

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 19, 2024

Embedded System Synthesis under Memory Constraints

Madsen, Jan; Bjørn-Jørgensen, Peter

Published in:
Proceedings of the Seventh International Workshop on Hardware/Software Codesign, 1999. (CODES '99)

Link to article, DOI:
10.1109/HSC.1999.777430

Publication date:
1999

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Madsen, J., & Bjørn-Jørgensen, P. (1999). Embedded System Synthesis under Memory Constraints. In
Proceedings of the Seventh International Workshop on Hardware/Software Codesign, 1999. (CODES '99) (pp.
188-192). IEEE. https://doi.org/10.1109/HSC.1999.777430

https://doi.org/10.1109/HSC.1999.777430
https://orbit.dtu.dk/en/publications/3b43a123-496f-4e7c-8e66-7f9ee189beab
https://doi.org/10.1109/HSC.1999.777430

Embedded System Synthesis under Memory Constraints

Jan Madsen

Department of Information Technology,
Technical University of Denmark

jan@it.dtu.dk

Abstract

This paper presents a genetic algorithm to solve the system
synthesis problem of mapping a time constrained single-rate
system specification onto a given heterogeneous architecture
which may contain irregular interconnection structures. The
synthesis is performed under memory constraints, that is,
the algorithm takes into account the memory size of pro-
cessors and the size of interface buffers of communication
links, and in particular the complicated interplay of these.
The presented algorithm is implemented as part of the LY-
cos cosynthesis system.

1 Introduction

Embedded systems are usually implemented using a mixture
of technologies including off-the-shelf components, such as
general purpose microprocessors, and dedicated hardware,
such as full- or semi-custom ASICs. This results in a het-
erogeneous architecture, in which also the communication
links between the components use different technologies,
e.g. point-to-point and busses with various bandwidths.

We present an approach based on the genetic algorithm
paradigme to solve the problem of mapping a time con-
strained single-rate system specification onto a given het-
erogeneous architecture under multiple resource constraints
which includes memory size of processors, huffer size of
communication links, and area of ASICs. Hou et al. [5]
presented a genetic algorithm for multiprocessor scheduling,
hut they did neither consider communication nor aspects of
memory.

Memory is an important issue which is often neglected.
In most approaches memory is assumed to he infinite! How-
ever, in embedded computer systems memory is usually a
critical resource and the memory size is often very restricted.
The approach by Prakash and Parker [12] is one of the few
approach which tries to take memory into consideration dur-
ing synthesis. They use M E P to synthesize optimal hetero-
geneous systems taking memory cost into account. How-

Pel-misiioii to nuke digital or hard copies of all or part of this work for
persomal or clas~rooni use i s granted wilhout fee provided that copies
are not niadc or disliibutcd ioi profit or comina-cia1 advantage and that
copies hear this notice and the full citation on the first page. 'To copy
otherwise, to republish, to post on ~ e i ~ e r s or to redistribute tu lists,
requires pior specilic pemission a a d h a fee.
CODES '99 Rome Italy
Copyight ACM 1999 1-581 13-132-1199105 ... $5.00

Peter Bjgirn-Jqjrgensen

Nokia Mobile Phones N S ,
Copenhagen,

Peter.Bjoern-Joergensen@nmp.nokia.com

ever, they only consider the data size (i.e. dynamic mem-
ory) used inside a task. We consider both static and dynamic
memory usage within a task and the dynamic memory usage
due to communication.

Many approaches to solve the mapping problem are
based on list scheduling, e.g. 12, 6, 9, 13, 141. Where
most approaches schedules tasks as well as communications
[Z, 6,131, some assume a constant communication overhead
[9, 141. This, however, results in the unrealistic assump-
tion that multiple communications can take place at the same
time. In order to handle dynamic memory usage during com-
munication, communication scheduling has to he handled
properly. Many approaches assume a fully connected archi-
tecture where there is a direct connection between any two
processors. Typically this is realized as a single bus system.
However, embedded systems may use irregular interconnec-
tion Structures, e.g. to avoid bus contentions. The approach
by Sih and Lee [13] is able to handle these interconnection
structures, hut without the inclusion of memory.

