
Static Techniques for Reducing Memory Usage in the C
Implementation of Whiley Programs

Min-Hsien Weng
Computer Science

Department
University of Waikato

Hamilton, New Zealand
mw169@students.waikato.ac.nz

Bernhard Pfahringer
Computer Science

Department
University of Waikato

Hamilton, New Zealand
bernhard@waikato.ac.nz

Mark Utting
School of Business

University of the Sunshine
Coast

Queensland, Australia
utting@usc.edu.au

ABSTRACT
Languages that use call-by-value semantics, such as Whiley,
can make program verification easier. But efficient imple-
mentation becomes harder, due to the overhead of copying
and garbage collection. This paper describes how a mixture
of static analysis and runtime-monitoring can be used to
eliminate unnecessary copying and deallocate memory with-
out garbage collection. We show that this allows Whiley
programs to be translated into efficient C implementations.

CCS Concepts
•Theory of computation→Program analysis; •Software
and its engineering→ Correctness; Software performance;

Keywords
Static Analysis; Copy Elimination; Compiler;

1. INTRODUCTION
Whiley[8] is a hybrid object-oriented and functional pro-

gramming language that uses extended static checking to
eliminate errors at compile time. To make automated rea-
soning about programs easier, it uses unbounded integers,
requires call-by-value semantics for all data structures, and
limits aliasing. It has a clear separation between functions
and methods, so that functions cannot have side-effects and
aliasing is not possible within functions.

To enable Whiley to be used to write efficient programs,
particularly for embedded systems with limited memory [7],
we have developed a Whiley-to-C translator. However, a
naive translation of Whiley into C has several significant
efficiency problems: a) it copies arrays and structures each
time they are assigned, which is slow and memory-hungry;
b) it lacks garbage collection, so leads to memory leaks in
the C code, which means that programs cannot run for long.

This paper describes several static code analysers that we
have developed to eliminate unnecessary copying of memory,

Accepted for publication in the Proceedings of the Australasian Computer Science
Week 2017, ACM Press

as well as memory deallocation strategies that use a mixture
of static analysis and dynamic tracking to ensure that each
memory block is deallocated exactly once, in order to avoid
memory leaks. With these optimizations, our code genera-
tor can produce efficient sequential C code while retaining
program safety.

The Whiley compilation system[8] is based around the
Whiley Intermediate Language (WyIL), which uses custom
bytecodes to represent programs in a structured way. The
default code generator generates unoptimised Java source
code and relies on garbage collection and BigInteger libraries
for all computations, which results in very slow execution
times.

Our C code generator takes WyIL as input, iterates through
all function blocks and translates each WyIL code into se-
quential C99-compatible C code. It chooses a fixed-size inte-
ger type for each variable, which in this paper is the C ’long
long’ type - in general the code generator uses static bounds
analysis to infer integer bounds and choose appropriate in-
teger types for variables, but that is outside the scope of this
paper.

Array and structure data values are heap-allocated, so re-
quire explicit deallocation, to avoid memory leaks and dou-
ble freeing problems. The language is constrained so that
cycles in data structures are not allowed. While it would be
possible to use reference counting to deallocate memory, we
want to avoid the runtime overheads of reference counting,
to enable efficient execution on small embedded computers.

This paper describes how we use static analysis of the
program to eliminate unnecessary memory allocation and
copying, and a mixture of static analysis and runtime flags
to determine a unique point where each allocated memory
block can be deallocated. These analysis techniques are not
guaranteed to eliminate all unnecessary copying, or to han-
dle all input Whiley programs. If they fail to find a safe
strategy, our C code generator reports an error and we re-
quire the programmer to modify the input Whiley program
so that it fits within the subset of the language that can be
safely translated.

Section 2 of the paper describes the various static analyses
and code generation strategies that we use. Section 3 gives a
performance evaluation of our techniques on five case stud-
ies. Section 4 discusses related work, and Section 5 discusses
our conclusions.

2. CODE ANALYSIS
Our project develops several function analyses, copy elimi-

nation analysis and deallocation analysis to extract the prop-
erties of each WyIL code, and then assist our code generator
to apply code optimization and produce efficient code.

Our analysis allows simple non-recursive, and directly-
recursive function calls only. Other mutual, anonymous or
complicated recursions, which may cause infinite loops, are
not supported, so that the termination of our analysis can
be expected.

