
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 19, 2024

Embedded System Synthesis under Memory Constraints

Madsen, Jan; Bjørn-Jørgensen, Peter

Published in:
Proceedings of the Seventh International Workshop on Hardware/Software Codesign, 1999. (CODES '99)

Link to article, DOI:
10.1109/HSC.1999.777430

Publication date:
1999

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Madsen, J., & Bjørn-Jørgensen, P. (1999). Embedded System Synthesis under Memory Constraints. In
Proceedings of the Seventh International Workshop on Hardware/Software Codesign, 1999. (CODES '99) (pp.
188-192). IEEE. https://doi.org/10.1109/HSC.1999.777430

https://doi.org/10.1109/HSC.1999.777430
https://orbit.dtu.dk/en/publications/3b43a123-496f-4e7c-8e66-7f9ee189beab
https://doi.org/10.1109/HSC.1999.777430


Embedded System Synthesis under Memory Constraints 

Jan Madsen 

Department of Information Technology, 
Technical University of Denmark 

jan@it.dtu.dk 

Abstract 

This paper presents a genetic algorithm to solve the system 
synthesis problem of mapping a time constrained single-rate 
system specification onto a given heterogeneous architecture 
which may contain irregular interconnection structures. The 
synthesis is performed under memory constraints, that is, 
the algorithm takes into account the memory size of pro- 
cessors and the size of interface buffers of communication 
links, and in particular the complicated interplay of these. 
The presented algorithm is implemented as part of the LY- 
cos cosynthesis system. 

1 Introduction 

Embedded systems are usually implemented using a mixture 
of technologies including off-the-shelf components, such as 
general purpose microprocessors, and dedicated hardware, 
such as full- or semi-custom ASICs. This results in a het- 
erogeneous architecture, in which also the communication 
links between the components use different technologies, 
e.g. point-to-point and busses with various bandwidths. 

We present an approach based on the genetic algorithm 
paradigme to solve the problem of mapping a time con- 
strained single-rate system specification onto a given het- 
erogeneous architecture under multiple resource constraints 
which includes memory size of processors, huffer size of 
communication links, and area of ASICs. Hou et al. [5] 
presented a genetic algorithm for multiprocessor scheduling, 
hut they did neither consider communication nor aspects of 
memory. 

Memory is an important issue which is often neglected. 
In most approaches memory is assumed to he infinite! How- 
ever, in embedded computer systems memory is usually a 
critical resource and the memory size is often very restricted. 
The approach by Prakash and Parker [12] is one of the few 
approach which tries to take memory into consideration dur- 
ing synthesis. They use M E P  to synthesize optimal hetero- 
geneous systems taking memory cost into account. How- 
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ever, they only consider the data size (i.e. dynamic mem- 
ory) used inside a task. We consider both static and dynamic 
memory usage within a task and the dynamic memory usage 
due to communication. 

Many approaches to solve the mapping problem are 
based on list scheduling, e.g. 12, 6, 9, 13, 141. Where 
most approaches schedules tasks as well as communications 
[Z, 6,131, some assume a constant communication overhead 
[9, 141. This, however, results in the unrealistic assump- 
tion that multiple communications can take place at the same 
time. In order to handle dynamic memory usage during com- 
munication, communication scheduling has to he handled 
properly. Many approaches assume a fully connected archi- 
tecture where there is a direct connection between any two 
processors. Typically this is realized as a single bus system. 
However, embedded systems may use irregular interconnec- 
tion Structures, e.g. to avoid bus contentions. The approach 
by Sih and Lee [13] is able to handle these interconnection 
structures, hut without the inclusion of memory. 

Optimal methods such as ILP [l], M E P  [ l l ,  121, and 
constraint logic programming [8] have been used to solve 
the distributed system synthesis problem. These techniques 
produce an optimal hardware architecture for a given appli- 
cation. But, in practice [7] the architecture may he restricted 
hy the company's/designers wish to reure an existing design 
as part of the new design. I.e., products are often developed 
as part of a family of similar products. 

We believe that it is important to keep the designer in 
control of the design process. Hence, we propose a system 
synthesis technique in which the designer specifies the archi- 
tecture and then uses the technique to evaluate how well the 
system specification can he mapped onto it. In the follow- 
ing we will first present the models of the target architecture 
and the system specification. After having discussed how 
memory utilization is captured, we present our synthesis al- 
gorithm followed by some experimental results. 