Optimal methods such as ILP [l], M E P [l l , 121, and
constraint logic programming [8] have been used to solve
the distributed system synthesis problem. These techniques
produce an optimal hardware architecture for a given appli-
cation. But, in practice [7] the architecture may he restricted
hy the company's/designers wish to reure an existing design
as part of the new design. I.e., products are often developed
as part of a family of similar products.

We believe that it is important to keep the designer in
control of the design process. Hence, we propose a system
synthesis technique in which the designer specifies the archi-
tecture and then uses the technique to evaluate how well the
system specification can he mapped onto it. In the follow-
ing we will first present the models of the target architecture
and the system specification. After having discussed how
memory utilization is captured, we present our synthesis al-
gorithm followed by some experimental results.

2 Target architecture

A target architecture is represented by a hyper-graph, GA =
(V',&) in which each vertex describes a component and
the edges describe interconnections among the components.
Each component may he aprocessing element (PE), p , or an
intei$ace, i. A processing element represents an active com-
ponent, i.e. a CPU or an ASIC, which is able to execute a

188

mailto:Peter.Bjoern-Joergensen@nmp.nokia.com

task. An interface connects a processing element to a net. An
edge, n, represents a net connecting two or more interfaces,
i.e. a point-to-point connection or a bus, or connecting an
interface to a PE. Figure 1 shows a target architecture con-
taining 4 PES, 5 interfaces, and 2 busses. Each processing

Figure 1 : ~xample of a target architecture.

element is characterized by the size of its local memory and,
if an ASIC, its available area. Local memory is used by the
PE to store data during execution of a task and is represented
in units of data I. Memory used for data will be referred to
as dynamic memory. If the PE is a CPU, the program will
also have to be stored in the local memory. This memory
contribution will he refened to as static memory. For off-
the-sbelf components like a general purpose CPU, the area
will be zero, but if the PE represents an ASIC implementa-
tion, the area will reflect the available size for datapath and
controller.

An interface component is characterized by the sizes of
its transmit and receive buffers, which are F'IFO buffers.
Thus, the interface can store data and possibly free the pro-
cessing element even though it does not have gained access
to the bus. Furthermore, an interface declares the packuge-
size and transfer-rate for both the connection between the
processing element and the interface, and between the net
and the interface. The package-size is represented in units
o f data, and the transfer-rate as the time taken to transfer a
single unit of data.

Each net is characterized by a package-size and a
transfer-rate which has to correspond to its connected inter-
face components.

3 System specification

The behavior of an embedded system is described by a task
graph, GT = (VT,&), which is a partially-ordered set o f
tasks represented as a directed acyclic hyper-graph. Hence,
each vertex, zi E VT, in the task graph represents a task de-
scribing a single thread of execution which cannot be pre-
empted. An edge, eiiSUCCj E ET, describes a data dependency
between the task ~i and the set of successor tasks of ~ i , i.e.
S U C C (T ~) . Each edge is annotated with the amount of data,
di,s,,, which has to be transferred between the source task
and its successors.

We assume that a characterization of each task has been
done prior to the synthesis step [lo]. A characterization of
a task consists of, for each CPU, estimating the execution
time, the code size and the data size, and for each ASIC esti-
mating the execution time, the data size, and the area. Tasks
are only characterized on PES on which they can be imple-
mented. As a task may have multiple characterizations, se-

' A unit of dam may be B bit, a byte, a frame, etc., as long as ali data sizes in thc
sysfemis enpressedusing~~esameUNf.

lecting among different implementations on the same pro-
cessing element is possible, i.e. emulation of algorithmic
choices.

When memory is taken into account, an important prop-
erty is the sharing of code among different tasks executing
on the same processing element. In order to handle this, we
introduce the notion offunctions. Hence, a task may use a
set of functions when executing its behavior. This means
that a Characterization o f a task on a processing element also
includes a list of functions. Each function is characterized
by its code size (if implemented in software) and area (if
implemented in hardware). The time and data size of a func-
tion is captured in the characterization of the tasks using the
function.

4 Evaluating Memory Utilization

To see how memory is taken into account during synthesis,
consider the following example:
Example 1: Assume that we have to schedule the task graph
in figure 2a on an architecture consisting of two PES (p1
and p 2) connected by a single bus as shown in figure 2b.
Figure 2c shows a possible schedule. When task 'c1 on pro-

...._

dynamic

b d

Figure 2: A simple example; a) task graph. b) architecture. c) schedule.
d) memory utilization on PI.

cessor PI has finished execution, the data dz to be send to
task q on p~ resides in local memory o f pl where it is kept
until it can be transferred. At the time the interface, il, and
p1 are ready, the data is written (W) to the transmit buffer in
i l . This process consumes time on both i l and p1. When the
net, nl , is available, the data is transferred over the net and
stored in the receive buffer of iz. And at the time pz is ready,
data can be read (R) from iz and stored in local memory of
p2. Then later on it can be used by task ~j executing on p2.