2.1 Function Analyses
The function analysers all employ a conservative strategy

to extract variable information from functions, and stores
that information in order to support the copy and deallo-
cation analysers to make safe code optimization, while im-
proving the efficiency.

All function analysis builds up a call graph prior to the
analysis. The construction of a call graph starts from the
’main’ function to go through each function call and explore
deeper calls recursively if needed, to create a tree structure
with a set of caller and callee (nodes), and calling relation
(edges). For a recursive function call, the exploration adds
one branch and does not go into the call, as simple recursion
is assumed in our project.

The function analyser then traverses each function in the
post order of call graph and processes specific information.
The bottom-up approach ensures when analysing a function
call, the analyser can obtain the pre-optimized results of
the functions that are being called, rather than raw and
un-optimized results. Our project includes three kinds of
function analysers:

• The read-write analyser checks if a variable is or may
be read and written inside a function

• The return analyser checks if a variable is or may be
returned by a function.

• The live analyser checks if a variable is alive or used
after the code of a function.

2.1.1 Read-Write Analyser

Algorithm 1 Read-Write Analysis

Input: Call Graph
Output: MUT maps each function to a read-write set
1: MUT = ∅
2: for each f function in post order of call graph do
3: MUT (f) = ∅
4: for each code in f do
5: lhs← Extract LHS variable at code
6: MUT (f) = MUT (f) ∪ lhs
7: end for
8: end for

The left-hand side (LHS) variable is used to store the com-
putation result of a code, so is considered to be a mutable or
read-write variable and added to the set (see Algorithm 1).
The variable at the right-hand side (RHS) is usually not mu-
table, because it is copied before update. However, if our
copy-elimination causes it to become aliased with the muta-
ble variable then it can also appear in the result set of the
read-write analyser.

Algorithm 2 Mutable Check

Input: v variable, f function
Output: Return true if r is mutated inside f function

return v ∈MUT (f)

Our read-write analysis conservatively keeps all ‘definite’
and ‘may-be’ mutable variables. The mutable check (see Al-
gorithm 2) only weakly identifies a mutable variable, but can
strongly detect an immutable or read-only variable. This
information about read-only variables is used by the copy
analyser to decide whether copying is necessary or not.

2.1.2 Return Analysis

Algorithm 3 Return Analysis

Input: Call graph
Output: RET maps each function to a return set
1: RET = ∅
2: for each f function in post order of call graph do
3: RET (f) = ∅
4: for each code in f do
5: if code is Return then
6: ret← Extract return variable from code
7: RET (f) = RET (f) ∪ ret
8: end if
9: end for

10: end for

The return analyser (see Algorithm 3) includes all definite
and possible return variables, even those inside if-else. The
return information allows the update from the copy analyser
to add ‘may-be’ or aliased return variable after copy removal.

Algorithm 4 Return Check

Input: v variable, f function
Output: Return true if v is returned by f function

return v ∈ RET (f)

Due to the expansion of the return set, the return check
(see Algorithm 4) can be used to effectively detect those non-
returnable variables that are never returned by the function,
which can allow that memory to be deallocated within the
function. As opposed to strong definitely-returned results,
this check may mistakenly report a variable as returnable,
when it is not actually returned, and skip the memory deal-
location. Despite the potential memory leaks, the conser-
vative false alarm can reduce the chances of invalid freeing
while retaining memory safety.

2.1.3 Live Variable Analysis
Live variable analysis[1] is widely applied in compilers to

determine whether a variable is still live (used) after a code,
using an iterative backwards data-flow algorithm.

The live variable analyser first builds up the control flow
graph of a function. Then it scans each WyIL code, and
based on the code type, constructs the corresponding block
to store the code. For example, for a loop the analyser
creates a loop structure and assigns each loop code to loop
header, loop body and loop exit respectively. Other block
types include entry and exit blocks, if-else branches, and
normal blocks.

