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Abstract 

We study the problem of scheduling packets to meet an ar- 
bitrary set of delay requirements. Consider a connection- 
oriented network in which a set of sessions is defined. Each 
session i follows a fixed route and requests an end-to-end 
delay requirement A;. The packet injections for each ses- 
sion are subject to a specified session rate and burst size; 
the packet movement is restricted to one packet per link per 
time step. 

If an arbitrary set of delay requirements is schedulable for 
every link in isolation and for every session in isolation, we 
present a simple distributed protocol in which every session 
i achieves a delay bound of O((a + log &)A;). Here, u is 
a term that depends logarithmically on the burst sizes; m is 
the number of links in the network and prnin is the smallest 
session rate. In addition, we show the existence of a schedule 
that achieves a hound of O(aAi). 

We also construct an example to show that the a factor 
cannot be removed in general. Hence, per-session schedula- 
bility and per-link schedulability is not sufficient to guaran- 
tee network schedulability for arbitrary delay requirements. 
This provides a contrast with previous work in that the 
bounds are not simply composed of a per-link delay bound 
and a per-session bound. 

Finally, we examine the problem of route selection in 
which the session routes are not given (I priori. Our aim is 
to choose the routes so that the delay requirements can be 
met. 

1 Introduction 

The use of scheduling to minimize end-to-end delays in mod- 
ern communication networks remains an important and widely 
studied problem. Many real-time audio and video applica- 
tions relv on the abilitv of the network to nrovide d&v 
guamnteks. 

We focus on the situation in which rackets are in&ted 

viding end-to-end delay bounds ha.s concentrated on bounds 
that are dependent on the burst size oi, rate pi and length 
K; of session i. For example, if the packet movement is 
restricted to one packet per link per time step, Parekh and 
Gallager showed in [23,24] that aspecial case ofthe Weighted 
Fair Queueing scheme [S] guarantees a delay bound of O(z+ 

f$) for every session i. In a later paper [Z], Andrew, 
Ferntinder;, Harchol-Baiter, Leighton and Zhang showed that 
a bound of 0( 2 + K;) is achievable. 

However, the fact that these bounds are dependent on 
the session parameters is not always desirable. Some ses- 
sions with low rates might have stringent delay require 
mats, whereas scune sessions with high rates might have 
looser requirements. For example, a typical voice call has a 
low rate (64kbps) hut a delay requirement of a fraction of a 
second. In contrast, a large file transfer may consume large 
amounts of bandwidth but a delay of many seconds may be 
acceptable. 

In this paper, we associate an arbitrary delay require- 
ment with each session. We say that a set of delay re- 
quirements is schedulable if the packets can be scheduled so 
that all the requirements are met. For a single link, Liebe- 
herr, Wrege and Ferrari [19] and Georgiadis, G&in and 
Parekh [13] characterized a necessary and sufficient condi- 
tion for schedulability.’ (We quote this condition in (Z).) 
They also showed that the earliest-deadline-first scheme, 
which gives priority to the packet that is closest to violating 
its delay bound, can satisfy any schedulable set of require- 
ments. 

In this paper, we are concerned with meeting an arbi- 
trary set of requirements in the network setting. There are 
two obvious necessary conditions for schedulability. First, 
the schedulability conditions of Liebeherr et al, and Geor- 
giadis et al. must hold for every link. Second, each de- 
lay requirement must be at least the length of the session 
route. Unfortunately, these two conditions are not sufficient 
to guarantee network schedulability. Briefly, our results are 
as follows. Given these two necessary conditions, we show 
how to schedule the packets so that all delay requirements 
are satisfied up to a logarithmic factor. Furthermore, we 
also construct an example in which some packet has to miss 
its requirement by this logarithmic factor. Before presenting 
our results in detail we need to describe our model. 
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The Model We consider a connection-oriented network in 
which a set of n sessions is defined. Each session is specified 
by a source, a destination and a fixed route from the source 
to the destination. The session length Ki is the number of 
links along the route of session i. 

Packets are injected into the network in sessions. In 
particular, we adopt the leaky-bucket constrained injection 
model of Cruz 16, 71. The session-i injections are specified 
by parameters (ui,p;), where oi 2 1 is the burst size and 
pi < 1 is the session rate. During any time interval (tl,tz], 
a total of at most. 

session-i packets can be injected. Upon injection, a session-i 
packet arrives at the source of session i. It then traverses the 
links of the session-i route until it reaches its destination. 

