
Generating Cubes from Smart City Web Data∗

Michael Scriney1

michael.scriney@insight-
centre.org

1Insight Centre for Data Analytics 2Department of Computing
School of Computing, Dublin City University Institute of Technology Tallaght

Glasnevin, Dublin 9, Ireland Dublin 24, Ireland

Martin F. O’Connor2
martin.oconnor@ittdublin.ie

Mark Roantree1

mark.roantree@dcu.ie

ABSTRACT
A smart city necessitates the incorporation of data sources
from multiple providers and data formats. Similar to the In-
ternet Of Things, this data is primarily obtained from web
streams producing XML or JSON data. Various combina-
tions of data obtained from different providers can be used
to enhance the lives of citizens with respect to different char-
acteristics such as transport, city planning, the environment
and housing. However, data provided from these streams is
not necessarily in a format suitable for analysis and OLAP
queries, despite the fact that these streams often provide
measures and some elements of dimensionality often found
in OLAP queries. In this research, we present a StarGraph
construct which is designed to import web generated data
streams and automatically generate the cube format neces-
sary for OLAP queries. Our validation shows how the data
streams can be captured as StarGraphs and using a traffic
data case study, demonstrates an efficiency for populating
and updating the data cube.

CCS Concepts
•Information systems→Data model extensions; Data
warehouses; Data mining; Enterprise application inte-
gration tools; •Applied computing → IT governance;

Keywords
Data Cubes, OLAP, Smart City

1. INTRODUCTION
The Web continues to provide new opportunities for shar-

ing information from many varied applications and devices.
A recent initiative has seen the emergence of the exchange
and integration of knowledge from different government and

∗This work is supported by Science Foundation Ireland un-
der grant number SFI/12/RC/2289

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSW ’17, January 31-February 03, 2017, Geelong, Australia
c© 2017 ACM. ISBN 978-1-4503-4768-6/17/01. . . $15.00

DOI: http://dx.doi.org/10.1145/3014812.3014863

infrastructural services. These projects have become known
as Smart City applications [12]. A smart city utilizes the
vast amount of data provided from a wide range of services
to enhance the quality of life of its population. The data
generated by a city can vary widely, from domains such as
transportation, the environment and social data. A smart
city encompasses many different data sources in order to
enhance services such as city planning, policing and energy
management.

Various combinations of the generated data can be used
to address numerous problems in the city. For example,
the combination of environmental data with transportation
data may permit the examination of the carbon footprint
of a city and possibly facilitate a means of addressing such
problems. Each data source is produced independently and
as such conforms to its own isolated schema and is pub-
lished on the web generally in XML or JSON as a data
stream. While the unification of data from heterogeneous
sources is a complex task and domain-dependent, there are
well understood approaches to tackling data integration is-
sues [9]. More recently, XML mapping technologies have
been studied in terms of processing and transforming XML
data [20] [19] and XML sensor streams [18] with solutions to
optimise XML views [13] and efficiently update XML [16].
However, none of this research looked at the generation of
OLAP-ready cubes from the XML data sources. Enhancing
data warehouses with web generated XML data was pre-
sented in [15] but again, the schema design (facts and di-
mensions) was driven by existing enterprise databases. In
[8], the authors provide an efficient cube maintenance sys-
tem based on relational data and this was extended for XML
data in [17]. While this work can potentially integrate mul-
tiple XML cubes, it is based on a static cube and query set
while our approach is to manage new and updating datasets
coming from smart city sources.

1.1 Motivation and Case Study
One component of this research involves the processing

of a data stream containing the travel times for all motor-
ways (provided by Transport Infrastructure Ireland); extract
the travel times between each pair of recorded locations (at
a specified interval, currently every 5 minutes); and create
data cubes to allow for queries across different dimensions
and at different levels of granularity.

