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Abstract 

Maximizing bandwidth efficiency in dist,ributed continuous 
media streaming systems is the key in delivering cost-effective 
mult,imedia services to distributed and heterogeneous re- 
ceivers. We introduce a technique based on stream multi- 
plexing to achieve the highest possible bandwidth efficiency, 
while preserving stringent and deterministic quality of ser- 
vice guarantees. The technique accomplishes the optimal 
multiplexing (i.e. resulting in the lowest possible bandwidth 
allocation) by exploiting both the temporal and the spatial 
structures among a group of continuous media streams. We 
present a family of optimal multiplexing schedules. The ad- 
verse per-stream effects of optimal multiplexing are stud- 
ied and a technique based on t,ransmission rearrangement is 
proposed to mitigates these effects, without sacrificing the 
achieved mult,iplexing optimahty. The results presented in 
the paper provide some fundament#al criteria and limits in 
the design a.nd evaluation of resource alloca.tion, admission 
control and &ream scheduling policies for bandwidth effi- 
cient continuous media streaming. 

Keywords: Multimedia Streaming, Transmission Schedul- 
ing, Mult,iplexing, Bandwidth Allocation, Admission Con- 
trol, Temporal Smoothing, Feasible Region, Quality-of-Service 

1 Introduction 

The a.dvance of network technology towards high bandwidth 
and ubiquitous connectivity (e.g. Intranet,, Internet, Wire- 
less, Satellite, Cellular, etc.), as well as the progressively 
more diversified, more powerful and cheaper end-user de- 
vices (e.g. PCs, TV set-top boxes, wireless hand-held de- 
vices, etc.) are establishing a solid infrastructure upon which 
the proliferation of multimedia communications is envisioned 
in the near future. Although new t,echnologies developed in 
t,he recent years allow most) continuous media (e.g. video 
and audio) to be encoded, stored and transported in com- 
pressed forms that require much lower data rates, the deliv- 
ery of continuous media with decent quality from a server 
over the network is still bandwidth intensive. To provide 
cost-effective continuous media streaming services in envi- 
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ronments with finite bandwidth resources, improving the 
bandwidth efficiency is the key. 

One of the major factors affecting the bandwidth effi- 
ciency of streaming is the high variability in data rate over 
the durations of continuous media streams [6]. The high 
variability is contributed by both the inherent media content 
dynamics and the use of prediction-based encoding tech- 
niques (e.g. inter-frame coding in MPEG video [lo]) for 
higher compression performances. 

Traditionally, peak-rate allocation is used to allocate net- 
work bandwidth for the streaming of variable-bit-rate (VBR) 
continuous media streams. However, peak-rate allocation 
can be quite wasteful of network resource if the bit-rate vari- 
ation is high. Although there are other network services such 
as ATM VBR service aimed at transporting VBR sources, 
due to their statistical nature, they are not suitable for the 
transport of continuous media with deterministic quality-of- 
service (QoS) guarantees. 

Temporal smoothing techniques 115, 51 have been pro- 
posed over the past few years. The techniques take a work- 
ahead approach by delivering and buffering media data some 
time prior to their playback. By carefully scheduling the 
transmission of media data (e.g. video frames) over time, 
the receiver is able to playback the continuous media stream 
without playback starvation or buffer overflow. When the 
media stream profile (e.g. frames sizes) is known a priori, an 
optimal temporal transmission schedule can be calculated 
that a.chieves the lowest possible bandwidth requirement. 
Temporal smoothing has been shown to be very effective 
[15] in reducing the bandwidth allocation of individual con- 
tinuous media streams. 

Figure 1: Typical media distribution scenario 

In typical media-on-demand scenarios (Figure l), contin- 
uous media are being strea.med from a media server to a set 
of dist.ribnted receivers through a combined end-system and 
network distribution tree. Portions of the distribution tree, 
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including the media storage device, the network interface 
adapter at the media server and the shared network path, 
are being shared by groups of on-going continuous media 
streams. With multiple VBR streams sharing a common re- 
source, there is the potential of reducing the overall allocated 
bandwidth (i.e. disk, interface or network bandwidth) at the 
shared resource by inter-stream multiplexing. In a few re- 
cent works [8, 171, phase-based multiplexing techniques are 
proposed to achieve higher bandwidth efficiencies for MPEG 
video streams. Taking advantage of the Group-Of-Picture 
(GOP) frame structure of MPEG [lo], periodic phase-based 
time-varying traffic envelopes are used to characterize the 
bit-rate of the streams, based on which multiplexing sched- 
ules are derived with the purpose of reducing the overall 
bandwidth allocation. 

In this paper, we propose techniques exploiting the ad- 
vantages of both temporal smoothing and spatial multiplex- 
ing. Unlike previous studies involving statistical multiplex- 
ing (e.g.[16]) where statistical or probabilistic guarantees 
were provided, the techniques proposed in this paper achieve 
higher bandwidth efficiency while maintaining stringent and 
deterministic quality of service guarantees. In fact, we show 
that the proposed technique achieves the optimal multiplex- 
ing in the sense that it requires the least possible bandwidth 
among all valid streaming schedules. 

There have been studies on stream-sharing techniques to 
improve bandwidth efficiency, where a single stream origi- 
nated from the server is shared by multiple requests or re- 
ceivers. In “stream-batching” [2, I], requests for the same 
continuous media stream are batched and served with a sin- 
gle stream, if the requests are within a certain time interval 
of each other. Bandwidth is saved by allocating a single 
stream at the server for multiple requests, but at the cost 
of additional startup delays due to batching. In an alterna- 
tive technique called “adaptive piggybacking” [7], streams 
are started without additional waiting time, but are played- 
back at slightly different speeds. As playback progresses, 
streams will eventually “merge into” other on-going streams 
to save bandwidth. 

