scalability of the tool itself. A major
impediment to widespread use of program simulators is their
execution (in)efficiency. We show that COMPASS can
effectively exploit parallel model execution to dramatically
reduce the execution time of a simulation model, without
sacrificing accuracy. In particular, we show that, for a
configuration of an application kernel called Sweep3D and a
target machine with 64 processors, the simulator reduces the
slowdown factor from 35 using sequential simulation to as low as
2.5 using a parallel simulator running on 64 processors. Further,
the larger amounts of memory available on a parallel platform
allowed us to conduct scalability studies for target configurations
that were at least two orders of magnitude larger than those
obtained with a sequential machine. For instance, for the same
Sweep3D application, memory constraints of a sequential
simulator would have limited us to simulating a target architecture
of at most 13 processors for a 1503 problem size. Using the
memory available to us on the 128-node SP, we were able to
predict the performance of Sweep3D for up to 1600 processors.

Having established the simulator’s accuracy and scalability, we
demonstrate some of its capabilities.

4.

5.

We use the simulator to predict the scalability properties of
an application using standard measures of scalability that
include isoefficiency and scale-up as a function of the
number of processors.

We analyze the behavior of an application as a function of
the communication latency of the target architecture. We
demonstrate that applications such as Sweep3D are not very
sensitive to latency variations implying that executing such
applications on a network of workstations rather than on a
massively parallel system is a reasonable alternative.

We show how COMPASS can model the new architectures
consisting of clusters of SMPs (such as the newest IBM SP).
Even though the hardware for SMP cluster exists, the MPI
software is not yet available to exploit the faster
communication available among the processors of an SMP
node. Using COMPASS we can show how an application
would perform on the new architecture, if fast intra-node
MPI communications were made available. In particular,
using our synthetic benchmarks, we identify a type of
application that can run 20% faster when using four 4-way
SMPs rather than sixteen processors.

Using a synthetic benchmark, we demonstrate the sensitivity
of different communication patterns to variations in the
communication latencies of a target architecture.

Parallel file systems are becoming more complex, allowing
both compute- and I/O-node caching. We demonstrate how
various caching policies can affect the performance of a
benchmark. In particular, for an I/O intensive benchmark, we
see that as the network latency degrades, the gains from
cooperative caching [10, 71 become negligible.

The next section gives a brief description of the simulator.
Section 3 describes the benchmarks and the target and host
architectures used for the performance study. Section 4 presents
results on the validation and scalability of the simulator. Section 5
showcases some of features of the simulator as described in point

1 to Sabove. Section 6 discusses related work and concludes with
a discussion of our future research directions.

2. COMPASS
The goal of the simulator is to enable the simulation of large-scale
parallel applications written using MPI and MPI-IO on a variety
of high performance architectures. The application program to be
simulated is referred to as the target program and the architecture
on which its performance is to be predicted is referred to as the
target architecture. The machine on which the simulator is
executed is referred to as the host machine, which may be
sequential or parallel.

The simulation environment is composed of several distinct, yet
tightly coupled components--the simulation kernel, the MPI
communication library simulator (MPI-Sim), the parallel I/O
simulator (PIO-Sim) and the parallel file system simulator (PFS-
Sim). Each successive component builds upon and extends the
capabilities of previous components, expanding the breadth and
the depth of the performance issues, which may be investigated
with the simulator. The simulation kernel provides the
framework; it implements the simulation protocols and provides
support for scheduling and execution of threads. MPI-Sim
provides the capability to simulate individual and collective MPI
communication routines. PIO-Sim extends MPI-Sim’s
capabilities to include I/O routines as well as providing several
implementations of collective I/O, the ability to handle user
defined data types that are needed to support complex I/O
operations, and a simple I/O service time model. PFS-Sim
completes the simulation environment by providing detailed
simulation of the parallel tile system and of multiple caching
algorithms. The simulator itself is portable and runs on a variety
of parallel platform-he IBM SP, the Origin 2000, and the Intel
Paragon.

The simulation kernel is the heart of the simulation environment.
In general, the number of processors in the host machine will be
less than the number of processors in the target architecture being
simulated, so the simulator must support multi-threading. The
kernel on each processor schedules the threads and ensures that
events on all processors are executed in their correct timestamp
order. A target thread is simulated as follows: the local code is
simulated by direct execution [8] and all communication and I!0
commands are trapped by the simulator, which uses an
appropriate model to predict the execution time for the
corresponding activity on the target architecture. The
corresponding communication or I/O commands are also executed
for consistency with the target program, but the physical time
taken for executing this operation is ignored. The use of direct
execution for simulation of local code requires that the processors
in the host and target machines be similar. However, the
interconnection network, parallel I/O system, and file systems on
the two architectures may be very different. COMPASS supports

most of the commonly used MPI communication routines, such as
point-to-point and collective communications. In the simulator,
all collective communication functions are implemented in terms
of point-to-point communication functions, and all point-to-point
communication functions are implemented using a set of core
non-blocking MPI functions [27]. The interconnection network
model currently ignores contention in the network. More detailed
models are being developed, but given the excellent validation

152

obtained with the simpler model for a variety of benchmarks both
here and in previous work [26], this was not considered to be a
serious limitation.

