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Abstract

This paper presents a genetic algorithm to solve the system
syathesis problem of mapping a time constrained single-rate
systemn specification onto a given heterogenecus architecture
which may contain irregular interconnection structures. The

synthesis is performed under memory constraints, that is,”

the algorithm takes into account the memory size of pro-
cessors and the size of interface buffers of communication
links, and in particular the complicated interplay of these.
The presented algorithm is implemented as part of the LY-
COS cosynthesis system.

1 Introduction

Embedded systems are usually implemented using a mixture
of technologies including off-the-shelf components, such as
general purpose microprocessors, and dedicated hardware,
such as full- or semi-custom: ASICs. This results in a het-
erogeneous architecture, in which also the commaunication
links between the components use different technologies,
¢.g. point-to-point and busses with various bandwidths.

We present an approach based on the genetic algorithm
paradigme to solve the problem of mapping a time con-
strained single-rate system specification oato a given het-
erogeneous architecture under multiple resource constraints
which includes memory size of processors, buffer size of
communication links, and area of ASICs. Hou et al. [5]
presented a genetic algorithm for multiprocessor scheduling,
but they did neither consider communication nor aspects of
memory. :

Memory is an important issue which is often neglected.
In most approaches memory is assumed to be infinite! How-
ever, in embedded computer systems memory is usually a
critical resource and the memory size is often very restricted.
The approach by Prakash and Parker [12] is one of the few
approach which tries to take memory into consideration dur-
ing synthesis. They use MILP to synthegize optimal hetero-
geneous systems taking memory cost into account. How-

Permission to make digital or hard copies of all or part of this work for
persemal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copics bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute fo lists,
requires prior specilic permission and/or a fee.

CODES '99 Rome Italy

Copyright ACM 1999 1-58113-132-1/99/05...$5.00

188

Peter Bjgrn-Jgrgensen

Nokia Mobile Phones A/S,
Copenhagen,
Peter.Bjoern-Joergensen @nmp.nokia.com

ever, they only consider the data size (i.e. dynamic mem-
ory) used inside a task., We consider both static and dynamic
memory usage within a task and the dynamic memory usage
due to communication.

Many approaches to solve the mapping problem are
based on list scheduling, e.g. [2. 6, 9, 13, 14]. Where
most approaches schedules tasks as well as communications
[2, 6, 13], some assume a constant communication overhead
[9, 14]. This, however, results in the unrealistic assump-
tion that multiple communications can take place at the same
time. In order to handle dynamic memory usage during com-
munication, communication scheduling has to be handled
properly. Many approaches assume a fully connected archi-
tecture where there is a direct copnection between any two
processors. Typically this is realized as a single bus system.
However, embedded systems may use irregular interconnec-
tion structures, €.g. to avoid bus contentions. The approach
by Sih and Lee [13] is able to handle these interconnection
structures, but without the inclusion of memory.

Optimal methods such as ILP [1], MILP {11, 12], and
constraint logic programming [8] have been used to solve
the distributed system synthesis problem. These techniques
produce an optimal hardware architecture for a given appli-
cation. But, in practice [7] the architecture may be restricted
by the company’s/designers wish to reuse an cxisting design
as part of the new design. Le., products are often developed
as part of a family of similar products. '

We believe that it is important tc keep the designer in
contro] of the design process. Hence, we propose a system
synthesis technique in which the designer specifies the archi-
tecture and then uses the technique to evaleate how well the
system specification can be mapped onto it. In the follow-
ing we will first present the modejs of the target architecture
and the system specification. After having discussed how
memory utilization is captured, we present our synthésis al-
gorithm followed by some experimental results.