Stream-sharing techniques are orthogonal and mutually- 
complimentary to the stream multiplexing techniques pro- 
posed in this paper. Stream multiplexing can improve the 
bandwidth efficiency for the delivery of a set of concur- 
rent media streams that can not be further trimmed down 
using stream-sharing. Stream multiplexing can also work 
with other streaming techniques, such as adaptive stream- 
ing [12, 131 in environments with fluctuating resource con- 
ditions, to improve their bandwidth efficiencies. 

We present a family of optimal multiplexing schedules 
that achieve the bandwidth lower bound. The multiplexing 
schedule is then mapped into individual per-stream sched- 
ules that can be executed by the server. However, optimiz- 
ing the multiplexing bandwidth is often realized at the cost 
of suboptimal per-stream bandwidth efficiencies. In some 
cases, the resulting per-stream bandwidth becomes so high 
that it offsets any achieved multiplexing bandwidth savings. 
To overcome this deficiency, we propose a revised per-stream 
scheduling technique to mitigate the adverse per-stream ef- 
fects while still maintaining the same optimal multiplexing 
bandwidth. 

The rest of this paper is organized as follows. In Sec- 
tion 2, we describe the continuous media streaming process 
and its fundamental resource requirements. In Section 3, we 
introduce the basic notions and properties of stream multi- 
plexing. In Section 4, we establish the exact bandwidth 
lower bound for the streaming of a set of continuous media 

streams and present a family of optimal multiplexing sched- 
ules. Transmission rearrangement of per-stream schedules 
is introduced in Section 5. Numerical results based on real 
compressed video traces are shown in Section 6. 

2 Continuous Media Streaming and Resource Require- 
ment 

Figure 2 shows a typical multimedia streaming system. Mul- 
timedia contents are being retrieved from a media server (or 
a network of servers) where the contents are stored, and 
streamed over a network distribution tree, to a set of dis- 
tributed, possibly heterogeneous receiving devices where the 
content are being rendered. We use the term streaming to 
distinguish itself from the alternate approach of download- 
ing and playing-back. Streaming has clear advantages over 
downloading: it provides a much smaller playback startup 
delay and requires a much smaller storage buffer to tem- 
porarily store the received multimedia content. 

server network end-user device 

Figure 2: Components of a continuous media streaming sys- 
tem 

2.1 System Components and Scheduling Constraints 

Figure 2 shows the components of a continuous media stream- 
ing process from a server to a receiver. The end-to-end 
streaming path consists of components and resources from 
the server, the network and the receiver. After a streaming 
request is received and processed by the server, the requested 
continuous media is retrieved from the server’s storage unit, 
packetized and sent through its network interface adapter, 
over a network path to arrive at the receiver’s network in- 
terface. When the receiver receives a data packet, it stores 
the received data temporarily in its streaming buffer. A ren- 
dering thread running on the receiver periodically picks up 
the media elements (e.g. video frames) from the streaming 
buffer, executes the decoding routine and renders the media 
elements (screen display or audio playback) at their sched- 
uled presentation times. After a media element is picked up 
from the streaming buffer, it is no longer useful and is dis- 
carded to free up its buffer space for incoming media traffic. 

Let the continuous stream consist of N media elements, 
each media element Ok having a data size of s(i) and a 
deadline of t(i) representing its scheduled playback time. 
There is a streaming buffer of size M at the receiver side to 
temporarily store the incoming stream traffic. The process 
can be represented by a feasible region in Figure 3. The 
horizontal axis represents time t and the vertical axis rep- 
resents the cumulative amount of data y received by the 
client. A transmission schedule is then represented by a 
monotonically nondecreasing curve starting at y = 0. The 
slope of the transmission curve at any point is therefore 
the instantaneous transmission rate at that time. To avoid 
starvation of the rendering thread, media elements must ar- 
rive before their respective deadlines. Hence a lower bound 
curve L(t) is defined to represent the minimum cumulative 
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Figure 3: A continuous media stream and its feasible region 

amount of data that should have been received by time t, 

L(t) = Ct(i)<t s(i). On the other hand, the streaming 

buffer has only a finite size of M. To avoid buffer over- 
flow, an upper bound curue U(t) is defined to represent the 
maximum amount of data that can be delivered by time 
t. Thus U(t) lies A4 units above L(t) immediately after a 
stepping point of L(t), when the buffer space for the due 
media element is freed up, U(t) = L(t-) + M for t > 0, and 
U(0) = 0. For convenience, let t(0) = 0. Therefore, any 
part of a schedule curve lying below L(t) leads to playback 
starvation, while any part lying above U(t) leads to buffer 
overflow. L(t) and U(t) define the boundaries of a feasible 
region. A transmission schedule is valid if and only if the 
transmission curve lies within the feasible region. 

2.2 Fundamental Bandwidth Requirement 

Among all valid transmission schedules, we are most inter- 
ested in the ones that are most bandwidth efficient (i.e. re- 
quiring the least amount of bandwidth). Bandwidth efficient 
schedules maximize the utilization of the available band- 
width (with or without reservations) and are more likely 
to be admitted successfully in a reservation-based system. 
The following lemma establishes the exact bandwidth lower 
bound of a continuous media streaming process. 

Figure 4: Slopes from t(i) to t(j) and constructed schedule 
with peak rate B 

linking U to L with a higher slope than B, contradicting B’s 
definition. 

