
Bandwidth-Efficient Continuous Media Streaming Through
Optimal Multiplexing

Wei Zhao
Mobile Comput,ing a.nd Multimedia Lab

Department of Computer Science
TJniversity of Maryland

College Paak, MD 20742
zwQcs.umd.edu

Satish K. Tripathi
Bourns College of Engineering

University of California
Riverside, CA 92521-0425

tripathi@engr.ucr.edu

Abstract

Maximizing bandwidth efficiency in dist,ributed continuous
media streaming systems is the key in delivering cost-effective
mult,imedia services to distributed and heterogeneous re-
ceivers. We introduce a technique based on stream multi-
plexing to achieve the highest possible bandwidth efficiency,
while preserving stringent and deterministic quality of ser-
vice guarantees. The technique accomplishes the optimal
multiplexing (i.e. resulting in the lowest possible bandwidth
allocation) by exploiting both the temporal and the spatial
structures among a group of continuous media streams. We
present a family of optimal multiplexing schedules. The ad-
verse per-stream effects of optimal multiplexing are stud-
ied and a technique based on t,ransmission rearrangement is
proposed to mitigates these effects, without sacrificing the
achieved mult,iplexing optimahty. The results presented in
the paper provide some fundament#al criteria and limits in
the design a.nd evaluation of resource alloca.tion, admission
control and &ream scheduling policies for bandwidth effi-
cient continuous media streaming.

Keywords: Multimedia Streaming, Transmission Schedul-
ing, Mult,iplexing, Bandwidth Allocation, Admission Con-
trol, Temporal Smoothing, Feasible Region, Quality-of-Service

1 Introduction

The a.dvance of network technology towards high bandwidth
and ubiquitous connectivity (e.g. Intranet,, Internet, Wire-
less, Satellite, Cellular, etc.), as well as the progressively
more diversified, more powerful and cheaper end-user de-
vices (e.g. PCs, TV set-top boxes, wireless hand-held de-
vices, etc.) are establishing a solid infrastructure upon which
the proliferation of multimedia communications is envisioned
in the near future. Although new t,echnologies developed in
t,he recent years allow most) continuous media (e.g. video
and audio) to be encoded, stored and transported in com-
pressed forms that require much lower data rates, the deliv-
ery of continuous media with decent quality from a server
over the network is still bandwidth intensive. To provide
cost-effective continuous media streaming services in envi-

Permissnn to make dlgital or hard copes of all or part of this work for
personal or classroom use IS granted without fee provided that
copes are not made or distributed for profit or commercial advan-
tage and that copes bear this notw and the full cltatlon on the first page
To copy otherwise, to republish, to post on servers or to
redtstribute to ksts, requres prior specific permission and/or a fee.
SIGMETRICS ‘99 5/99 Atlanta. Georgia, USA
0 1999 ACM 1.58113.083.X/99/0004...$5.00

ronments with finite bandwidth resources, improving the
bandwidth efficiency is the key.

One of the major factors affecting the bandwidth effi-
ciency of streaming is the high variability in data rate over
the durations of continuous media streams [6]. The high
variability is contributed by both the inherent media content
dynamics and the use of prediction-based encoding tech-
niques (e.g. inter-frame coding in MPEG video [lo]) for
higher compression performances.

Traditionally, peak-rate allocation is used to allocate net-
work bandwidth for the streaming of variable-bit-rate (VBR)
continuous media streams. However, peak-rate allocation
can be quite wasteful of network resource if the bit-rate vari-
ation is high. Although there are other network services such
as ATM VBR service aimed at transporting VBR sources,
due to their statistical nature, they are not suitable for the
transport of continuous media with deterministic quality-of-
service (QoS) guarantees.

Temporal smoothing techniques 115, 51 have been pro-
posed over the past few years. The techniques take a work-
ahead approach by delivering and buffering media data some
time prior to their playback. By carefully scheduling the
transmission of media data (e.g. video frames) over time,
the receiver is able to playback the continuous media stream
without playback starvation or buffer overflow. When the
media stream profile (e.g. frames sizes) is known a priori, an
optimal temporal transmission schedule can be calculated
that a.chieves the lowest possible bandwidth requirement.
Temporal smoothing has been shown to be very effective
[15] in reducing the bandwidth allocation of individual con-
tinuous media streams.

Figure 1: Typical media distribution scenario

In typical media-on-demand scenarios (Figure l), contin-
uous media are being strea.med from a media server to a set
of dist.ribnted receivers through a combined end-system and
network distribution tree. Portions of the distribution tree,

13

http://crossmark.crossref.org/dialog/?doi=10.1145%2F301453.301476&domain=pdf&date_stamp=1999-05-01

including the media storage device, the network interface
adapter at the media server and the shared network path,
are being shared by groups of on-going continuous media
streams. With multiple VBR streams sharing a common re-
source, there is the potential of reducing the overall allocated
bandwidth (i.e. disk, interface or network bandwidth) at the
shared resource by inter-stream multiplexing. In a few re-
cent works [8, 171, phase-based multiplexing techniques are
proposed to achieve higher bandwidth efficiencies for MPEG
video streams. Taking advantage of the Group-Of-Picture
(GOP) frame structure of MPEG [lo], periodic phase-based
time-varying traffic envelopes are used to characterize the
bit-rate of the streams, based on which multiplexing sched-
ules are derived with the purpose of reducing the overall
bandwidth allocation.

In this paper, we propose techniques exploiting the ad-
vantages of both temporal smoothing and spatial multiplex-
ing. Unlike previous studies involving statistical multiplex-
ing (e.g.[16]) where statistical or probabilistic guarantees
were provided, the techniques proposed in this paper achieve
higher bandwidth efficiency while maintaining stringent and
deterministic quality of service guarantees. In fact, we show
that the proposed technique achieves the optimal multiplex-
ing in the sense that it requires the least possible bandwidth
among all valid streaming schedules.