2 Target architecture

A target architecture is represented by a hyper-graph. G4 =
{Va,E4) in which each vertex describes a component and
the edges describe interconnections among the components.
Each compenent may be a processing element (PE), p, or an
interface, i. A processing element représents an active com-
ponent, i.e. 2 CPU or an ASIC, which is able to execute a
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task. An interface connects a processing element to anet. An
edge, n, represents a net connecting two or more interfaces,
i.e. a poini-to-point connection or a bus, or connecting an
interface to a PE. Figure 1 shows a target architecture con-
taining 4 PEs, 5 interfaces, and 2 busses. Each processing

pl p2 p3 pé
/]

Figure 1: Bxample of a target architecrure,

element is characterized by the size of its local memory and,
if an ASIC, its avaitable area. Local memory is used by the
PE to store data during execution of a task and is represented
in units of data 1. Memory used for data wilt be referred to
as dynamic memory. If the PE is a CPU, the program will
also have to be stored in the local memory. This memory
contribution will be referred to as static memory. For off-
the-shelf components like a general purpose CPU, the area
will be zero, but if the PE represents an ASIC implementa-
tion, the area will reflect the available size for datapath and
controller. :

An interface component is characterized by the sizes of
its transmit and receive buffers, which are FIFO buffers.
Thus, the interface can store data and possibly free the pro-
cessing element even though it does not have gained access
to the bus. Furthermore, an interface declares the package-
size and transfer-rate for both the connection between the
processing element and the interface, and between the net
and the interface. The package-size is represented in units
of data, and the transfer-rate as the time taken to transfer a
single unit of data.

Each net is characterized by a package-size and a
transfer-rate which has to correspond to its connected inter-
face components.

3 System specification

The behavior of an embedded system is described by a rask
graph, Gr = (Vy,Ey), which is a partially-ordered set of
tasks represented as a directed acyclic hyper-graph. Hence,
each vertex, 1; € Vr, in the task graph represents a task de-
scribing a single thread of execution which cannot be pre-
empted. An edge, e; e, € Er, describes a data dependency
between the task T; and the set of successor tasks of 1;, i.e.
suce(t;). Each edge is annotated with the amount of data,
d; suce;, which has to be transferred between the source task
and its successors.

‘We assume that a characterization of each task has been
done prior to the synthesis step [10]. A characterization of
a task consists of, for each CPU, estimating the execution
time, the code size and the data size, and for each ASIC esti-
mating the execution time, the data size, and the area. Tasks
are only characterized on PEs on which they can be imple-
mented. As a task may have multiple characterizations, se-

A unit of data may be a bit, a byte, a frame, etc., as long as all data sizes in the
system is expressed using the same wnit.
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lecting among different implementations on the same pro-
cessing element is possible, i.e. emulation of algorithmic
choices.

When memory is taken into account, an important prop-
erty is the sharing of code among different tasks executing
on the same processing element. In order to handle this, we
introduce the notion of functions. Hence, a task may use a
set of functions when executing its behavior. This means
that a characterization of a task on a processing element also
includes a list of functions. Each function is characterized
by its code size (if implemented in software) and area (if
implemented in hardware). The time and data size of a func-
tion is captured in the characterization of the tasks using the
function.

4 Ewvaluating Memory Utilization

To see how memory is taken into account during synthesis,
consider the following example:

Example 1: Assume that we have to schedule the task graph
in figure 2a on an architecture consisting of two PEs (p;
and p;) connected by a single bus as shown in figure 2b.
Figure 2c shows a possible schedule. When task t; on pro-
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Figure 2: A simple example; a} task graph. b) architecture. c) schedule.
d) memory utilization on p.

cessor p has finished execution, the data & to be send to
task T3 on p; resides in local memory of p; where it is kept
until it can be transferred. At the time the interface, i1, and
p1 are ready, the data is written (W) to the transmit buffer in
f1. This process consumes time on both iy and p;. When the
net, ny, is available, the data is transferred over the net and
stored in the receive buffer of iz. And at the-time p; is ready,
data can be read (R) from i; and stored in local memory of
p2. Then later on it can be used by task 13 executing on ps.
Figure 2d shows how the memory utilization of py is
calculated. The memory calculation consist of two contri-
butions, a static and a dynamic. The static contribution is
calculated as the summaiion of the code size for each task
assigned to p1. As outlined in figure 2d, the dynamic contri-
bution consists of memory used for data during the execution
of a task (local) and memory required to store data from the
time it is produced until it is no longer needed. Figure 2d il-
lustrates how data due to dependency d;, which is produced



by 11 on p1 and used by T, also on p1, is kept alive until T2
has finished execution. Likewise, data d; is kept alive until
it has been written to the transmit buffer, ;.