We assume that all packets have unit size and all links 
have unit bandwidth. At any time step, at most one packet 
can traverse each link. If two packets contend for the same 
link simultaneously, one packet has to wait in a queue. The 
end-to-end delay (delay for short) experienced by a packet 
is the total time from its injection to its arrival at its des- 
tination, including queueing time and the time to traverse 
all session links. In order to achieve any bounded delay, the 
following stability condition is necessary for all links e, 

where s’ is the set of sessions going through e and E is a 
positive constant. This stability condition states that the 
total rate on any link has to be smaller than 1. 

Each session i also specifies a delay requirement of Ai. 
If the network consists of a single link e, the following link 
schedulability condition is both necessary and sufficient 113, 
191, 

This schedulability condition states that the maximum num- 
ber of packet arrivals with deadlines at or before time t can- 
not exceed the maximum number of packets that can tra- 
verse the link by time t. For a set of delay requirements to be 
schedulable in a network with multiple links, it is certainly 
necessary to have the per-session schedulnbility condition of 
A; ? Ki for all i and to have the per-link schedulability 
condition of (2) for all e. 

Our Results In this paper, we aim to schedule the packets 
so that the end-to-end delay experienced by every session-i 
packet is within a small factor of Ai. Let prnin = min; p; 
and a = O(log(max. .j&. us)). Let m be the number of 
links in the network. 

. In Section 2, we describe a simple distributed protocol 
in which every session-i packet experiences an end- 
to-end delay of O(A;u + K, log f-), as long as the 
As’s satisfy the per-link and per-session schedulahility 
conditions. Due to the fact that Ai ? Ki, this bound 
is within a logarithmic factor, O(a + log *), of Ai. 
Our protocol uses an earliest-deadline-first approach. 

l In Section 3, we show that there exists a schedule with 
delay bound O(Aia + K;) for session i. 

l In Section 4, we show that the factor of OL cannot be 
removed in general. We construct an example in which 
the Ai’s satisfy the per-session and per-link schedula- 
bility conditions. However, some packet of some ses- 
sion i has to suffer a delay of O(crA;), no matter how 
the packets are scheduled. This result shows that the 
per-session and per-link conditions are not sufficient 
to guarantee network schedulability for arbitrary de- 
lay requirements. 

. In Section 5, we examine a related problem of route 
selection in which the session routes are not given 
a priori. Our aim is to choose the routes so as to 
meet the delay requirements. In particular, we as- 
sume the existence of a set of routes for which the 
Ai’s are schedulable. For this set of routes let a = 
wJg(max. c,,s. CT;)). Let U = max;{A;p;, 0;). If 
4 + 2U packets are allowed to cross a link in each time 
step, we show how to choose a set of session routes and 
schedule the packets so that session i achieves a delay 
bound of O((a + log &)A;). Moreover, for these 
routes there exists a schedule with bounds O(aAi). 

The fact that every link is schedulable in isolation and 
the fact that every session is schedulable in isolation do not 
guarantee that the network is schedulable. This conclusion 
is somewhat surprising and is fundamentally different from 
previous work on networks with uniform packet sizes and 
uniform link rates. For example, consider the static rout- 
ing problem, where all packets are present in the network 
initially. If C is the maximum number of packets routed 
through the same link (the congestion) and D is the maxi- 
mum packet path length (the dilation), Leighton, Maggs and 
Rae showed in [17] that all packets can reach their destina- 
tions within time O(C + D). Their result indicates that if 
a delay requirement A satisfies a simple per-link condition, 
i.e. C C A, and a simple per-path condition, i.e. D 5 A, 
then Ais schedulable for the network.’ In another example, 
the 0( 2 + K) bound for dynamic routing [z] is the sum of 
a delay bound, O(z), that is achievable for a single link in 
isolation and a delay bound, O(Kg), that is achievable for a 
session in isolation. 

The schemes to achieve our logarithmic upper bounds 
have an unexpected feature. They produce schedules that 
are independent of the exact packet arrival times. With 
arbitrary delay requirements this seems suboptimal, since 
packets with stringent requirements need to be scheduled as 
soon as they arrive. Indeed, Liebeherr et al. and Georgiadis 
et al. took advantage of the arrival times when scheduling a 
single link. However, in the network environment, our lower 
bound shows that one cannot do better in general even if 
packet arrival times are taken into account. 

Both of our upper bounds are motivated by the protocols 
given in [Z], although the analysis here is somewhat more in- 
volved. The central technique is “delay insertion”, a method 
introduced by Leighton, Maggs and Rae [17]. The essential 
idea is to delay packets in such a way that not many packets 
try to traverse a link simultaneously. 

Other Related Work Delay insertion is widely used to de- 
rive analytical delay bounds. In addition to [Z, 17, 181, it is 
also adopted by Rabani and Tardos [25] and Ostrovsky and 
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Rabani 1’221. A simulation study [3] compares the schemes 
of [Z] favorably against Weighted Fair Queueing, demon- 
strating the practical benefits of such schemes. 