There have been studies on stream-sharing techniques to
improve bandwidth efficiency, where a single stream origi-
nated from the server is shared by multiple requests or re-
ceivers. In “stream-batching” [2, I], requests for the same
continuous media stream are batched and served with a sin-
gle stream, if the requests are within a certain time interval
of each other. Bandwidth is saved by allocating a single
stream at the server for multiple requests, but at the cost
of additional startup delays due to batching. In an alterna-
tive technique called “adaptive piggybacking” [7], streams
are started without additional waiting time, but are played-
back at slightly different speeds. As playback progresses,
streams will eventually “merge into” other on-going streams
to save bandwidth.

Stream-sharing techniques are orthogonal and mutually-
complimentary to the stream multiplexing techniques pro-
posed in this paper. Stream multiplexing can improve the
bandwidth efficiency for the delivery of a set of concur-
rent media streams that can not be further trimmed down
using stream-sharing. Stream multiplexing can also work
with other streaming techniques, such as adaptive stream-
ing [12, 131 in environments with fluctuating resource con-
ditions, to improve their bandwidth efficiencies.

We present a family of optimal multiplexing schedules
that achieve the bandwidth lower bound. The multiplexing
schedule is then mapped into individual per-stream sched-
ules that can be executed by the server. However, optimiz-
ing the multiplexing bandwidth is often realized at the cost
of suboptimal per-stream bandwidth efficiencies. In some
cases, the resulting per-stream bandwidth becomes so high
that it offsets any achieved multiplexing bandwidth savings.
To overcome this deficiency, we propose a revised per-stream
scheduling technique to mitigate the adverse per-stream ef-
fects while still maintaining the same optimal multiplexing
bandwidth.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the continuous media streaming process
and its fundamental resource requirements. In Section 3, we
introduce the basic notions and properties of stream multi-
plexing. In Section 4, we establish the exact bandwidth
lower bound for the streaming of a set of continuous media

streams and present a family of optimal multiplexing sched-
ules. Transmission rearrangement of per-stream schedules
is introduced in Section 5. Numerical results based on real
compressed video traces are shown in Section 6.

2 Continuous Media Streaming and Resource Require-
ment

Figure 2 shows a typical multimedia streaming system. Mul-
timedia contents are being retrieved from a media server (or
a network of servers) where the contents are stored, and
streamed over a network distribution tree, to a set of dis-
tributed, possibly heterogeneous receiving devices where the
content are being rendered. We use the term streaming to
distinguish itself from the alternate approach of download-
ing and playing-back. Streaming has clear advantages over
downloading: it provides a much smaller playback startup
delay and requires a much smaller storage buffer to tem-
porarily store the received multimedia content.

server network end-user device

Figure 2: Components of a continuous media streaming sys-
tem

2.1 System Components and Scheduling Constraints

Figure 2 shows the components of a continuous media stream-
ing process from a server to a receiver. The end-to-end
streaming path consists of components and resources from
the server, the network and the receiver. After a streaming
request is received and processed by the server, the requested
continuous media is retrieved from the server’s storage unit,
packetized and sent through its network interface adapter,
over a network path to arrive at the receiver’s network in-
terface. When the receiver receives a data packet, it stores
the received data temporarily in its streaming buffer. A ren-
dering thread running on the receiver periodically picks up
the media elements (e.g. video frames) from the streaming
buffer, executes the decoding routine and renders the media
elements (screen display or audio playback) at their sched-
uled presentation times. After a media element is picked up
from the streaming buffer, it is no longer useful and is dis-
carded to free up its buffer space for incoming media traffic.

Let the continuous stream consist of N media elements,
each media element Ok having a data size of s(i) and a
deadline of t(i) representing its scheduled playback time.
There is a streaming buffer of size M at the receiver side to
temporarily store the incoming stream traffic. The process
can be represented by a feasible region in Figure 3. The
horizontal axis represents time t and the vertical axis rep-
resents the cumulative amount of data y received by the
client. A transmission schedule is then represented by a
monotonically nondecreasing curve starting at y = 0. The
slope of the transmission curve at any point is therefore
the instantaneous transmission rate at that time. To avoid
starvation of the rendering thread, media elements must ar-
rive before their respective deadlines. Hence a lower bound
curve L(t) is defined to represent the minimum cumulative

14

Figure 3: A continuous media stream and its feasible region

amount of data that should have been received by time t,

L(t) = Ct(i)<t s(i). On the other hand, the streaming

buffer has only a finite size of M. To avoid buffer over-
flow, an upper bound curue U(t) is defined to represent the
maximum amount of data that can be delivered by time
t. Thus U(t) lies A4 units above L(t) immediately after a
stepping point of L(t), when the buffer space for the due
media element is freed up, U(t) = L(t-) + M for t > 0, and
U(0) = 0. For convenience, let t(0) = 0. Therefore, any
part of a schedule curve lying below L(t) leads to playback
starvation, while any part lying above U(t) leads to buffer
overflow. L(t) and U(t) define the boundaries of a feasible
region. A transmission schedule is valid if and only if the
transmission curve lies within the feasible region.

2.2 Fundamental Bandwidth Requirement

Among all valid transmission schedules, we are most inter-
ested in the ones that are most bandwidth efficient (i.e. re-
quiring the least amount of bandwidth). Bandwidth efficient
schedules maximize the utilization of the available band-
width (with or without reservations) and are more likely
to be admitted successfully in a reservation-based system.
The following lemma establishes the exact bandwidth lower
bound of a continuous media streaming process.

Figure 4: Slopes from t(i) to t(j) and constructed schedule
with peak rate B

linking U to L with a higher slope than B, contradicting B’s
definition.

Lemma 1 Let B* be the exact lower bound on the peak rate
o.fany valid transmission schedules, B” = inf(Peak(S is valid),
&here Peak(S) is the peak rate of schedule s‘. The;,”

Proof: Let B represent the right side of the equation. We
first show that B’ 2 B. To show this, consider the stream-
ing process from time t(i) to t(j) (Figure 4(a)). any valid
schedule S must be at or below U(t(i)) at time t(i) and be
at or above L(t(j)) at time t(j). Therefore, the peak rate
of S between t(i) and t(j) must be at least the slope of
the segment linking (t(i), U(t(i))) to (t(j), L(t(j))), which is
(L(t(j)) - U(t(i)))/(t(j) -t(i)). By the facts that this holds
for any 0 5 i 5 j 5 N for any schedule S and that the
schedule slopes are always non-negative, B’ 2 B holds.