The parallel I/O component of COMPASS simulates the
individual and collective I/O constructs provided by MPI-IO.
These constructs include creating, opening, closing and deleting a
tile; most data access (read/write) operations; and a local datatype
constructor introduced as part of the MPI-IO specification. The
file system component of COMPASS simulates the parallel file
system used to service I/O requests generated by the MPI-IO
programs. This component is self-contained and may be replaced
by a simple disk access model in order to speed up the simulation
whenever a detailed system model is not required. However,
using the detailed model allows the study of a wide variety of
parallel tile system configurations. The basic structure and
functionality of the tile system component is taken from the Vesta
parallel file system, a highly scalable, experimental tile system
developed by IBM [6]. The behavior of the physical disks is
simulated by a set of disk models. We have included simple
models based on seek time, rotational latency, and data transfer
rate as well as a highly detailed model developed at Dartmouth
]241.
Detailed system simulations are slow. Parallel simulators can
potentially reduce execution time of the model, and provide
greater amounts of memory, another necessity for large, detailed
simulations. The simulation kernel provides support for
sequential and parallel execution of the simulator. Parallel
execution is supported via a set of conservative parallel
simulation protocols [26]. When combined with the kernel’s
built-in multi-threading capabilities, this allows the simulator to
effectively use however many host processors are available
without limiting the size and type of experiments which may be
run. The simulator also supports a number of optimizations that
are based on an analysis of the behavior of the parallel
application. Among the optimizations made available by program
behavior analysis is a technique, which allows the simulation
protocols described above to actually be turned off, eliminating
the costly overhead of global synchronization [in submission].

3. Benchmarks and Systems
3.1 Real World Application Benchmarks
3. I. 1 SweepSD
Sweep3D is a-solver for the three-dimensional, time independent,
neutron particle transport. The computation calculates the flux of
particles through a given region of space, where the flux in any
region is dependent on the flux from all the neighboring cells.
The three-dimensional space (XYZ) is discretized into three-
dimensional cells (IJK). The computation progresses in a
wavefront manner from all the eight octants of the space, with
each octant containing six, independent angles. The angles
correspond to the six, independent directions of the flux (one for
each face of a cube-cell). Sweep3D uses a 2D domain
decomposition onto a 2D array of processors in the I and J
directions. In this configuration, the sweep progresses as a
processor computes the flux through the column of cells, then
sends the outgoing flux information to its two neighboring
processors. In order to improve performance, the K dimension
and the angles are divided into blocks, allowing a processor to

calculate only part of the values in the dimension and only a few
angles before sending the values to the neighboring processors.

3.1.2 NAS Benchmuds
The NAS Parallel Benchmarks (NPB) is a suite of parallel
scientific benchmarks made available from the Numerical
Aerodynamic Simulation (NAS) project at the NASA Ames
Research Center [2]. The NAS suite contributes a strong core to
our experimental set as it represents a number of well-known,
different, real-world, non-vendor-specific codes that can be easily
tailored to utilize the COMPASS system. We used the NPB 2.2
release of the software, and included a variety of applications, of
which only four: BT, LU, MG, and SP were deemed stable by the
NPB authors. BT, SP, and LU compute solutions to systems of
discretized Navier-Stokes equations, while MG solves a three-
dimensional scalar Poisson equation. The NPB distribution
provides a preconfigured set of problem sizes (because of the F77
constraint with dynamic memory) with which these programs can
operate. For each application the problem sizes are, in increasing
order, S, A, B, and C. Furthermore, the programs can be run in
parallel only with a specific number of processors: BT and SP run
with 4, 9, and 16 processors, while LU and MG run with 4, 8, and
16. Both the NPB suite and SWEEP3D were originally
programmed in Fortran. As MPI-SIM currently supports only C,
the programs were first translated using f2c [14]. Subsequently,
the translated code was automatically localized, to allow the
simulator to simulate multiple simultaneous threads of the target
program on a single processor of the host machine. The localizer
also converts MPI and MPI-IO calls to equivalent calls defined
within the COMPASS library. The localizer is fully automated
and has been used successfully with very large applications.

3.2 Synthetic Benchmarks-SAMPLE
Although real world applications or kernels like Sweep3D and
NAS are useful benchmarks for simulators such as COMPASS,
they have a major disadvantage in that their core algorithms are
difficult to understand and it is impossible to modify them to
evaluate the impact of alternative types of program structures
including computation granularity and communication patterns.
While each of these programs provided a means for parameter
adjustment, the large granularity at which these changes could be
made did not serve our need to measure their performance as a
function of specific runtime behavior. Thus, in addition to using
these real world benchmarks, we sought to write a synthetic
application that allows for the explicit tuning of communication
and computation parameters. This effort resulted in SAMPLE
(Synthetic Application for Message-Passing Library
Environments), a C program that performs precisely changeable
amounts of calculation and message-passing inter-process
communications suitable for experimental analysis. SAMPLE
executes message passing via calls that can be targeted to either
COMPASS or the actual MPI library, to facilitate validation.
SAMPLE is a simple loop that contains two inner loops: the first
is a pure computation loop whose duration can be varied by
adjusting the number of floating point divisions executed, while
the second is a communication loop that can implement multiple
communication patterns by changing the frequency, size, and
destination of messages sent (and received) by each process.
Message distribution can take on a wide variety of patterns, as
described in [17]. Using MPI’s point-to-point capability, we

153

implemented a number of these methods, such as wavefront,
nearest neighbor, ring, one-to-all, and all-to-all communications.
Using predefined metrics, the user can easily change the
communication to computation ratio in the program.