As mentioned earlier, earliest-deadlinelirst (EDF) when 
applied to a single link can separate session rates from delay 
bounds and produce optimal delays 113, 19, 29). For net- 
works, Georgiadis, G&in, Peris and Sivarajan [14] showed 
that by “reshaping” session traffic at each node, EDF can 
achieve the same bound O(z+ 2) as Weighted Fair Queue- 
ing (23, 241. Early papers on EDF include Ferrari and 
Verma [12] and Verma, Zhang and Ferrari [ZS]. For an 
overview of different scheduling schemes see [16, 311. 

Our algorithm for choosing session routes combines the 
path filtering technique of Lin and Vitter [20] with a round- 
ing scheme of Karp, Leighton, &vest, Thompson, Vazirani 
and Vazirani 1151. This approach was fist used by Srini- 
v- and Teo 127) in the context of static routing. 

An alternative approach is to assume that the packet ar- 
rivals are generated by stochastic processes. Each packet is 
allowed to miss its delay requirement with a small proba- 
bility. In this framework of statistical multiplexing, more 
stringent delay requirements are schedulable. For examples, 
see Elwalid, Mitra and Wentworth [lo] and Elwalid and Mi- 
tra [9]. 

2 The Distributed Protocol 

2.1 Overview 

Our protocol uses randomization and an earliest-deadline- 
first approach. For each session-i packet, the protocol as- 
signs deadlines D‘, Dz, , DK. for each link that the packet 
goes through. In case of contention, a link services the wait- 
ing packet with the earliest deadline. Ties are broken arbi- 
trarily. We define DI = rand+G and DI. = DI-,+G, where 
G is a logarithmic parameter defined later and rand is a ran- 
dom number chosen from an appropriate range. Roughly 
speaking, if A; is large then rand if chosen from a range 
proportional to l/pi; if A; is small then rand is chosen from 
a range dependent on A;. Note that randomness is only 
added to the first deadline of each packet. This random- 
ness has the effect of spacing out the deadlines so that no 
time period contains too many deadlines. In this way, every 
packet can meet its deadline at every link. 

2.2 Description 

We now concentrate on defining the deadlines. 

Tokens We use tokens to specify the first deadlines, DI. 
All tokens appear periodically with a period of M. For 
session i, let M; be the range from which random num- 
bers are chosen. In particular, let r,, h 7M,~i be num- 
bers chosen uniformly at random from each of the intervals 
[0, M;), [M;, 2Mi) [M - M;, M). Session-i tokens appear 
periodically with period M at the following times. 

we now let,3 

where 

M; = min{a,$,d], (3) 

M = m,“M;, 

Here, H(n) = @(logn) is the nth harmonic number 

Deadlines For each session-i packet, we define a sequence 
of deadlines DI , D1 DK; for crossing the If; links on its 
session route. Suppose a session-i packet p is injected at time 
ti,,j. Packet p obtains the first session-i token that appears 
after tinj but is not yet obtained by any earlier session-i 
packets. Let r be the time that the token appears. We 
define the deadlines as follows. 

D, = r+G, 

DI = DL, t G, 
where G = alog(m/pmi,). 

Here, a is a constant chosen later, m is the number of links 
in the network and pmin = mini p;. 

Now that all deadlines are defined, each link gives prior- 
ity to the packet that has the earliest deadline. 

Remarks We emphasize that the only per-session process- 
ing is the determination of which token a packet obtains. 
This can be done at the point where the session enters the 
network. Once the token has been obtained, the deadlines 
for the packet are independent of its session parameters. 
This means that we need na per-session state within the net- 
work. The idea of restricting per-session processing to the 
network entry points is known as differential service [21,30], 
and is becoming increasingly popular. 

Our protocol can be implemented by stamping each packet 
with its current deadline, in a manner similar to the protc- 
cols described in [4]. 

2.3 Analysis 

We say that our protocol is successful if, for any link e and 
any time interval I = It, t + G), fewer than G deadlines fall 
into interval I. We shall see in Lemma 4 that when the pro- 
tocol is successful every packet meets its deadline at every 
link. In Lemma 3 we show that our protocol is successful 
with high probability. The proof of Lemma 3 relies on the 
following observation about the per-link schedulability con- 
dition. 

Lemma 1 If the delay requirements A; satisfy the per-link 
schedulability cm&ion (2) for all links, then for all e, 
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Proof: Without loss of generality, we awume sessions 1, 2, 
., n, go through link e and ~~ < AZ _< < A,.. The 

link schedulability condition (2) implies, 

Summing over all i, we obtain the lemma. 0 

Lemma 2 For any link e and any time t, the expected num- 
ber of packets with deadlines at time t for link e is at most 
1 -E/2. 