We then show B* < B by constructing a valid schedule
S with peak rate B from (0, U(0) = 0). S maintains slope
B until it reaches U, at which point it takes slope 0 until it
reaches the closest stepping point of U where it can resumes
slope B. The process repeats till the end of the stream
(Figure 4(b)). Obviously S has a peak rate B. S is also valid
since the segments with slope B originating from U never
penetrate L first. Otherwise, we would have found a segment

r

2.3 The Inter-frame and the Optimal Transmission Sched-
ules

A valid schedule can be easily derived by sending each media
element at a constant rate in the interval between the previ-
ous deadline and its deadline. We call the schedule derived
this way the inter-frame schedule, as shown in Figure 5(a).

An optimal temporal transmission scheduling algorithm
was presented in [15]. The algorithm produces a piecewise
linear transmission schedule that is as smooth as possible,
with the minimum peak rate and rate variance over all valid
transmission schedules. The algorithm is straightforward:
starting with t = 0, the algorithm looks for the longest seg-
ment within the feasible region (Figure 5(b)). If the segment
ends on the lower bound curve, it generates a schedule seg-
ment ending at the latest upper bound it touches, and vice
versa. The procedure is then repeated from the new start
point. The algorithm is essentially identical to the short-
est path algorithm in the feasible region [9]. An equivalent
algorithm with running time O(N) was presented in [14].

r

(a) The inter-frame schedule (h) The optimal schedule

Figure 5: The inter-frame and the optimal transmission
schedules

3 Fundamentals on Stream Multiplexing

3.1 Stream Aggregations

We first consider a simplified scenario of stream multiplexing
where all streams are being delivered to the same destina-
tion with a shared streaming buffer. The size of the shared
streaming buffer is thus the sum of the individual streaming
buffers. In such scenario, we can actually aggregate the mul-
tiple continuous media streams and treat them equivalently
as a single stream. We define this as stream aggregation,

15

resource requirements separately. We turn to Section 2
and examine Figure 4 of Lemma 1. The maximum amount
of data that could have be delivered for a stream sk by
time t(i) is upper bounded by U,(t(;)) to avoid streaming
buffer overflow; the minimum amount of data that should
have been delivered for stream sk by time t(j) is lower
bounded by Lk(t(j)) to avoid playback starvation. Thus
the minimal amount of data belonging to stream sk that
needs to be delivered during the time interval [t(i),t(j)] is
L(t(j)) - U@(i)), or zero if this value is negative (deliv-
ered data can not be retracted). Since this is true for ev-
ery stream, the total amount of media data that needs to
be delivered during the time interval [t(;),t(j)] is at least

cf=, max{Lk(t(j)) - U,(t(;)), 0). The peak bandwidth
needed in this interval to deliver this amount of data is thus
Cr=, max{Lk(t(j)) - U,(t(i)), O}/(t(j) - t(i)). Taking the
maximum of this expression over all possible i,j, we have
the inevitable multiplexing bandwidth (i.e. bandwidth that
is absolutely necessary) for the transport of a group of con-
tinuous media streams.

Lemma 5 The inevitable multiplexing bandwidth to deliver
a set of streams is

maXCQCjlN ~~cl maxiLk - Uk(t(i)), oll(t(j) - t(i)).

Proof: Proof given by the above derivations. 0

4.2 Eligible Earliest Deadline First Multiplexing

We introduce a family of multiplexing schedules called El-
igible Earliest Deadline First (E-EDF) multiplexing. The
schedule is based on the traditional Earliest Deadline First
(EDF) task scheduling [II] that have been well-studied and
widely applied in a number of different areas. We extend
EDF to schedule the multiplexing and transmission of mul-
tiple continuous media streams.

EDF is a straightforward scheduling scheme, where tasks
or objects are scheduled or processed in the order of their
deadlines. The one with the earliest deadline is handled
first. Despite its simplicity, EDF is an optimal scheduling
scheme in the sense that it can duplicate any valid schedules
[II] with the same amount of resource.

E-EDF extends EDF by imposing an eligibility constraint
to each candidate media element. Only media elements that
are eligible can be scheduled for transmission. A media el-
ement is defined as eligible if its transmission does not re-
sult in streaming buffer overflow at the receiver. Among
all media elements that are eligible, E-EDF selects the one
with the earliest deadline for transmission. Note that me-
dia elements can be partially eligible (when the residual
buffer space does not hold the entire media element) and
thus transmitted in portions, and that the tie-breaking rule
among eligible media elements with the same deadline is
unspecified, resulting in a family of schedules.

Definition 1 Sri/// is an E-EDF multiplexing schedule if and
only if the followings hold: at any time t when a media el-
ement o with deadline d is under transmission, o is eligible
and for any other object p with deadline e not yet finished
transmission, p is either ineligible or e 2 d. A media ele-
ment from stream s, is defined as eligible at time t if and
only if the residual streaming bufler size U,(t) - Si(t) > 0.

Despite its simplicity, we can show that E-EDF is an
optimal multiplexing scheme. A multiplexing scheme is op-
timal if no other multiplexing scheme can produce a multi-

plexing schedule having a lower resource (in this case, band-
width) requirement. We establish this by showing that it
is impossible for any multiplexing schedule to be valid if an
E-EDF schedule with the same bandwidth requirement is
not valid. In other words, no other multiplexing scheme can
possibly do better than E-EDF.

Theorem 1 E-EDF multiplexing is optimal.

Proof: Let Szdf be an E-EDF multiplexing schedule con-

sisting of per-stream schedules SPedf for stream se, i =
1,2,. . . , K. Let SM be an arbitrary multiplexing schedule
with the same schedule curve (i.e. SM(t) = S’zdf(t),Vt, thus
having the same bandwidth requirement) consisting of indi-
vidual per-stream schedules Si,i = 1,2,. , K. Suppose 5’~
is valid while SGdf IS not. We show this results in contra-
diction.