Notation Description

in(b, f) The set of live variables before b block
of f function

def(b, f) The set of variables defined in b block
of f function

use(b, f) The set of variables used in b block of
f function

out(b, f) The set of live variables after b block
of f function

Table 1: Notations of Live Variable Analysis

Algorithm 5 Live Variable Analysis

Input: Call graph
Output: out maps (block,function) to its live variables
1: for each f function in post order of call graph do
2: CFG← build control flow graph of f function
3: blocks← Traverse post-order blocks of CFG
4: for each b block in blocks other than exit do
5: out(b, f) = ∅
6: end for
7: //Special in and out set for exit block
8: in(exit, f) = {return variable}
9: out(exit, f) = {return variable}

10: //Search live variables until fixed-point
11: while Changes to any in(b, f) set do
12: for each b block in blocks other than exit do
13: out(b, f) =

⋃
S∈succ[b] in(S, f)

14: in(b, f) = use(b, f) ∪ [out(b, f)− def(b, f)]
15: end for
16: end while
17: end for

Secondly, the live variable analyser backtracks through
each block and computes the liveness equation to find the
set of live variables before and after a block repeatedly, until
the input sets reach a fixed point. This iterative procedure
can discover the live variables inside a loop block and if-else
branch, but ensures a comprehensive result set.

Thirdly, the analyser separately processes the ‘exit’ block,
because the return variable must be alive both before and
after the block. Finally, the analyser follows the above steps
to find the liveness information for all functions.

Algorithm 6 Liveness Check

Input: v variable, code, f function
Output: Returns true if v is alive at code in f function

b← Locate the block that contains code in f function
return v ∈ out(b, f)

The set of live variables can determine if a variable is still
used after a specific code (see Algorithm 6)

2.2 Copy Elimination Analysis
By default, Whiley uses copy semantics for every value.

For example, an assignment makes a copy of the right-hand
side variable (int[] a = copy(b)), and function call copies
the passing parameter (int[] a = func(copy(b))). But these
copies are unnecessary when:

• b is dead (not used) after the code, or

• b is passed to a read-only function parameter.

Algorithm 7 Copy Elimination Check

Input: v variable, code, f function
Output: Return true if the copy of v can be eliminated
1: isLive← check if v is alive at code of f
2: if v is NOT alive then
3: return true //Copy can be removed
4: end if
5: if code is a function call then
6: //Special check for passing parameter v
7: vcallee ← map v to local variable at callee
8: if vcallee is NOT mutated at callee then
9: return true //Copy can be removed

10: end if
11: end if
12: return false //Copy is needed in remaining cases

The copy analyser detects what copies can be eliminated
using backward live variable analysis along with a decision
procedure (see Algorithm 7). The procedure removes the
copying of dead variables, which are not used afterwards, as
well as avoiding copying structures that are passed to read-
only function parameters. Other structure copying com-
mands are conservatively kept to avoid misuse of memory
aliases.

Algorithm 8 Copy Elimination Analysis

Input: Call graph
Output: Generated C code
1: Initialize function analysers to perform read-write anal-

ysis, return analysis and live variable analysis.
2: for each f function in post order of call graph do
3: for each code in f do
4: for each var in right-hand-side of code do
5: isCopyEliminated
6: = COPY ElIMINATION CHECK(var, code, f)
7: if isCopyEliminated = true then
8: Generate the copy-reduced code
9: Update the read-write and return sets with var

10: else
11: Generate the naive code
12: end if
13: end for
14: end for
15: end for

The copy elimination analysis (see Algorithm 8) iterates
through each code, checks if the copy of each right-hand side
variable can be removed using the decision procedure, and
then passes the resulting flag to the code generator, which
produces the corresponding C code.

Once the copy is removed, the variable may become aliased
to an existing read-write or return variable. To account for
this, the read-write and return sets of the current function
are updated, to ensure the copy analyser obtains consistent
and optimized results for all functions.

2.3 Deallocation Analysis
Arrays and structures are declared as pointers, and explic-

itly allocated and deallocated as heap memory in the gen-
erated C code. As a result, incorrect memory management

could cause critical memory safety problems, e.g. memory
leaks or double freeing.

Intuitively, a variable that is no longer used, but is still
bound to a previously allocated memory structure, must
be deallocated. As a result of copy-elimination, our gener-
ated C code does sometimes have two variables pointing to
the same memory location, so to ensure that every memory
structure is deallocated exactly once, we associate a boolean
deallocation flag with each heap variable to indicate whether
that variable is responsible for deallocating the memory. In
the generated C code we use deallocation macros to update
the deallocation flags each time a heap variable is updated.
A crucial invariant of the generated code is that whenever
two or more heap variables are aliased to the same memory
structure, then only one of those variable should have its
deallocation flag set to true, indicating that it is responsible
for deallocating that memory structure.

