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The unmanageably large size of reference traces has spurred 
the development of sophisticated trace reduction techniques. 
In this paper we present two new algorithms for trace re- 
duction - Safely Allowed Drop (SAD) and Optimal LRU 
Reduction (OLR). Both achieve high reduction factors and 
guarantee ezact simulations for common replacement poli- 
cies and for memories larger than a user-defined threshold. 
In particular, simulation on OLR-reduced traces is accu- 
rate for the LRU replacement algorithm, while simulation 
on SAD-reduced traces is accurate for the LRU and OPT 
algorithms. OLR also satisfies an optimality property: for 
a given trace and memory size it produces the shortest pos- 
sible trace that has the same LRU behavior as the original 
for a memory of at least this size. 

Our approach has multiple applications, especially in 
simulating virtual memory systems; many page replacement 
algorithms are similar to LRU in that more recently refer- 
enced pages are likely to be resident. For several replace- 
ment algorithms in the literature, SAD- and OLR-reduced 
traces yield exact simulations. For many other algorithms, 
our trace reduction eliminates information that matters lit- 
tle: we present extensive measurements to show that the 
error for simulations of the CLOCK and SEGQ (segmented 
queue) replacement policies (the most common LRU approx- 
imations) is under 3% for the majority of memory sizes. In 
nearly all cases, the error is much smaller than that incurred 
by the well known stack deletion technique. 

SAD and OLR have many desirable properties. In prac- 
tice, they achieve reduction factors up to several orders of 
magnitude. The reduction translates to both storage sav- 
ings and simulation speedups. Both techniques require lit- 
tle memory and perform a single forward traversal of the 
original trace, which makes them suitable for on-line trace 
reduction. Neither requires that the simulator be modified 
to accept the reduced trace. 
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1 Introduction 

nace driven simulation is a common approach to study- 
ing virtual memory systems. Given a reference trace-a 
sequence of the virtual memory addresses that are accessed 
by an executing program-a simulator can imitate the man- 
agement of a virtual memory system. Thanks to reference 
traces, experiments on virtual memory management policies 
can be reproduced in a controlled environment. Unfortu- 
nately, these traces can be extremely large, easily exceeding 
the capacities of modern storage devices even for traced ex- 
ecutions lasting only a few seconds. The size of traces im- 
pedes both their storage and processing. Race reduction is 
the compression of reference traces (either lossless or lossy) 
so that they can be stored and processed efficiently. 

There are many existing methods for trace reduction. 
However, these methods have undesirable characteristics for 
virtual memory simulation: Some discard so much reference 
information that the reduced trace introduces significant er- 
ror into the simulation of common page replacement poli- 
cies. Other methods make it difficult to control how much 
information is discarded, and thus what size memories can 
be simulated accurately. Some methods reduce the storage 
costs without reducing the number of references and thus 
the time required to process a trace. 

We present two trace reduction methods-Safely Allowed 
Drop (SAD) and Optimal LRU Reduction (OLR)-that do 
not suffer from these deficiencies. Both allow a user to con- 
trol the degree of reduction by the specification of a reduc- 
tion memory size. SAD is the simpler of the two: it removes 
references that are guaranteed not to affect the LRU and 
OPT behavior of a trace, provided that the simulated mem- 
ory sizes are no smaller than the reduction memory size. 
Under the same assumption, the OLR algorithm yields the 
shortest possible trace that can be used for exact LRU sim- 
ulations in place of the original trace. OLR is useful both 
because it provides greater reduction than SAD and because 
its output gives a lower bound for the length of a reduced 
trace. Both algorithms are efficient in practice, and signifi- 
cantly reduce storage and processing costs. 

Guaranteeing accurate simulation for LRU and OPT may 
not seem exciting at first. If the trace were used only with 
these policies, the simulation could be run only once and the 
results stored and re-used. Our approach is effective, how- 
ever, for simulations of many virtual memory replacement 
policies. Nearly all replacement policies used or studied with 
real workloads are either variants or approximations of LRU 
in a weak sense that is sufficient for our trace reduction tech- 
niques. This similarity of common page replacement policies 
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is hardly surprising-good replacement algorithms should 
not evict pages that are in current use. 

Variants of LRU (e.g., GLRU [FeLW78], SEQ [GlCa97], 
FBR [RoDeSO], EELRU [SKW98]) keep the k most recently 
referenced pages in memory, even though not all m pages in 
memory (m > k) are the m most recently accessed (as they 
are in pure LRU). Our approach to trace reduction is appli- 
cable in all such cases for a reduction memory size of at most 
k. Even small values of k (10 to 100) are enough to allow 
OLR and SAD to achieve reduction factors of up to several 
orders of magnitude, while guaranteeing exact simulations. 

SAD and OLR are also useful when studying approzi- 
mations of LRU. The most prominent approximations are 
CLOCK and SEGQ (segmented queue-also known as hybrid 
FIFO-LRU [BaFe83] or segmented FIFO [TuLeBl]). These 
replacement policies ignore the same high-frequency refer- 
encing information that nearly any replacement policy will 
ignore, and that SAD and OLR discard from traces. This 
information is ignored not because these are LRU approxi- 
mations, but because references to recently used pages don’t 
affect replacement decisions, and because hardware often 
does not support the efficient collection of such information. 

We show that the error introduced by SAD and OLR for 
both CLOCK and SEGQ replacement simulations is small- 
under 2% in number of faults in most cases. We also com- 
pare SAD and OLR to stack deletion [Smiti’7], which is 
a commonly known technique for removing high frequency 
reference information from virtual memory traces. Given 
reduced traces of comparable size created using all three 
methods, SAD and OLR introduce less error on average into 
CLOCK and SEGQ simulations. 

Additionally, the ability of the SAD algorithm to produce 
reduced traces valid for exact OPT simulations is a pleasant 
side-effect: it means that a single trace can be used for all 
experiments in a virtual memory study. Such studies often 
compare a new algorithm to LRU and OPT. 