To trace the schedules as they progress over time, we
divide the time-axis into small time-slices. Time-slices are
delimited by critical events. There are two types of critical
events: the arrival of a deadline and the start of the trans-
mission of a new media element. We show at the end of each
time-slice, the following claim is true: for every deadline d,
the total amount of media data with deadline d or earlier
transmitted in Sz@ is no less than that in SM. The claim
is shown by induction on the time-slices.

Initially, the claim holds trivially since no media elements
have been transmitted yet. Suppose the claim holds at the
end of time-slice 1, we show it still holds at the end of time-
slice 1+1.

In SEdf, the media elements (can be one or multiple)
under transmission during time-slice 1 $ 1 must be eligible
and have the same earliest deadline d’ among all eligible me-
dia elements. Note that they consume all the bandwidth of
s$f , which is also the bandwidth of S’M during time-slice
I+ 1. Thus for any deadline d 2 d’, the entire bandwidth
in time-slice 1 f 1 is dedicated to the transmission of media
elements with deadline d or earlier. By induction hypoth-
esis, the claim holds for d 2 d’ at the end of time-slice
1 + 1. For any deadline d < d’, the reason why media el-
ements with deadline d’ are being transmitted in SEdf is
that all media elements from other streams with deadlines
less than d’ not yet transmitted are all ineligible. In other

words, their streaming buffers have been filled in Sgdf and
the transmission of their media elements has reached their
maximums by the end of time-slice 1. For those streams with
non-full streaming buffers, their media elements with dead-
lines d < d’ or earlier have already been totally transmitted
in Sgdf by the end of time-slice 1. So the amount of media
elements with deadlines d < d’ or earlier that can be trans-
mitted by the end of time-slice I+ 1 have already reached
its upper bound in SEdf by time-slice 1. There is no way to
achieve a higher amount in SM by the end of time-slice l+ 1

By induction, the claim holds. Now at any deadline d,
the transmitted media element with deadline d or earlier in

SM eedf is no less than that of SM, contradicting the assump-

tion that Szdf leads to playback starvation while SM does
not.

0

4.3 Achieving the Inevitable Bandwidth

In this part, we show that the inevitable multiplexing band-
width given in Lemma 5 can actually be achieved by a fam-

17

ily of E-EDF multiplexing schedules. Consequently, the in-
evitable bandwidth is the optimal multiplexing bandwidth,
achievable by a family of optimal E-EDF multiplexing sched-
ules.

Before proceeding, we introduce a family of E-EDF mul-
tiplexing schedules called Greedy E-EDFmultiplexing sched-
ules. Given a certain bandwidth bound B, greedy E-EDF
schedules use the entire available bandwidth B as long as
there are eligible media elements to transmit, while follow-
ing the earliest eligible requirement of E-EDF. Obviously,
greedy E-EDF schedules under bandwidth B has a peak
bandwidth requirement of B..

Definition 2 A greedy E-EDF multiplexing schedule Sgedf
under bandwidth B is an E-EDF multiplexing schedule with
the following property: at any time t, if there are eligible
media elements to be transmitted, 5’gedf’(t) = B; other-

wise, SEedf’(t) = 0. Note that the derivative S’(t) is the
transmission rate of schedule S at time t.

We establish the optimality of the inevitable bandwidth
in Lemma 5 by showing that a greedy E-EDF multiplexing
schedule under the inevitable bandwidth is a valid multiplex-
ing schedule. Since E-EDF already ensures that the receiver
streaming buffer does not overflow, all we need to show is
that no playback starvation occurs by following the greedy
E-EDF multiplexing schedule.

Lemma 6 A greedy E-EDF multiplexing schedule Sgedf un-
der the inevitable bandwidth does not lead to playback star-
vation.

Proof: Suppose S, geedf leads to playback starvation. As-
sume the first playback starvation occurred at time t(j),

when a media element from stream Sk with deadline t(j)

had not been delivered by time t(j). Let t(i) be the last
time instant prior to t(j) that either a media element with
deadline later than t(j) was being transmitted or no media
element was under transmission. t(i) is 0 is no such t(i) ex-
ists. t(i) must be a deadline of some media element since
media elements with earlier deadlines only becomes eligible
as the streaming buffer changes from full to non-full after a
media element is picked up and rendered.

At time t(i), we divide streams into two sets. The streams
with media elements with deadlines t(j) or earlier not yet
delivered are classified as pending streams. The remain-
ing are called non-pending streams. The only reason that
either a media element with deadline later than t(j) was be-
ing transmitted or no element was under transmission until
t(i) under E-EDF was that the pending streams (with el-
ements of earlier deadlines) all had their streaming buffer
filled until t(i), thus making their media elements ineligible
for transmission.

From time t(i) to t(j), only media elements belonging to
pending streams got transmitted because t(i) was the latest
time a media elements with deadline later than t(j) could be

transmitted. The schedule Sgedf also consumed all the in-
evitable bandwidth from t(i) to t(j) because t(i) was the last
time that all media elements could be ineligible. The amount
of data being transmitted from t(i) to t(j) is thus t(j) -t(i)
times the inevitable bandwidth in Lemma 5, resulting in an

amount of maXO~t<3~N ~~cl maX{Lk(+)) - U,@(i)), 0).

At t(i), all pending streams had their streaming buffer

filled, Sleedf(t(i)) = U,@(i)) for all pending Stream Sk,

where Sleedf is the per-stream schedule for stream s,+. But

by the earlier assumption, 5’zedf caused a playback starva-
tion at time t(j). So the amount of data transmitted from

t(i) to t(j) is less than xskEPelzdlng Lk(t(j)) - Sieedf (t(i)),

since only pending stream elements with deadlines no later
than t(j) were transmitted from t(i) to t(j). For every pend-
ing stream Sk, there existed media elements with deadlines
t(j) or earlier to be transmitted at time t(i) and the stream-
ing buffer was full at t(i), so Lk(t(j))-Uk(t(i)) = Lk(t(j))-

.P"""f(t(i)) > 0. For every non-pending stream Sk, me-
dika elements with deadlines t(j) or earlier had already been
transmitted at time t(i), indicating Lk(t(j)) - Uk(t(i)) 5

L&t(j)) - ‘, geedf t i)) < 0. Rewriting the previous expres- ((-
sion, the amount of data transmitted from t(i) to t(j) is less

than c;=, maX{lk(t(j)) - uk(t(;)), 0).