2 Target architecture 

A target architecture is represented by a hyper-graph, GA = 
(V',&) in which each vertex describes a component and 
the edges describe interconnections among the components. 
Each component may he aprocessing element (PE), p ,  or an 
intei$ace, i. A processing element represents an active com- 
ponent, i.e. a CPU or an ASIC, which is able to execute a 
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task. An interface connects a processing element to a net. An 
edge, n, represents a net connecting two or more interfaces, 
i.e. a point-to-point connection or a bus, or connecting an 
interface to a PE. Figure 1 shows a target architecture con- 
taining 4 PES, 5 interfaces, and 2 busses. Each processing 

Figure 1 : ~xample of a target architecture. 

element is characterized by the size of its local memory and, 
if an ASIC, its available area. Local memory is used by the 
PE to store data during execution of a task and is represented 
in units of data I.  Memory used for data will be referred to 
as dynamic memory. If the PE is a CPU, the program will 
also have to be stored in the local memory. This memory 
contribution will he refened to as static memory. For off- 
the-sbelf components like a general purpose CPU, the area 
will be zero, but if the PE represents an ASIC implementa- 
tion, the area will reflect the available size for datapath and 
controller. 

An interface component is characterized by the sizes of 
its transmit and receive buffers, which are F'IFO buffers. 
Thus, the interface can store data and possibly free the pro- 
cessing element even though it does not have gained access 
to the bus. Furthermore, an interface declares the packuge- 
size and transfer-rate for both the connection between the 
processing element and the interface, and between the net 
and the interface. The package-size is represented in units 
o f  data, and the transfer-rate as the time taken to transfer a 
single unit of data. 

Each net is characterized by a package-size and a 
transfer-rate which has to correspond to its connected inter- 
face components. 

3 System specification 

The behavior of an embedded system is described by a task 
graph, GT = (VT,&), which is a partially-ordered set o f  
tasks represented as a directed acyclic hyper-graph. Hence, 
each vertex, zi E VT, in the task graph represents a task de- 
scribing a single thread of execution which cannot be pre- 
empted. An edge, eiiSUCCj E ET, describes a data dependency 
between the task ~i and the set of successor tasks of ~ i ,  i.e. 
S U C C ( T ~ ) .  Each edge is annotated with the amount of data, 
di,s,,, which has to be transferred between the source task 
and its successors. 

We assume that a characterization of each task has been 
done prior to the synthesis step [lo]. A characterization of 
a task consists of, for each CPU, estimating the execution 
time, the code size and the data size, and for each ASIC esti- 
mating the execution time, the data size, and the area. Tasks 
are only characterized on PES on which they can be imple- 
mented. As a task may have multiple characterizations, se- 

' A unit of dam may be B bit, a byte, a frame, etc., as long as ali data sizes in thc 
sysfemis enpressedusing~~esameUNf. 

lecting among different implementations on the same pro- 
cessing element is possible, i.e. emulation of algorithmic 
choices. 

When memory is taken into account, an important prop- 
erty is the sharing of code among different tasks executing 
on the same processing element. In order to handle this, we 
introduce the notion offunctions. Hence, a task may use a 
set of functions when executing its behavior. This means 
that a Characterization o f  a task on a processing element also 
includes a list of functions. Each function is characterized 
by its code size (if implemented in software) and area (if 
implemented in hardware). The time and data size of a func- 
tion is captured in the characterization of the tasks using the 
function. 

4 Evaluating Memory Utilization 

To see how memory is taken into account during synthesis, 
consider the following example: 
Example 1: Assume that we have to schedule the task graph 
in figure 2a on an architecture consisting of two PES (p1 
and p 2 )  connected by a single bus as shown in figure 2b. 
Figure 2c shows a possible schedule. When task 'c1 on pro- 

...._ 

dynamic 

b d 

Figure 2: A simple example; a) task graph. b) architecture. c) schedule. 
d) memory utilization on PI. 

cessor PI has finished execution, the data dz to be send to 
task q on p~ resides in local memory o f  pl where it is kept 
until it can be transferred. At the time the interface, il, and 
p1 are ready, the data is written (W) to the transmit buffer in 
i l .  This process consumes time on both i l  and p1. When the 
net, nl , is available, the data is transferred over the net and 
stored in the receive buffer of iz. And at the time pz is ready, 
data can be read (R) from iz and stored in local memory of 
p2. Then later on it can be used by task ~j executing on p2. 

Figure 2d shows how the memory utilization of p i  is 
calculated. The memory calculation consist of  two contri- 
butions, a static and a dynamic. The static contribution is 
calculated as the summation of the code size for each task 
assigned to p1. As outlined in figure 2d, the dynamic contri- 
bution consists of memory used for data during the execution 
of a task (local) and memory required to store data from the 
time it is produced until it is no longer needed. Figure 2d il- 
lustrates how data due to dependency d l ,  which is produced 
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by 71 on p i  and used by zz also on pi, is kept alive until zz 
has finished execution. Likewise, data dz is kept alive until 
it has been written to the transmit huffer, i l .  