2.3.1 Deallocation Invariant

Theorem 1. Deallocation Invariant For every allocated
structure, and before every WyIL code, there is exactly one
variable that points to that structure and has the deallocation
flag across all function scopes. Given an environment e that
maps variable names to values, this invariant inv is defined
as:

∀i, j : V ARS • (i 6= j ∧ e(idealloc) ∧ e(i) 6= NULL

∧e(i) == e(j))

⇒ e(jdealloc) = false

where V ARS denotes the set of all variables, and idealloc
and jdealloc denote the deallocation flags of variable i and j
respectively.

The general invariant can be narrowed down to a given
variable, i.e. inv(a)

(adealloc ∧ e(a) 6= NULL)

⇒ (∀var : V ARS • (var 6= a ∧ e(var) == e(a))

⇒ e(vardealloc) = false)

This deallocation invariant ensures that at any program
point only one variable has the deallocation flag set to true,
to free the allocated memory space. This invariant allows
multiple variables to share the same allocated memory struc-
ture but restricts only one variable to be responsible for
deallocating the memory structure.

The deallocation analyser takes each code as input, anal-
yses the code properties and applies one of the following
macros to update a variable and change its runtime deal-
location flag. Table 2 shows which macro is used in case.
The correct choice of macro ensures that the deallocation
invariant is maintained before and after each line of code.

2.3.2 Deallocation Macros
The deallocation analyser takes each WyIL code as input,

and adds a pre-deallocation macro and a post-deallocation
macro to the generated C code, to release the old memory
and make changes to the deallocation flag respectively.

Any time that the value of a heap variable is about to be
overwritten, it is important to check whether it is responsible
for deallocating that memory structure. Our code generator

generates a call to the following pre-deallocation macro to
do this check.

1 #define PRE_DEALLOC(a)
2 if(a_dealloc){
3 free(a); a:=NULL; a_dealloc :=false;
4 }

Pre-Deallocation Macro. The PRE DEALLOC macro emp-
ties the left-hand side variable prior to a statement, to avoid
any memory leak caused by the update. However, when
applying to a return code, the pre-deallocation macro is ap-
plied to all variables (excluding the return variables) as well
as all parameter variables, in order to reclaim unused mem-
ory before the function exits.

Post-Deallocation Macros. After each statement, one of
the following post-deallocation macros is called to update the
heap variables and make changes to the deallocation flags.
According to code type and copy information, the macros
are defined as follows:

Assignment. An assignment may or may not copy right-
hand side variable (source) into the left-hand side variable
(destination). The post-deallocation macro can be split into
two cases:

1 #define ADD_DEALLOC(a, b)
2 PRE_DEALLOC(a);
3 a := copy(b);
4 a_dealloc := true;

The ADD DEALLOC macro lets the destination point to a
fresh copy of the source variable structure. Due to having
separate memory structures, the macro sets the destination
deallocation flag to true, but leaves the source deallocation
flag unchanged as no change has occurred to that variable.

1 #define TRANSFER_DEALLOC(a, b)
2 PRE_DEALLOC(a);
3 a := b;
4 a_dealloc := b_dealloc;
5 b_dealloc := false;

The TRANSFER DEALLOC macro aliases the source and des-
tination to the same memory structure, so transfers the deal-
location flag from the source to the destination and resets
the source flag, to ensure that only the destination variable
will be responsible for deallocation.

Function Call. A function call passes parameters to the
calling function (callee) and then returns the result back to
caller site. As a function call may or may not create a fresh
copy of each passing parameter, the deallocation problem
involves:

• when the parameter copy is made, should the callee or
caller free the passing parameter?

• when the parameter copy is eliminated, should the
callee or caller free the passing parameter?