This contradicts the earlier result of having to trans-

mit maXo<;<3<N CF==, max{Lk(t(j)) - Uk(t(i)), 0) amount
of media data from t(i) to t(j).

Combining the results obtained so far, we have the fey
lowing main result.

Theorem 2 The optimal multiplexing bandwidth (OMB) for
a set of continuous media streams is as follows, OMB =

maXO<Q1N cFTl max{lk(t(d) - Uk(t(i))s o}/(t(.i-t(i)),

Furthermore, the greedy E-EDF multiplexing schedules un-
der the bandwidth OMB are a family of optimal multiplexing
schedules achieving the optimal multiplexing bandwidth.

Proof: By Lemma 6 and Theorem 1. 0

4.4 Multiplexing and Aggregation

In the last section, we introduced the concept of stream
aggregation and showed that stream aggregation served as
a bound for stream multiplexing. In particular, we showed
that any valid stream multiplexing schedule is a valid stream
aggregation schedule but the vice zlersa is not true in general.
In the following, we show the exact, and somewhat interest-
ing relationship between stream multiplexing and stream ag-
gregation. Let @ be the set of the continuous media streams,
@={(51,32)...) SN}.

Lemma 7 Let 5’~ be a valid multiplexing schedule, it holds
that Peak(SM) 1 Peak(S,$), for any 4 s @, where SG is
the optimal aggregation schedule for the set of streams 4.

Proof: Recall that 5’~ is the sum of the per-stream trans-
mission schedules S1, SZ, . . , SIC pertaining to the individual

Streams Sl, S2,. , SIC, respectively. so SM = cf=, Sk >

CCL++ sk. Note that cskE+ Sk is a valid multiplexing sched-

ule for the stream set 4, applying Lemma 4 to the stream
set 4, we have Peak(zskE4 Sk) 2 Peak($). Combining

the above, we get Peak(SM) > Peak($). 0

Lemma 8 Let ~,5 be a subset of streams, then for any t(i) <

t(d, Peak(SG) 2 c ,kE+(L&(j)) - u(t(i)))/(t(d -t(i)).

Proof: By Lemma 2, the feasible region for the stream
aggregation of the stream set 4 is (CzkE4 Lk, zckEd uk).

Applying Lemma 1 to the stream aggregation, Peak(SG) =

max{max,(,)<,(,)(Csk~~ Lk(W-CskEd Uk(t(i)))l(t(.i-
t(i)), 0). Thus Peak(SG) > c ,,E~(Lk(t(j))-u(t(;)))/o-

t(i)). 0

18

Theorem 3 The optimal multiplexing bandwidth (OMB) of
a set of streams is the maximum of the optimal aggrega-
tion bandwidths among all its stream subsets, OMB(Q) =
rnax+c+ Peak($).

Proof: We first show OMB(Q) 5 rnax4=* PeaL(SG). Let
t(i) and t(j) be such parameters that maximize the right
side of the OMB formula in Theorem 2. In other words,

OMB(@) = cf=, maxVk(t(d) - Uk(t(i)), Oll(W -t(i)).
Let 4 be the set of such streams sk that Lk(t j))-Uk(t(i)) 2
0, the above equation becomes OMB(@) = !I .,,,ww-
Uk(t(i))/(t(j) - t(i)). But the right side of the equation is
exactly the one in Lemma 8, thus Peak(SG) 2 OMB(@)
using Lemma 8. Consequently, OMB(@) 5 Peak(Sz) 5
rnax+EQ Peak(SG).

On the other hand, by Lemma 7, OMB(@) 2 Peak(SG)
for any stream subset #J & @. It follows that OMB(Q) 2
rnax+Ea Peak($). 0

The result has some interesting implications. First, it
establishes a clear relationship between stream multiplexing
and stream aggregations. On one hand, for the same set
of streams, stream multiplexing is at least as bandwidth in-
tensive as stream aggregation. On the other hand, stream
multiplexing for a set of streams is no more bandwidth in-
tensive than the stream aggregations of some of its stream
subsets. Therefore, stream aggregations bound the band-
width requirement of stream multiplexing both ways from
upper and from under. In a sense, the bandwidth require-
ments of stream aggregation and stream multiplexing are
roughly on the same “order”.

Second, the result also suggests that the stream aggre-
gation of a subset of streams could be strictly more band-
width intensive than the stream aggregation of the entire set
of the streams. The phenomenon has indeed been observed
in some cases during our experiments using real compressed
video traces. In most of our experiments, the whole-set ag-
gregation turned out to be the most dominant aggregation
as would usually be expected. The apparent anomaly could
possibly be attributed to the fact that a larger aggregation
is also associated with a large streaming buffer, which could
be used effectively to reduce its bandwidth requirement. In
the cases that a subset aggregation dominates, multiplexing
the whole set of streams requires the same amount of band-
width as multiplexing a specific subset of the streams. In
some sense, the rest of the streams are being delivered “for
free”, without incurring additional bandwidth.

5 Mitigating Adverse Per-Stream Effects

Although optimal multiplexing maximally reduces the over-
all bandwidth requirement for a set of continuous media
stream on a shared network path (or disk, network interface
etc.), it can have adverse effects on the individual per-stream
schedules. In particular, it can cause the bandwidth require-
ment of individual streams to go up. In extreme cases, the
resulting per-stream bandwidth can become so high that the
adverse effects on individual stream offset any multiplexing
gains achieved using optimal multiplexing.