2 Background and Motivation 

Given the importance of trace reduction, it is not surprising 
that there has been a wealth of research work on reduction 
techniques. It is impossible to exhaustively reference all 
the approaches-instead Section 2.1 presents an overview 
and Section 2.2 positions our method relative to the most 
closely related techniques. A good further reference is the 
recent survey of trace-driven simulation by Uhlig and Mudge 
[UhMu97]. 

2.1 Overview of Related Work 

Like all data compression, trace reduction techniques are 
divided into lossless and lossy approaches. In a lossless 
approach, the entire trace can be reconstructed from its 
reduced form, while lossy reduction does not preserve all 
information in the original trace. Our technique is lossy 
in nature but guarantees that certain kinds of simulations 
(namely LRU and OPT simulations) are exact on the re- 
duced traces. 

Lossless Reduction. A straightforward approach to loss- 
less trace reduction is to apply standard data compression 
techniques on a trace. Simple Lempel-Ziv compression re- 
sults into reduction factors of about 5 for typical traces 
[UhMu97]. Higher degrees of reduction can be achieved 
by combining compression algorithms with differential en- 
coding techniques. The best known such instances are the 

Mache [Samp89] and PDATS [JoHa94] systems, which ex- 
plore spatial locality in the reference trace to encode it dif- 
ferentially. Subsequently, standard text compression tech- 
niques are applied and result into further reduction of its 
size. 

Lossless techniques can be used to reconstruct a trace 
accurately for all purposes. Nevertheless, the compression 
ratios achieved are not as high as those possible with lossy 
trace reduction. More importantly, traces need to be uncom- 
pressed before simulation is performed. Thus, the reduction 
gains of lossless compression do not translate into simulation 
speedups. 

Lossy Reduction. When performing trace reduction, one 
usually has some knowledge of the future uses of a program 
trace. Lossy trace reduction techniques attempt to exploit 
such knowledge so that the trace size is reduced dramatically 
but enough information is maintained for the intended uses 
of a trace. 

The simplest lossy reduction technique is blocking. Block- 
ing replaces references to individual addresses with refer- 
ences to memory pages. Subsequent references to addresses 
within the same page can then be reduced to a single refer- 
ence. This reduction does not affect the simulation of time- 
independent paging algorithms-algorithms that do not con- 
sider the exact time of each reference in making replacement 
decisions. Such algorithms are LRU, OPT, etc., but not, for 
instance, Working Set [Denn68]. Blocking is so widely ap- 
plicable that it is practically assumed in most simulation 
work. For the remainder of this paper, when we refer to an 
original trace, we are referring to a blocked trace. 

Recent work on trace reduction includes the technique 
of Agarwal and Huffman [AgHuSO]. Whereas most lossy 
reduction techniques concentrate on the temporal locality of 
a program trace, their approach exploits spatial locality and 
results in an extra significant factor of reduction. 

Other trace reduction methods include trace sampling 
and trace stripping (e.g., see [Puza85]). Both are better 
suited for high-speed hardware cache simulations, as they 
introduce inaccuracy into fully-associative virtual memory 
policy simulations. 

The majority of lossy trace reduction methods, however, 
are oriented towards virtual memory simulations. These 
techniques address the same concerns as our algorithms and 
are directly comparable to them. The next section discusses 
such related reduction techniques in detail. 

2.2 The Value of Our Techniques 

Our approach fills a prominent gap in the spectrum of trace 
reduction techniques. Most existing techniques either do 
not guarantee accurate simulations or do not achieve the 
same high reduction factors as our method. We isolate three 
approaches that stand out as particularly related to ours. 

l Smith’s stack deletion (SD) [Smit77] consists of only 
keeping references that cause pages to be fetched to 
an LRU memory of size k. SD is directly comparable 
to the SAD algorithm. Both techniques are very sim- 
ple and have similar preconditions: both require that 
the reduced trace be used with memories no smaller 
than the memory used for reduction. Nevertheless, 
SAD guarantees that no error is introduced for LRU 
and OPT simulations, unlike SD. Smith argued exper- 
imentally that the error of SD is small. However, that 
error is small only if the depth of the stack (i.e., the 
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size of the memory used for reduction) is much smaller 
than the simulated memory (typically 20% to 50% of 
its size). Hence, SAD can use a much larger reduc- 
tion memory, which will yield greater reduction, and 
still achieve exact results. Additionally, we show that 
SD introduces larger error than both SAD and OLR 
for CLOCK and SEGQ simulations for reduced traces of 
the same size. In conclusion, SAD and OLR are both 
safer (i.e., introduce less error) and more effective (i.e., 
yield smaller traces useful for comparable purposes) 
than SD. 

l The technique of Coffman and Randell [CoRa70] can 
be seen as an alternative to both SAD and OLR for 
LRU simulations. Their approach consists of using 
the LRU behavior sequence (i.e., the sequence of pages 
fetched and evicted) for an LRU memory of size k to 
perform exact simulations of LRU memories of size 
larger than k. The behavior sequence is typically very 
short, even for small values of k. The biggest draw- 
back of the Coffman and Randell approach, however, 
is that the product of reduction is not itself a trace. 
For instance, it is not clear how the LRU behavior se- 
quence of a trace can be used for OPT simulations. 
In the best case, the simulator as well as any other 
tools (e.g., trace browsers) will need to change to ac- 
cept the new format. This is a practical burden to 
the simulator implementors and makes it hard to dis- 
tribute traces in a compatible form. This is the main 
reason why this simple technique has not become more 
widespread. Our OLR algorithm is complementary to 
the approach of Coffman and Randell: it offers an ef- 
ficient way to turn the behavior sequence format into 
the shortest possible trace exhibiting this LRU behav- 
ior. Other advantages of our algorithms exist. For 
instance, SAD is also applicable to OPT simulations 
and we show that both SAD and OLR introduce little 
error for simulations of CLOCK and SEGQ. 