Proof: It suffices to show that, 

;g l/M, 5 1 -c/2. (4) 

This is because one session-i token is placed at random in 
each of the intervals [0, Mi), [Mt, 2M;), etc., and the dead- 
lines for each session are a fixed amount of time after the 
tokens. 

If a. % < A, then l/Mi = *. If a. 2 2 ;, then 

l/M, = p;. Summing over all sessidns in S’, ke have that 
the expected number of deadlines at time t is at most, 

We bound the fist term using Lemma 1 and the definition 
of a, and we bound the second term using the stability con- 
dition (1). 0 

Lemma 3 With high probability our protocol is successful, 
i.e. fewer than G deadlines fall into interval I for any link 
e and any time interval I = [t, t + G). 

Proof: For each token 7 of each session, let the random 
variable X, indicate whether or not -/ corresponds to any 
deadline during interval I at link e. By linearity of expec- 
tation and Lemma 2, we have, 

For fixed I and e, the X.,‘s are independent Bernoulli ran- 
dom variables for all tokens y. Thus, a Chernoff bound 
shows that, 

(See Appendix A.) Since the token placement is periodic 
with period M, we only need to consider a fixed time period 
of length M. Over all m links, there are a total of mA4 such 
I-intervals. By a union bound argument, the probability 
that some link e has at least G deadlines during come inter- 
val I is at most mMe-eZG/‘2. Since G = alog(m/~,i,) and 
M = O(l/p,i.), this probability is at most poly(m,p,in) for 
a sufficiently large constant a. 

0 

Lemma 4 When our protocol is successful, each packet meets 
its deadline at each link on its mute. 

Proof: For the purpose of contradiction, let D be the first 
deadline that is missed. This implies that all deadlines ear- 
lier than D are met. Suppose that packet p misses deadline 
D at link e. Since packet p meets its previous deadlines, it 
must be waiting at link e at time D - G + 1. Hence, one 
packet crosees link e during every time step from D - G + 1 
to D. Let p’ be such a packet, then p’ must have a deadline 
D’ 5 D by the definition of earliest-deadline-first. More- 
over, D’ 2 D - G + 1 since D is the first deadline missed. 
Hence, the total “umber of deadlines in [D - G + 1, D] is at 
least G. This contradicts the assumption that the protocol 
is successful. 0 

It remains to bound 7, the time when a packet catches a 
token after its injection. 

Lemma 5 If a session-i packet p arrives at its first link at 
time t;“j, then T 5 ti,j + 2aA;. 

Proof: Let to be the last time before t;,j that no session-i 
packet is waiting at its first link. During (to, 7) every session- 
i token must be obtained by some session-i packet injected 
during (to, Lj]. Otherwise, either (to, ti,,j) contains a time 
when no session-i packet is waiting or p would obtain a token 
before 7. The total “umber session-i packets injected during 
(to, t;“j] is at most (T; + (ti,j - to)p;. The total “umber of 
session-i tokens during (to,T] is at least (r - to - M,)/M,. 
Therefore, the total number of session-i packets that obtain 
tokens during (to, r] is at least (r - to - M;)/M,. Since p 
does not obtain a token until time T and packets with earlier 
deadlines are give” priority, we have, 

r-to-M, 

MS 
5 ci + (h”j - to)&% 

Hence, 

T 5 to + Mi(1 + 0;) + M;p;(t<nj -to) 

5 to + 2aAi + (timj - to) 
= tinj + 2aAi. 

The second term is bounded due to the fact that h4, 5 a$. 

The third term is bounded due to the fact that M; 5 i. 
‘b 

To summarize, Lemma 3 shows that our protocol is sue- 
ceseful with high probability. Lemmas 4 and 5 show that, 
for a successful run of the protocol, the end-to-end delay 
experienced by every session-i packet is at most, 

2aAi + c G 5 2aAi + KG log(m/p,i,). 
L=, 

When the delay requirements satisfy the per-session con- 
dition Ai 2 K., the above bound is within a factor 2a + 
alog(m/pmin) of Ai. 

Theorem 6 Consider an arbitrary set of delay requirements 
that satisfy the per-link and per-session schedulability con- 
ditions. With high probability, every session-i packet ez- 
periences on end-to-end delay of O(aAi + K;log&) = 

O(Ac(o, + log &)), where a = @(max. log C,es. 0;). 

Note that the per-link schedulability condition is only 
used in Lemma 2. We have the following more general result. 