5.1 Worst-Case Per-Stream Bandwidth

In scenarios such as media-on-demand where continuous me-
dia streams are delivered over a server-rooted distribution
tree to a set of distributed receivers (e.g. Figure l), the
bandwidth available for an individual stream is limited by
the residual network path (e.g. from a local media reflector

to the receiver) or the last hop after the streams destined
to different receivers diverge. If the per-stream bandwidth
resulted from optimal multiplexing is higher than the band-
width available on the residual network path or the last hop,
the schedule for this individual stream can not be satisfied by
the available bandwidth on the path leading to the receiver
and becomes infeasible. The server would have to deliver the
stream separately without multiplexing with other streams.

In the worst case, the per-stream bandwidth can be as
high as OMB, the total multiplexing bandwidth. An ex-
ample is shown in Figure 7. Greedy E-EDF multiplexing
requires the full bandwidth OMB be consumed whenever
there are eligible media elements to transmit. In addition,
E-EDF mandates that media elements with later deadlines
never receive transmission until eligible elements with ear-
lier deadlines are fully transmitted. Consequently, if a media
element from a continuous media stream is the only eligible
media element left with the earliest deadline, it takes the
entire bandwidth of OMB. The resulting schedule for that
particular stream thus has a peak bandwidth requirement of
OMB. Even when the continuous media streams are fully
synchronized (e.g. have identical frame rate and start time)
so that there exist multiple media elements with the same
deadline with the possibility to shared the total bandwidth,
the worst-case per-stream bandwidth of OMB can still oc-
cur as the schedule progresses.

Compounding the problem is that OMB increases with
the number of continuous media streams. When there are
a large number of streams to be multiplexed together, the
worst-case per-stream bandwidth requirement of OM B could
be too high to be satisfied by the bandwidth resource avail-
able to an individual stream.

5.2 Equivalent Multiplexing Schedules

To mitigate the high per-stream bandwidth effect described
above, we introduce a technique that results in a family of
equivalent multiplexing schedules. These equivalent mul-
tiplexing schedules achieves the same optimal multiplexing
bandwidth. However, they result in much lower per-stream
bandwidths. The technique is based on a simple observation:
for any continuous media stream, media elements transmit-
ted between a deadline t(i) and the next deadline t(i+ 1) in
a valid schedule can be rearranged in any arbitrary manner
without sacrificing validity of the schedule.

Lemma 9 Let Sk be a per-stream schedule of stream Sk as
part of a valid multiplexing schedule, and t(i) and t(i + 1)
be two consecutive deadlines of stream Sk. The mdtiplexing

schedule resulted from rearranging the transmission of media
elements of stream Sk transmitted between t(i) and t(i + 1)
in Sk remains a valid multiplexing schedule.

Proof: It suffices to show the rearranged per-stream sched-
ule S(, is valid in the interval [t(i), t(i + l)]. As elaborated
earlier, S;(t) = Sk(t), for t = t(i) and t = t(i $ I), since the
rearrangement is restricted to the interval [t(i),t(i + I)]. In
the interior of the interval, Vt E (t(i), t(i+l)), L(t) = L(t(i))
and u,(t) = Uk(t(i + 1)) by the fact that t(i) and t(i + 1)
are consecutive deadlines. Thus for all t E (t(i),t(i + l)),
s;(t) < S;(t(i + 1)) = &(t(i + 1)) < U,(t(i + 1)) = U,(t)
and SF(t) 2 Sk(t(i)) = Sk(t(i)) 2 Lk(t(i)) = Lk(t), which
shows Sk is valid. q

Given a certain amount of media data to be transmitted
between two consecutive deadline points for a given stream,
the transmission can be evenly spread out throughout the
entire interval. The deadlines can also belong to different

19

streams, as long as they are adjacent. An illustrative exam-
ple is given in Figure 7.

(d lnuhpkxing schedule (II) per-rueam rchdub CC) rearranged per-sueam Schedule

Figure 7: Inter-deadline transmission rearrangement

We examine the effect of rearrangement on the overall
multiplexing schedule. Note that the transmission of all
media data in a time interval are evenly spread out in the
given time interval. But the total amount of media data de-
livered over the interval does not change, so the rearranged
multiplexing schedule with even-rate transmission have a
bandwidth no more than the original multiplexing schedule
in this interval. This is true for every consecutive deadline
interval, thus we have the following lemma.

Lemma 10 The even inter-deadline spread transmission re-
arrangement does not result in a bandwidth increase of the
multiplexing schedule.

Proof: By the preceding argument. 0
We apply the technique to the greedy E-EDF multiplex-

ing schedules under bandwidth OMB. Because the greedy
E-EDF schedules are optimal, the resulting schedules must
also be optimal by Lemma 10. Consequently, the technique
reduces the per-stream bandwidth requirements while main-
taining optimal multiplexing.

Theorem 4 The multiplexing schedules resulted from ap-
plying even inter-deadline spread technique to the greedy E-
EDF schedules under bandwidth OMB are optimal and achieve
the optimal multiplexing bandwidth OMB.

Proof: First the resulting multiplexing schedules are valid
based on Lemma 9. By Lemma IO, the resulting schedules
requires no more bandwidth than greedy E-EDF schedules.
But by Theorem 2, greedy E-EDF schedules are optimal and
achieves the lowest possible bandwidth OMB. 0

5.3 Algorithm and Complexity

The following algorithm implements the even inter-deadline
spread technique. Given an arbitrary bandwidth bound B
(in the case of optimal multiplexing, B = OMB), the algo-
rithm calculates the per-stream schedules by applying the
even inter-deadline spread technique to the greedy E-EDF
schedule under bandwidth B.