The post-deallocation macro specifies the caller to free
function return (destination), and appends one flag value
along with each parameter (source) to the function call,
to indicate whether the passing parameter can be freed by

Function call a := func(b)
func Mutates b? F F T(‘may-be’) T(‘may-be’)
func Returns b? F T(‘may-be’) T(‘may-be’) F
b is live at caller? F No Copy No Copy No Copy No Copy

RETAIN DEALLOC RESET DEALLOC RESET DEALLOC RETAIN DEALLOC

T (‘may-be’) No Copy No Copy Copy Copy
RETAIN DEALLOC RESET DEALLOC CALLER DEALLOC CALLEE DEALLOC

Table 2: Post-deallocation Macro for Function Call

callee. The flag value is determined by taking account of
mutable, return and liveness analysis as shown in Table 2.
Note that these macros are induced from simulation results
with all possible combinations of flag values, and validated
by checking that all the test cases have no memory leaks.

Function Call of Copied Parameter
The parameter is passed to a function call with a copy as the
parameter is or may be mutated by callee, but the original
value is used after the function call.

1 #define CALLER_DEALLOC(a, b)
2 PRE_DEALLOC(a);
3 // Do not free copied ‘b’ at ‘func’
4 a := func(tmp := copy(b), false);
5 // Possible memory leak on copied ‘b’
6 if (a != tmp) {free(tmp); tmp=NULL;}
7 a_dealloc := true;

The CALLER DEALLOC macro is applied when the parameter
is or may be returned by the function call and avoids being
freed by callee. Due to ambiguous results of return analysis,
this macro would make an extra copy and lead to potential
memory leaks. For example, the calling function contains
an if-else to output different returns (a new array or copied
b array). The ‘may-be‘ return, if it is not actually returned,
skips the de-allocation of passing parameter within callee
and leaves the extra copy un-deallocated after the function
exits. Such memory leaks can be avoided by the additional
de-allocation check.

The conservative caller macro is a trade-off between mem-
ory leaks and memory safety, to deal with the uncertainty
on function return at runtime and avoid wrongly nullifying
the return.

1 #define CALLEE_DEALLOC(a, b)
2 PRE_DEALLOC(a);
3 // Free copied ‘b’ at ‘func’
4 a := func(tmp := copy(b), true);
5 // No change to ‘b_dealloc ’
6 a_dealloc := true;

The CALLEE DEALLOC macro is applied when the passing
parameter is NOT returned by function call. So the param-
eter can be deallocated separately at callee since it is not
aliased with function return.

Function Call of Not Copied Parameter
The parameter is passed straight to a function call without
copy. Due to being used and shared by caller and callee, the
passing parameter, if freed within callee, may cause dangling
pointers and make use of invalid data at caller site. So the
de-allocation of un-copied parameter is always delegated to
the caller.

1 #define RETAIN_DEALLOC(a, b)

2 PRE_DEALLOC(a);
3 // Do not free ’b’ at ’func’
4 a := func(b, false);
5 // No change to ’b_dealloc ’
6 a_dealloc := true;

The RETAIN DEALLOC macro is applied when the parameter
is not returned by function call. Since the parameter is not
aliased with function return, its flag at caller site can stay
unchanged.

1 #define RESET_DEALLOC(a, b)
2 PRE_DEALLOC(a);
3 // Do not free ’b’ at ’func’
4 a := func(b, false);
5 // Take out ‘b’ flag
6 b_dealloc := false;
7 a_dealloc := true;

The RESET DEALLOC macro is applied when the passing
parameter is or may be returned by calling function and
aliased with function return, so specifies the de-allocation
at caller site.

3. PERFORMANCE EVALUATION
The benchmark suite includes Reverse, TicTacToe, Merge

Sort, Bubble Sort and Matrix Multi test cases (code snip-
pets are listed in Appendix A). Each test case is translated
by our code generator, both with and without the copy-
elimination and the deallocation analysers, giving four kinds
of C implementations:

• Naive C code (N) is translated from WyIL code without
any code optimization.

• Naive and memory deallocated C code (N+D) is trans-
lated from WyIL code with deallocation macros.

• Copy-eliminated C code (C) is translated from WyIL
code with just copy elimination.

• Copy-eliminated and memory deallocated C code (C+D)
is translated from WyIL code with copy elimination
and deallocation macros.

All benchmarks are conducted on Ubuntu machine (i7-4770
CPU @ 3.40GHz and 16 GB memory), and compiled into
executables by GCC compiler (version 5.4.1) and run with
three problem sizes.