Hence, at any point in time we can find the memory uti-
lization by summation of the different memory contributicns
and thus, finding the peak memory requirement. It should be
noted that we assume that the memory is always perfecitly or-

ganized, i.e. no problems due to fragmentation.
O

5 Algorithm overview

Qur synthesis algerithm is based on the genetic algorithm
[5] which is an iteraiive and stochastic process that operates
on a set of individuals (the population). Each individual rep-
resents a potential solution to the problem being solved, and
is obtained by decoding the gene string of the individual.
Initially, the population is randomly generated. Every indi-
vidual in the population is assigned a fitness value which is
a measure of its goodness with respect to the problem being
considered. This value is the quantitative information the
algorithm uses to guide the search for a feasible solution:

The basic genetic algorithm consists of three major
stages: selection, reproduction, and replacement. During the
selecticn stage, a temporary population is created in which
the fittest individuals have a higher number of instances than
those less fit. A new population is then created by perform-
ing crossover followed by mutation, Finally, individuals of
the original population is substituted by the newly created in-
dividuals in such a way that the most fit individuals are kept
deleting the worst ones. A thorcugh description of genetic
algorithms may be found in [4].

There are two important issues which have to be ad-
dressed when formulating a problem to be solved by genetic
algorithms; the encoding/decoding mechanism of the gene
string of an individual, and the evaluation of the fitness of an
individual,

5.1 Encoding/Decoding

For a task graph containing # tasks and m dependencies, the
corresponding gene string consist of n+ m genes, n task
genes and m dependency genes. For each task T; its gene
contains two integers, impl, and prio;. impl; identifics
an implementation, i.e. an allocation. If a task 7; has k; possi-
ble implementations (as identified from its characterization),
then the actual implementation s found as impl, modulus
k;. prio,, is 2 priority which is used when schedulmg the
task dunng the fitness evaluation.

A dependency gene contains two integers, 1MPL e, and

prioy . .impl, identifies a path between the process-
ing elements on which =; and its successors succ() are al-
located. Le. it identifies one of the possible paths in the
architecture which is able to fulfill the communication rep-

resented by the data dependency impl; . This path is

called a message tree. A message tree iniroduces a number
of new tasks, called communication tasks. These tasks re-
flects the communication as described in example 1, i.e. a
write, a transfer, and a read task.
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Example 2: Assume that we have to send the same data
from p1 to both p3 and p4 in figure I, the transfer may be
represented by the message tree as shown in figure 3. Notice

n @+O~® @@@
| e @+® "

Figure 3: Example of a message tree.

p2

that the data js first transferred to ps where it is stored in
local memeory. Then it is transferred independently from pp
to p3 and p4, that is, p3 and p4 does not have to be ready at
the same time.

m}

prio i suce; is used as priority for message scheduling during

fitness evaluation.

5.2 Fitness evaluation -

The fitness value is calculated as a cost summation of four
contributions, the higher the cost is, the less fit is the individ-
ual, The four contributions reflects performance, area, iocal
memory usage, and buffer memory usage.

C Cr+Cs+Cy+Cp

In order to be able to compare and tradeoff the different
contributions, we define a cost normalization function, fp{x)
where x is the difference between the value of the constraint
and that of the implementation. Figure 4 gives an outline of
f=(x). An x < 0 means violation of the cotresponding con-

FALY

[+3]

Q
Figure 4: The cost normalization function.

straint and a high cost is associated with this situation. The
actual cost is determined by the slope ¢t;. An x > 0 means
meeting the constraint, § determine how well this should be
rewarded, in terms of a negative cost contribution, and the
slope oy how well even better implementations should be
rewarded.