3.3 I/O Benchmark
Since implementations of the MPI-I/O standard are not yet widely
available, it is hard to find real world applications that stress the
parallel l/O simulation capabilities of the simulator; hence a set of
synthetic benchmarks were developed for this purpose. The
benchmark uses N processes, each mapped to a unique compute
node. Each process generates read and write requests for blocks of
data of a given size. The interarrival times of the I/O requests are
sampled from a normal random distribution with a given mean.
The blocks are all in the same file, which is distributed across M
I/O nodes, each with D disks (for a total of M*D disks). Each
process issues R requests, where for a given c, the first R/c
requests are used to warm up the caches. Each of these
parameters can easily be modified.

3.4 Host and Target Architectures
The SGI Origin 2000 [19] is a multiprocessor system from
Silicon Graphics, Inc. The Origin provides a cache-coherent
NUMA distributed shared memory layout with two MIPS
Rl0000 processors comprising a processing node multiplexed
over a hub chip to reduce memory latency and increase memory
bandwidth. Our Origin testbed is small, with only ten 180 MHz
Rl0000 processors sharing 320 MB of memory. Due to its limited
number of processors and memory, we could not completely
perform the same number and size of experiments as we did on
the IBM SP.

The IBM Scalable Parallel (SP) system is a scalable
multiprocessor that condenses several complete RS6000
workstations into one system [9], forming a shared-nothing
collection of processing nodes connected typically by a
bidirectional 4-ary 2-fly multistage interconnection network that
can achieve simultaneous any-to-any connections [21]. The
packet-switched network can use, as an alternative to IP, a
protocol named the User Space Communication Subsystem (US
CSS) to provide near-constant latency and bandwidth. We have
used US CSS as the baseline protocol in all our experiments on
the SP2.

The new generation IBM SP showcases a cluster architecture
where each of nodes of the machine is a 4-way SMP. An
example of such a machine is the new IBM SP at Lawrence
Livermore National Laboratory. Currently, this machine includes
158 compute nodes each with four 332 MHz 604e processors,
sharing 512 MB of memory and attached to 1GB disks. The inter-
node communications of the SP give a bandwidth of
l00MB/second and a latency of 35 microseconds with the use of
SP High Performance Switch TB3 (currently, this performance is
possible when the application is running only on one of the four
processors of the node). We have simulated the behavior of such
a system running MPI applications. The inter-node
communications are handled the same way as for the shared-
nothing architecture, by modeling the communications between
processors as using the high-performance switch. However, the
intra-node communications are modeled as using shared memory.
As information on the implementation of the MPI constructs

designed to exploit shared memory were not yet available for the
IBM SP (in fact, in the current implementation processors on a
node communicate with each other using the much slower IP!),
the COMPASS model is based on the MPI implementation on the
SGI Origin 2000 [22]. Certainly, the performance of the
application will depend on the exact implementation, but it allows
us to demonstrate the capability of the tool in enabling such
studies.

4. Validation and Performance of COMPASS
4.1 Validation
Our first set of experiments was aimed at validating the
predictions of COMPASS for the IBM SP and SGI Origin 2000.
Figure 1 is a graph of the execution time of the measured
Sweep3D program compared to the execution time predicted by
COMPASS. The curves are a function of the number of
processors used by Sweep3D and the number of target processors
simulated by COMPASS; validation is thus limited to the number
of physical processors (on the Origin we have only 10). The
COMPASS data is taken as the average of the running times of all
multithreaded combinations of the target processor number. (For
instance, for eight target processors, the average running time was
taken from executions with 1, 2, 4, and 8 host processors.) From
the graph it is seen that COMPASS is indeed accurate, correctly
predicting the execution time of the benchmark within 5% for the
IBM SP and 3% for the O2K, even with multithreaded operation.

When conducting scalability studies, it is often the case that the
number of available host processors is significantly less than the
number of target processors. This results in several simulation
threads running on the same processor. Since multithreading
might affect the results of the simulation because threads might
affect each other’s runtime, it is important to study whether such
effects exists. To quantify the effect of multithreading on the
ability of the simulator to correctly predict the runtime of the
application, we simulated Sweep3D using a wide range of host
and target processors. As can be seen from Figure 2, even with a
relatively high degree of multithreading of 8 target MPI processes
to a single host processor, the variation in the predicted runtime is
very small (below 2%).

COMPASS was also validated with the suite of NAS benchmarks.
Here we present the results for the SP and BT benchmarks for the
Origin 2000. As mentioned earlier, the NAS programs come
configured to run in parallel only on a predetermined number of
processors and a predetermined set of problem sizes. The
processor and memory constraints of our relatively small 02K
restricted us only to the S size of these benchmarks. Figure 3
shows the results of the validation experiments for BT and SP
(both class S). They show good validation, with accuracy to
within 8.5% and 2.1%, respectively, at all points. For 16
processors, the graph shows only the predicted performance since
only 8 host processors are available on the machine.

Since both Sweep3D and the NAS benchmarks are
computationally intensive, we also used the communication-
intensive synthetic benchmark (SAMPLE) to validate the
communication models. The measured and predicted execution
times for the SAMPLE benchmark also showed excellent
validation of COMPASS for a variety of configurations. Figure 4
shows a sample run using the wavefront communication pattern
and a computation-to-communication ratio of 11 to 1. As seen
from the figure, COMPASS accurately predicts running time to
within 3 percent; the results were similar for the other patterns
and have been omitted for brevity.