Speed-up. Each implementation is repeatedly run 10 times
on each problem size and averaged the execution time to
calculate the speed-up over naive code. Speed-up results in
Table 3 show that the extra deallocation macro may slightly
slow down the naive code in two cases. However, without
deallocation macro the naive code can not be run on large
problem size due to severe memory leaks. For example, when

Table 3: Speed up

Test Case Problem Size
Average Execution Time (Seconds) Speedup (vs. Naive code)
N N + D C C + D N + D C C + D

Reverse 100,000 0.008 0.011 0.007 0.007 0.72 1.09 1.13
1,000,000 0.017 0.016 0.012 0.010 1.02 1.44 1.63

10,000,000 0.090 0.099 0.043 0.043 0.91 2.11 2.12
TicTacToe 1,000 0.011 0.019 0.008 0.007 0.59 1.45 1.48

10,000 0.023 0.018 0.019 0.015 1.22 1.18 1.51
100,000 0.166 0.113 0.122 0.082 1.46 1.36 2.02

Bubble Sort 1,000 0.01 0.01 0.01 0.01 1.00 1.03 0.99
10,000 0.07 0.07 0.07 0.07 1.00 1.01 0.98

100,000 6.61 6.62 6.63 6.62 1.00 1.00 1.00
Merge Sort 1,000 0.007 0.007 0.007 0.008 1.02 0.93 0.85

10,000 0.010 0.009 0.008 0.007 1.10 1.18 1.38
100,000 0.043 0.061 0.017 0.015 0.70 2.59 2.94

Matrix Mult 1,000 1.30 1.23 1.27 1.19 1.06 1.02 1.09
2,000 15.85 15.73 15.99 15.71 1.01 0.99 1.01
3,000 46.73 46.68 46.62 46.55 1.00 1.00 1.00

matrix size is increased upto 10,000 the naive code runs out
of system memory and causes system breakdown.

The combined copy elimination and de-allocation analysis
can scale up the speed-up with problem size in three cases
(’Reverse’, ’TicTacToe’ and ’Merge Sort’). For other two
cases, the performance requires different optimizations. By
profiling the total execution time using ’gprof’ tool, the naive
’Bubble Sort’ spends almost 100% time on sorting and swap-
ping array items. Likewise, the naive ’MatrixMult’ code uses
99% time to calculate the products of rows and columns, and
only 0.1% time on array copying. As their computation time
dominates copying overheads, our memory optimization has
little improvement on the total execution time.

Table 4: Memory Leaks (Bytes)
Copy
Elimination(%)N N + D C C + D

Reverse
(100,000) 4,800,256 0 1,600,248 0 66.66%
(1,000,000) 48,000,264 0 16,000,256 0 66.67%
(10,000,000) 480,000,272 0 160,000,264 0 66.67%
TicTacToe
(1,000) 2,760,280 0 2,040,272 0 26.08%
(10,000) 27,600,288 0 20,400,280 0 26.09%
(100,000) 276,000,296 0 204,000,288 0 26.09%
Bubble Sort
(1,000) 32,264 0 8,256 0 74.41%
(10,000) 320,272 0 80,264 0 74.94%
(100,000) 3,200,280 0 800,272 0 74.99%
Merge Sort
(1,000) 351,488 0 88,056 0 74.95%
(10,000) 4,595,976 0 1,149,184 0 75.00%
(100,000) 56,605,968 0 14,151,688 0 75.00%
Matrix Mult
(1,000) 152,000,784 0 24,000,624 0 84.21%
(2,000) 608,000,784 0 96,000,624 0 84.21%
(3,000) 1,368,000,784 0 216,000,624 0 84.21%

Memory Leaks. Table 4 shows the memory leaks of each
generated code, detected by Valgrind tool [6] and summed
up 4 kinds of memory leaks (definitely loss, indirectly loss,
possibly loss and still reachable loss).

The results show that, on our benchmark suite, our deal-
location analysis effectively avoid memory leaks in all test
cases. Also, the copy elimination alone can reduce upto 84%
leaks in ’MatrixMult’ case. Note that apart from these 5
cases, our deallocation analysis does not guarantee ’zero’

leaks as there can be potential leaks in CALLER DEALLOC

macro.

4. RELATED WORK

Copy Elimination. Many attempts to solve extra copies in
value-semantic programs rely on dynamic reference counting
technique for its prompt memory reclaim. But the overhead
cost of garbage collection may slow down the program exe-
cution at run-time.