l Just like our techniques, the reduction method used 
by Glass and Cao [GlCa97] is applicable to exact vir- 
tual memory simulations. Like Coffman and Ran- 
dell’s method, the Glass and Cao technique suffers 
from needing to modify the simulator to accept the 
reduced trace format. The modifications are far from 
trivial, and it can be hard to use the reduced trace in- 
formation for simulations of policies other than those 
studied in [GlCa97] (LRU, OPT, and SEQ-an exper- 
imental replacement algorithm). Another drawback 
of this technique is its lack of control over the in- 
teresting memory ranges. It is not possible to spec- 
ify directly the memory sizes for which the simulation 
should be exact. Instead, the trace filter allows only 
indirect control over the minimum memory sizes for 
which the simulation is valid; worse, that minimum 
size cannot be determined until after the trace has 
been gathered. The method seems to be less efficient 
than our approach, at least for LRU simulations. We 
did not have access to the traces used by Glass and 
Cao in unreduced form, but were able to derive the 
OLR-reduced form of these traces (directly from the 
Glass and Cao reduced traces). This was several times 
shorter than the reduced form used by Glass and Cao, 
both in terms of absolute size and in terms of signif- 
icant events. The detailed results of this comparison 
can be found in [KSW98]. 

Other applications of our algorithms are possible. Be- 
cause of its optimality properties, OLR is ideal for the pur- 
poses of trace analysis. It provides an estimate of the amount 
of reordering done inside an LRU memory. This is useful for 
evaluating whether a trace will behave similarly under LRU 
and under LRU approximations (e.g., CLOCK or SEGQ im- 
plementations). Another possible application of OLR is in 
trace synthesis. Given any exact sequence of fetched and 
evicted pages from an LRU memory, OLR can produce a 
minimum length trace that will cause the same fetches and 
evictions. This could provide an alternative to statistical 
trace synthesis techniques (e.g., [BabaEll]). 

Finally, we should mention that our techniques are com- 
plementary to reduction algorithms that exploit different 
principles. Since the output of our algorithms is itself a 
trace, other trace reduction techniques can be applied (e.g., 
[JoHa94, AgHuSO]). As we will see, simple file compres- 
sion of our reduced traces with the gzip utility yields much 
smaller files, further decreasing storage requirements. 

3 The Algorithms 

3.1 Safely Allowed Drop (SAD) 

Full traces commonly contain a large number of references 
that are ignored by virtual memory replacement policies. 
These references account for the majority of space required 
to store a trace, and consume the majority of time required 
to perform a virtual memory simulation. Safely Allowed 
Drop (SAD) removes references from a trace that do not 
affect the order of fetches into and evictions from an LRU 
memory of some user-specified size. 

We will show that SAD allows for exact simulations not 
only of LRU, but also of OPT. We will also show, in Section 
4, that it introduces very little error into the simulation of 
LRU approximations such as CLOCK and SEGQ. 

3.1.1 Finding References to Drop 

For any two references to the same page in a program trace, 
we can define their LRU distance as the number of distinct 
other pages referenced between the two references. The idea 
behind SAD is simple: For any three references to the same 
page in a trace, if the LRU distance of the first and third 
reference is d, then removing the middle reference does not 
affect the outcome of LRU and OPT simulations on memo- 
ries of size greater than d. Section 3.1.3 describes why the 
elimination of these middle references has no effect on LRU 
and OPT. 

SAD is an application of this observation. The user spec- 
ifies a reduction memory size, k. Then SAD searches the 
trace from left to right, to find triplets of the above form- 
references to the same page, such that the LRU distance 
between the first and third reference is less than k. All mid- 
dle references of such triplets are eliminated. 

Figure 1 shows three references to page A. The LRU dis- 
tance between the first reference Afirst and the third ref- 
erence Athird is 4, as there are four distinct pages (B, C, D, 
and E) that are referenced between AfirSt and Athird. If the 
memory size chosen for reduction is at least 5, then we can 
safely drop Asecond without affecting the results of an LRU 
or OPT simulation. 

Nearly all programs frequently reference pages that were 
recently used. Due to this temporal locality, references elim- 
inated by SAD constitute the vast majority of references in 
usual program traces, even for small reduction memories. 
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. . . A B C A D E A... 

Figure 1: Asecond can be eliminated because the LRU dis- 
tance between Afirst and Athird is less than the reduction 
memory size of 5 pages. 

3.1.2 SAD Algorithm Implementation 

SAD needs only to determine LRU distances between pairs 
of references to the same page in order to find middle ref- 
erences that can be eliminated. The search proceeds from 
left to right, allowing reduction to be performed in a single 
forward traversal of the original trace. 

As the trace is processed, the algorithm maintains an 
LRU queue of the requested size. It also stores some of the 
most recently input references from the original trace. By 
keeping both the LRU queue and a recent history of refer- 
ences, the algorithm can find groups of three references to 
the same page where the LRU distance between the first 
and third references is less than the reduction memory size. 
Therefore, this information is enough to find middle refer- 
ences that can be eliminated. 

Although it is necessary to store recent references to find 
these triplets, the number of references can be bounded. It 
is only necessary to store at most 2k + 1 of the most recent 
references in order to find the LRU distance between first 
and third most recent references to a page.’ With something 
like a hash table to help find recent references to pages, 
performing this reduction is little more than an augmented 
LRU queue simulation; it can be executed efficiently. For 
more details, we refer you to our implementation of SAD at 
<http://wwv.cs.utexas.edu/users/oops/>. 

3.1.3 Exact Simulation of LRU and OPT 

If SAD reduces a trace using a k page memory, then that 
reduced trace can be used for the exact simulation of both 
LRU and OPT memories that are at least k pages. 