Example 1.1. {

"M7_eastBound": {

"data": [

{

"status": "U",

"distance": 1772,

"from_name": "J9 Naas North",

"current_travel_time": 59,

"to_name": "J8 Johnstown",

"free_flow_travel_time": 53

}

]

}

The motivation for this work is best exemplified using
these case studies which aims to provide smart routing for
emergency responders. Due to the nature of their work, it
is imperative that an emergency response vehicle reaches its
destination in the fastest time possible. However, the time
it takes to cross a road network from point A to point B
can vary wildly due to the number of cars or incidents on
the road network. The end result is an increase in travel
(response) times and in instances where the delay may be
significant, an alternate route is crucial.

In example 1.1, the first key in the JSON file M7_eastBound
states the route taken. There are many objects listed under
the data array but for this example only one is provided here
for the sake of brevity. In this instance, it states that the
time taken to travel between junctions 9 and 8 is 59 seconds
which covers a distance of 1.7Km and the optimal time is
53 seconds. In this case, the aim is to determine the mini-
mum travel times between two points using the time of day
dimension. A combination of historical data coupled with
the up to the minute data stream is utilized to determine
the most efficient route for emergency responders. Details
of the data stream and processing times are provided in our
evaluation in Section 5.

1.2 Contribution
In this paper, we introduce the StarGraph as a multi-

dimensional data model to represent web generated datasets.
Our contribution lies in the methodology for transforming
web sources (XML, JSON) into the StarGraph model. In ef-
fect, this delivers the automatic creation of any web source
into a canonical multi-dimensional model which is then in a
cube ready view definition. Our evaluation is twofold: firstly,
we use multiple smart city sources to demonstrate the ex-
tent to which the StarGraph transformation algorithm ab-
sorbs the data stream; and secondly, we demonstrate the
efficiency at creating and populating data cubes using our
traffic monitoring case study.

1.3 Paper Structure
The paper is structured as follows: Section 2 outlines our

related research; Section 3 provides a high-level overview of
our system to construct a StarGraph from a smart city data
source; Section 4 describes in depth the process to construct
a StarGraph and its resulting fact table; Section 5 presents
our evaluation of the construction of a smart city data cube;
and finally, in Section 6 we provide our conclusions and out-
line our future work.

2. RELATED RESEARCH
At present most of the work on data integration for data

warehousing focuses on the integration and analysis of XML-
centric data.

In [10] the authors propose a means of storing XML data
in an existing data warehouse using X-warehousing. They
present a method which uses XML as the logical model of a
data warehouse. In order to integrate XML documents into
the data warehouse, the XML logical model and the XML
document to be integrated are converted into attribute trees
which are then pruned and grafted. However, this approach
requires a user to specify a schema whereas our approach
provides an automatic means of constructing a schema.

[14] proposes a system whereby dimensions can be de-
rived from semi-structured data. The system takes in semi-
structured data (e.g. a Twitter stream) and first maps it to
a pre-defined relational model. The semi-structured data is
then mined for additional data such as entities that are be-
ing mentioned in the text of a Tweet. However the authors
do not present an automated system to initially discover di-
mensions in heterogeneous semi-structured data.

In [7] the authors present a new multidimensional model,
the diamond model, to store semi-structured XML data in
an OLAP system. The model is composed of three layers:
the standard layer is composed of dimensions whose proper-
ties are obtained from the document structure; the semantic
layer is the central dimension which adds semantics to the
textual content derived from documents; and the document
layer which is derived from documents with similar struc-
tures. Similar to our approach, the fact is derived from
the dimensions extracted from the document. However, as
the diamond model is created to analyse textual documents
there is no established process for measure detection. They
present a series of heuristic rules to determine dimensions,
attributes and hierarchies based on functional dependencies
between documents. We adopt a similar approach. How-
ever, we also employ a graph analysis methodology to dis-
cover and construct dimension hierarchies.

In [22], the authors present a system to design a data
warehouse for semi-structured data. Similar to our approach
a dependency graph is used to detail the individual elements.
However a domain specific designer is needed in order to
explicitly state the facts which are needed to construct the
fact table unlike our automated approach.