The copy elimination approach at compile time[9] was pro-
posed to optimize the compiler and remove large amounts
of copies using aggregate analysis along with a set of tech-
niques, to produce efficient code without run-time support.
For example, an alternative static analysis[5] was imple-
mented in MATLAB JIT compiler to remove un-necessary copies
while compiling the program even though MATLAB runtime
has been built in with reference counting.

Our static copy analysis, similar to alias annotation analy-
sis for Java language[2], works at intermediate level of Whiley
code and uses live variable analysis[1] and a decision proce-
dure to eliminate extra copies.

The reference count, that keeps track of the number of
references at runtime, requires extra work to ensure atomic
update on multi-threading environment. Unlike reference
counting, our approach uses a boolean flag instead, to indi-
cate who is responsible for deallocation.

Memory Deallocation. Rust programming language[4] uses
single owner rule and move semantics to avoid dangling
pointers. Our deallocation analysis has similar single invari-
ant but uses tree-based structure flag. The flag is pointed
to a single top-level variable of a structure or array. Once
the variable is deallocated, all its allocated memory and sub-
structures are dropped as well.
C++11 also provides smart pointers[3] to reduce the misuse

of pointers by automatically garbage collecting at runtime.
In particular, the single ownership of unique pointer is sim-
ilar to our single deallocation. But the raw pointers used in
our project are different in a number of ways.

Unlike the strict copy prevention in the unique pointer,
our raw pointers can be copied or aliased to other pointers as

long as the invariant is maintained by using our deallocation
flags and macro system.

The unique pointer becomes empty once it is transferred
out to another pointer. But our raw pointers can still access
the shared memory space after their flags are taken out and
transferred to another variable. This feature is useful when a
parameter is passed to a function call and its value can not
be deallocated at calling function. Our raw pointers with
false flags act more like weak pointers as they do not have
effects on the destruction of shared memory.

5. CONCLUSIONS
Our naive C code generator already translated Whiley

programs into efficient C programs that were orders of mag-
nitude more efficient than the Whiley code generator that
generates naive Java code[10]. But it had memory leaks and
scalability problems.

This paper shows that static analysis can be used to fur-
ther improve the efficiency of the generated C programs by
eliminating most unnecessary copying and memory leaks.
More importantly, our combined static analysis and deal-
location flags allow each memory block to be deallocated
exactly once, which eliminates all double freeing problems
and avoids most memory leaks. This is important for long-
running programs on small embedded computers with lim-
ited memory.

6. ACKNOWLEDGMENTS
Thanks to Dr David J. Pearce for support on the Whiley

compiler and benchmark programs.

7. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers,

Principles, Techniques, chapter 9, page 608. Addison
wesley, 2006.

[2] J. Aldrich, V. Kostadinov, and C. Chambers. Alias
Annotations for Program Understanding. In ACM
SIGPLAN Notices, volume 37, pages 311–330. ACM,
2002.

[3] A. Alexandrescu. Modern C++ design: generic
programming and design patterns applied.
Addison-Wesley, 2001.

[4] J. Blandy. Why Rust? Trustworthy, Concurrent
Systems Programming. Number 978-1-491-92730-4.
O’Reilly Media, Inc., First edition, September 2015.

[5] N. Lameed and L. Hendren. Staged static techniques
to efficiently implement array copy semantics in a
MATLAB JIT compiler. In Compiler Construction,
pages 22–41. Springer, 2011.

[6] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
ACM Sigplan notices, volume 42, pages 89–100. ACM,
2007.

[7] D. J. Pearce. Integer range analysis for Whiley on
embedded systems. In
Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops (ISORCW), 2015
IEEE International Symposium on, pages 26–33.
IEEE, 2015.

[8] D. J. Pearce and L. Groves. Designing a verifying
compiler: Lessons learned from developing Whiley.
Science of Computer Programming, 113:191–220, 2015.

[9] P. Schnorf, M. Ganapathi, and J. L. Hennessy.
Compile-time Copy Elimination. Software: Practice
and Experience, 23(11):1175–1200, 1993.

[10] M.-H. Weng, M. Utting, and B. Pfahringer. Bound
Analysis for Whiley Programs. Electronic Notes in
Theoretical Computer Science, 320:53–67, 2016.