Recall the definition of LRU distance: Given two refer- 
ences to the same page, the LRU distance between them is 
the number of other distinct pages referenced between those 
two references. Therefore, if the LRU distance between two 
references to a page is less than k, then that page will not be 
evicted from an LRU memory of at least k pages. 

First, consider an LRU queue of unbounded length and 
its contents for both the unreduced and the reduced trace. 
By dropping references, SAD allows pages to drift further 
away from the top of the LRU queue, as each page is refer- 
enced less often. These pages, however, are guaranteed to be 
in the first k positions of the queue; each eliminated refer- 
ence is following by another reference to the same page that 
is an LRU distance less than k from the previous reference. 

Other pages are not adversely affected by removing a 
reference. Their position in the LRU queue can only be 

‘The imolementation needs to store at most the two most recent 
references for those oases in k-oaee LRU oueue. ~1~s a third reference 
to one of those pagks as a triplet is found. If a’triplet is found, the 
middle reference is eliminated, and again only two recent references 
for that page are stored. Triplets could not possibly be found for 
other pages, so their recent references need not be stored. 

closer to the top for the reduced trace than it would have 
been for the original one. The only positions in the queue 
that may have different contents for reduced traces are the 
ones from 1 to k. Therefore, the results of LRU simulations 
for memories of size k or larger will be identical for the 
reduced and the unreduced trace. 

We illustrate this argument by examining Figure 1. For a 
memory of size 5 or larger, A will remain in memory between 
AfiTst and Athird. The middle reference Asecond has no 
effect on LRU replacement and if it is dropped, the reference 
Athird will ensure that A is not incorrectly evicted. 

SAD-reduced traces also yield exact simulations for OPT 
memories of at least k pages. Consider again the three ref- 
erences in Figure 1. When OPT must choose a page for 
eviction, it selects the resident page first referenced furthest 
in the future. We can show, case by case, how the removal 
of A second does not affect the replacement decisions made 
by OPT: 

. 

. 

. 

3.2 

If OPT is processing references before Afirst, then the 
removal of Asecond will not affect its eviction choices, as 
AfiTSt is the reference that OPT will use to determine 
whether A is evicted. 

If OPT is processing references between Afirst and 
Athird, then we already know that fewer than k distinct 
pages are referenced between those two references to 
A. Note also that the page currently being referenced is 
not already in memory (since it caused a replacement) 
and cannot be a candidate for eviction, making the 
number of other distinct referenced pages preceding 
Athi,.,j less than k - 1. Therefore, if the memory size 
is at least k, page A cannot be the one first referenced 
furthest into the future (because of reference Athird). 
The absence of Asecond does not affect the replacement 
decision. 

If OPT is processing references that follow &+d, then 
none of these three references to page A will affect de- 
cisions. OPT examines future references to make its 
decisions, so the missing reference Asecond will have no 
effect. 

Optimal LRU Reduction (OLR) 

The SAD algorithm obtains significant reduction factors for 
actual traces. Nevertheless, SAD-reduced traces are not nec- 
essarily the smallest for which either LRU or OPT simu- 
lations are exact. For instance, consider the reference se- 
quence: 

ABCBACDABD 
Applying SAD with a reduction memory of 3 pages to 

this trace yields no reduction. Nevertheless, the shorter 
trace 

ABCADB 
has exactly the same LRU behavior as the original for a 
memory of size 3 or larger. Recall that the LRU behavior 
of a trace for a memory of size k is the sequence of pairs of 
pages fetched into and evicted from memory when the given 
trace is applied. The LRU behavior of the two above traces 
for a memory of size 3 is: 

(A, NF) , (B, NF), (C, NF) , (D, B) 7 6% C) 
where the special value NF denotes that the memory is not 
full and, hence, the insertion of one element does not cause 
the eviction of another. 

The importance of LRU for virtual memory systems has 
motivated the design of the OLR algorithm for computing 



such optimally short sequences. OLR takes a reference trace 
as input and outputs the smallest trace that has the same 
LRU behavior as the input for a memory of size k or larger. 
The output of OLR is only a function of the behavior- 
two different input traces exhibiting the same behavior for 
an LRU memory of size k will produce the same output. 
Hence, the first step of OLR is to simulate the input trace 
on an LRU memory of size k and derive its behavior se- 
quence. That sequence is the input to the OLR-CORE algo- 
rithm shown in Figure 2. Following common terminology, 
we will often use the term block as a synonym for page and 
touch as a synonym for reference. 

Some explanation of the conventions followed in the al- 
gorithm description is necessary: The input sequence, be- 
havior, is represented as an array for simplicity. The special 
value LAST signals the end of the sequence. OLRXORE uses 
a data structure queue, which is an LRU queue augmented 
with two operations: 

l blocks-after(block): returns the set of blocks touched 
less recently than block, but still in the data structure 
(i.e., within the last k distinct blocks touched). If block 
has the special value NF, the returned set is empty 
(this is useful for uniform treatment of the boundary 
case where the structure is being filled up). 

l more-recent(blockl , blockp): returns a boolean value 
indicating whether block1 was touched more recently 
than blockz. If block1 has the special value LOWER- 
LIMIT, or block2 has the special value NF, FALSE is 
returned. 

Due to space limitations we cannot present an extensive 
analysis and proof of correctness of the OLR-CORE algorithm. 
Such an analysis can be found in [Smar98]. Here we will dis- 
cuss the algorithm at an intuitive level which will hopefully 
convey some of the insights behind its development. 

Recall that OLR-CORE takes as input the sequence repre- 
senting the behavior of a trace for an LRU memory of size 
k. This behavior sequence consists of pairs of fetched and 
evicted pages for the LRU memory. The sequence of refer- 
ences to fetched pages has to be a subsequence of the output 
of OLR-CORE, as every reference that causes a fetch opera- 
tion must remain in the reduced trace so that the sequence 
of fetches is preserved. The purpose of OLRXORE is to find 
the minimum set of e&a references that need to be added 
so that the sequence of evictions is also preserved. That is, 
each reference in the reduced trace either causes the fetch 
and eviction specified by the behavior sequence, or it causes 
a reordering of the simulated LRU queue such that a later 
fetch will cause the correct eviction. 