3. AUTOMATING CUBE CONSTRUCTION
The process is composed of two main steps; StarGraph

creation and database population.
Initially, a StarGraph is created from a single schema defi-

nition (XSD, JSON schema). Once the StarGraph is created
it is analyzed and produces an empty star schema corre-
sponding to the schema file provided to the system. Addi-
tionally, this process also produces a series of mapping rules
which detail how the star schema should be populated with
respect to data obtained from a data stream conforming to
the provided input schema (XSD, JSON schema). Once the
fact table is populated, data cubes can be created and ana-
lyzed.

3.1 Data Warehousing Core Concepts
We briefly review the core terminology so as to clarify

what the terms mean and provide context for our work. A
data warehouse is a database which manages a large amount

of data. A data warehouse requires a database schema which
details how the data is to be stored. One common data ware-
house schema is a star schema. A star schema consists of
a Fact table and a series of Dimensions. A Fact table

represents a single ’fact‘, this can be an event or a transac-
tion. A Fact table contains a measure (or series of mea-
sures), these are typically numerical data which constitutes
the ’fact‘ (e.g. total cost of an order in a shop). Measures
are supplemented by Dimensions, a Dimension contains data
which supplements the fact (an example would be details
about the shop in which an order was placed). Addition-
ally, a measure cannot be a primary key of a dimension.
A fact table contains foreign keys to a series of dimensions
which provide additional information about the fact. Fact
tables are used to construct data cubes. Data cubes [11] are
a common means of aggregating data for further reporting
and analysis. A data cube is created by calling some aggre-
gation function (SUM,AVG etc..) on the measures residing
in the fact table.

3.2 Transformation to StarGraph
The first step of the process is the transformation of a

schema definition (obtained from the data provider) into
our CDM (Common Data Model) called a StarGraph. A
StarGraph is an enriched graph which represents the mea-
sures, dimensions and facts derived from the source schema.
The StarGraph is then used to provide a series of mapping
rules to convert data obtained from a stream into its con-
stituent dimension, measures and facts and subsequently to
construct a star schema. An overview of the process is shown
in Fig. 1.

The framework takes input in the form of a schema defi-
nition (e.g. an XSD or a JSON Schema) which defines the
data obtained from a real-time data stream.

3.3 Data Population and Cube Construction
The star schema generated from a StarGraph is used to

construct an empty data warehouse with the dimensions,
facts and measures. The mapping rules are used to pop-
ulate the data warehouse with data obtained from a data
stream. When data streams are introduced to the system,
the mapping rules are analysed in order to extract the de-
fined data and store them in the data warehouse. When the
fact table is populated data cubes may be created and mined
to analyse the smart city data. We have previously discussed
the construction of data cubes for smart city data [21]. This
paper focuses on the integration and generation of a data
warehouse from which data cubes may be constructed.

3.4 Mapping Rules
The mapping rules produced by the StarGraph are de-

pendent on the type of schema used to construct the Star-
Graph. For example, when an XSD is used to construct
the StarGraph, the mapping rules generated are in the form
of XPath expressions. Each expression is mapped to either
an attribute of a dimension or a measure. When an XML
data stream is introduced to the system, these XPath ex-
pressions are evaluated to extract the information necessary
to populate the fact table.

Table 1 provides an example of the mapping rules pro-
duced by a StarGraph. The left hand Source column stores
the XPath expressions used to extract the necessary data
from the data stream. The right hand column specifies

Table 1: Example of the schema mappings produced by the
StarGraph

Source Target
\node1\child\@id Dimension1.id

\node1\description\text() Dimension1.description
\node2\quantity\text() Fact table.measure

the location where the data should be stored in the star
schema. For example, the attribute id for the node child

corresponds to the column id in the table Dimension1 .

4. WEB DATA TRANSFORMATION
In this section, we describe in detail the key components

introduced in the previous section. We begin with a compre-
hensive description of the StarGraph and provide an overview
of its creation process. We then discuss the identification of
dimensions and measures. Finally, the construction of the
empty fact table is presented.