While (Data-To-Transmit > 0 and Eligible-Set # 0)
oI = element with the earliest deadline in Eligible-Set;
sk = the stream to which o; belongs;
Element-Data~o-Transmit =

min{s(i), ResidualBuffer[lc], TotalData_To_Transmit};
s(i) -= Element-Data-To-Transmit;
If s(i) = 0 EligibleSet = EligibleSet - {ot};
Stream-Data-To-Transmit[k] += Element-Data~o-Transmit;
TotalData-To-Transmit -= Element-Data-To-Transmit;
ResidualBuf f er[k] -= ElementData-To-Transmit;
If ResidualBuf f er[k] = 0 Eligible-Set =

Eligible-Set - {elements of stream sk};
End
Transmit stream sk at rate StreamData_To_Transmit[k]/(d2 - dl),

Vk=1,2,...,K;
dl = dz;

End
End

The algorithm performs one sweep of the media elements
in the order of their deadlines. Between two consecutive
deadlines, it executes the greedy E-EDF multiplexing scheme
under the bandwidth B, and calculates the amount of me-
dia data from each of the streams to be transmitted. The
total quota of media data to be transmitted during a dead-
line interval [dl, dz] is B * (dz - dl) by the greedy criterium,
provided there are always media elements eligible. The al-
gorithm proceeds to distribute this quota to the each of
the media streams. The process is carried out on the set
of eligible media elements in the increasing order of their
deadlines. The earliest eligible media element is allocated
a portion of the transmission quota equal to its size. The
quota distribution continues until it is fully distributed or no
media element is eligible. Subsequently, the aggregated per-
stream transmission quota is spread out evenly throughout
the deadline interval [dl, dz]. With proper data structure,
the algorithm takes linear time O(KN) (in the number of
media elements).

5.4 Optimal Admission Control

In addition to mitigating the per-stream effect of optimal
multiplexing, the above per-stream scheduling algorithm plays
another important role. The algorithm can be used as ad-
mission controlfor on-demand continuous multimedia stream-
ing. Let the media server have a bottleneck bandwidth of
B and is serving a set of on-going media streams. When
a new media streaming request arrives, the server has to
decide whether it has enough capacity (bandwidth) to ac-
commodate the new stream. To make the admission deci-
sion, we run the algorithm on the new set of streams, with
the new stream added, under the total bandwidth B. The
new stream request is admitted if no playback starvation
occurs (easily checked against the lower bounds Lk) during
the execution of the algorithm. Consequently, the algorithm
accomplishes the dual tasks that are essential for the me-
dia server: admission control and per-stream transmission
scheduling.

Algorithm to calculate per-stream schedules under bandwidth BThe proposed admission control algorithm is in fact an
optimal admission controller, based on the optimality of the

Function Per-Stream-Schedules(B) inter-deadline spread technique. It admits the maximum
dl = first deadline;
Residual-Buff er[k] = StreamBuf f erSize[k], Vk = 1,2,. . . , K;

number of media streams that can be supported, covering

Eligible-Set = {all media elements};
the largest admissible region.

While (dr is not the final deadline)
dz = next deadline after di ; 6 Numeric Results
TotalData-To-Transmit = B * (dz - dl);
Eligible-Set = Eligible-Set U {new eligible elements at dr >; We measure the performances of three different stream mul-
Stream-Data-To-Transmit[k] = 0, Vk = 1,2,. . . ,K; tiplexing schemes using real compressed video traces. The

20

‘able 1: Motion-JPEG compressed video traces used in the
experiments

three multiplexing schemes in our experiments are the summed
inter-frame schedule and the summed optimal schedule de-
fined in Section 3 and the optimal multiplexing schedule in-
troduced in Section 4. Recall that the first two schemes are
obtained by simply stacking the individual stream schedules
together, one based on the simplistic inter-frame individual
schedules and the other based on the more sophisticated
optimal individual schedules. On the other hand, optimal
multiplexing uses greedy E-EDF scheduling, taking advan-
tage of both intra-stream and inter-stream correlations.

The variable-bit-rate (VBR) video traces used in the ex-
periments were obtained from [3] and available on-line at [4].
The traces are compressed using Motion-JPEG video cod-
ing standard, with the statistics of the video traces shown
in Table 1. (We also used MPEG video traces and mixed
M-JPEG and MPEG traces, the results are similar and not
shown here due to space reasons).

To produce a sufficient number of concurrent video streams,
we use a procedure to extract 30-minute long video segments
from the available traces. For example, in order to generate
a certain number of video streams to multiplex, we cycle
through the available video traces and extract 30-minute
video streams at equally-distanced points within each of
the video traces. The generation process actually reflects
a somewhat realistic scenarios where users started viewing
at different times, thus are viewing different parts of the
same programs at the same time.

Figure 8: Multiplexing performances with homogeneous
streaming buffers

We measure the performances of the multiplexing schemes
based on the average bandwidth allocation per multiplexed
stream (i.e. the total bandwidth divided by the number of
multiplexed streams). The schedules are calculated based
on a one-second startup delay to avoid the possible startup

delay effect on the overall bandwidth [18]. Figure 8(a) shows
the multiplexing performances of 10 to 200 video streams,
generated using the above procedure, with a 1MB stream-
ing buffer at the receiver. As expected, optimal multiplexing
achieves the lowest bandwidth among the three multiplex-
ing schemes with any number of multiplexed streams (in
fact, it achieves the bandwidth lower-bound). Figure 8(b)
shows the multiplexing of 100 streams with varying stream-
ing buffer sizes from 50KB to 10MB. Somewhat surprising
in this figure is the fact that the rudimentary summed intra-
frame schedule sometimes out-performs the more sophisti-
cated summed optimal schedule, which demonstrates the
fact that optimally scheduling individual streams may not
always result in a better overall schedule.

Figure 9: Multiplexing performances with heterogeneous
streaming buffers

In addition to homogeneous streaming buffer sizes, we
also tested the multiplexing performances under heteroge-
neous receiver streaming buffer sizes. Figure 9(a) shows the
multiplexing of 10 to 200 streams with two distinct levels of
streaming buffer sizes: 1OOKB and 10MB. Half the receivers
have 1OOKB streaming buffers and the other half have 1OMB
ones. Figure 9(b) shows the performances with three dis-
tinct streaming buffer levels: lOOKB, 1MB and 10MB. The
results are similar to the ones with homogeneous buffer sizes,
thus the multiplexing techniques apply to heterogeneous en-
vironments as well.

