
An Adaptive Globally-Synchronizing Clock Algorithm and its Implementation on
a Myrinet-based PC Cluster

Cheng Liao Margaret Martonosi Douglas W. Clark
Depts. of Computer Science and Electrical Engineering

Princeton University

Abstract

Fast commodity network-connected PC or workstation clusters are
becoming more and more popular. This popularity can be attributed
to their ability to provide high-performance parallel computing on
a relatively inexpensive platform. An accurate global clock is in-
valuable for these systems, both for measuring network perfor?
mance and coordinating distributed applications. ‘Qpically, how-
ever, these systems do not include dedicated clock synchronization
support. Previous clock synchronization methods are not fully suit-
able to them, either due to their non-commodity hardware require-
ments or due to insufficient synchronized clock accuracy.

In this paper we present and evaluate an adaptive clock synchro-
nization algorithm. We have implemented and tested the algorithm
on a Myrinet-based PC cluster. The algorithm has several impor-
tant features. First, it does not require any extra hardware support.
Second, we show that this algorithm places very low intrusion on
the system and has a microsecond-level accuracy. Finally, our re-
sults indicate that adding the ability to adaptively adjust the clock’s
re-synchronization period causes almost no extra overhead while
achieving a much better global clock accuracy.

1 Introduction

Performance monitoring is a crucial aspect of parallel program-
ming. Monitoring tools are often essential to extract the best perfor-
mance from the system. As part of this, accurate latency measure-
ments are key to understanding program performance, and globally-
synchronized clocks are the main requirement for getting them.
Furthermore, synchronized clocks also allow fine-granted real-time
coordination of tasks distributed across several nodes.

Recently, fast, commodity, network-connected clusters of PCs
or workstations have become a widespread parallel computing plat-
form. Unfortunately, globally-synchronized clocks are rarely avail-
able in these loosely-coupled distributed systems. Although clocks
are available in each node, they are not synchronized, or even aware
of clocks on other nodes. Without an accurate common time base,
it is impossible to measure inter-node latencies.

The problem of clock synchronization has been studied fre-
quently in distributed systems. However, they either require extra
hardware support, or they lack the fine clock accuracy necessary
in system-area network monitoring. In this paper, we describe a
clock synchronization algorithm based on Cristian’s algorithm [I].
Our algorithm is implemented in the firmware running on the pro-
grammable Myrinet network interfaces. Our approach does not re-
quire any extra hardware, and imposes an extremely low overhead
on the system. If synchronized clocks get out of synchrony due
to fluctuating clock drift or to small inter-node clock frequency dif-
ferences, our algorithm will dynamically and robustly adjust there-
synchronization period based on the current system situation. As a
result, our globally-synchronized clock can maintain microsecond-

Permlsston to make digital or hard copies of all or part of thw work for
personal or classroom use IS granted without fee provided that
copes are not made or dastributed for proflt or commercial advan-
tage and that copies bear this nota and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redlstrlbute to IeSs, requres prior specific permission and/or a fee.
SIGMETRICS ‘99 5/99 Atlanta, Georgia, USA
0 1999 ACM 1.58113.083.X/99/0004.,.$5.00

level accuracy.

2 Design and implementation Issues

Our clock synchronization algorithm is most closely related to Cris-
tian’s algorithm [I]. However, we do not need extra hardware sup-
port. Periodically, Node 0 m-synchronizes the clock on other nodes
to its own clock by exchanging MyriTime and MyrilImeDr~pack-
ets. To prevent the inaccuracy caused by a burst of incoming syn-
chronization requests, the time server starts the synchronization in-
stead of having each node initiate contact with the time server.

Since we need to achieve microsecond-level accuracy in the
globally-synchronized clock, the resynchronization period must be
fairly short, less than 1OOms according to our experiments. This
high re-synchronization frequency will impose a heavy load on the
system. We note from the experiments that the drift rates of dif-
ferent node clocks are not equal. However, each individual drift
rate is stable, at least within a reasonably long period of say 5 to
10 minutes. Taking advantage of this observation, we modified the
algorithm so that the global procedure that exchanges MyriTime
packets only happens infrequently. We call this kind of resynchro-
nization global-resynchronizution. Meanwhile, each node will lo-
cally adjust the clock itself by extrapolating the current time dif-
ference value from the drift rate it saw before. We call this self-
resynchronization.