Lemma 1 Let B* be the exact lower bound on the peak rate 
o.fany valid transmission schedules, B” = inf( Peak(S is valid), 
&here Peak(S) is the peak rate of schedule s‘. The;,” 

Proof: Let B represent the right side of the equation. We 
first show that B’ 2 B. To show this, consider the stream- 
ing process from time t(i) to t(j) (Figure 4(a)). any valid 
schedule S must be at or below U(t(i)) at time t(i) and be 
at or above L(t(j)) at time t(j). Therefore, the peak rate 
of S between t(i) and t(j) must be at least the slope of 
the segment linking (t(i), U(t(i))) to (t(j), L(t(j))), which is 
(L(t(j)) - U(t(i)))/(t(j) -t(i)). By the facts that this holds 
for any 0 5 i 5 j 5 N for any schedule S and that the 
schedule slopes are always non-negative, B’ 2 B holds. 

We then show B* < B by constructing a valid schedule 
S with peak rate B from (0, U(0) = 0). S maintains slope 
B until it reaches U, at which point it takes slope 0 until it 
reaches the closest stepping point of U where it can resumes 
slope B. The process repeats till the end of the stream 
(Figure 4(b)). Obviously S has a peak rate B. S is also valid 
since the segments with slope B originating from U never 
penetrate L first. Otherwise, we would have found a segment 
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2.3 The Inter-frame and the Optimal Transmission Sched- 
ules 

A valid schedule can be easily derived by sending each media 
element at a constant rate in the interval between the previ- 
ous deadline and its deadline. We call the schedule derived 
this way the inter-frame schedule, as shown in Figure 5(a). 

An optimal temporal transmission scheduling algorithm 
was presented in [15]. The algorithm produces a piecewise 
linear transmission schedule that is as smooth as possible, 
with the minimum peak rate and rate variance over all valid 
transmission schedules. The algorithm is straightforward: 
starting with t = 0, the algorithm looks for the longest seg- 
ment within the feasible region (Figure 5(b)). If the segment 
ends on the lower bound curve, it generates a schedule seg- 
ment ending at the latest upper bound it touches, and vice 
versa. The procedure is then repeated from the new start 
point. The algorithm is essentially identical to the short- 
est path algorithm in the feasible region [9]. An equivalent 
algorithm with running time O(N) was presented in [14]. 

r 

(a) The inter-frame schedule (h) The optimal schedule 

Figure 5: The inter-frame and the optimal transmission 
schedules 

3 Fundamentals on Stream Multiplexing 

3.1 Stream Aggregations 

We first consider a simplified scenario of stream multiplexing 
where all streams are being delivered to the same destina- 
tion with a shared streaming buffer. The size of the shared 
streaming buffer is thus the sum of the individual streaming 
buffers. In such scenario, we can actually aggregate the mul- 
tiple continuous media streams and treat them equivalently 
as a single stream. We define this as stream aggregation, 
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resource requirements separately. We turn to Section 2 
and examine Figure 4 of Lemma 1. The maximum amount 
of data that could have be delivered for a stream sk by 
time t(i) is upper bounded by U,(t(;)) to avoid streaming 
buffer overflow; the minimum amount of data that should 
have been delivered for stream sk by time t(j) is lower 
bounded by Lk(t(j)) to avoid playback starvation. Thus 
the minimal amount of data belonging to stream sk that 
needs to be delivered during the time interval [t(i),t(j)] is 
L(t(j)) - U@(i)), or zero if this value is negative (deliv- 
ered data can not be retracted). Since this is true for ev- 
ery stream, the total amount of media data that needs to 
be delivered during the time interval [t(;),t(j)] is at least 

cf=, max{Lk(t(j)) - U,(t(;)), 0). The peak bandwidth 
needed in this interval to deliver this amount of data is thus 
Cr=, max{Lk(t(j)) - U,(t(i)), O}/(t(j) - t(i)). Taking the 
maximum of this expression over all possible i,j, we have 
the inevitable multiplexing bandwidth (i.e. bandwidth that 
is absolutely necessary) for the transport of a group of con- 
tinuous media streams. 

Lemma 5 The inevitable multiplexing bandwidth to deliver 
a set of streams is 

maXCQCjlN ~~cl maxiLk - Uk(t(i)), oll(t(j) - t(i)). 

Proof: Proof given by the above derivations. 0 

4.2 Eligible Earliest Deadline First Multiplexing 

We introduce a family of multiplexing schedules called El- 
igible Earliest Deadline First (E-EDF) multiplexing. The 
schedule is based on the traditional Earliest Deadline First 
(EDF) task scheduling [II] that have been well-studied and 
widely applied in a number of different areas. We extend 
EDF to schedule the multiplexing and transmission of mul- 
tiple continuous media streams. 

EDF is a straightforward scheduling scheme, where tasks 
or objects are scheduled or processed in the order of their 
deadlines. The one with the earliest deadline is handled 
first. Despite its simplicity, EDF is an optimal scheduling 
scheme in the sense that it can duplicate any valid schedules 
[II] with the same amount of resource. 

E-EDF extends EDF by imposing an eligibility constraint 
to each candidate media element. Only media elements that 
are eligible can be scheduled for transmission. A media el- 
ement is defined as eligible if its transmission does not re- 
sult in streaming buffer overflow at the receiver. Among 
all media elements that are eligible, E-EDF selects the one 
with the earliest deadline for transmission. Note that me- 
dia elements can be partially eligible (when the residual 
buffer space does not hold the entire media element) and 
thus transmitted in portions, and that the tie-breaking rule 
among eligible media elements with the same deadline is 
unspecified, resulting in a family of schedules. 

Definition 1 Sri/// is an E-EDF multiplexing schedule if and 
only if the followings hold: at any time t when a media el- 
ement o with deadline d is under transmission, o is eligible 
and for any other object p with deadline e not yet finished 
transmission, p is either ineligible or e 2 d. A media ele- 
ment from stream s, is defined as eligible at time t if and 
only if the residual streaming bufler size U,(t) - Si(t) > 0. 