4.1 StarGraph
Our graph is comprised of a set of nodes N and a set of

edges E.
Each edge is a four-tuple E = (X,Y,REL, I) where: X,Y ∈

N ; REL is a type denoting the conceptual relationship which
exists between the nodes X and Y . The possible values for
REL are:

• 1-1, denoting a one-to-one relationship.

• 1-m, denoting a one-to-many relationship.

• m-m, denoting a many-to-many relationship.

The relationship type is derived by examining the schema
structure and attributes. The type may be further con-
strained by specified indicators. For example, in an XSD
data source, the relationship type may be constrained by the
XML Schema indications such as maxOccurs and minOccurs.
These schema indicators can be used to determine REL
value (1-1, 1-m, m-m) of an Edge tuple. Lastly, the value I is
a flag denoting whether or not the relationship is implicit

or explicit. In brief, one-to-one relationships can be viewed
as attributes (if implicit) and joins (if explicit), one-to-many
relationships can be viewed as sub-dimensions (if implicit)
and a one-to-many join (if explicit), many-to-many relation-
ships can be viewed as a many to many join (if explicit).

An example of an implicit value is the hierarchical re-
lationship that exists between two nodes in an XML docu-
ment, this relationship is derived from the documents struc-
ture. An example of an explicit relationship would be
a mapping using key and keyref elements in an XSD de-
noting a PK-FK (PrimaryKey-ForeignKey) relationship be-
tween two nodes which may have no relationship to each
other inside the XML document structure. For example the
tuple: (Station,Name, 1−1, T rue) states that there is a re-
lationship between the nodes Station and Name, they share a
1-1 relationship and that this relationship was derived from
the document structure and as such Name can be viewed as
an attribute of Station.

Conversely the tuple: (DateT ime, Scrapes, 1−m,False)
denotes that there is an explicit 1-m relationship between
DateTime and Scrapes, that there exists a one-to-many PK-
FK relationship between these two values and as such,

Figure 1: Construction of StarGraph from Schema Definition and the generation of Star Schema and Mapping Rules.

DateTime is a dimension with a defined primary key which
must be referenced by any Scrape. However, in this in-
stance, if the value I was set to true, it is regarded as an
implicit one-to-many relationship and Scrapes would be
viewed as a sub-dimension of DateTime

Each node n ∈ N is a five-tuple node such that n =
(name, nodeType, source, dType,measure). name is the name
of the node, measure is a flag indicating whether or not the
node is a potential measure. dType is the datatype of the
defined node. source is an indicator of where the particu-
lar data item is to be found in the schema. For example
for an XML schema the source attribute is an XPath query
detailing the location of the item and for JSON it uses dot
notation. nodeType indicates the type of node, there are
five possible types:

• Dimension marks a node which is the beginning of a
dimension.
• dimension_attribute is a marker denoting that the

node in question is an attribute of the parent dimen-
sion node.
• container indicates the node is an instance containing

other nodes.
• key-keyref identifies the node type as a primary or

foreign key relation.

The algorithm to assign the node types is detailed in Al-
gorithm 1. The function call isContainer on line 3, detects
whether or not a specific node is a container. The algorithm
for detecting container elements is outlined in Algorithm 2.

Algorithm 2 Algorithm for Detecting Container Elements

1: function isContainer(node)
2: if node.children.size!=1 then
3: return False
4: else if node.children.relType!=one-to-many

then
5: return False
6: else if node.hasAttributes then
7: return False
8: else if graph.instance(node.children)>1 then
9: return False

10: end if
11: return True
12: end function

Algorithm 1 Algorithm for Assigning Node Types

1: function setNodeType(node)
2: switch node do
3: case isContainer(node)
4: node.setType(Container)

5: case isKey(node)
6: node.setType(key-keyref)