At every point during the algorithm’s execution, the queue 
data structure reflects the contents of an LRU queue of size 
k, to which the output (up to the present point) has been 
applied. At every iteration of the outer loop of the algo- 
rithm in Figure 2 (lines 4-20) the current index points to 
successive elements of the input behavior sequence. 

For each iteration of the outer loop, before a reference 
that causes a fetch is output (by line 18), all pages in the 
LRU queue that were less recently referenced than the cor- 
responding expected evicted page are touched. The set 
must-touch contains exactly these pages (line 5), and lines 
16-17 ensure that they get touched. This way, for a refer- 
ence causing a “fetch”, the least recently touched page in the 
LRU queue is the corresponding evicted page, as indicated 
by the input. 

Before we describe the essence of OLRXORE it is useful 
to briefly review a simple algorithmic problem: 
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Given an LRU queue and a desired recency order- 
ing for some of the pages currently in the queue, 
what are the fewest page references required to 
reorganize the queue so that the desired ordering 
holds? 

One can show that there is a simple algorithm to produce - - 
such a minimal sequence of references: 

Examine the desired ordering in inverse order 
(i.e., least recent element first). Find the first 
page that is out-of-order in the queue (i.e., it is 
less recent than its previous page in the desired 
ordering). Produce references for this page and 
all subsequent pages in the desired ordering. 

This is exactly the algorithm implemented by the inner loop 
of the OLR-CORE algorithm (lines 7-15). The LRU queue 
that is modified is queue. The desired ordering is described 
by the evicted pages in the smallest subsequence of behav- 
ior that begins at position current + 1 and contains events 
where a page is fetched in the LRU queue and the same 
page is evicted. The latter condition is detected using the 
fetched-in-future set in the algorithm of Figure 2, which con- 
tains the pages fetched after position current in the behav- 
ior sequence. The lookahead variable is used as an index 
for elements of behavior beyond position current. When the 
evicted part of such an element is found in fetched-in-future 
(line 8), the inner loop ends. 

In short, the essence of the OLR-CORE algorithm is that 
for each reference to a page not in the LRU queue, as few 
as possible extra references to pages already in the LRU 
queue are produced, so that the recency order in the queue 
matches the expected eviction order up to the point where a 
page is evicted that has not yet been last fetched. Intuitively, 
the reason the latter condition is necessary is that the en- 
tire LRU queue will need to be reorganized (i.e., every page 
will need to be touched) between the points that a page is 
fetched and the same page is evicted. Hence, no benefit can 
be achieved by “looking further” than the eviction of pages 
that have not yet been last fetched. No reordering should 
be done, since all pages will be reordered later, when they 
are last referenced before one of them is evicted. The above 
argument conveys parts of the intuition behind the devel- 
opment of the algorithm but does not constitute a proof of 
overall minimality for its output. A rigorous proof (as in 
[Smar98]) is quite lengthy, and, thus, beyond the scope of 
this paper. 

Finally, we should note that OLR-CORE is very efficient, 
so that the main component of the running time of OLR 
is the LRU simulation performed on the input trace to de- 
rive its behavior sequence [Smar98]. That is, OLR execu- 
tion is about as fast as a simple LRU simulation on the 
input trace for a memory of size k. The algorithm per- 
forms just a single forward pass with bounded look-ahead 
(at most k elements) and, thus, is ideal for online applica- 
tions. Our free implementation of OLR can be found at 
<http://www.cs.utexas.edu/users/oops/>. 

3.3 Trace Manipulation Issues 

In our discussion of SAD and OLR we used a simplified form 
of reference traces (only containing address information for 
the page being referenced). Real trace formats may need 
to contain other information, such as the kind of reference 
(instruction, read, or write), the instruction causing it, the 
program counter (or any timer info), etc. Additionally, a 
trace may need to be re-blocked so that experiments can 



OLR..CORE(behavior, k) 
1 lookahead t 0, current t 0, fetched-in-future t 0,previoustxict ~LOWERLIMIT 
2 queue t 0(k) 
3 D 0(k) denotes an empty LRU queue of size k 
4 while behavior[current] #LAST 
5 do must-touch t queue.BLOCKS-AFTER(behavior[current].evict) 
6 lookahead-done +-FALSE 
7 while behavior[lookahead] # LAST and Aookahead-done 
8 do if behavior[lookahead]. evict E fetched-in-future 
9 then lookahead-done +-TRUE 

10 else if queue.MORE-RECENT(previous~ewict, behawior[lookahead].evict) 
11 then PRODUCEFtEFERENCE(behavior[loOlEahead].evict) 
12 must-touch t must-touch \ {behavior[lookaheadj.evict} 
13 previous-evict t behavior[lookahead].evict 
14 fetched-in-future t fetched-in-future U {behavior[Zookahead].fetch} 
15 lookahead t lookahead + 1 
16 for x E must-touch 
17 do PRODUCE-REFERENCE(x) 
18 PRODUCE-REFERENCE(behavior[current].fetch) 
19 fetched-in-future t fetched-in-future \ {behavior[current].fetch} 
20 current t current + 1 

PRODUCE-REFERENCE(block) 
1 queue.TOuCH(block) 
2 Ou’rPuT(block) 

Figure 2: OLR-CORE accepts the sequence of fetched and evicted pages for a k page LRU memory, and produces the shortest 
reference trace that would cause the same behavior for that same memory. 

be conducted for different page sizes. Such standard trace 
manipulation is perfectly compatible with both SAD and 
OLR. For instance: 

l Re-blocking: a reduced trace for a reduction memory 
of size k can be re-blocked for any larger page size and 
simulations will continue to be accurate for memories 
of size k or larger (note that the size refers to the 
number of pages--the actual minimum memory size in 
Kbytes for which simulations are exact is larger after 
the re-blocking). This is a consequence of the stack 
algorithm [MGST70] properties of LRU and OPT. 

l Maintaining Dirtiness Information: many virtual 
memory studies measure the cost of writing dirty pages 
to a backing store upon eviction. Such studies re- 
quire traces in which each reference is marked as a 
read or write operation. Both SAD and OLR can be 
augmented to tag references with the appropriate op- 
eration. 