Despite its simplicity, we can show that E-EDF is an 
optimal multiplexing scheme. A multiplexing scheme is op- 
timal if no other multiplexing scheme can produce a multi- 

plexing schedule having a lower resource (in this case, band- 
width) requirement. We establish this by showing that it 
is impossible for any multiplexing schedule to be valid if an 
E-EDF schedule with the same bandwidth requirement is 
not valid. In other words, no other multiplexing scheme can 
possibly do better than E-EDF. 

Theorem 1 E-EDF multiplexing is optimal. 

Proof: Let Szdf be an E-EDF multiplexing schedule con- 

sisting of per-stream schedules SPedf for stream se, i = 
1,2,. . . , K. Let SM be an arbitrary multiplexing schedule 
with the same schedule curve (i.e. SM(t) = S’zdf(t),Vt, thus 
having the same bandwidth requirement) consisting of indi- 
vidual per-stream schedules Si,i = 1,2,. , K. Suppose 5’~ 
is valid while SGdf IS not. We show this results in contra- 
diction. 

To trace the schedules as they progress over time, we 
divide the time-axis into small time-slices. Time-slices are 
delimited by critical events. There are two types of critical 
events: the arrival of a deadline and the start of the trans- 
mission of a new media element. We show at the end of each 
time-slice, the following claim is true: for every deadline d, 
the total amount of media data with deadline d or earlier 
transmitted in Sz@ is no less than that in SM. The claim 
is shown by induction on the time-slices. 

Initially, the claim holds trivially since no media elements 
have been transmitted yet. Suppose the claim holds at the 
end of time-slice 1, we show it still holds at the end of time- 
slice 1+1. 

In SEdf, the media elements (can be one or multiple) 
under transmission during time-slice 1 $ 1 must be eligible 
and have the same earliest deadline d’ among all eligible me- 
dia elements. Note that they consume all the bandwidth of 
s$f , which is also the bandwidth of S’M during time-slice 
I+ 1. Thus for any deadline d 2 d’, the entire bandwidth 
in time-slice 1 f 1 is dedicated to the transmission of media 
elements with deadline d or earlier. By induction hypoth- 
esis, the claim holds for d 2 d’ at the end of time-slice 
1 + 1. For any deadline d < d’, the reason why media el- 
ements with deadline d’ are being transmitted in SEdf is 
that all media elements from other streams with deadlines 
less than d’ not yet transmitted are all ineligible. In other 

words, their streaming buffers have been filled in Sgdf and 
the transmission of their media elements has reached their 
maximums by the end of time-slice 1. For those streams with 
non-full streaming buffers, their media elements with dead- 
lines d < d’ or earlier have already been totally transmitted 
in Sgdf by the end of time-slice 1. So the amount of media 
elements with deadlines d < d’ or earlier that can be trans- 
mitted by the end of time-slice I+ 1 have already reached 
its upper bound in SEdf by time-slice 1. There is no way to 
achieve a higher amount in SM by the end of time-slice l+ 1 

By induction, the claim holds. Now at any deadline d, 
the transmitted media element with deadline d or earlier in 

SM eedf is no less than that of SM, contradicting the assump- 

tion that Szdf leads to playback starvation while SM does 
not. 

0 

4.3 Achieving the Inevitable Bandwidth 

In this part, we show that the inevitable multiplexing band- 
width given in Lemma 5 can actually be achieved by a fam- 
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ily of E-EDF multiplexing schedules. Consequently, the in- 
evitable bandwidth is the optimal multiplexing bandwidth, 
achievable by a family of optimal E-EDF multiplexing sched- 
ules. 

Before proceeding, we introduce a family of E-EDF mul- 
tiplexing schedules called Greedy E-EDFmultiplexing sched- 
ules. Given a certain bandwidth bound B, greedy E-EDF 
schedules use the entire available bandwidth B as long as 
there are eligible media elements to transmit, while follow- 
ing the earliest eligible requirement of E-EDF. Obviously, 
greedy E-EDF schedules under bandwidth B has a peak 
bandwidth requirement of B.. 

Definition 2 A greedy E-EDF multiplexing schedule Sgedf 
under bandwidth B is an E-EDF multiplexing schedule with 
the following property: at any time t, if there are eligible 
media elements to be transmitted, 5’gedf’(t) = B; other- 

wise, SEedf’(t) = 0. Note that the derivative S’(t) is the 
transmission rate of schedule S at time t. 

We establish the optimality of the inevitable bandwidth 
in Lemma 5 by showing that a greedy E-EDF multiplexing 
schedule under the inevitable bandwidth is a valid multiplex- 
ing schedule. Since E-EDF already ensures that the receiver 
streaming buffer does not overflow, all we need to show is 
that no playback starvation occurs by following the greedy 
E-EDF multiplexing schedule. 

Lemma 6 A greedy E-EDF multiplexing schedule Sgedf un- 
der the inevitable bandwidth does not lead to playback star- 
vation. 

Proof: Suppose S, geedf leads to playback starvation. As- 
sume the first playback starvation occurred at time t(j), 

when a media element from stream Sk with deadline t(j) 

had not been delivered by time t(j). Let t(i) be the last 
time instant prior to t(j) that either a media element with 
deadline later than t(j) was being transmitted or no media 
element was under transmission. t(i) is 0 is no such t(i) ex- 
ists. t(i) must be a deadline of some media element since 
media elements with earlier deadlines only becomes eligible 
as the streaming buffer changes from full to non-full after a 
media element is picked up and rendered. 

At time t(i), we divide streams into two sets. The streams 
with media elements with deadlines t(j) or earlier not yet 
delivered are classified as pending streams. The remain- 
ing are called non-pending streams. The only reason that 
either a media element with deadline later than t(j) was be- 
ing transmitted or no element was under transmission until 
t(i) under E-EDF was that the pending streams (with el- 
ements of earlier deadlines) all had their streaming buffer 
filled until t(i), thus making their media elements ineligible 
for transmission. 