Theorem 7 Consider an arbitrary set of delay requirements. 
With high probability, every session-i packet experiences an 
end-to-end delay of O(pAi + K; log &), where fl = 

w”w c,,,. 2,. 
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3 Improved Bound of 0(&a + K;) 

By combining the techniques of [z] with the analysis in 
Lemma 2, we can improve the bound O(Aia + Ki log 2) 
to O(Aia + K;). We offer an overview of the proof in 
Appendix B. The technical details omitted can be recon- 
structed from [Z]. 

Theorem 9 For an arbitmry set of delay requirements that 
satisfy the per-link and per-session schedulability conditions, 
there exists a schedule in which every session-i packet ezpeti- 
ence~ an end-to-end delay of O(oAi + K;) = O(aAi), where 
a = qmax, log ties. 0;). In general, there exists a sched- 
ule in which every session-i packet ezperiences an end-to-end 
delay of O@Ai + K;), where p = E+nax &. 2). 

4 A Lower Bound 

Given the per-session and per-link schedulability conditions, 
we have shown how to achieve a delay bound of O(aAi) for 
all sessions i. (Recall a = e (max.(log C,,s. ui)). In this 
section, we construct an example in which some session-i 
packet has to suffer a delay of n(oA;) even if the per-session 
and per-link conditions hold. 

A Simple Example. In order to convey the idea of our con- 
struction we first give a simple example to show that the 
delay requirements cannot always be met ezoctly. Consider 
a Z-link network. Packet A is injected at time 0, requires 
links 0 and 1 and has delay requirement 3. Packet L? is in- 
jected at time 0, requires link 0 and has delay requirement 
1. Packet C is injected at time 2, requires link 1 and has 
delay requirement 1. 

Clearly, the schedulability conditions are met for both 
links, However, it is impossible to meet all three delay re- 
quirements since it would require scheduling packet B at 
time 0 and packet C at time 2. In addition, if packet A is 
to meet its delay requirement then it must either cross link 
0 at time 0 or else it must cross link 1 at time 2. This is 
impossible since two packets cannot cross a link at the same 
time step. 

Lower Bound. We now generalize the above construction 
to obtain our logarithmic lower bound. Our network is a 
linear array with Z”+’ links, numbered 0, 1, ,Z*“” - 1. 
The sessions are defined as follows. Every session injects 
one packet only, which corresponds to a burst size of ci = 1 
and a session rate of pi = 0.4 Let R[el, a), where el < es, 
be the route that consists of links el, el + 1,. ,ez - 1. For 
1 5 a 5 22. + 1, we define 2”-’ sessions on each of the 
following routes, 

R[O, 2”) R[ZO, 2. 2’=) R[2. Z”, 3. 2”) R[Z’“+’ - Z’, 2’” 

Each session that is defined on the route R[b, b + Z”), sends 
a packet at time zb and has a delay requirement 2”. (Note 
that b is an integral multiple of 2”.) 

The stability condition holds trivially since each session 
only injects one packet. The per-session condition follows 

+‘I 

from the fact that A; = KS. To verify the per-link schedu- 
lability condition, observe that for all e, 

c ui+pi(t-Ai)< c T’st, vt>o. 
iG~.ai<t a:2*<t 

The number of sessions traversing any link e is C:=:’ 2”-‘, 
which implies a = 0(logZ2”+‘). Hence, z = Q(a). Note 
that z, and hence a, can be arbitrarily large. 

Theorem 9 Some session-i packet has to suffer an end-to- 
end delay larger than zA; = n(aAi). 

Proof: For the purpose of contradiction, let us assume that 
for all i every session-i packet experiences a delay of at most 
ZAP. We use this assumption to prove the following lemma. 
Let T(tl, tz), where tl < tz, denote the time interval tl, tl + 
1,. , tz - 1. Let f(a) = (22: + 2 - a)z”-1. 

Lemma 10 For 1 < a 5 2x+1, there exists mme b., where 
b, is on integral mu~iple ofZO, such that at least f(a) packets 
tmverse the mute R[b,, b. + ‘2-) during T[zb., xb, + 22”). 

Proof: We proceed by a backwards induction on a. We first 
note that f(a) satisfies the following recurrence, 

Consider the base cake of a = 2x + 1. At time 0, 2’” packets 
are injected to follow the route RIO, Z’“+‘), each of which 
has a delay requirement of 2 ‘=+I. By assumption, all these 
packets can be routed during T[O, ~2~“~‘). The base of the 
induction holds for b. = 0. 

Now suppose that the lemma holds for a+l, and we prove 
it for a. We know that at least f (a + 1) packets traverse the 
route R[b,+l, b.+l + 2”+‘) during T[zb.+l, zb.+, + zZa+‘). 
Let P,+1 denote this set of packets. 