We present a number of results to demonstrate the relative
improvement in the performance of the simulator that can be
obtained with parallel execution. Figure 5(a) shows the
performance of COMPASS when simulating the execution of

processors of the IBM SP. As seen from the figure, the simulator
can effectively use additional processors; the parallel simulation

problem size as compared with the sequential execution time of

because, ultimately, the performance of the simulator is bound by
the performance of the application.

Another metric commonly used to evaluate the performance of a
simulator is the slowdown of the simulator relative to the target
architecture. We define slowdown(S,T) as (time to simulate the
application using S host processors / time to execute the
application on T processors).

Figure 5(b) shows the slowdown of COMPASS when simulating

processors is equal to the number of target processors, the
simulator has a slowdown factor of less than 3. If the host
architecture has fewer available processors than the target
machine, the slowdown does get worse, but the overall
performance is reasonable. Thus with an I-ratio (number of target

4.2 Scalability of the Simulator

processors / number of host processors) of 16 (64 target
processors and 4 host processors), the slowdown factor is only 10.

Figure 5 (a): Speedup of COMPASS on the IBM SP
(Sweep3D).

40
?E

33

p

Pa
f 15

10

5

0

1 10 100

WSt-Aal*

Figure 5(b): Slowdown of COMPASS on the IBM
SP(Sweep3D).

The largest configuration studied with 1600 target processors,
using only 64 host processors (I-ratio of 25) yielded a slowdown
of only 18. This is considerably better than the slowdown factors
that have been reported for other program simulators like WWT
[23] and LAPSE [131, where the slowdown factors reported have
been as high as 100 for computationally intensive applications.

In Figure 6(a), we show the speedup attained by COMPASS for
the Origin 2000 while it simulates 32 target processors for two
problem sizes of Sweep3D. For the Origin 2000, COMPASS
achieves near-linear speedup as the number of host processors is
increased, reaching a speedup of 7 when 8 host processors are
used. The slowdown graph for an I-target processor configuration
is shown in Figure 6(b) and shows that for an I-ratio of 1, the
simulator has a slowdown of 2. The slowdown with 4 host
processors is slightly above 2, which shows that even if just half
of the desired number of processors is available, the simulator
runs only about twice slower the application on all target
processors would.

.8

0 2 4 6 8 10

ra.rdrcfM~

Figure 6(a): Speedup of COMPASS on the SGI Origin 2000
(Sweep3D).

The speedup and slowdown of COMPASS simulating the NAS
benchmarks also show improvements with parallel execution,
albeit to a lesser degree. Figures 7(a) and 8(a) show the speedup
of the BT and SP applications, respectively. We see that the
speedup of the simulator increases progressively as the number of
host processors is increased, but the rate of increase as well as the
final speedup attained with 8 hosts is lower than those seen with
the previous benchmark. The simulator produces a speedup as
high as 5.45 for the BT benchmark and 4.38 for the SP
benchmark. Similarly, the slowdown curves reach a low of 1.42
and 1.67, respectively, for each application (see Figures 7(b) and
8(b)). Further investigation indicated that these applications did
not scale as well as SWEEP3D, and hence the differences in the
performance of COMPASS are directly related to the performance
of the target program being simulated. The speedup and
slowdown experiments show that COMPASS can exploit the
parallelism available in the application without adding any
considerable overhead.

0 2 4 6 8 IO

r4tderdHc5tRooessas

Figure 6(b): Performance of COMPASS on the SGI Origin
2000 (Sweep3D).

156

Speedlp of CCtvPASS Running BT

6

0 2 4 6 6 10

bhberdl-ktFVuwsm

Figure 7(a): Speedup of COMPASS on the SGI Origin 2000 Figure S(a): Speedup of COMPASS on the Origin 2K (SP).
(W.

Slm of(3ObMSS Runnirg BT

12

10

f 6 +4Tar@

% 6
I4

--H-9Taget

2

0

0 2 4 6 6 10

NrrberdM-

Figure 7(b): Slowdown of COMPASS on the SGI Origin 2K
(B’V.

5. Results and Features of COMPASS
Scalability of Sweep3DThe performance study first evaluated the
scalability of Sweep3D as a function of various parameters
including the size of the problem, the number of processors and as
a function of network latency. We have performed this study on
the IBM SP using up to 64 host processors. Figure 9(a)
demonstrates the scalability of Sweep3D for three problem sizes:
503,1003 and 1503. For large problems, the study showed that
their performance scales well as the number of processors is
increased to almost 1600, although the relative improvement in
performance drops beyond 256 processors. For the largest
problem size, the runtime of the application was shown to be 125
times smaller running on 1,600 processors as compared to
running the application on 4 processors. For the smaller problem
size with elements, the performance appears to peak at about 1024
processors and subsequently gets worse. This observation was
strengthened by the isoefftciency analysis, where the efficiency is
defined as speedup (S)/p (number of processors).

The isoefftciency function determines at what rate the problem
size needs to be increased with respect to the number of
processors to maintain a fixed efficiency [161. A system is highly
scalable if the problem size needs to be increased linearly as a
function of the number of processors. The total work W is the
time to run the algorithm on a single processor, and Z” is the time
to run the algorithm on p processors. Tp= (w+rJ/p (To= sum of
overhead on all processors) giving the efficiency E =
l/(1 +TJW). If W needs to grow as J?(p) to maintain efficiency
E,jE(pl is defined as the isoefficiency function.

slm of COMPASS RuMing SP

14

12

10

g 8
1 6
14

2

0

0 2 4 6 6 10

Nntrrd-
I

Figure 8(b): Slowdown of COMPASS on the Origin 2K (SP).