Figure 2d shows how the memory utilization of p i is
calculated. The memory calculation consist of two contri-
butions, a static and a dynamic. The static contribution is
calculated as the summation of the code size for each task
assigned to p1. As outlined in figure 2d, the dynamic contri-
bution consists of memory used for data during the execution
of a task (local) and memory required to store data from the
time it is produced until it is no longer needed. Figure 2d il-
lustrates how data due to dependency d l , which is produced

189

by 71 on p i and used by zz also on pi, is kept alive until zz
has finished execution. Likewise, data dz is kept alive until
it has been written to the transmit huffer, i l .

Hence, at any point in time we can find the memory uti-

Example 2: Assume that we have to send the same data
from pl to both p3 and p4 in figure I, the transfer may be
represented by the message tree as shown in figure 3. Notice

lixntion by summation of the different memory contriburions
and thus. lindine the neak meninrv reauirement. It should be - il - "1 - G&&6p4 -
noted that we aGume'that the m e k o ~ i s always perfectly or-
ganized, i.e. no problems due to fragmentation.
0 e n 2 6

5 Algorithm overview

Our synthesis algorithm is based on the genetic algorithm
[SI which is an iterative and stochastic process that operates
on a set of individuals (the population). Each individual rep-
resents a potential solution to the problem being solved, and
is obtained by decoding the gene string of the individual.
Initially, the population is randomly generated. Every indi-
vidual in the population is assigned a fitness value which is
a measure of its goodness with respect to the problem being
considered. This value is the quantitative information the
algorithm uses to guide the search for a feasible solution:

The basic genetic algorithm consists of three major
stages: selection, reproduction, and replacement. During the
selection stage, a temporary population is created in which
the fittest individuals have a higher number of instances than
those less fit. A new population is then created by perform-
ing crossover followed by mutation. Finally, individuals of
the original population is substituted by the newly created in-
dividuals in such a way that the most fit individuals are kept
deleting the worst ones. A thorough description of genetic
algorithms may be found in [41.

There are two important issues which have to be ad-
dressed when formulating a problem to be solved by genetic
algorithms; the encoding/decoding mechanism of the gene
string of an individual, and the evaluation of thefimess of an
individual.

5.1 Encoding/Decoding

For a task graph containing IZ tasks and m dependencies, the
corresponding gene string consist of n + m genes, n task
genes and m dependency genes. For each task zi its gene
contains two integers, implg and prio.,. impl, identifies
an implementation, i.e. an allocation. If a taskzi has ki possi-
ble implementations (as identified from its characterization),
then the actual implementation is found as imply modulus
ki. prio,(is a priority which is used when scheduling the
task during the fitness evaluation.

A dependency gene contains two integers, impldjgmcj and
priodiJuccj, impld,,su, identifies a path between the process-
ing elements on which q and its successors succ(zi) are d-
located. I.e. it identifies one of the possible paths in the
architecture which is able to fulfill the communication rep-
resented by the data dependency impld,,,,, . This path is
called a messuze tree. A message tree introduces a number

Figure 3: Example of a message tree.

that the data is first transferred to pz where it is stored in
local memory. Then it is transfened independently from pz
to p3 and p4, that is, p3 and p4 does not have to he ready at
the same time.
0
prioaJeCc, is used as priority for message scheduling during
fitness evaluation.

5.2 Fitness evaluation

The fitness value is calculated as a cost summation of four
contributions, the higher the cost is, the less fit is the individ-
ual. The four contributions reflects p e r f o m c e , area, local
memory usage, and huffer memory usage.

In order to be able to compare and tradeoff the different
contributions, we define a cost normalization function, f&)
where x is the difference between the value of the constraint
and that of the implementation. Figure 4 gives an outline of
fc(n). An x < 0 means violation of the corresponding con-

\ I""

Figure 4: me cost normalization function.

straint and a high cost is associated with this situation. The
actual cost is determined by the slope a,. An n 2 0 means
meeting the constraint. 6 determine how well this should be
rewarded, in terms of a negative cost contribution, and the
slope a2 how well even better implementations should be
rewarded.