Hence, at any point in time we can find the memory uti- 

Example 2: Assume that we have to send the same data 
from pl  to both p3 and p4 in figure I, the transfer may be 
represented by the message tree as shown in figure 3. Notice 

lixntion by summation of the different memory contriburions 
and thus. lindine the neak meninrv reauirement. It should be - il - "1 - G&&6p4 - 
noted that we aGume'that the m e k o ~ i s  always perfectly or- 
ganized, i.e. no problems due to fragmentation. 
0 e n 2  6 

5 Algorithm overview 

Our synthesis algorithm is based on the genetic algorithm 
[SI which is an iterative and stochastic process that operates 
on a set of individuals (the population). Each individual rep- 
resents a potential solution to the problem being solved, and 
is obtained by decoding the gene string of the individual. 
Initially, the population is randomly generated. Every indi- 
vidual in the population is assigned a fitness value which is 
a measure of its goodness with respect to the problem being 
considered. This value is the quantitative information the 
algorithm uses to guide the search for a feasible solution: 

The basic genetic algorithm consists of three major 
stages: selection, reproduction, and replacement. During the 
selection stage, a temporary population is created in which 
the fittest individuals have a higher number of instances than 
those less fit. A new population is then created by perform- 
ing crossover followed by mutation. Finally, individuals of 
the original population is substituted by the newly created in- 
dividuals in such a way that the most fit individuals are kept 
deleting the worst ones. A thorough description of genetic 
algorithms may be found in [41. 

There are two important issues which have to be ad- 
dressed when formulating a problem to be solved by genetic 
algorithms; the encoding/decoding mechanism of the gene 
string of an individual, and the evaluation of thefimess of an 
individual. 

5.1 Encoding/Decoding 

For a task graph containing IZ tasks and m dependencies, the 
corresponding gene string consist of n + m genes, n task 
genes and m dependency genes. For each task zi its gene 
contains two integers, implg and prio.,. impl, identifies 
an implementation, i.e. an allocation. If a taskzi has ki possi- 
ble implementations (as identified from its characterization), 
then the actual implementation is found as imply modulus 
ki. prio,( is a priority which is used when scheduling the 
task during the fitness evaluation. 

A dependency gene contains two integers, impldjgmcj and 
priodiJuccj, impld,,su, identifies a path between the process- 
ing elements on which q and its successors succ(zi) are d- 
located. I.e. it identifies one of the possible paths in the 
architecture which is able to fulfill the communication rep- 
resented by the data dependency impld,,,,, . This path is 
called a messuze tree. A message tree introduces a number 

Figure 3: Example of a message tree. 

that the data is first transferred to pz  where it is stored in 
local memory. Then it is transfened independently from pz 
to p3 and p4, that is, p3 and p4 does not have to he ready at 
the same time. 
0 
prioaJeCc, is used as priority for message scheduling during 
fitness evaluation. 

5.2 Fitness evaluation 

The fitness value is calculated as a cost summation of four 
contributions, the higher the cost is, the less fit is the individ- 
ual. The four contributions reflects p e r f o m c e ,  area, local 
memory usage, and huffer memory usage. 

In order to be able to compare and tradeoff the different 
contributions, we define a cost normalization function, f&) 
where x is the difference between the value of the constraint 
and that of the implementation. Figure 4 gives an outline of 
fc(n). An x < 0 means violation of the corresponding con- 

\ I"" 

Figure 4: me cost normalization function. 

straint and a high cost is associated with this situation. The 
actual cost is determined by the slope a,. An n 2 0 means 
meeting the constraint. 6 determine how well this should be 
rewarded, in terms of a negative cost contribution, and the 
slope a2 how well even better implementations should be 
rewarded. 

Area 
of new tasks, &led communic&n tasks. These tasks re- 
flects the communication as described in example 1, i.e. a 
write, a transfer, and a read task. 

The simplest contribution is that of area, 

CA = fc(Ao~-Aused) 
P@A 
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A,d depends on which tasks are allocated on the corre- 
sponding processing element and on the functions used by 
these tasks. Le., the area used on processing element p j  is 
expressed as, 

where fk denotes a function (as explained in section 2.2), 
and F ( y )  denotes all the functions used by zj. The first term 
is the area used by the tasks, whereas the second term is area 
used by the functions of the tasks, where each function is 
only implemented once. 

Performance 

Performance is calculated according to the deadline of the 
specification, 

CT = fc(tdeadline - txhed) 

The actual schedule, is found by performing a list 
based scheduling of the tasks on their allocated process- 
ing elements, and of the communication tasks on the cor- 
responding interfaces and nets. 