Figure 10: Per-stream bandwidth effect using transmission
rearrangement

Finally, we tested the performances of mitigating the ad-
verse per-stream bandwidth effect using inter-deadline trans-
mission rearrangement. We used the same parameters as
before, 10 to 200 streams with 1MB streaming buffers and
100 streams with 50K to 1OMB streaming buffers. Ap-
plying the inter-deadline transmission rearrangement tech-

21

nique, the per-stream schedules were derived and recorded.
The peak rates of each per-stream schedule are then repre-
sented as ratio versus the optimal peak rates of the respec-
tive stream scheduled individually. For any given number
of multiplexed streams, we show the average, maximum and
minimum of such ratios in Figure 10. The results show that
the technique performs reasonably well. Comparing to the
per-stream bandwidths as high as the optimal multiplexing
bandwidth (OMB) of the whole set of streams prior to rear-
rangement, the reduction is significant. There could still be
room for improvement, which is part of the future research.

7 Conclusion

We proposed bandwidth efficient multiplexing techniques for
the delivery of continuous media streams to a set of dis-
tributed and heterogeneous receivers. In particular, we in-
troduced a multiplexing scheme that is provably optimal,
achieving the highest possible multiplexing gain, while sup-
porting stringent and deterministic quality of service guar-
antees. The optimal multiplexing bandwidth was derived
and expressed in closed-form. An algorithm for its cal-
culation runs in linear time in most cases, which was not
described here in detail due to space reasons. Given the
optimal multiplexing bandwidth, a transmission rearrange-
ment technique was introduced that resulted in reducing
the per-stream bandwidth significantly, while maintaining
multiplexing optimality. The reduction in per-stream band-
width is necessary to mitigate the adverse effects of opti-
mal multiplexing on the end-to-end per-stream bandwidth
requirement. The linear-time per-stream scheduling algo-
rithm was easily extended for admission control at the me-
dia server for on-demand continuous media streaming. The
admission control is optimal in the sense that it supports
the maximum number of continuous media streams.

Future research directions include studying a more gen-
eral and potentially more difficult problem: what is the
optimal multiplexing bandwidth achievable under specific
per-stream bandwidth constraints. The result will be very
useful when the available per-stream bandwidth resource is
known in advance. Other future directions include improv-
ing the running time of on-demand admission control and
per-stream scheduling, possibly through incremental tech-
niques, and trying to design an theoretically-provable linear-
time algorithm to calculate the optimal multiplexing band-
width under general condition.

References

[I] K. Almeroth and M. Ammar. The Use of Multicast
Delivery to Provide a Scalable and Interactive Video-
on-Demand Service. IEEE Journal on Selected Areas
in Communications, 14(6):1110-1122, Aug. 1996.

PI

[31

141

A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling
Policies for an On-Demand Video Server with Batching.
In Proceedings of ACM Multimedia’94, pages 391-398,
act. 1994.

W. Feng. Video-on-Demand Services: Efficient Trans-
portation and Decompression of Variable Bit Rate
Video. Ph.D. Dissertation, Apr. 1996.

W. Feng. The Ohio State/Univ. of Michi-
gan Video Movie Library. http://www.cis.ohio-
state.edu/-wuchi/Video.

[5] W. Feng and S. Sechrest. Smoothing and Buffering for
the Delivery of Prerecorded Compressed Video. Pro-
ceedings of the IS&T/SPIE Multimedia Computing and
Networking, pages 234-244, Feb. 1995.

[6] M. Garrett and W. Willinger. Analvsis. Modeline. and ”
Generation of Self-Similar iideo Traffic. In Proceidings
of the ACM SIGCOMM’94, Sept. 1994.

[71

PI

PI

[lOI

Dll

[l21

P31

P41

[I51

[I61

P71

Pf31

L. Golubchik, J. Lui, and R. Muntz. Adaptive Piggy-
backing: A Novel Technique for Data Sharing in Video-
On-Demand Storage Servers. ACM Multimedia Systems
Journal, 4(3):140-155, 1996.

M. Krunz, W. Zhao, and I. Matta. Scheduling and
Bandwidth Allocation for Distribution of Archived
Video in VoD Systems. Journal of Telecommunica-
tion Systems, Special Issue on Multimedia, 9(3,4), Sept.
1998.

D. Lee and F. Preparata. Euclidean Shortest Path in
the Presence of Rectilinear Barriers. Networks, 14:393-
410, 1984.

D. LeGall. MPEG: A Video Compression Standard
for Multimedia Applications. Communications of the
ACM, 34(4):46-58, Apr. 1991.

C. Liu and J. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real-time Environment.
Journal of the ACM, 20(1):46-61, Jan. 1973.

S. McCanne, V. Jacobson, and M. Vetterli. Receiver-
driven Layered Multicast. In Proceedings of the ACM
SIGCOMM’96, Aug. 1996.

M. Naghshineh and M. Willebeek-LeMair. End-to-End
QoS Provisioning in Multimedia Wireless/Mobile Net-
works Using an Adaptive Framework. IEEE Commu-
nications Magazine, pages 72-81, Nov. 1997.

J. Salehi, Z. Zhang, J. Kurose, and D. Towsley. Sup-
porting Stored Video: Reduce Rate Variability and
End-to-End Resource Requirements through Optimal
Smoothing. IEEE/ACM Transactions on Networking,
6(4), Aug. 1998.

J. Salehi, Z. Zhang, J. F. Kurose, and D. Towsley.
Supporting Stored Video: Reduce Rate Variability and
End-to-End Resource Requirements through Optimal
Smoothing. In Proceedings of ACM SIGMETRICS’96,
1996.

Z. Zhang, J. Kurose, J. Salehi, and D. Towsley. Smooth-
ing, Statistical Multiplexing and Call Admission Con-
trol for Stored Video. IEEE Journal on Selected Areas
in Communications, Aug. 1997.

W. Zhao, M. Krunz, and S. K. Tripathi. Efficient
Transport of Stored Video Using Stream Scheduling
and Window-Based Traffic Envelopes. In Proceedings of
Internaional Conference on Communications (ICC’97),
1997.

W. Zhao, T. Seth, M. Kim, and M. Willebeek-
LeMair. Optimal Bandwidth/Delay Tradeoff for
Feasible-Region-based Scalable Multimedia Scheduling.
In Proceedings of the IEEE INFOCOM’98, 1998.

22