Case 1. At least f(a + 1)/Z of the packets in P,+I 
traverse the route R[b.+l, b.+1+2’) duringT[zb,+l,zb,+l+ 
22” Let b, = b.+l. Since b, is an integral multiple of 2”, 
2”- I packets are injected to traverse the route R[b,, b. + 
2”) at time sb., each of which has a delay requirement of 
2”. By assumption, all these packets can be routed during 
T[zb.,zb, + ~2~). Hence, the total number of packets that 
traverse the route R[b., b, + 2O) during T[zb., zb. + ~2~) is 
at least, 

f(a + 1)/Z + 2*-’ = f(a). 

The inductive step holds. 
Case 2. Fewer than f(a + 1)/Z of the packets in P,+I 

traverse the route R[b.+l, b.+l+Z”) duringT[zb.+x,xb.+l+ 
~2”). This implies that at least f (a + 1)/Z of the packets 
in Pa+, traverse the route R[b,+l + 2’, b,+l + Y+‘) during 
T[zb,+l + sZ”,zb,+, + zY+‘). Let b, = b,+l + 2”. The 
inductive step holds using a similar argument to Case 1. 

0 

The proof of Theorem 9 is now simple. For a = 1, 
Lemma IO implies that 21: + 1 packets traverse links 2bl 
and 2bl + I during 2x time steps. This contradicts the fact 
that at most one packet at a time can traxrse each link. 

0 
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5 Determining Session Routes 

So far we have focused on packet scheduling when the session 
routes are given. A natural related problem is the selection 
of the session routes when only the somces and destinations 
are given. 

The analogous problem in the context of static routing 
was considered by Srinivasan and Tea [27]. (See the Intro- 
duction for a discussion on static routing.) They showed 
how to choose the packet routes so as to minimize the sum 
of the congestion and the dilation up a constant factor. In 
conjunction with the scheduling results of [17, 181, this pro- 
vides a constant-factor approximation for minimizing the 
routing time. Srinivasan and Tea constructed their routes 
using the “path-filtering” technique of Lin and Vitter [20] 
coupled with a rounding technique for “column-sparse” ma- 
trices due to Karp, Leighton, Rive&, Thompson, Vaairani 
and Vazirani [15]. 

In this section, we study the following problem. We are 
given a set of sessions, each of which is specified by its burst 
size oi, its rate p;, its source and destination and a delay 
requirement A;. We assume the misterm of some session 
routes and a schedule for which all the delay requirements 
can be met. Our goal is then to find a set of routes such 
that, by using the scheduling results of Sections 2 and 3, we 
can closely approximate the delay requirements. 

In general, it is NP-hard to even find a set of routes for 
which the rates at each link add up to less than 1. Hence, 
we opt to relax the constraint of L‘one packet per link per 
time step” by increasing the link bandwidth, thereby al- 
lowing more than one packet to cross a link per time step. 
Thus, a second goal is to keep this bandwidth increase as 
small as possible. If we allow arbitrarily large delay require- 
ments, then this problem of minimizing bandwidth is all 
that remains, and we have a standard multicommodity flow 
problem, e.g. [‘&I. Here we are more interested in what is 
achievable when the delay requirements are stringent. Let 
U = maxi{A;pi,a;). We focus on the situation when U is 
smalL5 

We have assumed the existence of a set of session routes 
for which the delay requirements are schedulable. For these 
routes (which we do not know), define S. to be the set of ses- 
sions that go through link e and let a = may, H(x,,,. oi). 
We use a similar framework to Srinivasan and Tea How- 
ever, we must be more careful since different sessions have 
different delay requirements. 

Theorem 11 We can choose a set of routes for which every 
session i achieves a delay bound of O(A;(a + log 6)) if 
4 + 2U packets are allowed to CUSS a link simultaneously, 
and the disttibuted protocol of Section 2 is used. Moreover, 
for these mutes there ezists a schedule in which the delay 
bounds O(aA;) are achieved. 

Proof: Let M, = min{a%:, &). For the routes on which 
the delay requirements are achieved, the argument that proves 
Inequality (4) in Lemma 2 implies that &.. l/Mi 5 2 for 
all e. Hence, the following system of equations is feasible. 
Note that although we do not know a, we can use a standard 
doubling technique to estimate a until the system becomes 
feasible. 

Flow conditions 

2: E {O, 1) Ve,i 

The flow conditions ensure that the variables zt define cme 
unit of flow from the source to the destination of session i. 
These conditions are standard and we do not write them 
explicitly. 

We solve the fractional relaxation of the above system, 
in which zt E {0, 1) is relaxed to 0 < zf 5 1. Let Z: be the 
fractional solution thus obtained. 