We also include some adaptiveness into our algorithm so that
the global-resynchronization period and self-resynchronization pe-
riod can be adjusted on-the-fly based on the current system situa-
tion. Figure 1 shows the pseudo code running on Node 0 and all
the other nodes in the system. Tnet is the time a MyriTime packet
spends on the network, and Tdiff is the clock difference between
the local node and Node 0. When a node other than Node 0 receives
a MyriTimeDiff packet, it will compare the Tdiff in the packet with
the Tdiff extrapolated locally. This node will then send back to
Node 0 a MyriTimeDiff packet if the difference is over a threshold.
Node 0 will decide whether to shorten the global-resynchronization
period based on this information. When Node 0 does not get any
Myri’IimeDiff packets for a long time, it will lengthen the global-
resynchronization period. The self-resynchronization period is ad-
justed on each node to make sure the self-resynchronization is done
frequently enough to keep the synchronized clock accurate.

3 Accuracy of Clock Synchronization Algorithm

Table 1 presents the error and standard deviation of the global clock
using our synchronization algorithm with and without adaptive ad-
justment of resynchronization periods, in either idle or heavily-
loaded situations. When the system is idle, the adaptive algorithm
performs only slightly better than the non-adaptive algorithm. When
the system is heavily loaded, however, the adaptive algorithm works
nearly twice as well as the non-adaptive algorithm.

We also studied the robustness of our algorithm to less pre-
dictable clock drifts. We accomplish this by artificially introducing
particular drift rates into the clock on some nodes. We then measure
the response of the synchronized clock to these different drift rates.
The experiments show that both adaptive and non-adaptive syn-
chronization algorithms will adjust to the changed drift rate. How-
ever, the adaptive algorithm is able to follow the system changes

200

http://crossmark.crossref.org/dialog/?doi=10.1145%2F301464.302127&domain=pdf&date_stamp=1999-05-01

On Node 0
if (nodeX need to be resynchronized)

for (i = 0; i < 3; i ++)
send(nodeX, MyriTime)
recv(nodeX, MyriTime)
update shortest-T,,,t-this-round and

corresponding T,~ir/ if necessary
if (shortest-T,,,t-this-round - shortest-T,,taver >

NETWORX4ATENCYERRORHRESH)
for (i = 0; i < 3; i ++)

send(nodeX, MyriTime)
recv(nodeX, MyriTime)
update shortest-T,,,t-this-round and

corresponding Tdiff if necessary
send(nodeX, MyriTimeDiff, T.liff)
update shortest-T,,,taver
if (recvtnodex, MyriTimeDiff, &err))

error[nodeX] += err
if (error[nodeXl > ERROR-THRESH)

if (global-resyncperiod[nodeXl != MINGLOBAL-PERIOD)
global-resync-period[nodeXl >>= 1

error[nodexl = 0
else if (++ counter-of-successInodeXl == SUCCESS-THRESH)

if (globalzesync~eriod[nodeXl != MAX-GLOBAL-PERIOD)
global-resync-period[nodeXl <<= 1

counter-ofsuccessInodeX1 = 0
On other Nodes

recv(0, MyriTime)
send(0, MyriTime)
recv(0, MyriTimeDiff)
err = abs(Tdqf-fromNode- - Tdiff-projected)
if (err > DIFFERENCE-THRESH)

send(0, MyriTimeDiff, err / DIFFERENCE-THRESH)
calculate drift rate
if (drift rate is too large &&

selfxesyncgeriod > MINSELF-SYNC-PERIOD)
reduce selfxesyncperiod

apply drift rate to Tdiff every self-resyncperiod

Figure 1: Pseudo code of the synchronization algorithm running on Node 0
and all other nodes.