7: case isDimension(node.parent)
8: if node.reltype=”one” then
9: node.setType(Dimension-Attribute)

10: else
11: node.setType(Dimension)
12: end if
13: case Default
14: node.setType(Dimension)

15: for child in node do
16: setNodeType(child)
17: end for
18: end function

The StarGraph is created by parsing an XSD or JSON
schema. The root element of the XSD or JSON schema is
removed and the remaining entities are stored as a set of dis-
joint subtrees. As the schema is parsed, each defined entity
occupies a node in the subtree set and as such is assigned
a nodeType attribute. At this stage all edges are deemed
implicit as the relationships are derived from the structure
of the schema. If the node is a top-level node it is deemed to
be a dimension, a nodes which has a one-to-one mapping
to a dimension node is deemed a dimension_attribute. In
addition, any entities which have numerical data types are
deemed to be potential measures.

Recall at this point we have a series of top level nodes as
illustrated in Fig 2. In order to construct the StarGraph, it
is necessary to identify existing relationships between nodes
across disjoint subtrees. This is performed by resolving the
primary-foreign key relationships previously identified dur-
ing the initial processing of the schema. Once the container
elements are removed we are left with a set of dimensions and
their potential measures (Fig.3), from here we examine the
explicit relationships defined in the schemas as primary
and foreign key references. Each node which was marked as
a key-keyref node is examined and linked to other nodes

Figure 2: StarGraph with Containers.

Figure 3: StarGraph with Containers Removed.

which share the same key. If the two nodes in question share
a one-to-one relationship they are merged. Once the set of
disjoint subtrees are linked across dimensions it becomes a
StarGraph. As our working example does not contain any
explicit primary-foreign key relationships we will illustrate
this process with our bikes dataset. Fig. 4 shows a Star-
Graph created from our bikes dataset (XML). At this stage
container elements are removed and we are left with a series
of disjoint subtrees.

The finalised StarGraph with key-keyref edges added is
illustrated in Fig. 5.

4.2 Dimension and Measure Identification
The next step of the process is the identification of facts

and dimensions. All items marked as potential measures are
evaluated. In the event that items are not deemed measures,
they become dimension-attributes instead. Upon parsing
the Schema definition, any numerical data types that are
not defined as primary keys are considered to be measures.

Measure Detection. In our StarGraph (illustrated in
Fig. 3 the identified measures are ‘distance‘,
‘current travel time‘ and ‘free flow travel time‘. The graph
is traversed to examine the number of dependencies for each

Figure 4: StarGraph created from bikes dataset with Con-
tainers Removed.

Figure 5: StarGraph with Explicit Links.

potential measure. Measures with the maximum number of
dependencies are chosen as measures for the fact table, and
the dimension tables are constructed. In a traditional fact
table a measure item has the highest number of dependen-
cies because it relies on the foreign keys of each dimension
and subsequently the attributes of each dimension. In this
instance all three potential measures share the same number
of dependencies and as such will be grouped inside the same
fact table.

4.3 Fact table Generation
Once all measures and dimensions are identified, a fact

table schema is created. If a dimension has a defined primary
key, it is used as a foreign key in the fact table. In the event
an identified dimension does not contain a primary key, one
will be generated for it. The src attribute for each node is
extracted to provide a series of mapping rules which are used
to extract the information from a data stream and populate
the fact table. The final step in the creation of the fact
table is the addition of a datetime dimension automatically
created by the StarGraph. This addition is used to provide a
timestamp for all facts which are introduced to the system.
As a data cubes is being populated from a live streaming
source, in addition to the facts and dimensions derived from
the mapping rules generated by the StarGraph, the datetime
dimension is automatically populated to denote the time at
which the data was extracted from the streaming source.

5. EVALUATION
Our evaluation is twofold: firstly we discuss the creation

of a StarGraph for each of our five data sources with respect
to the facts, dimensions and measures derived; secondly we

examine the performance of our system in populating a dat-
acube created from our motorway traffic data.