From time t(i) to t(j), only media elements belonging to 
pending streams got transmitted because t(i) was the latest 
time a media elements with deadline later than t(j) could be 

transmitted. The schedule Sgedf also consumed all the in- 
evitable bandwidth from t(i) to t(j) because t(i) was the last 
time that all media elements could be ineligible. The amount 
of data being transmitted from t(i) to t(j) is thus t(j) -t(i) 
times the inevitable bandwidth in Lemma 5, resulting in an 

amount of maXO~t<3~N ~~cl maX{Lk(+)) - U,@(i)), 0). 

At t(i), all pending streams had their streaming buffer 

filled, Sleedf(t(i)) = U,@(i)) for all pending Stream Sk, 

where Sleedf is the per-stream schedule for stream s,+. But 

by the earlier assumption, 5’zedf caused a playback starva- 
tion at time t(j). So the amount of data transmitted from 

t(i) to t(j) is less than xskEPelzdlng Lk(t(j)) - Sieedf (t(i)), 

since only pending stream elements with deadlines no later 
than t(j) were transmitted from t(i) to t(j). For every pend- 
ing stream Sk, there existed media elements with deadlines 
t(j) or earlier to be transmitted at time t(i) and the stream- 
ing buffer was full at t(i), so Lk(t(j))-Uk(t(i)) = Lk(t(j))- 

.P"""f(t(i)) > 0. For every non-pending stream Sk, me- 
dika elements with deadlines t(j) or earlier had already been 
transmitted at time t(i), indicating Lk(t(j)) - Uk(t(i)) 5 

L&t(j)) - ‘, geedf t i)) < 0. Rewriting the previous expres- (( - 
sion, the amount of data transmitted from t(i) to t(j) is less 

than c;=, maX{lk(t(j)) - uk(t(;)), 0). 

This contradicts the earlier result of having to trans- 

mit maXo<;<3<N CF==, max{Lk(t(j)) - Uk(t(i)), 0) amount 
of media data from t(i) to t(j). 

Combining the results obtained so far, we have the fey 
lowing main result. 

Theorem 2 The optimal multiplexing bandwidth (OMB) for 
a set of continuous media streams is as follows, OMB = 

maXO<Q1N cFTl max{lk(t(d) - Uk(t(i))s o}/(t(.i-t(i)), 

Furthermore, the greedy E-EDF multiplexing schedules un- 
der the bandwidth OMB are a family of optimal multiplexing 
schedules achieving the optimal multiplexing bandwidth. 

Proof: By Lemma 6 and Theorem 1. 0 

4.4 Multiplexing and Aggregation 

In the last section, we introduced the concept of stream 
aggregation and showed that stream aggregation served as 
a bound for stream multiplexing. In particular, we showed 
that any valid stream multiplexing schedule is a valid stream 
aggregation schedule but the vice zlersa is not true in general. 
In the following, we show the exact, and somewhat interest- 
ing relationship between stream multiplexing and stream ag- 
gregation. Let @ be the set of the continuous media streams, 
@={(51,32 )...) SN}. 

Lemma 7 Let 5’~ be a valid multiplexing schedule, it holds 
that Peak(SM) 1 Peak(S,$), for any 4 s @, where SG is 
the optimal aggregation schedule for the set of streams 4. 

Proof: Recall that 5’~ is the sum of the per-stream trans- 
mission schedules S1, SZ, . . , SIC pertaining to the individual 

Streams Sl, S2,. , SIC, respectively. so SM = cf=, Sk > 

CCL++ sk. Note that cskE+ Sk is a valid multiplexing sched- 

ule for the stream set 4, applying Lemma 4 to the stream 
set 4, we have Peak(zskE4 Sk) 2 Peak($). Combining 

the above, we get Peak(SM) > Peak($). 0 

Lemma 8 Let ~,5 be a subset of streams, then for any t(i) < 

t(d, Peak(SG) 2 c ,kE+(L&(j)) - u(t(i)))/(t(d -t(i)). 

Proof: By Lemma 2, the feasible region for the stream 
aggregation of the stream set 4 is (CzkE4 Lk, zckEd uk). 

Applying Lemma 1 to the stream aggregation, Peak(SG) = 

max{max,(,)<,(,)(Csk~~ Lk(W-CskEd Uk(t(i)))l(t(.i- 
t(i)), 0). Thus Peak(SG) > c ,,E~(Lk(t(j))-u(t(;)))/o- 

t(i)). 0 
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Theorem 3 The optimal multiplexing bandwidth (OMB) of 
a set of streams is the maximum of the optimal aggrega- 
tion bandwidths among all its stream subsets, OMB(Q) = 
rnax+c+ Peak($). 

Proof: We first show OMB(Q) 5 rnax4=* PeaL(SG). Let 
t(i) and t(j) be such parameters that maximize the right 
side of the OMB formula in Theorem 2. In other words, 

OMB(@) = cf=, maxVk(t(d) - Uk(t(i)), Oll(W -t(i)). 
Let 4 be the set of such streams sk that Lk(t j))-Uk(t(i)) 2 
0, the above equation becomes OMB(@) = !I .,,,ww- 
Uk(t(i))/(t(j) - t(i)). But the right side of the equation is 
exactly the one in Lemma 8, thus Peak(SG) 2 OMB(@) 
using Lemma 8. Consequently, OMB(@) 5 Peak(Sz) 5 
rnax+EQ Peak(SG). 