Area

The simplest contribution is that of area, '

Z fc(Aavai!_Aused) .

PEE,

Ca



Ayseq depends on which tasks are allocated on the corre-
sponding processing element and on the functions used by
these tasks. Le., the area used on processing element p; is
expressed as,

z

fkeU‘!‘-Epj F(r)

E A(vapf) +

TEP;

Ausea’(Pj) = A(fr, Pj)

where f; denotes a function (as explained in section 2.2),
and F{t;) denotes all the functions used by ;. The first term
is the arca used by the tasks, whereas the second term is area
used by the functions of the tasks, where each function is
only implemented once.

Performance

Performance is calculated according to the deadline of the
specification,

Cr = fc(tdead!ine - tsched)

The actual schedule, fycpey, is found by performing a list

baged scheduling of the tasks on their allocated process-

ing elements, and of the communication tasks on the cor-
responding interfaces and nets.

List based scheduling relies on having a queue of ready
tasks associated with each component. In our case we as-
sociate a priorify queue with each processing element and
use the priority prio,, when inserting task 7; into the queue.
For interfaces, we use a FIFO queue as the way to prioritize
communication tasks, as this is the usual way to implement
an interface?, .

The scheduling algorithm for a single individual (i.e. so-
tution) is as foilows:

1. Decode the gene string to obtain an allocation of the
tasks and message trees for the dependencies. The de-
coding introduces a number of communication tasks to
be inserted in the task graph as outlined in example 2.
In the following a task may be an original task or a
communication task.

. Find all tasks 7; which are ready to be scheduled, that
is, tasks which has no predecessors, These tasks are in-
serted into the priority queues of their respective com-
ponents (found from impl. ) according to their priority
(prioTi).

. Find the next point in time, #, where something hap-
peas in the schedule, ie. the starting or ending of a
task 7;. If it is the end of a task, the end-point #,,;(T;)
is set to ¢, and the successors of T;, for which all of their
predecessors already have been scheduled, are inserted
into their respective queues If it is the start of a task, the
start-point ¢y, (T;) is set to £.

If there are unscheduled tasks then goto step 3. Other-

wise, the schedule is completed.

Finding the next point in time where something happens, is

the most complicated task of the scheduling algorithm, and

will be explained in more details in the following.

Let 1., denote the last task on a component ¢; (i.e. a pro-
cessing element or an interface), that is, the task currently
active on ¢; or the last active task on c;. The next task to be

4.

MWWe ate currently working on supporting other types of interfaces.
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selected is the cne which has the earliest time point, 7., for
its event, that being the starting or ending of its execution,
This is determined as,

min (t.(c)))

where the earliest time point for an event on a component ¢;
is given as,

that is, if a task is already active on ¢; then the first event
will be the ending of this task. If no task is currently active,
the next event will be the earliest start time (£, of the next
task T; on ¢;, i.e. if ¢; is a processing element, then it is the
first task in the priority queue of ¢;, else if ¢; is an interface,
it is the first task of the FIFO queue. This task is found as
the maximum end-time of all predecessors of T; and the end
time of the last active task on c¢;.

tend(Te;) if 7., is active

te (Ci) max (tend (Tq )9 Lest (Tja Cf)) otherwise

Local Memory
Local memory is calculated according to the peak memory
usage,

Cy

z fc(Mavail(pi) - Mpeak(pi) )
Pi€Ea

where the peak memory usage is calculated as described in
example 1.

Buffer Memory

Buffer memory is also calculated according to the peak
memory usage,

CB z fc(Bavail(ii) - Bpeak(ii))

HEE,

where the peak buffer memory usage only has a dynamic
contribution. This contribution is calculated in the same way
as for the local memory.