5.1 Datasets

BikesData.
Dublin Bikes is a bike rental system located in Dublin city.

Users may ‘rent’ a bike from one of its many stations located
around the city for a maximum of 24 hours. In addition,
they provide users of the system with a real-time service
detailing the number of bikes available at each station. The
data is published in XML [4] and enables users to plan where
they may pick up or drop off a bike. The data published by
this real-time service can be used to model the usages of
this system throughout the city, additionally it can be used
to predict the number of available bikes per station, and
can also be used to recommend which stations require more
bikes.

Ambient sound.
There are a number of sensors located throughout Dublin

city which measure the ambient sound at 5 minute intervals
[3]. The data can be used to estimate the density of areas
with regards to population and transportation. It can be
analysed to identify congested areas of the city as well as
examine the environmental effects noise pollution has on the
surrounding environment.

Motorway travel times.
The data is obtained from a json file which is provided by a

near real-time data stream which is updated every 5 minutes
[5]. Each file contains a list of each motorway coupled with
a direction e.g. “M50 Southbound“ and each one of these
directions contains a list of the travel times between different
junctions on that motorway at the time of scraping. An
example is shown in Example 1.1.

For the distance between two junctions there are three
measures; the distance between the two junctions in metres,
the current time in seconds to get from junction A to B, and
the optimal time taken to travel between the two junctions.

Car Park Data.
This data provides a near real time indication of the num-

ber of available parking spaces available in various car parks
throughout Dublin city [6]. The data is published in XML.
This data can be used by individuals to find a parking space
in the city centre at any given time.

Air Quality Index.
This data provides an indication of the air quality at se-

lected sites located across Ireland [2]. It provides a region of
Ireland coupled with an air quality index as defined by the
EPA [1].

5.2 StarGraph creation
The purpose of this section is to examine StarGraphs cre-

ated from different datasets of different types (XML, JSON).
Each StarGraph is examined with respect to the number of
nodes and edges created in the graph, the number of di-
mensions, attributes and measures created in the fact table
and finally the time taken to create the StarGraph. Table
2 outlines the performance of StarGraph creation for each

schema.
The times taken for each StarGraph to be created were

between 260ms for the CarPark dataset and 504ms for the
Ambient Sound and Air Quality datasets. Overall the Star-
Graphs constructed from XML data completed faster than
those derived from a JSON schema with both XML datasets
completing in 260ms and all JSON datasets taking longer
than 500ms to construct. This is most likely due to different
parsers being required to examine and traverse an XSD and
a JSON schema.

The complexity of the provided schema undoubtedly in-
creases the time taken to construct a StarGraph. Ignoring
the additional time taken to parse a more complex schema,
the result would be a StarGraph with additional nodes and
edges. This would undoubtedly increase the time taken to
generate a fact table due to the time taken to traverse the
graph to detect and remove containers and generate dimen-
sions.

Motorway.
For the motorway dataset, 10 dimensions were created

from the supplied data stream. At the highest level, the
process extracted motorway name and direction
(e.g. m50_southbound). Both dimensions linked to an object
which contained two attributes: title which was the title of
the object and data which was an array of JSON objects. As
all of the top-level dimensions held a 1-1 relationship with
the title attribute, it was classified as an attribute of each
dimension. The data object was identified as a container as
it was an array of smaller objects and as such, was removed.
The unnamed object which was contained in the array was
created as a shared sub-dimension as it held a 1-m re-
lationship with the top-level dimensions. The unnamed di-
mension contained three potential measures: distance,
current_travel_time and free_flow_travel_time. As all
of these measures shared the same number of dependencies,
the algorithm includes them in the same fact table. The
constructed fact table can be seen in Fig. 6. The StarGraph
was created in 523ms.

Figure 6: Fact table generated from the motorway dataset.

Table 2: StarGraph Construction Times for Different Datasets.