On the other hand, by Lemma 7, OMB(@) 2 Peak(SG) 
for any stream subset #J & @. It follows that OMB(Q) 2 
rnax+Ea Peak($). 0 

The result has some interesting implications. First, it 
establishes a clear relationship between stream multiplexing 
and stream aggregations. On one hand, for the same set 
of streams, stream multiplexing is at least as bandwidth in- 
tensive as stream aggregation. On the other hand, stream 
multiplexing for a set of streams is no more bandwidth in- 
tensive than the stream aggregations of some of its stream 
subsets. Therefore, stream aggregations bound the band- 
width requirement of stream multiplexing both ways from 
upper and from under. In a sense, the bandwidth require- 
ments of stream aggregation and stream multiplexing are 
roughly on the same “order”. 

Second, the result also suggests that the stream aggre- 
gation of a subset of streams could be strictly more band- 
width intensive than the stream aggregation of the entire set 
of the streams. The phenomenon has indeed been observed 
in some cases during our experiments using real compressed 
video traces. In most of our experiments, the whole-set ag- 
gregation turned out to be the most dominant aggregation 
as would usually be expected. The apparent anomaly could 
possibly be attributed to the fact that a larger aggregation 
is also associated with a large streaming buffer, which could 
be used effectively to reduce its bandwidth requirement. In 
the cases that a subset aggregation dominates, multiplexing 
the whole set of streams requires the same amount of band- 
width as multiplexing a specific subset of the streams. In 
some sense, the rest of the streams are being delivered “for 
free”, without incurring additional bandwidth. 

5 Mitigating Adverse Per-Stream Effects 

Although optimal multiplexing maximally reduces the over- 
all bandwidth requirement for a set of continuous media 
stream on a shared network path (or disk, network interface 
etc.), it can have adverse effects on the individual per-stream 
schedules. In particular, it can cause the bandwidth require- 
ment of individual streams to go up. In extreme cases, the 
resulting per-stream bandwidth can become so high that the 
adverse effects on individual stream offset any multiplexing 
gains achieved using optimal multiplexing. 

5.1 Worst-Case Per-Stream Bandwidth 

In scenarios such as media-on-demand where continuous me- 
dia streams are delivered over a server-rooted distribution 
tree to a set of distributed receivers (e.g. Figure l), the 
bandwidth available for an individual stream is limited by 
the residual network path (e.g. from a local media reflector 

to the receiver) or the last hop after the streams destined 
to different receivers diverge. If the per-stream bandwidth 
resulted from optimal multiplexing is higher than the band- 
width available on the residual network path or the last hop, 
the schedule for this individual stream can not be satisfied by 
the available bandwidth on the path leading to the receiver 
and becomes infeasible. The server would have to deliver the 
stream separately without multiplexing with other streams. 

In the worst case, the per-stream bandwidth can be as 
high as OMB, the total multiplexing bandwidth. An ex- 
ample is shown in Figure 7. Greedy E-EDF multiplexing 
requires the full bandwidth OMB be consumed whenever 
there are eligible media elements to transmit. In addition, 
E-EDF mandates that media elements with later deadlines 
never receive transmission until eligible elements with ear- 
lier deadlines are fully transmitted. Consequently, if a media 
element from a continuous media stream is the only eligible 
media element left with the earliest deadline, it takes the 
entire bandwidth of OMB. The resulting schedule for that 
particular stream thus has a peak bandwidth requirement of 
OMB. Even when the continuous media streams are fully 
synchronized (e.g. have identical frame rate and start time) 
so that there exist multiple media elements with the same 
deadline with the possibility to shared the total bandwidth, 
the worst-case per-stream bandwidth of OMB can still oc- 
cur as the schedule progresses. 

Compounding the problem is that OMB increases with 
the number of continuous media streams. When there are 
a large number of streams to be multiplexed together, the 
worst-case per-stream bandwidth requirement of OM B could 
be too high to be satisfied by the bandwidth resource avail- 
able to an individual stream. 

5.2 Equivalent Multiplexing Schedules 

To mitigate the high per-stream bandwidth effect described 
above, we introduce a technique that results in a family of 
equivalent multiplexing schedules. These equivalent mul- 
tiplexing schedules achieves the same optimal multiplexing 
bandwidth. However, they result in much lower per-stream 
bandwidths. The technique is based on a simple observation: 
for any continuous media stream, media elements transmit- 
ted between a deadline t(i) and the next deadline t(i+ 1) in 
a valid schedule can be rearranged in any arbitrary manner 
without sacrificing validity of the schedule. 

Lemma 9 Let Sk be a per-stream schedule of stream Sk as 
part of a valid multiplexing schedule, and t(i) and t(i + 1) 
be two consecutive deadlines of stream Sk. The mdtiplexing 

schedule resulted from rearranging the transmission of media 
elements of stream Sk transmitted between t(i) and t(i + 1) 
in Sk remains a valid multiplexing schedule. 

Proof: It suffices to show the rearranged per-stream sched- 
ule S(, is valid in the interval [t(i), t(i + l)]. As elaborated 
earlier, S;(t) = Sk(t), for t = t(i) and t = t(i $ I), since the 
rearrangement is restricted to the interval [t(i),t(i + I)]. In 
the interior of the interval, Vt E (t(i), t(i+l)), L(t) = L(t(i)) 
and u,(t) = Uk(t(i + 1)) by the fact that t(i) and t(i + 1) 
are consecutive deadlines. Thus for all t E (t(i),t(i + l)), 
s;(t) < S;(t(i + 1)) = &(t(i + 1)) < U,(t(i + 1)) = U,(t) 
and SF(t) 2 Sk(t(i)) = Sk(t(i)) 2 Lk(t(i)) = Lk(t), which 
shows Sk is valid. q 

Given a certain amount of media data to be transmitted 
between two consecutive deadline points for a given stream, 
the transmission can be evenly spread out throughout the 
entire interval. The deadlines can also belong to different 
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streams, as long as they are adjacent. An illustrative exam- 
ple is given in Figure 7. 