System Idle System Idle System Loaded System Loaded
Em 04 Std (P) ER W) Std (14

Non-Adaptive 0.80 1.00 2.54 2.83
Adaptive 0.65 0.95 1.26 1.45

Table 1: Clock error and standard deviation of non-adaptive and adaptive
synchronization algorithms: idle and heavily-loaded cases.

more quickly, as it can reduce the global-resynchronization period
accordingly. This situation is much more clear in heavily-loaded
systems.

Figure 2 shows the actual network latencies for different packet
sizes collected on Node 1 for the shared virtual memory (SVM)
application Radix. Figure 3 is similar except this time we introduce
an artificial drift rate of 1/218 to all nodes except Node 1. It is clear
that the two curves using the adaptive algorithm retain their good
accuracy from Figure 2 for the most part, while the two curves for
the non-adaptive algorithm have deviated sharply, especially when
the system is heavily loaded.

To summarize, on our normal system, both non-adaptive and
adaptive algorithms can achieve microsecond-level accuracy in a
globally-synchronized clock. However, the accuracy of the non-
adaptive algorithm will drop dramatically as the load on the system
or the fluctuation of the clocks increases. Although the accuracy
of the adaptive algorithm also drops as system load or clock drift
fluctuations increase, it deteriorates much slower than in the non-
adaptive case.

4 Perturbation due to Clock Synchronization

To quantify the system perturbation due to our clock synchroniza-
tion algorithm, we first consider the impact of our clock synchro-
nization code on the overall behavior of real applications. To ad-
dress this, we have run several SVM applications with and without
clock synchronization code running. The results show that syn-
chronizing overhead measured at the program level is almost neg-
ligible: less than 0.3% in all applications.

5.----------------- +syd.m H.avily.Ln& (Non-kc olobbsl Tim.)

a.----------------- asyawn Lbhuy.Lo~ wm$.tk. OWeI Time,
*SpwnH.wwy-d v.wm. ew Tim,

-5. ,,.,.~..,..,,,,,,,,,,,,,,,,,,,
128 512 898 1280 la64 2043 2432 2816 3200 3584 3368

Message Size (in bytes)

Figure 2: Network latencies collected on Node 1 for Radix.

-5-I; .~~.....II..~~...,,,I..,I.,,.I

128 512 886 1280 1864 2043 2432 2818 3200 3534 3968

Message Size (in bytes)

Figure 3: Network latencies collected on Node 1 for Radix with a 1/218
introduced artificial drift rate.

We also ran microbenchmark experiments to isolate particu-
lar clock perturbation aspects, including latencies and bandwidths.
The results show that the overhead due to clock synchronization is
also very small: less than 3% in most cases.

To summarize, the global clock synchronization code has very
little perturbation on the system, both in real applications and mi-
crobenchmark level. In addition, the adaptive portion of the method
has a negligible impact on the system.

5 Conclusions

We have presented an algorithm to maintain a globally-
synchronized clock without extra hardware support. It works on
loosely-coupled parallel systems which do not have a globally-
synchronized clock, although each node does have an unsynchro-
nized local clock. Our algorithm is focused on keeping the globally-
synchronized clock as accurate as possible while imposing only
a low perturbation on the system. This work offers a cheap and
portable way to meet the strict accuracy requirements that perfor-
mance monitoring tools impose for globally-synchronized clocks.

We have implemented our synchronization algorithm on a
Myrinet-based system. The results show that our algorithm achieves
microsecond-level accuracy while keeping a very low perturbation
on the system. Furthermore, adding the ability to adaptively adjust
the re-synchronization period has almost no extra overhead, while it
facilitates better accuracy in the globally-synchronized clock. This
is especially true in situations where the system is heavily loaded
or the clock drift rates of some nodes are fluctuating. In general,
we believe that our algorithm is suitable for and fairly easy to im-
plement in current network-connected clusters.

References

[l] F. Cristian. Probabilistic Clock Synchronization. Distributed Cumput-
ing, vol3:146158, 1989.