APPENDIX
A. BENCHMARK WHILEY PROGRAMS

The source code of un-modified Whiley programs can be
found at Whiley benchmarks repository (https://github.com/
Whiley/WyBench).

1 // Reverse an integer array
2 function reverse(int[] ls) -> int[]:
3 int i = |ls|
4 int[] r = [0; |ls|]
5 while i > 0 where i <= |ls| && |r| == |ls|:
6 int item = ls[|ls|-i]
7 i = i - 1
8 r[i] = item
9 return r

Listing 1: Reverse

1 // A square on the board is blank , a circle or cross.
2 type Square is (int x) where x == BLANK ||
3 x == CIRCLE ||
4 x == CROSS
5 type Board is (null |{
6 nat move ,
7 Square [] pieces // 3 x 3
8 } this)// A board has 9 squares , and a move counter
9 method main(System.Console sys):

10 int repeat = 0
11 while repeat < max:
12 Board b1 = EmptyBoard ()
13 Board b2 = EmptyBoard ()
14 int i = 0
15 while i < |GAME|:
16 int p = GAME[i]
17 if p <0 || p > 9:
18 break
19 else:
20 if b1 != null:
21 b1.pieces[p]= CIRCLE
22 b1.move = b1.move + 1
23 b2 = b1
24 b1 = null
25 else:
26 if b2 != null:
27 b2.pieces[p]=CROSS
28 b2.move = b2.move + 1
29 // Move to next player
30 b1 = b2
31 b2 = null
32 i = i + 1
33 repeat = repeat + 1

Listing 2: TicTacToe

1 function bubbleSort(int[] items) -> int[]:
2 // ...
3 int last_swapped = 0
4 // Until no items is swapped
5 while length > 0:
6 last_swapped = 0
7 int index = 1
8 while index < length:
9 //Check previous item > current item

10 if items[index -1] > items[index]:
11 // Swap them
12 int tmp = items[index -1]
13 items[index -1] = items[index]
14 items[index] = tmp
15 last_swapped = index
16 //End if
17 index = index + 1
18 // Skip remaining items , since they are ordered
19 length = last_swapped
20 return items

Listing 3: Bubble Sort

1 function mergesort(int[] items , int start , int end)
2 -> int[]:
3 if (start +1) < end: // Check the length is > 1
4 // Recursively split left array ...
5 int[] lhs = Array.slice(items ,start ,pivot)
6 lhs = mergesort(lhs , 0, pivot)
7 // Recursively Split right array ...
8 int[] rhs = Array.slice(items ,pivot ,end)
9 rhs = mergesort(rhs , 0, (end -pivot))

10 // Merge left and right lists into items
11 while i < (end -start) && l < (pivot -start) &&
12 r < (end -pivot):
13 if lhs[l] <= rhs[r]:
14 items[i] = lhs[l]
15 l=l+1
16 else:
17 items[i] = rhs[r]
18 r=r+1
19 i=i+1
20 // Tidy up left and right subarray ...
21 while l < (pivot -start):
22 items[i] = lhs[l]
23 i=i+1
24 l=l+1
25 // Tidy up right subarray
26 while r < (end -pivot):
27 items[i] = rhs[r]
28 i=i+1
29 r=r+1
30 return items

Listing 4: Merge Sort

1 // This matrix is represent with 1D array
2 type Matrix is ({
3 int width ,
4 int height ,
5 int[] data // data[i*width+j] := data[i][j]
6 } this)
7
8 function mat_mult(Matrix a, Matrix b) -> (Matrix c)
9 requires a.width == b.height

10 ensures c.width == b.width && c.height == a.height:
11 nat width = b.width
12 nat height = a.height
13 int[] data = [0; width*height]
14 int[] a_data = a.data
15 int[] b_data = b.data
16 int i = 0
17 while i < height:
18 int j = 0
19 while j < width:
20 int k = 0
21 while k < width:
22 // c[i][j] += a[i][k] * b[k][j]
23 data[i*width+j] = data[i*width+j] +
24 a_data[i*width+k] * b_data[k*width+j]
25 k = k + 1
26 j = j + 1
27 i = i + 1
28 return matrix(width , height , data)

Listing 5: Matrix Multiplication