Area
of new tasks, &led communic&n tasks. These tasks re-
flects the communication as described in example 1, i.e. a
write, a transfer, and a read task.

The simplest contribution is that of area,

CA = fc(Ao~-Aused)
P@A

190

A,d depends on which tasks are allocated on the corre-
sponding processing element and on the functions used by
these tasks. Le., the area used on processing element p j is
expressed as,

where fk denotes a function (as explained in section 2.2),
and F (y) denotes all the functions used by zj. The first term
is the area used by the tasks, whereas the second term is area
used by the functions of the tasks, where each function is
only implemented once.

Performance

Performance is calculated according to the deadline of the
specification,

CT = fc(tdeadline - txhed)

The actual schedule, is found by performing a list
based scheduling of the tasks on their allocated process-
ing elements, and of the communication tasks on the cor-
responding interfaces and nets.

List based scheduling relies on having a queue of ready
tasks associated with each component. In our case we as-
sociate a p r i o r i 0 queue with each processing element and
use the priority prioTj when inserting task zj into the queue.
For interfaces, we use a FIFO quene as the way to prioritize
communication tasks, as this is the usual way to implement
an interface2.

The scheduling algorithm for a single individual (i.e. so-
lution) is as follows:

1. Decode the gene string to obtain an allocation of the
tasks and message trees for the dependencies. The d e
coding introduces a number of communication tasks to
be inserted in the task graph as outlined in example 2.
In the following a task may be an original task or a
communication task.

2. Find all tasks zi which are ready to be scheduled, that
is, tasks which has no predecessors. These tasks are in-
serted into the priority queues of their respective com-
ponents (found from implJ according to their priority

3. Find the next point in time, t , where something hap-
pens in the schedule, i.e. the starting or ending of a
task q. If it is the end of a task, the end-point &(Ti)
is set to t , and the successors of zi, for which all of their
predecessors already have been scheduled, are inserted
into theirrespective queues If it is the start of a task, the
start-point tsaE(zi) is set to t.

4. If there are unscheduled tasks then goto step 3. Other-
wise, the schedule is completed.

Finding the next point in time where something happens, is
the most complicated task of the scheduling algorithm, and
will be explained in more details in the following.

Let T~~ denote the last task on a component ci (i.e. a pro-
cessing element or an interface), that is, the task currently
active on ci or the last active task on ci. The next task to be

(prioxi).

awe are curreOt1y warking 0" supporfing other rypes Of inlafa-.

selected is the one which has the earliest time point, fe, for
its event, that being the starting or ending of its execution.
This is determined as,

where the earliest time point for an event on a component ci
is given as,

if T~~ is active
tea (z j , ci)) otherwise

that is, if a task is already active on ci then the first event
will be the ending of this task. If no task is currently active,
the next event will be the earliest start time of the next
task z j on ci, i.e. if ci is a processing element, then it is the
first task in the priority queue of cj, else if ci is an interface,
it is the first task of the FIFO queue. This task is found as
the maximum end-time of all predecessors of 7.j and the end
time of the last active task on ci.

Local Memory

Local memory is calculated according to the peak memory
usage,

CM = fc(Mavaif(Pi) -Mpepeak(Pi))
M E A

where the peak memory usage is calculated as described in
example 1.

Buffer Memory

Buffer memory is also calculated according to
memory usage,

CB = C fc(Bavaidii) - B p e d i r))
LEE*

the peak

where the peak buffer memory usage only has a dynamic
contribution. This contribution is calculated in the same way
as for the local memory.

6 Experimental Results

The presented algorithm is implemented in Java and is inte-
grated within the LYCOS [lo] hardware/software. cosynthesis
system. All experiments in this section are carried out on a
166MHz Pentium MMX mnning JDK1.1 under Linux, and
execution times are given in seconds.

The first experiment is that of figure 5 using a deadline
of 400. Assume that we have an architecture corresponding
to fignre 1, where the nets and interfaces are characterized
as shown in table 1. In this experiment we assume that no
task can execute on p1 and that the processors pZ,& and p4
each have a local memory of 1024 units of data.