(d lnuhpkxing schedule (II) per-rueam rchdub CC) rearranged per-sueam Schedule 

Figure 7: Inter-deadline transmission rearrangement 

We examine the effect of rearrangement on the overall 
multiplexing schedule. Note that the transmission of all 
media data in a time interval are evenly spread out in the 
given time interval. But the total amount of media data de- 
livered over the interval does not change, so the rearranged 
multiplexing schedule with even-rate transmission have a 
bandwidth no more than the original multiplexing schedule 
in this interval. This is true for every consecutive deadline 
interval, thus we have the following lemma. 

Lemma 10 The even inter-deadline spread transmission re- 
arrangement does not result in a bandwidth increase of the 
multiplexing schedule. 

Proof: By the preceding argument. 0 
We apply the technique to the greedy E-EDF multiplex- 

ing schedules under bandwidth OMB. Because the greedy 
E-EDF schedules are optimal, the resulting schedules must 
also be optimal by Lemma 10. Consequently, the technique 
reduces the per-stream bandwidth requirements while main- 
taining optimal multiplexing. 

Theorem 4 The multiplexing schedules resulted from ap- 
plying even inter-deadline spread technique to the greedy E- 
EDF schedules under bandwidth OMB are optimal and achieve 
the optimal multiplexing bandwidth OMB. 

Proof: First the resulting multiplexing schedules are valid 
based on Lemma 9. By Lemma IO, the resulting schedules 
requires no more bandwidth than greedy E-EDF schedules. 
But by Theorem 2, greedy E-EDF schedules are optimal and 
achieves the lowest possible bandwidth OMB. 0 

5.3 Algorithm and Complexity 

The following algorithm implements the even inter-deadline 
spread technique. Given an arbitrary bandwidth bound B 
(in the case of optimal multiplexing, B = OMB), the algo- 
rithm calculates the per-stream schedules by applying the 
even inter-deadline spread technique to the greedy E-EDF 
schedule under bandwidth B. 

While (Data-To-Transmit > 0 and Eligible-Set # 0) 
oI = element with the earliest deadline in Eligible-Set; 
sk = the stream to which o; belongs; 
Element-Data~o-Transmit = 

min{s(i), ResidualBuffer[lc], TotalData_To_Transmit}; 
s(i) -= Element-Data-To-Transmit; 
If s(i) = 0 EligibleSet = EligibleSet - {ot}; 
Stream-Data-To-Transmit[k] += Element-Data~o-Transmit; 
TotalData-To-Transmit -= Element-Data-To-Transmit; 
ResidualBuf f er[k] -= ElementData-To-Transmit; 
If ResidualBuf f er[k] = 0 Eligible-Set = 

Eligible-Set - {elements of stream sk}; 
End 
Transmit stream sk at rate StreamData_To_Transmit[k]/(d2 - dl), 

Vk=1,2,...,K; 
dl = dz; 

End 
End 

The algorithm performs one sweep of the media elements 
in the order of their deadlines. Between two consecutive 
deadlines, it executes the greedy E-EDF multiplexing scheme 
under the bandwidth B, and calculates the amount of me- 
dia data from each of the streams to be transmitted. The 
total quota of media data to be transmitted during a dead- 
line interval [dl, dz] is B * (dz - dl) by the greedy criterium, 
provided there are always media elements eligible. The al- 
gorithm proceeds to distribute this quota to the each of 
the media streams. The process is carried out on the set 
of eligible media elements in the increasing order of their 
deadlines. The earliest eligible media element is allocated 
a portion of the transmission quota equal to its size. The 
quota distribution continues until it is fully distributed or no 
media element is eligible. Subsequently, the aggregated per- 
stream transmission quota is spread out evenly throughout 
the deadline interval [dl, dz]. With proper data structure, 
the algorithm takes linear time O(KN) (in the number of 
media elements). 

5.4 Optimal Admission Control 

In addition to mitigating the per-stream effect of optimal 
multiplexing, the above per-stream scheduling algorithm plays 
another important role. The algorithm can be used as ad- 
mission controlfor on-demand continuous multimedia stream- 
ing. Let the media server have a bottleneck bandwidth of 
B and is serving a set of on-going media streams. When 
a new media streaming request arrives, the server has to 
decide whether it has enough capacity (bandwidth) to ac- 
commodate the new stream. To make the admission deci- 
sion, we run the algorithm on the new set of streams, with 
the new stream added, under the total bandwidth B. The 
new stream request is admitted if no playback starvation 
occurs (easily checked against the lower bounds Lk) during 
the execution of the algorithm. Consequently, the algorithm 
accomplishes the dual tasks that are essential for the me- 
dia server: admission control and per-stream transmission 
scheduling. 

Algorithm to calculate per-stream schedules under bandwidth BThe proposed admission control algorithm is in fact an 
optimal admission controller, based on the optimality of the 

Function Per-Stream-Schedules(B) inter-deadline spread technique. It admits the maximum 
dl = first deadline; 
Residual-Buff er[k] = StreamBuf f erSize[k], Vk = 1,2,. . . , K; 

number of media streams that can be supported, covering 

Eligible-Set = {all media elements}; 
the largest admissible region. 