I .
10 ~----.X -._.__._

l!kc--+

A ---====s
1

! 0 500 IQ33 1500

Figure 9(a): Scalability of Sweep3D 07 the IBM SP.

Figure 9(b) shows the isoefftciency function for Sweep3D for
various numbers of efficiencies. The graph shows what problem
size needed to maintain a given efficiency (20,40,60 or 90%) on a
given number of processors. First, we observe that maintaining
90% or even 60% efficiency is hard. However 40% is more
manageable. Second, using a large number of processors for a
given problem size is not efftcient. For example, for the 500,000
(about 22x22~1000) problem size, using less than 16 processors
gives the best efficiency (about 90%), using 100 processors
results in only 20% efficiency. Since running the problem on only
16 processors might result in slow runtime, a tradeoff between
time and efficiency can be made and 36 processors can be used

157

resulting in 60% efficiency. Figure 9(b) also demonstrates that
isoefliciency is hard to capture with simple extrapolation. For
example, the 40% isoefficiency curves flattens out for the 1.6
million problem size, implying that giving more processors to the
application does not improve efficiency.

Figure 9(b): Isoefficiency for Sweep3D on the IBM SP.

5.1 Impact of Latency Variation on
Performance
We have also studied the effect of communication latency on
performance. Figure 10 shows the performance of Sweep3D as
the latency in the network is varied, for problem sizes 503 and
1503. As seen from the figure, a faster communication switch will
not have a significant impact on this application-the
performance changes by at most 5% for variations in latency
between 0 and 10x the current switch latency. With more than 32
processors (128 for the larger problem), the difference is
negligible. However, the performance does appear to suffer
significantly if the latency is increased by more than a factor of
50, which might be the case if the application is ported to a
network of workstations. Latency impacts are much more
significant with a small number of processors, because each
processor contains a larger portion of the computational region,
causing messages to become large and more sensitive to latency.

5.2 Modeling SMP Cluster Architectures.
The preceding experiments evaluated application performance on
the distributed memory architecture. New architectures, such as
the IBM SP cluster architecture use 4-way SMP nodes as
described in section 3.4 to exploit both the fast memory access of
shared memory systems and the scalability of distributed memory
machines. The next set of experiments projects improvements in
the execution time of our benchmarks obtained by migrating to
this architecture. Since the previous experiments showed that the
NAS and Sweep3D benchmarks were relatively insensitive to the
communication latency, it was hardly surprising that they did not
appear to benefit noticeably from fast intra-node communication
(for brevity, we omit these results). However, as demonstrated by
the SAMPLE benchmark, for applications that have a higher
percentage of communication, the new architecture appears to
offer some benefits.

Figure 10(a): Sensitivity of Sweep3D to Latency (Small
Problem Size).

1 10 100 loo0

proceSsOrS

Figure 10(b): Sensitivity of Sweep3D to Latency (Large
Problem Size).

Figure 1 l(a) shows the performance of SAMPLE for a fixed
problem size per processor. We can see that the simulator
validates well for the one processor per node case (“Meas. Non-
SMP” and “COMPASS’). We also notice that we can predict a
slightly better performance when running on an SMP node which
would have support for fast intra-node communications
(“COMPASS for SMP”), even though the current implementation
of MPI communications on the SMP nodes has poor performance
(“Meas. SMP”). Similarly, Figure 1 l(b) shows the performance of
the SP running SAMPLE as a function of the number of
computational iterations. Here, the time for communications is
37% of the total runtime. As the number of iterations increases,
the ratio of computation to communication is kept constant.
Again, we see that the predicted SMP performance improves on
average by 20% as compared to the single processor per node
performance, and we see clear drawbacks to using the intra-node
communications as supported currently (“Meas. Current SMP”).

Even though MPI on the SP does not support fast intra-node
communications, the processors of the SMP do share the same
main memory. This might tempt application developers to
redesign existing MPI application to use main memory between
processors of a node and MPI between nodes. A simulator like
COMPASS can help make the decision where such an investment
of time and effort would result in better performance.

158

target 02K architecture with 16 processors and Figure 12(b)
shows the performance as a function of number of processors in
the target architecture. As expected, the ring pattern was most
sensitive to the latency and processor count as the message
traverses sequentially through a ring. The somewhat surprising
result was the relative insensitivity of the wavefront and on-to-all
communications; however, note that both these patterns do not
block the initiator processor. Immediately after initiating the
communication, the corresponding process executes the next
iteration, which is hence reasonably well overlapped with the
communication, producing the observed insensitivity. The slight
jump in the predicted execution time with increasing processors
was attributed to a change in the depth of the broadcast tree
(Figure 12(b)).

5’ II
OC

0 a0 40 60
Nrrtmd-

Figure 11(a): SMP Performance on the IBM SP (SAMPLE
with Constant Computation Per Processor).

Figure 11(b): SMP Performance on the IBM SP (SAMPLE
with Increasing Computation Per Processor).