In order to maintain the dirtiness information about 
each page in reduced traces, the reduction methods 
must notice which pages would be modified by a write 
operation while in a k page LRU memory. Since both 
methods maintain such a memory during reduction, an 
implementation can record whether a page is dirtied 
while in that memory. If a page is dirtied while in the 
reduction memory, then the last reference to that page 
before it, is evicted is marked as a w&e operation. A 
simulation based on the reduced trace will mark the 
page as dirty before it is evicted from a k page or larger 
memory. 

. Maintaining Timing Information: timing infor- 
mation is trivial to maintain for SAD, since the algo- 
rithm only removes references from the original trace. 

For OLR, where reference reordering may occur, it 
makes sense to keep time information for references 
causing a page to be fetched into memory. These are 
guaranteed to be exactly the same (and, hence, in the 
same order) as in the original trace. 

4 Experimental Results 

We applied our trace reduction methods to traces collected 
both on Windows NT and UNIX platforms. The nine Win- 
dows NT traces include the full set of the commercially dis- 
tributed traces gathered using the utility Etch [LCBAB98]. 
These include well-known Windows NT applications (Ac- 
robat Reader, Netscape, Photoshop, Powerpoint, Word) as 
well as various other programs (CC, Compress, Go, Vortex). 
The six UNIX traces (Espresso, GCC, Grobner, Ghostscript, 
Lindsay, P2C) were gathered using VMTrace, our portable 
tracing tool based on user level page protection; these traces 
are freely available on our web site. The Windows NT traces 
were blocked for 4 Kbyte pages so that they would be ap- 
propriate for virtual memory simulations. The UNIX traces 
were generated as references to 4 Kbyte pages. 

In this section, we show the reduction factors achieved 
over a range of reduction memory sizes. We also used re- 
duced traces to simulate both the CLOCK and SEGQ replace- 
ment policies. These two policies cannot be simulated ex- 
actly using reduced traces, but we show that the error in- 
troduced into their simulation is small in practice. We also 
show that the error introduced is significantly less than with 
stack deletion [Smit77], a well known reduction method. We 
chose to simulate CLOCK and SEGQ because they are the two 
replacement, policies most used in real systems. As approxi- 
mations of LRU, they are similar to many replacement poli- 
cies that discard information about references to the most 
recently used pages. 

52 



4.1 Reduction Results 

Each of the traces was reduced using both SAD and OLR 
over a range of reduction memory sizes. Recall that the 
“original” traces are blocked on 4 Kbyte pages, and yet are 
hundreds of Mbytes to a few Gbytes each. We measured the 
number of bytes required to store the original trace and each 
of the reduced traces. Because each reference in these traces 
is a text representation of the virtual memory page number 
in hexadecimal, each record comprises at most (and usually 
exactly) five bytes. Thus, there is a direct correspondence 
between number of bytes and number of records in a trace. 

The plots in Figure 3, show the reductions achieved by 
SAD and OLR on six of the fifteen original traces. The 
curves shown plot the reduction ratio achieved as a func- 
tion of increasing reduction memory size. We chose to show 
the reduction results from three of the original traces per 
platform due to space limitations. The remaining programs 
show similar increase in reduction with memory size, as well 
as equally high reduction factors. 

Note that the reduction factors increase quickly as the 
memory size grows. The reduction achieved for a particu- 
lar reduction memory size is a direct result of the locality 
exhibited by the traced program. Since the vast majority 
of references are to pages that have been recently used, a 
small reduction memory can yield large benefits. Note that 
the size of the OLR-reduced trace is a good measure of pro- 
gram locality: it is the smallest trace that has the same LRU 
behavior as the original for a memory at least as large as the 
reduction memory. 

Since many virtual memory systems simulate hundreds 
or even thousands of pages, traces can be made hundreds of 
times smaller while still being appropriate for experimental 
studies. Using a reduced trace can allow a researcher to per- 
form simulations that much more quickly, as the simulation 
time is usually proportional to the length of the input trace. 

Also note that SAD achieves reduction factors close to 
those of OLR. Although SAD is a much simpler algorithm, 
it provides nearly optimal reduction, while still allowing for 
exact OPT simulation as well as exact LRU simulation. 

It is hard to tell from our plots if high reduction ratios 
can be achieved for small reduction memory sizes. As we 
show in the table below, both SAD and OLR perform very 
well even for very small reduction memories (20 pages for 
the Windows NT plots and 5 pages for the Unix plots, as 
the Windows NT programs have much larger footprints). 

It is worth noting that our reduced traces can be further 
compressed by applying lossless trace reduction techniques 
(for instance, [JoHa94, Samp89]). Even though we did not 
experiment with any such methods, we found that SAD and 
OLR reduced traces are highly compressible using standard 
text compression tools. The next table shows the compres- 
sion factors achieved by the Unix gzip utility on our reduced 
traces (the ratios shown are “reduced trace size” divided by 
“compressed reduced trace size”). The results below are 
not representative for all reduction memory sizes. As reduc- 
tion memories become larger (and reduced traces become 
dramatically smaller), compression factors shrink. Eventu- 
ally, compression ratios become almost as low as 3:1, which 
is largely an artifact of representing each reference as text. 
These traces, however, are thousands of times smaller than 
the originals, and their storage requirements are negligible. 