Path Filtering For each session i, we use standard path 
decomposition techniques to decompose the flow between 
the source and the destination of session i into a polynomial 
number of paths. For session i, let F?j denote its jth flow 
path, let y;j be the fraction of session-i flow carried on path 
P;j- and let K;j be the number of links along P;j. Observe 
that for all sessions i, cj yij = 1 and Cj y;jK;j < Ai. 
Path Pq is long if Kij 2 2A;; F’G~ is short otherwise. We 
now filter out the long paths and scale up the short paths as 
follows. Let fi = & *hart y;j be the fraction of session-i 

flow carried by short paths. By our earlier observation and 
the definition of short paths, we have fc > l/2 for all i. We 
now let each short path l?j carry a flow of & = yij/f;, 
and let exh long path Ej carry zero flow, i.e. y:j = 0. Let 
P;,, , P.j, be the short paths for session i. 

The variables y:, satisfy the following constraints. 

(5) 

Note that we now have the value 4 on the right-hand side 
of Constraint (6) due to the filtering of the long paths. Our 
goal is to round & to {0, 1) so that the left-hand side of 
Constraint (5) does not decrease and the left-hand side of 
Constraint (6) increases as little as possible. 

Rounding We apply a rounding result of Karp et al. 1151 
to the following linear system. 

,zj, -2uyij = -2u Vi (7) 

Rounding Theorem Let A be a real-valued r x s matrix, let 
y and b be a real-valued vectors such that Ay = b, and let t 
be a positive real number such that in every column of A, the 
mm of all the positive entries is at most t and the mm of 
all the negative entries is at least -t. Then we can compute 
an integral vector g suc_h that for every i, either & = Lyi] 
or y; = [yil, and Ag = b, where bi - bi < t for all i. 

In order to apply this Rounding Theorem to our linear 
system, observe that by the path filtering, any path used 
by session i passes through at most 2Ai links. Hence, the 
variable & appears in at most 2A; rows with a positive 
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coefficient. This in turn implies that any column sum of 
positive entries in our linear system is at most, 

Any column sum of negative entries is exactly -2U. We ap- 
ply the Rounding Theorem. From (7) the rounded variables 
&j satisfy, 

Since &j are O-1 integers, C I<jcj, @j 2 1, which implies , 
that we have chosen a route fore&y session. Furthermore, 
the right-hand side of (8) increases by at most 2U. This 
implies, 

Wrapping Up Thus far, we have chosen a route of length 
at most 2A; for every session i. For these routes, let .? be 
the set of sessions that pass through e. We have ciss. p; 5 
4 + 2u for all e from (9). 

Now suppose that we relax the restriction of one packet 
per link per time step and allow u packets to cross a link 
simultaneously. It is straightforward to adapt the analysis of 
Section 2 to obtain the following analogue of Theorem 7. For 
any arbitrary set of delay requirements &, we can achieve a 
delay bound O(/% + K, log $-) for session i, where fl = 

From (9), we have C,esc 2 5 4 + 2U for all e, which im- 
plies p = O(1). We also have K; < 2Ai. Hence, if we use 
the distributed protocol of Section 2, session i achieves a de 
lay bound of O(A;(a + log &)). A similar generalization 
can be applied to Theorem 8 to remove the factor log &. 
Hence, there exists a schedule in which session i achieves a 
delay bound of O(oAi). 0 

6 Open Questions 

The following questions remain. Given that the obvious per- 
session and per-link conditions are insufficient for network 
schedulability, is there a simple characterization that is both 
necessary and sufficient for the network environment? If so, 
is there a distributed protocol that can guarantee end-to-end 
delays within a constant factor of the requirements? 

We have concentrated on a connection-oriented model, 
in which packets follow a fixed set of session routes. In a 
contrasting connectionless adversarial model [5, I], no fixed 
rate is associated with any route and the adversary is given 
the power to choose the route upon each packet injection. 
In this model, it only makes sense to associate a delay re- 
quirement with each packet. Similar questions arise such 
as identifying and meeting schedulable sets of delay require- 
ments. 
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Appendix 

A. Chernoff Bound 

The proof of Lemma 3 uses a slightly nonstandard statement 
of the Chernoff Bound in which we only have an upper bound 
on the expectation. We include the statement here. 

Chernoff Bound Let Y be a sum of independent Bernoulli 
random vatinbles, where E[Y] 5 p. Then, 

for6<1. 

B. Overview of Proof of Theorem 8 

In this section, we give an overview of the proof of Theo- 
rem 8. The proof uses the ideas of Lemma 2 combined with 
some results from [2]. The omitted details can be found 
in 121. We begin by restating the theorem. 