While (dr is not the final deadline) 
dz = next deadline after di ; 6 Numeric Results 
TotalData-To-Transmit = B * (dz - dl); 
Eligible-Set = Eligible-Set U {new eligible elements at dr >; We measure the performances of three different stream mul- 
Stream-Data-To-Transmit[k] = 0, Vk = 1,2,. . . ,K; tiplexing schemes using real compressed video traces. The 
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‘able 1: Motion-JPEG compressed video traces used in the 
experiments 

three multiplexing schemes in our experiments are the summed 
inter-frame schedule and the summed optimal schedule de- 
fined in Section 3 and the optimal multiplexing schedule in- 
troduced in Section 4. Recall that the first two schemes are 
obtained by simply stacking the individual stream schedules 
together, one based on the simplistic inter-frame individual 
schedules and the other based on the more sophisticated 
optimal individual schedules. On the other hand, optimal 
multiplexing uses greedy E-EDF scheduling, taking advan- 
tage of both intra-stream and inter-stream correlations. 

The variable-bit-rate (VBR) video traces used in the ex- 
periments were obtained from [3] and available on-line at [4]. 
The traces are compressed using Motion-JPEG video cod- 
ing standard, with the statistics of the video traces shown 
in Table 1. (We also used MPEG video traces and mixed 
M-JPEG and MPEG traces, the results are similar and not 
shown here due to space reasons). 

To produce a sufficient number of concurrent video streams, 
we use a procedure to extract 30-minute long video segments 
from the available traces. For example, in order to generate 
a certain number of video streams to multiplex, we cycle 
through the available video traces and extract 30-minute 
video streams at equally-distanced points within each of 
the video traces. The generation process actually reflects 
a somewhat realistic scenarios where users started viewing 
at different times, thus are viewing different parts of the 
same programs at the same time. 

Figure 8: Multiplexing performances with homogeneous 
streaming buffers 

We measure the performances of the multiplexing schemes 
based on the average bandwidth allocation per multiplexed 
stream (i.e. the total bandwidth divided by the number of 
multiplexed streams). The schedules are calculated based 
on a one-second startup delay to avoid the possible startup 

delay effect on the overall bandwidth [18]. Figure 8(a) shows 
the multiplexing performances of 10 to 200 video streams, 
generated using the above procedure, with a 1MB stream- 
ing buffer at the receiver. As expected, optimal multiplexing 
achieves the lowest bandwidth among the three multiplex- 
ing schemes with any number of multiplexed streams (in 
fact, it achieves the bandwidth lower-bound). Figure 8(b) 
shows the multiplexing of 100 streams with varying stream- 
ing buffer sizes from 50KB to 10MB. Somewhat surprising 
in this figure is the fact that the rudimentary summed intra- 
frame schedule sometimes out-performs the more sophisti- 
cated summed optimal schedule, which demonstrates the 
fact that optimally scheduling individual streams may not 
always result in a better overall schedule. 

Figure 9: Multiplexing performances with heterogeneous 
streaming buffers 

In addition to homogeneous streaming buffer sizes, we 
also tested the multiplexing performances under heteroge- 
neous receiver streaming buffer sizes. Figure 9(a) shows the 
multiplexing of 10 to 200 streams with two distinct levels of 
streaming buffer sizes: 1OOKB and 10MB. Half the receivers 
have 1OOKB streaming buffers and the other half have 1OMB 
ones. Figure 9(b) shows the performances with three dis- 
tinct streaming buffer levels: lOOKB, 1MB and 10MB. The 
results are similar to the ones with homogeneous buffer sizes, 
thus the multiplexing techniques apply to heterogeneous en- 
vironments as well. 

Figure 10: Per-stream bandwidth effect using transmission 
rearrangement 

Finally, we tested the performances of mitigating the ad- 
verse per-stream bandwidth effect using inter-deadline trans- 
mission rearrangement. We used the same parameters as 
before, 10 to 200 streams with 1MB streaming buffers and 
100 streams with 50K to 1OMB streaming buffers. Ap- 
plying the inter-deadline transmission rearrangement tech- 
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nique, the per-stream schedules were derived and recorded. 
The peak rates of each per-stream schedule are then repre- 
sented as ratio versus the optimal peak rates of the respec- 
tive stream scheduled individually. For any given number 
of multiplexed streams, we show the average, maximum and 
minimum of such ratios in Figure 10. The results show that 
the technique performs reasonably well. Comparing to the 
per-stream bandwidths as high as the optimal multiplexing 
bandwidth (OMB) of the whole set of streams prior to rear- 
rangement, the reduction is significant. There could still be 
room for improvement, which is part of the future research. 

7 Conclusion 

We proposed bandwidth efficient multiplexing techniques for 
the delivery of continuous media streams to a set of dis- 
tributed and heterogeneous receivers. In particular, we in- 
troduced a multiplexing scheme that is provably optimal, 
achieving the highest possible multiplexing gain, while sup- 
porting stringent and deterministic quality of service guar- 
antees. The optimal multiplexing bandwidth was derived 
and expressed in closed-form. An algorithm for its cal- 
culation runs in linear time in most cases, which was not 
described here in detail due to space reasons. Given the 
optimal multiplexing bandwidth, a transmission rearrange- 
ment technique was introduced that resulted in reducing 
the per-stream bandwidth significantly, while maintaining 
multiplexing optimality. The reduction in per-stream band- 
width is necessary to mitigate the adverse effects of opti- 
mal multiplexing on the end-to-end per-stream bandwidth 
requirement. The linear-time per-stream scheduling algo- 
rithm was easily extended for admission control at the me- 
dia server for on-demand continuous media streaming. The 
admission control is optimal in the sense that it supports 
the maximum number of continuous media streams. 

Future research directions include studying a more gen- 
eral and potentially more difficult problem: what is the 
optimal multiplexing bandwidth achievable under specific 
per-stream bandwidth constraints. The result will be very 
useful when the available per-stream bandwidth resource is 
known in advance. Other future directions include improv- 
ing the running time of on-demand admission control and 
per-stream scheduling, possibly through incremental tech- 
niques, and trying to design an theoretically-provable linear- 
time algorithm to calculate the optimal multiplexing band- 
width under general condition. 
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