4.2 CLOCK and SEGQ Simulations 

We simulated both the CLOCK and SEGQ replacement poli- 
cies using traces reduced by SAD, OLR, and Smith’s stack 

Trace ) Reduction ) Reduction 
memory 

size (SAD7 
acroread 20 62.01 
ccl 20 16.12 
compress 20 7.32 
go 20 5.16 
netscape 20 16.76 
photoshop 20 61.06 
powerpoint 20 10.81 
vortex 20 7.04 
winword 20 14.62 
espresso 5 29.03 
SC 5 3.39 
grobner 5 8.17 
ghostscript 5 9.97 
lindsay 5 8.66 
P2C 5 5.39 

3ti 

19.52 
8.11 
6.34 

20.24 
72.76 
12.66 
8.68 

18.01 
43.44 

4.31 
10.78 
12.26 
10.82 
6.91 

1 

Figure 4: Even for small reduction memories, significant 
reduction factors can be achieved. 

Trace 

acroread 

Reduction gzip compression 
memory ratio 

size (SAD) I (OLR) 
20 31.21 1 25.48 

ccl 20 19.3 18.59 
compress 20 17.55 14.46 
go 20 13.77 12.25 
netscape 20 26.48 21.52 
photoshop 20 74.76 64.11 
powerpoint 20 30.73 25.08 
vortex 20 40.52 42.12 
winword 20 1 38.5 1 32.74 
espresso I 5 I 13.74 I 14.03 
gee 
grobner 
ghostscript 
lindsay 

13.6 11.67 
11.58 10.36 
22.2 20.55 

6.8 5.36 
p2c - 5 1 9.71 1 8.69 

Figure 5: Reduced traces are often highly compressible. 

deletion (SD) methods. The results of these simulations 
were compared with simulations based on the original, unre- 
duced traces. 

We chose these two policies not only because they are so 
common, but also because they are similar to any page re- 
placement policy likely to be used in practice. They are ap- 
proximations of LRU because recency information tends to 
be an excellent predictor of future reference patterns. They 
also discard information about recently referenced pages be- 
cause of the hardware available in all machines. If hardware 
reference bits are supported, CLOCK can be used. SEGQ was 
designed for machines that did not have such hardware sup- 
port, yet allowed efficient recency based page replacement. 

Our CLOCK simulator simulated a single-hand, two-reference- 
bit implementation. For a CLOCK-managed memory, there 
are reference bits associated with each resident page. When 
a resident page is referenced, its primary reference bit is set. 

If a non-resident page is referenced, some other page 
must be chosen for eviction. If we imagine the resident pages 
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Figure 3: SAD and OLR reduction factors over many reduction memory sizes for six of the fifteen traces. The reduction 
factors for the traces not shown grow similarly with the reduction memory size. 
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to be arranged circularly, a clock hand sweeps around that 
circle. If the hand encounters a page with either of its two 
reference bits set, it shifts the contents of the primary ref- 
erence bit into the secondary, and then clears the primary. 
The hand then examines the next page. 

When the clock hand encounters a page whose reference 
bits are not set, that page is chosen for eviction. This mech- 
anism is designed so that CLOCK selects a page that has not 
been referenced recently. Any recently referenced page is 
likely to have at least one of its reference bits set. 

We also simulated the SEGQ replacement policy (seg- 
mented queue-also known as hybrid FIFO-LRU [BaFe83] 
or segmented FIFO [TuLe81]) with the original and reduced 
traces. This replacement policy orders resident pages in two 
segments. The first segment is a FIFO queue that holds 
some fixed number of the most recently referenced pages. 
Pages evicted from the first level are inserted at the front 
of the second level, an LRU queue. Pages evicted from the 
LRU queue are evicted from memory. 

4.2.1 Error Introduced by SAD and OLR 

While SAD and OLR cannot be used to perform exact sim- 
ulations of CLOCK and SEGQ, we found that little error is 
introduced into simulation if the ratio of simulation mem- 
ory to reduction memory is sufficiently large. (The error is 
defined as the absolute value of the difference in the num- 
ber of page faults incurred using the unreduced and reduced 
traces.) In practice, a ratio of 5:l yields uniformly low er- 
ror. A ratio of 2:l also yields small error for the majority of 
memory sizes, but sometimes introduced unacceptable error 
in excess of lO%-large enough to lead to erroneous con- 
clusions due to inaccurate results. Programs that occupy 
a small footprint yielded our largest errors, while programs 
with a large footprint suffered the smallest errors. Overall, 
the larger this ratio, the better the results will be. 

Due to space constraints, we cannot show the results 
of each simulation with each reduced trace (many results 
are shown in the next section in comparison with the stack 
deletion method). However, we summarize them in a few 
observations. These observations are valid for simulations in 
which the simulated memory to reduction memory ratio is 
at least 5:1, and at least 1,000 paging events occur (a virtual 
memory study with traces causing fewer faults is unlikely). 

l For the vast majority of memory sizes, less than 2% 
error was observed for both reduction methods. 

l Under CLOCK, SAD never introduced more than 3% 
error. OLR performed slightly worse than SAD on 
average, and in isolated cases exhibited nearly 10% 
error. 

l Under SEGQ, neither OLR nor SAD exhibited more 
than 6% error. OLR performed as well as SAD on 
average. 

l The reduced traces sometimes caused too many misses, 
and sometimes too few. However, there was no pattern 
nor bias for reduction or increase in miss numbers. 

l The smaller the footprint of the program, the larger 
the observed error. For programs with larger foot- 
prints (at least hundreds of pages), error was often 
near zero for all memory sizes. 

It is crucial to note that the ratio between the simulation 
memory size and the reduction memory size has a large effect 

on how much error is introduced. Most virtual memory 
studies are of simulated memories with sizes in the hundreds 
or thousands of pages. We have shown that large reduction 
factors can be achieved with reduction memories whose sizes 
are in the tens of pages. It should therefore be possible to 
produce significantly reduced traces with a ratio of at least 
1O:l to allow for acceptably accurate simulations. 