Theorem 8 For on orbitmry set of delay requirements that 
satisfy the per-link and per-session schedulability conditions, 
there exists a schedule in which every session-i packet ezperi- 
ences an end-to-end delay of O(czAi +K,) = O(oAi), where 
a = B(max. log C,,,. 0;). 

For this schedule, packet movement at each link is gov- 
erned by tokens. A session-i packet can cross a link e at 
time step t if and only if a session-i token is placed at link 
e in time slot t. The restriction of one packet per link per 
time step is enforced by having at most one token per time 
slot. 

We concentrate on placing tokens at every link in the 
time interval [0, T) for some T = O(A,,cz + Km=). The 
~arne token placement is repeated in the intervals [T, 2T), 
[2T, 3T), etc. In placing the tokens, we make sure that all 
the session-i packets injected during LT - T., (j + 1)T - T.) 
move from their source to their destination during IjT, (j -t 
l)T) for some T, = @(Aia + K,). 

We borrow the terminology of relative congestion from 1171. 
A schedule has relative congestion c for frames of size I if for 
any link e and for any time interval [t, t + I’), where I’ 2 I, 
the total number of tokens placed in [t, t+ I’) is at most cl’. 
Enforcing the restriction of one token per link per time slot 
is equivalent to creating a schedule with relative congestion 
1 for frame size 1. In the following we first create a schedule 
S(() that has relative congestion 1 for a constant frame size. 
We then indicate how to reduce the frame size to 1. 

The schedule S(<) is the last in a sequence of schedules 
S(O), S(l), , S((). In each schedule, sessions fall into two 
groups, the fmctionol sessions which have a small A;, and 
the integral sessions which have a large A;. For a fractional 
session i, a fractional token of size about l/M, is placed in 
every time slot at every link on the session route. (Recall the 
definition of M; in Equation (3).) For an integral session we 
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carefully place integral packets. For the initial schedule S(O), 
all sessions are fractional. During the construction of each 
successive schedule, some fractional sessions are converted 
into integral ones. When we terminate with the schedule 
See), all sessions are integral. 

Lemma 12 The relative congestion in S(O) is at most 1 - 
~12 for frames of any size. 

The proof is similar to that of Lemma 3. This is where the 
factor a is required. We omit the details. From now on, 
we inductively assume that the relative congestion in &’ 
is at most cC9) for frames of size ICp). For the base of the 
induction, we choose c(O) = l-~/2 and I(‘) = poly(A,,a+ 
Kmax). (The exact choice of I(‘) is somewhat technical.) 

For SC’) we first carry out a refinement step, which sig- 
nificantly reduces the frame size without increasing the rel- 
ative congestion by much. We then carry out a conversion 
step, which converts scnne sessions from fractional to integral 
while maintaining the frame size and slightly increasing the 
relative congestion. Both steps are achieved by randomly 
delaying the integral tokens. The existence of a “good” set 
of delays is guaranteed by an argument that uses the Lov&sz 
Local Lemma. The following Lemmas 13 and 14 summarize 
the refinement and conversion steps respectively. 

Lemma 13 For schedule SC’), the integral tokens can be 
delayed by at most (ICq))’ steps so that the resulting rela- 
tive congestion is at most (1 + o(l))c’“’ for frames of size 
J(P+‘) := log5 I(P), 

Lemma 14 After refining schedule S(q), integral tokens can 
be placed for fractional sessions i, where Aia 2 (ICY+‘))‘, 
so that the resulting relative congestion is at most c(~+” := 
(1 + 0(1))~&) for fmmes of size Icq+‘). 

By applying Lemmas 13 and 14 to S(q), we obtain the sched- 
ule $‘+I). The proofs can be found in the full version of 121. 
The proofs maintain a key invariant that once a packet starts 
moving it is delayed at most once every constant number of 
steps. Moreover, an argument similar to that for Lemma 5 
can show that every session-i packet catches a token to cross 
the first link within O(Aia) steps of its injection. 

If we choose the o(l) functions in Lemma 13 and 14 ap- 
propriately, then in O(log’ I@‘) iterations of refinement and 
conversion we can obtain a schedule S(c) with relative con- 
gestion 1 for frames of size w, where w is some constant. 

The only remaining problem is that as many as w tokens 
can be placed in one time slot. The solution is to apply 
the above process to a modified network in which every link 
is replaced by w consecutive links. We then convert the 
resulting schedule for the modified network into a schedule 
for the original network. We can make sure that at most 
one token is placed in every time slot and that each session- 
i packet takes time O(wKi) = O(K;) to reach its destination 
once it starts moving. For a detailed explanation, see [Z]. 
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