5.3 Simulating Common Communication
Patterns
Another set of experiments involved investigating the impact of
different communication patterns on program performance
through the use of our synthetic benchmark SAMPLE. Scientific
programs can produce a wide variety of traffic patterns depending
on the algorithm being used, and we sought to understand how
these different types of message dispersal affected application
performance. The SAMPLE benchmark was used to generate a
number of such message-passing schemes for study. The
wavefront pattern involves a 2-dimensional mesh with the 041
processor, residing on the upper-left-hand comer, initializing a
communication wave towards the lower-right-hand comer. Using
the same mesh layout, the nearest-neighbor dispersal has each
processor sending (and receiving) a message from each of its four
logically adjacent processors. The ring pattern forms a cycle
where a single message token is sent around a logical “ring” of
processors. Finally, for the one-to-all pattern, a processor
broadcasts a message, that is routed using a broadcast tree to all
others. The performance of the various communication patterns
was evaluated as a function of communication latency and the
number of processors. The host machine selected for the
experiments was the Origin 2000 with 8 processors. Figure 12(a)
shows the performance of SAMPLE as a function of latency for a

Figure 12(a): Performance of Communication Patterns as a
Function of Latency.

soldiidGYmuidal~

Figure 12(b): Performance of Communication Patterns as a
Function of Number of Processors (02K)

5.4 Effect of Latency on Parallel File System
Caching Strategies
The last experiment demonstrates the use of the simulator in
evaluating the impact of architectural features on I/O intensive
programs. Cooperative caching techniques were proposed to
improve the performance of applications with large I/O
requirements [7,10] by suggesting that the caches be, at least
partially, managed globally, rather than in an entirely local
manner. In all cases, compute node (cnodes) and I/O nodes
(ionodes) have caches. Base caching simply allows each node to
manage only its own cache. Greedy forwarding allows an ionode

159

that has a cache miss to check if any other node is caching the
required data (before going to fetch it from the disk). In centrally
coordinated caching, portions of the cnode caches are collectively
managed by the ionodes. The remaining portion of the cnode
cache is managed locally by the cnode. The percentage of
coordinately managed cache can be varied (as it is in our
experiment). Globally managed caching is similar to 100%
coordinate caching, except the strategy for block placement in
caches is modified to allow the ionode caches to hold data evicted
from the cnode caches. As these caching techniques depend on
having efficient access to remote memory in order to improve
cache hits rates and application performance, their performance
should be dependent on the communication latency in the
network.

Figure 13 shows the results from a set of experiments designed to
measure the impact of changing network latencies of the IBM SP
on the cooperative caching techniques supported by COMPASS.
In this benchmark, 16 processes on separate compute nodes
randomly read and write 512 byte blocks of data. The blocks are
all in the same tile, which is distributed across 2 I/O nodes, each
with 2 disks (for a total of 4 disks). Each process issues 10,000
requests, with the first 5,000 requests being used to warm up the
caches and with 80 of the requests being read requests. The graph
plots the predicted execution time of the benchmark as the
network latency is increased. Caching performance for base
caching (no cooperation), greedy forwarding, centrally
coordinated (with 40, 80 and 100 percent coordination) and
globally managed caching are shown for network latencies of 0,
1, 10, and 100 times the latency of the SP2 interconnect.

Figure 13(a): Comparison of Caching Techniques on the IBM
SP.

Understandably, as the network latency is increased, the predicted
execution time of the benchmark also increases. However, this
experiment also hints at the extreme sensitivity of the cooperative
caching techniques to increased network latency. While it may
appear that all caching techniques (even base caching) are equally
affected by the increasing network latency, this was not found to
be the case. While the absolute difference in predicted execution
time diminishes only slightly as the latency is increased, the
relative difference between different caching techniques decreases
markedly, as shown in Figure 13(b). In effect, as the network
becomes slower, the benefit of using cooperative caching is lost
and performance degrades to only slightly better than that of base
caching. This result has important implications for the use of this
technique in large networks of workstations and in the design of

hybrid strategies, where the caches are managed cooperatively
over small regions of the network rather than over the entire
network.

r

Figure 13(b): Performance of Caching Techniques Relative to
Base Caching on the IBM SP.

6. Related Work
Accurate and efficient performance prediction of existing parallel
applications on target machines with thousands of processors is a
challenging problem. The first generation of simulators like
Proteus [4] used sequential simulation, which were very slow
with slowdown factors ranging from 2 to 35 for each process in
the target program. This led to many efforts in improving the
execution time of program simulators: DP-Sim [25] LAPSE [131,
Parallel Proteus [20], SimOS [30], Wisconsin Wind Tunnel [28],
Tango [1 11, and MPI-SIM [26,27] have all been designed for this
purpose. The simulators typically use direct execution of portions
of the code to reduce the cost of simulating sequential instructions
and typically use a variation of the conservative parallel discrete-
event simulation [5] algorithm to exploit parallelism within the
simulator to reduce the impact of scaling up the target machine
size.