4.2.2 Comparison to Stack Deletion 

An often referenced form of trace reduction is Smith’s stack 
deletion (SD) [Smit77]. It is interesting to compare SD to 
our reduction techniques because its value has been demon- 
strated exclusively through experimental arguments. SD 
does not guarantee exact simulations, but has been shown 
to introduce small error into the simulation of replacement 
policies (namely, LRU, OPT, and CLOCK). We compared 
SAD and OLR to SD with our suite of fifteen traces and 
found that our techniques, particularly SAD, consistently 
yield smaller error. 

For each reduction method, we chose a reduction memory 
size that would yield a reduced trace that was 100 times 
smaller than the original (that is, the traces for all three 
methods were approximately the same size). An alternative 
would be to use the same reduction memory size for each 
method. This would be unfair for SD since it keeps less 
information than both OLR and SAD. 

We performed CLOCK and SEGQ simulations using each 
reduced trace. A subset of the CLOCK results are shown 
in Figure 6. These plots show the percent error (i.e., dif- 
ference in number of page faults) introduced by SAD and 
SD on CLOCK simulations. For clarity, we omitted the OLR 
results (including them would obscure parts of the plots.) 
The traces from go and grobner were chosen to represent 
programs that use a small footprint, with 61 and 228 pages 
respectively. The programs gee and ghostscript occupy 
medium sized footprints of 450 and 551 pages each. acrobat 
reader and netscape are larger footprint programs that use 
1914 and 1022 pages, respectively. 

For each of the programs, SAD and OLR match or exceed 
the accuracy provided by SD. Although its results are not 
shown, on average OLR introduces more error than SAD 
but less than SD. SAD provides smaller error than SD at 
almost every memory size. 

Note that the leftmost portion of each plot contains large 
error, as simulations of memories comparable to the reduc- 
tion memory size are inaccurate. For all of the plots, the 
error drops significantly around a ratio of 2:l of simulated 
memory size to reduction memory size. In most cases, SD 
reaches a reasonable level of error at a slightly smaller mem- 
ory size than SAD, as it used a smaller reduction memory 
size. 

Smith claimed that a ratio of 2:l would be sufficient for 
experimentation with SD. We found that, with the 2:l ra- 
tio, there is significant error in specific cases. For example, 
SD introduces more than 30% error into the simulation of 
grobner at a ratio of 4:l. It also introduces more than 35% 
error into go at a ratio of about 3.5:l. SAD and OLR also 
suffer unacceptably large error at these ratios in isolated 
cases. Consequently, we recommend a ratio of at least 5:l 
for uniformly negligible error. 

For SEGQ simulations the results were similar, although 
less error was introduced on average for all reduction meth- 
ods. We again selected six traces from the original fifteen, 
as the results of these are similar to the rest. Note that 
the error introduced is irregular; the behavior of SEGQ is 
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Figure 6: The absolute percent error (by number of faults) introduced into CLOCK simulations by reduced traces from SAD 
and SD. Notice that reduction memory sizes were chosen so that each reduced trace was approximately 100 times smaller 
than its original. 
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dominated by FIFO, which is not a stack algorithm and can 
produce unpredictably different results with slightly differ- 
ent memory sizes. 

In the plots shown in Figure 7, the size of the FIFO seg- 
ment is fixed, and the percent error is shown for increasing 
LRU segment sizes. The FIFO segment size chosen for these 
plots is approximately twice the reduction size for SAD. 
Thus, the total simulated segmented queue memory is at 
least twice as large as the reduction memory for both reduc- 
tion methods. 

For both programs, SAD and SD introduce sufficiently 
small error as to be acceptable for most studies. SAD intro- 
duces less error for many memory sizes, although at a few 
memory sizes SD is the better method. Although it is not 
shown, OLR performed even better for SEGQ than it did for 
CLOCK, and its performance was comparable to SAD’s, For 
many of these traces, the error introduced by either method 
is not significant. 

Overall, SAD and OLR would be preferable to SD in 
practice. While all three introduce small error into simu- 
lations, SD introduces slightly more on average, and SAD 
consistently introduces the least. Further, SAD and OLR 
both allow for the exact simulation of LRU (and LRU vari- 
ants like GLRU [FeLW78], SEQ [GlCa97], FBR [RoDeSO], 
EELRU [SKW98]), and SAD allows for the exact simulation 
of OPT. 

5 Conclusions 

Storing and processing long memory reference traces is costly. 
We have proposed SAD and OLR: two new methods for 
drastically reducing traces to alleviate both storage and pro- 
cessing requirements. These reduction methods are designed 
to eliminate information about references to the most re- 
cently used pages. Both allow for the exact simulation of 
LRU memories of a minimum size chosen explicitly by the 
user. SAD also allows for the exact simulation of OPT mem- 
ories. 

SAD and OLR are invaluable for realistic virtual mem- 
ory studies. Most studied virtual memory policies are either 
variants or approximations of LRU. Traces reduced with 
SAD or OLR provide for accurate simulations with LRU 
variants (for memories larger than a user-defined thresh- 
old). Additionally, we have shown that our reduced traces 
introduce very little error into the two most commonly used 
LRU approximations, CLOCK and SEGQ. 

We have implemented SAD and OLR, and have made 
them freely available on our web site. These utilities have 
been useful to us in our studies, and we invite others to take 
this portable C++ code and use it in theirs. Both reduction 
tools can be used off-line with existing traces, or online as 
traces are gathered. 
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Figure 7: The absolute percent error (by number of faults) introduced into SEGQ simulations by reduced traces from SAD 
and SD. For each plot, the FIFO segment size is fixed, and the plot shows the error introduced for every possible size of LRU 
segment that could follow the FIFO segment. The x-axis shows the total memory size obtained by combining the FIFO and 
LRU segments. 
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