List based scheduling relies on having a queue of ready 
tasks associated with each component. In our case we as- 
sociate a p r i o r i 0  queue with each processing element and 
use the priority prioTj when inserting task zj into the queue. 
For interfaces, we use a FIFO quene as the way to prioritize 
communication tasks, as this is the usual way to implement 
an interface2. 

The scheduling algorithm for a single individual (i.e. so- 
lution) is as follows: 

1. Decode the gene string to obtain an allocation of the 
tasks and message trees for the dependencies. The d e  
coding introduces a number of communication tasks to 
be inserted in the task graph as outlined in example 2. 
In the following a task may be an original task or a 
communication task. 

2. Find all tasks zi which are ready to be scheduled, that 
is, tasks which has no predecessors. These tasks are in- 
serted into the priority queues of their respective com- 
ponents (found from implJ according to their priority 

3. Find the next point in time, t ,  where something hap- 
pens in the schedule, i.e. the starting or ending of a 
task q. If it is the end of a task, the end-point &(Ti) 
is set to t ,  and the successors of zi, for which all of their 
predecessors already have been scheduled, are inserted 
into theirrespective queues If it is the start of a task, the 
start-point tsaE(zi) is set to t. 

4. If there are unscheduled tasks then goto step 3. Other- 
wise, the schedule is completed. 

Finding the next point in time where something happens, is 
the most complicated task of the scheduling algorithm, and 
will be explained in more details in the following. 

Let T~~ denote the last task on a component ci (i.e. a pro- 
cessing element or an interface), that is, the task currently 
active on ci or the last active task on ci. The next task to be 

(prioxi). 

awe are curreOt1y warking 0" supporfing other rypes Of inlafa-. 

selected is the one which has the earliest time point, fe, for 
its event, that being the starting or ending of its execution. 
This is determined as, 

where the earliest time point for an event on a component ci 
is given as, 

if T~~ is active 
tea (z j ,  ci)) otherwise 

that is, if a task is already active on ci then the first event 
will be the ending of this task. If no task is currently active, 
the next event will be the earliest start time of the next 
task z j  on ci, i.e. if ci is a processing element, then it is the 
first task in the priority queue of cj, else if ci is an interface, 
it is the first task of the FIFO queue. This task is found as 
the maximum end-time of all predecessors of 7.j and the end 
time of the last active task on ci. 

Local Memory 

Local memory is calculated according to the peak memory 
usage, 

CM = fc(Mavaif(Pi)  -Mpepeak(Pi)) 
M E A  

where the peak memory usage is calculated as described in 
example 1. 

Buffer Memory 

Buffer memory is also calculated according to 
memory usage, 

CB = C fc(Bavaidii) - B p e d i r ) )  
LEE* 

the peak 

where the peak buffer memory usage only has a dynamic 
contribution. This contribution is calculated in the same way 
as for the local memory. 

6 Experimental Results 

The presented algorithm is implemented in Java and is inte- 
grated within the LYCOS [lo] hardware/software. cosynthesis 
system. All experiments in this section are carried out on a 
166MHz Pentium MMX mnning JDK1.1 under Linux, and 
execution times are given in seconds. 

The first experiment is that of figure 5 using a deadline 
of 400. Assume that we have an architecture corresponding 
to fignre 1,  where the nets and interfaces are characterized 
as shown in table 1. In this experiment we assume that no 
task can execute on p1 and that the processors pZ,& and p4 
each have a local memory of 1024 units of data. 

The task graph is first mapped to the architecture consid- 
ering performance as the only cost. This results in a sched- 
ule, where zd is allocated on p2, TI and TI on p1. and TB 
and zg on p4. We get a solution with a schedule length of 
323, which is much shorter than the 400 required, however, 
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memory calculation shows, that p3 and p4 uses 22% and 
29% more memory than available. 

If all constraints are considered we get a schedule, where 
$2 and $4 are allocated on pz,  TI and ~3 on p3, and TS on p4. 
Here all memory constraints are met and the schedule length 
of 380 is within the deadline. 

Interface 
- fl. !* 

13, I4, is 
Net 
nl 
nz 

fi I code I 210 I 180 I 190 
f z  I code I 210 I 240 I 200 

paekage-size trans. rate 
16 1 
32 1 

16 6 
32 8 

Figure 5: Task graph and task characterization 

~ 

192 

PE avai able static dynamic peak 

5000 3262 1104 4366 
p4 5000 3042 761 3803 

Table 2 Optimized memory usage for the tgff taskgmph 

that we handle the constraints of memory and huffer sizes 
which are typically found in embedded computer systems. 

We are currently working on extending our approach to 
handle conditionals and system-level pipelining, as well as 
handling several interface types. We are also wor!&g on 
including passive components such as global memory and 
display units. Finally, we are working on improving the ex- 
ecution time of the genetic algorithm. 
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