The task graph is first mapped to the architecture consid-
ering performance as the only cost. This results in a sched-
ule, where zd is allocated on p2, TI and TI on p1. and TB
and zg on p4. We get a solution with a schedule length of
323, which is much shorter than the 400 required, however,

191

memory calculation shows, that p3 and p4 uses 22% and
29% more memory than available.

If all constraints are considered we get a schedule, where
$2 and $4 are allocated on pz, TI and ~3 on p3, and TS on p4.
Here all memory constraints are met and the schedule length
of 380 is within the deadline.

Interface
- fl. !*

13, I4, is
Net
nl
nz

fi I code I 210 I 180 I 190
f z I code I 210 I 240 I 200

paekage-size trans. rate
16 1
32 1

16 6
32 8

Figure 5: Task graph and task characterization

~

192

PE avai able static dynamic peak

5000 3262 1104 4366
p4 5000 3042 761 3803

Table 2 Optimized memory usage for the tgff taskgmph

that we handle the constraints of memory and huffer sizes
which are typically found in embedded computer systems.

We are currently working on extending our approach to
handle conditionals and system-level pipelining, as well as
handling several interface types. We are also wor!&g on
including passive components such as global memory and
display units. Finally, we are working on improving the ex-
ecution time of the genetic algorithm.

Acknowledgements

This work is supported by the Danish National Center for IT
Research under grant no. CIT 149.

References

[I] A. Bender. Design of an Optimal Loosely Coupled Heterogeneous
Multiprocessor System. In Eumpean Design and Test Conference,
1996.

[Z] P. BjOmm-JOrgensen and J. Madsen. Critical Path Driven Cosynthesis
for Heterogeneous T w e t Architectures. In 5th Intemationnl Work-
sho on HardwodSo am Codesi 15 - 19 1997.

[3] R. fi. Dick, D. L. R&es, and g % l y T G F F : ?ask Graphs for
Free. In 6th International Workshop on Hordwaw3&are CodesigB
Coded98 ages 97 - 101 1998.

[4] D. E. Go&=. Genehc hlgorithm in Search, Oprimizntim & Ma-
chine Learnin . Addison-Wesle 1989.

[SI E. S . H. Hou, 8. Ansari, and H. gen. A Genetic Algorithm for Multi-
processor Scheduling. IEEE Tmnsaction on Poroilel and Distributed
System, 5(2):113 - 120,1994.

[6] J.-J. Hwang, Y.-C. chow, P. D. Anger, and C.-Y. Lee. Scheduling
Precedence Graphs in Systems with Interpmcessor Communication
Times. SIAM Journal of Computing 18(2):244-257 1989.

[7] B. Keinhuis, E. Depretter, K. V ~ s e k and P. van de; Wolf. An Ap-
proach for Quantitative Analysis of Application-Specific DataAow Ar-
chitectures. In l l th In?. Conference ofAppUcatiom.spec@c Systems,
Architectures and Processors pages 338 - 349 1997. ,

[8] K. Kuchcinski. Emkdded $stem Synthesis by Timng Constraints
s$ving. In loth Intemaional Symposium on System Synthesis, pages .-" rnn-

_I*l '77".

[lo] J. nhadsen, J. Grode. P. V. Knudsen, M. E. Petersen, and A. Haa-
thausen. LYCOS: the Lyngby CO-Synthesis System. Design Automa-
tion orEmbeddedS stems, 2 2 195 235,,1997.

[I l l S . &hand A. ?Parker. $8: S)%hesis of Aoplication-Specific
Heterogeneous Multiprocessor Systems. Journal of Parollel and Dir-
nibuted Computin

[12] S. M a s h and A. e. Parker. Syntliesa of Application-Specific Multi-
processor System Including Memory Components. Journal of VLSI
SigmIPmcessing 8:97- 116 1994.

[13] G. C. S h and E. I\. Lee. A C?ompile-Tme Scheduling Heuristic for
Interconnection-Consvained Heterogeneous Processor Architectures.
IEEE Transaction on Parallel and Dirtributed Systems. 4(2):175 -
187 1993.

[I41 T. h n g and A. Gerasoulis. DSC: Scheduling parallel Tasks on an
Unbounded Number of Processors. IEEE Tramaction on Paraileland
Distributed System, 5(9):951- 967, 1994.

16:338 - 351 1992.