Many parallel simulators use the synchronous approach to
simulation where simulation processes synchronize globally at
fixed time intervals in order to maintain program correctness. The
interval or quantum is taken to be no larger than the
communication latency of the network being simulated. This
guarantees that a message sent in one quantum cannot be received
until the next interval. This also implies that messages will be
processed in a correct order. Some of the synchronous simulators
are Proteus, a parallel architecture simulation engine, Tango, a
shared memory architecture simulation engine, Wisconsin Wind
Tunnel (WWT), a shared memory architecture simulation engine
and SimOS, a complete system simulator (multiple programs plus
operating system). In terms of simulation of communications,
two simulation engines, which use approaches, similar to ours are
Parallel Proteus and LAPSE. A distinguishing feature of
COMPASS is that it is portable, in part due to being implemented
with the use of MPI. Since MPI is readily available on any
parallel or distributed system, the simulator is able to use it for
data movement and synchronization. On the other hand, LAPSE
was designed specifically to run on the Intel Paragon, using the
Paragon’s native communication primitives. This made LAPSE
broad usefulness limited. COMPASS is also fast, having

160

slowdowns of around 2, where Proteus’ typical slowdowns are in
the range of 35-100[4].

A number of simulators have also been designed to simulate I/O
operations, although most of these have tended to use sequential
simulators. A set of collective I/O implementations was compared
using the STARFISH [18] simulator, which is based on Proteus.
In [3], a hybrid methodology for evaluating the performance of
parallel I/O subsystems was described. PIOS, a trace-driven I/O
simulator, is used to calculate the performance of the I/O system
for a subset of the problem to be evaluated, while an analytical
model was used for the remainder. Scalability of distributed
memory machines was examined in [31], which used application
kernels to investigate network performance and contention.
Libraries have also been developed. PPFS [151 is a portable
parallel file system library designed to sit on top of multiple UFS
instances and provide a wide variety of parallel tile system
capabilities, such as caching, prefetching, and data distribution.

The COMPASS environment described in this paper used the
parallel I/O system simulator detailed in [l] and is perhaps the
only simulator that combines the ability to do integrated
interconnection network, I/O and file system, and scalability
studies. It has also been used for the simulation of data parallel
programs compiled to message-passing codes [25]. Additionally,
the simulator itself is highly scalable, with slowdown factors in
the single digits for large target applications and architectures.

7. Conclusions and Future Research
We have demonstrated that COMPASS can be used to study a
wide range of applications as a function of a variety of
architectural characteristics ranging from standard scalability
studies through network stress test and parallel I/O properties. We
have shown that not only is COMPASS accurate (having
validated it on multiple applications and architectures to within a
few percent of the physical measurements), but it is also fast
achieving excellent performance both on the IBM SP as well as
on the SCI Origin 2000. It achieves near-linear speedups for
highly parallel applications and suffers only from moderate
slowdowns. It has been shown to be useful for a wide range of
architectural performance studies that combine the separate areas
of I/O and parallel file system performance with interconnection
network and communication library simulators. COMPASS is
being used for detailed program simulations within the POEMS
prqject. In collaboration with other “POETS” we are working on
developing hybrid performance models which combine analytical
and simulation modeling techniques. Also, as part of the project,
COMPASS will be integrated with a detailed memory and
processor model. This will allow us to break away from the
dependency of requiring a host processor architecture that is
similar to the target processor architecture for direct execution
simulation. This will also provide an opportunity to extend the
use of parallel simulation techniques for processor and memory
simulations

8. ACKNOWLEDGMENTS
This work was supported by the Advanced Research Projects
Agency, DARPA/CSTO, under Contract F-30602-94-C-0273,
“Scalable Systems Software Measurement and Evaluation” and
by DARPA/ITO under Contract N66001-97-C-8533, “End-to-

End Performance Modeling of Large Heterogeneous Adaptive
Parallel/Distributed Computer/Communication Systems.”

Thanks to the Office of Academic Computing at UCLA and to
Paul Hoffman for help with the IBM SP2 as well as to the
Lawrence Livermore National Laboratory for use of their IBM SP
on which many of these experiments were executed,

9. REFERENCES

[1] R. Bagrodia, S. Docy and A. Kahn. “Parallel Simulation of
Parallel File Systems and I/O Programs,”
SuperComputing’97, 1997.

[2] D. Bailey, T. Harris, W. Shaphir, R. van der Wijngaart, A.
Woo, and M. Yarrow. “The NAS Parallel Benchmarks 2.0,”
Report NAS-95-090, NASA Ames Research Center, 1995.

[3] S.J. Baylor, C. Benveniste and L.J. Beolhouwer. “A
Methodology for Evaluating Parallel I/O Performance for
Massively Parallel Processors.” In Proceedings of the 27th
Annual Simulation Symposium, 1994, pp.3 l-40.

[4] E.A. Brewer, C.N. Dellarocas, A. Colbrook and W.E. Weihl.
“Proteus: A High-Performance Parallel Architecture
Simulator,” MIT Technical Report MIT/LCS/TR-5 16, 1991.

[5] M. Chandy and J. Misra. “Distributed Simulation: A Case
Study in Design And Verification Of Distributed Programs,”
IEEE Trans. on Software Engineering, Sept. 1979, pp.440-
452.

[6] P. F. Corbett and D. G. Feitelson. “The Vesta parallel file
system,” ACM Transactions on Computer Systems,
14(3):225-264, August 1996.

[7] T.Cortes, S.Girona and J.Labarta. “Avoiding the Cache-
Coherence Problem in Parallel/Distributed File System,” in
Proceedings of the High-Performance Computing and
Networking Conference, 1997, pp. 860-869.

[S] R.G. Covington, S. Madala, V. Mehta, J.R Jump and J.B.
Sinclair. “The Rice parallel processing testbed.” In
Proceedings of the 1988 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems.

[9] D. Culler, J.P. Singh, with A. Gupta. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan
Kaufmann Publishers, Inc. 1999.