6 Experimental Results

The presented algorithm is implemented in Java and is inte-
grated within the LYCOS [10] hardware/software cosynthesis
system. All experiments in this section are carried out on a
166MHz Pentium MMX running JDK1.1 under Linux, and
execution times are given in scconds.

The first experiment is that of figure 5 using a deadline
of 400. Assume that we have an architecture corresponding
to figure 1, where the nets and interfaces are characterized
as shown in table 1. In this experiment we assume that no
task can execute on p and that the processors pz, p3, and py
each have a local memory of 1024 units of data.

The task graph is first mapped to the architecture consid-
ering performance as the only cost. This results in a sched-
ule, where T4 is allocated on p2, T1 and Tz on p3, and Ty
and s on pg. We get a solution with a schedule length of
323, which is much shorter than the 400 required, however,



memory calculation shows, that p3 and pa4 uses 22% and
29% more memory than available.

If all constraints are considered we get a schedule, where
T, and 14 are allocated on p3, 71 and 13 on p3, and t5 on p4.
Here all memory constraints are met and the schedule length
of 380 is within the deadline,

3 m 4
T | Ame | %0 60 gﬁ”
code | 260 230 { 200
. data 90 90 | 110
func | A Al A
T, | tme | 100 80 [ 80
code | 280 250 | 230
64 320 data | 110 | 1300 | 150
func | £ frl B
T3 | ame | 130 | 120 | 110
code | 220 220 { 250
. @ . data | 120 130 | 120
func | fi fil h
T3 | ume | 140 | 160 | 180 |
288 320 code | 180 180 | 200
data | 160 190 | 140
func | fo Ll H
75 | time | 130 140 | 120
code | 310 280 | 320
data | 240 270 | 260
f1 [ code | 210 T80 ] 190
fa | code 210 240 1200 |

Figure 5: Task graph and task characterization.

Interface | package-size | trans. rate
I, By 16 T
i3, ia, is 32 1
Net

ny 16 ]
Ha 32 8

Table 1: Interface and net parameters.

Finally, we illustrate how the algorithm can be used to
solve larger mapping problems, which can not be solved in
resonable time with exact methods like MILP [12]. We use
the task graph generator TGFF proposed in [3] to generate
a taskgraph with 47 tasks. The call to the generator is; tgff
-nl -e2;2 -N4:0 -c100:80 -T "100:80:t:exec 400:320;t:code
400:320:t:area 200:160:t:data’.

The properties of the task graph are the following. The
average execution time is 100, code size is 400, data size is
200, area is 400, and the dependency data size is 100. The
specification uses 23 different functions and the deadline is
2700. The architecture is that of figure 1, the nets and inter-
faces are characterized as shown in table 1, and the available
memory on pz, p3 and p4 are 5000. py is characterized as
an asic with the available memory of 1000, and an area of
4000,

The genetic algorithm optimize the mapping problem in
22 minutes (50 generations), but a solution which meets all
the constraints is found after 26 generations. The optimized
solution has a schedule length of 2632. The memory usage
is shown in table 2. The area usage of p; is 3347.

7 Conclusion

We have presented a genetic algorithm which solves the
problem of mapping a system specification onto a given ar-
chitecture. The main advantage over previous approaches is
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PE | available | static | dynamic | peak
Pl 1000 - 681 | 681
)2 5000 | 3834 1144 | 4978
D3 5000 | 3262 1104 | 4366
P4 5000 | 3042 761 | 3803

Table 2; Optimized memory usage for the tgif taskgraph,

that we handle the constraints of memory and buffer sizes
which are typically found in embedded computer systems.

We are currently working on extending our approach to
handle conditionals and system-level pipelining, as well as
handling several interface types. We are also working on
including passive components such as global memory and
display units. Finally, we are working on improving the ex-
ecution time of the genetic algorithm.
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