Dataset Format Schema size Nodes Edges Dimensions Attributes Measures Unused Time
Bikesdata XML 3.7KB 18 14 4 3 1 4 266ms
Ambient S JSON 0.4KB 3 2 2 0 1 3 504ms
Motorway JSON 1.2KB 17 26 10 4 3 2 523ms
CarPark XML 2.3KB 7 6 5 1 1 1 260ms

Air Quality JSON 0.4KB 5 2 3 2 0 1 504ms

Table 3: Mapping rules generated by BikesData

Source Destination
/city/@name City.name

/station/@name Station.name
/weather/temp Weather.temp

BikesData.
There were 4 dimensions identified in the BikesData dataset:

datetime, city, station and weather. A dimension hierar-
chy was created between city and station as city and sta-
tion hold a 1-to-many relationship. Four container elements
were identified and removed from the graph: weather-inf,
datetimes, stations and data. The identified measure was
[time-station/@spaces]. A sample of the mapping rules
constructed can be seen in Table 3. The StarGraph was
created in 405ms .

Ambient Sound.
The AmbientSound dataset provides two dimensions: date

and time. A sample of the mapping rules for the Ambi-
entSound dataset is presented in Table 4. Two dimensions
were created one for date and one for time with one mea-
sure called values. There were three unused elements in
this schema, each one being the container array element for
each dimension and measure. The StarGraph was created
in around 504ms.

Car Park.
For the Car Park dataset 5 dimensions were found. Of

these one was a subdimension which contained an attribute
called name which was the name of the carpark. One measure
called spaces was found which was the number of available
spaces at a carpark. The schema took the quickest time to
complete in 260ms. This is due to both the fact that the
schema was not very complex and was in XML format.

Air Quality.
For the Air Quality dataset 3 dimensions were found and

one container element was found and removed. No measure
was found for the Air Quality dataset due to the absence
of numerical values found in the schema. Nevertheless a
fact table was constructed with three dimensions. The Star-
Graph was constructed in 504ms.

5.3 StarGraph Cube Creation
Using the StarGraph created from the motorway schema,

a corresponding link to a web service was provided to the
system which provides data corresponding to the specified
schema at 5 minute intervals. Each response from the web
service was 9.4KB in size. Containing 10 dimensions, 4 at-

Table 4: Mapping rules generated by ambient sound dataset

Source Destination
date Date.val
time Time.val
aleq Fact table.aleq

tributes, 3 measures and 2 unused elements (Table 2). This
data was collected at 5-minute intervals for one week result-
ing in a data-mart containing 12Mb of data and 120,000
individual facts. As the data is read from the webservice
[5] it is first examined with respect to the mapping rules
generated from the StarGraph. These are then used to ex-
tract the data and store them in a database (MongoDB) and
create datacubes. The generated fact table schema can be
seen in Fig. 6. A sample of the data provided by the web
service can be seen in Example 1.1. For each response, the
time taken to extract the data and store it in a database
and update the fact table was around 1.5 seconds. However
there are a number of factors which affect the speed of this
operation, the first being the number of mappings gener-
ated by the StarGraph (these would undoubtedly increase
with the complexity of a provided schema), secondly the
number of items returned per-request from the web service
would impact the time taken as a combination of a larger
response, and a longer extraction process would increase the
time taken to collect, extract and store the data.

6. CONCLUSIONS
In this paper, we introduced the concept of a StarGraph

as a canonical data model for individual schema definitions.
This facilitated the automatic generation of a star schema
representation which is used to construct an empty data
warehouse, and the automatic generation of a series of map-
ping rules specifying how to populate the data warehouse
from a variety of data streams. Additionally, we demon-
strated the process of StarGraph construction, fact table
generation and the formation of mapping rules. Using the
fact table and mapping rules derived from the StarGraph we
created a data cube from a web service using the Motorway

dataset.
Our future work involves the creation of multiple Star-

Graphs from 27 agricultural sources. From here these Star-
Graphs will be integrated to produce an agri-data warehouse
and a series of integrated mapping rules which can be used
to populate the data warehouse from multiple sources.