[lo] M.H. Dahlin, R.Y. Wang, T.E. Anderson and D.A.
Patterson. “Remote Client Memory to Improve File System
Performance.” In Proceedings of the 1994 Symposium on
Operating Systems.

[1 1] H.Davis, S.R. Goldschmidt and Hennessey. “Multiprocessor
Simulation and Tracing Using Tango.” In Proceedings of
ZCPP’91, pp. 99-107, August 1991.

[12] E. Deelman, A. Dube, A. Hoisie, Y. Luo, R. Oliver, D.
Sundaram-Stukel, H. Wasserman, V.S. Adve, R. Bagrodia,
J.C. Browne, E. Houstis, 0. Lubeck, J. Rice, P. Teller, and
M. K. Vernon. “POEMS: End-to-end Performance Design of
Large Parallel Adaptive Computational Systems.” In
Proceedings of the First International Workshop on
Software and Performance ‘98 - WOSP ‘98, October 12-16,
1998, Santa Fe, New Mexico.

161

[13] P.M. Dickens, P. Heidelberger, and D.M. Nicol. “Parallel
Direct Execution Simulation of Message-Passing Parallel
Programs,” IEEE Transactions on Parallel and Distributed
System 1996.

[141 j2c (Fortran to C converter), httpNwww.netlib.org/fLcl

[15] J.Huber, C.L.Elford, D.A.Reed, A.A.Chien, and
D.S.Blumenthal. “PPFS: A High Performance Portable
Parallel File System.” In Proceedings of the 9th ACM
International Conference on Supercomputing, pp.385-394,
July 1995.

[161 V. Kumar and A. Gupta. “Analysis of Scalability of Parallel
Algorithms and Architectures: A Survey,” International
Conference on SUperCOmpUting, I99 1, QQ.396-405.

[l7] V. Kumar, A. Grama, A. Gupta, and G. Karypis.
Introduction to Parallel Computing: Design and Analysis of
Algorithms. The Benjamin/Cummings Publishing Company,
Inc. 1995.

[181 D. Kotz. “Tuning STARFISH,” Technical Report PCS-
TR96-296. Department of Computer Science, Dartmouth
College, October 1996.

[191 J. Laudon and D. Lenoski. “The SGI Origin: A ccNUMA
Highly Scalable Server,” The 24th Annual International
Symposium on Computer Architecture, May 1997.

[20] “ASCI Blue-Pacific IBM RS/6000 TR System at Lawrence
Livermore National Laboratory,”
http://www.llnl.gov/asci/platforms/bluepac/tr.hwtable.html.

[21] U. Legedza and W.E. Weihl. “Reducing Synchronization
Overhead in Parallel Simulation,” 10th Workshop on
Parallel and Distributed Simulation, PADS’96, pp. 86-95.

[22] Y. Luo. “MPI Performance Study on the SGI Origin 2000,”
Pacific Rim Conference on Communications, Computers and
Signal Processing, 1997, pp.269-272.

[23] S.S. Mukherjee, SK. Reinhardt, B. Falsati, M. Litzkow, S.
Huss-Lederman, M.D. Hill, J.R. Lams, and D.A. Wood.
“Wisconsin Wind Tunnel II: A Fast and Portable Parallel

Architecture Simulator,” Workshop on Performance Analysis
and Its Impact on Design (PAID), 1997.

[24] N. Nieuwejaar and D. Kotz. “The Galley Parallel File
System.” In Proceedings of the 10th ACM International
Conference on Supercomputing, 1996, pp. 188- 195.

[25] S. Prakash and R. Bagrodia. “Parallel Simulation of Data
Parallel Programs,” Proceedings of the 8th Workshop on
Languages and Compilers for Parallel Computing,
Columbus, Ohio, August 1995

[26] S. P&ash. “Performance Prediction of Parallel Programs,”
Computer Science Dept, UCLA, Ph.D. thesis, 1996.

[27] S. Prakash and R. Bagrodia. “Using Parallel Simulation to
Evaluate MPI Programs.” In Proceedings of the I998 Winter
Simulation Conference, Dec. 12-13, 1998 in Washington
D.C.

[28] S.K. Reinhardt, Mark D. Hill, J.R. Larus, A.R. Lebeck, J.C.
Lewis and D.A. Wood. “The Wisconsin Wind Tunnel:
Virtual Prototyping of Parallel Computers.” In Proceedings
of the 1993 ACM SIGMETRICS Conference, May 1993.

[29] J.M. de1 Rosario, R. Bordawekar and A. Choudhary.
“Improved Parallel I/O via a Two-Phase Runtime Access
Strategy.” In Proceedings of the IPP ‘93 Workshop on I/O in
Parallel Computer Systems, 1993, pp. 56-70.

1301 M. Rosenblum, E. Bugnion, S. Devine and S.A. Herrod.
“Using the SimOs Machine Simulator to Study Complex
Computer Systems,” ACM Trans. On Modeling and
Computer Simulation, Vol.7, No. 1, January 1997, pp. 78-
103.

[31] AS. Sivasubramaniam, A.Singla, U.Ramachandran and
H.Venkateswaran. “A Simulation Based Scalability Study of
Parallel Systems,” Journal of Parallel and Distributed
Computing, 22141 l-426, 1994.

[32] “The ASCI sweep3d Benchmark
httQ://www.llnl.gov/asci_benchmarks/.

Code,”

162