7. REFERENCES
[1] Air Quality Index [Online].

http://www.epa.ie/air/quality/index/. Accessed:
2016-08-04.

[2] Air Quality [Online]. http://www.dublindashboard.ie/
pages/DublinEnvironment. Accessed: 2016-08-03.

[3] Ambient Sound [Online]. http://www.
dublindashboard.ie/pages/DublinEnvironment.
Accessed: 2016-08-03.

[4] Dublin Bikes API [Online] (originally available in
XML, now only available in JSON).
http://api.citybik.es/v2/networks/dublinbikes.
Accessed: 2016-08-03.

[5] Mortorway Travel Times [Online].
https://dataproxy.mtcc.ie/v1.5/api/traveltimes.
Accessed : 2016-08-04.

[6] Real Time Car Park Data [Online].
http://www.dublincity.ie/dublintraffic/cpdata.xml.
Accessed: 2016-08-04.

[7] M. Azabou, K. Khrouf, J. Feki, C. Soule-Dupuy, and
N. Vallès. Diamond multidimensional model and
aggregation operators for document olap. In Research
Challenges in Information Science (RCIS), 2015
IEEE 9th International Conference on, pages 363–373.
IEEE, 2015.

[8] X. Baril and Z. Bellahsene. Selection of materialized
views: A cost-based approach. In International
Conference on Advanced Information Systems
Engineering, pages 665–680. Springer, 2003.

[9] C. Batini, M. Lenzerini, and S. B. Navathe. A
comparative analysis of methodologies for database
schema integration. ACM computing surveys (CSUR),
18(4):323–364, 1986.

[10] O. Boussaid, R. B. Messaoud, R. Choquet, and
S. Anthoard. X-warehousing: an xml-based approach
for warehousing complex data. In Advances in
Databases and Information Systems, pages 39–54.
Springer, 2006.

[11] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and
H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and
sub-totals. Data mining and knowledge discovery,
1(1):29–53, 1997.

[12] J. M. Hernández-Muñoz, J. B. Vercher, L. Muñoz,

J. A. Galache, M. Presser, L. A. H. Gómez, and
J. Pettersson. Smart cities at the forefront of the
future internet. Springer, 2011.

[13] J. Liu, M. Roantree, and Z. Bellahsene. A
schemaguide for accelerating the view adaptation
process. In International Conference on Conceptual
Modeling, pages 160–173. Springer, 2010.

[14] S. Mansmann, N. U. Rehman, A. Weiler, and M. H.
Scholl. Discovering OLAP dimensions in
semi-structured data. Information Systems,
44:120–133, 2014.

[15] J. M. P. Martinez, R. Berlanga, M. J. Aramburu, and
T. B. Pedersen. Integrating data warehouses with web
data: A survey. IEEE Transactions on Knowledge and
Data Engineering, 20(7):940–955, 2008.

[16] M. F. O’Connor and M. Roantree. SCOOTER: A
Compact and Scalable Dynamic Labeling Scheme for
XML Updates. In DEXA (1), pages 26–40, 2012.

[17] M. Roantree and J. Liu. A heuristic approach to
selecting views for materialization. Softw., Pract.
Exper., 44(10):1157–1179, 2014.

[18] M. Roantree, D. McCann, and N. Moyna. Integrating
sensor streams in phealth networks. In 14th
International Conference on Parallel and Distributed
Systems, ICPADS 2008, Melbourne, Victoria,
Australia, December 8-10, 2008, pages 320–327, 2008.

[19] M. Roantree, J. Shi, P. Cappellari, M. F. O’Connor,
M. Whelan, and N. Moyna. Data Transformation and
Query Management in Personal Health Sensor
Networks. J. Network and Computer Applications,
35(4):1191–1202, 2012.

[20] M. Roth, M. A. Hernández, P. Coulthard, L. Yan,
L. Popa, H.-T. Ho, and C. Salter. Xml mapping
technology: Making connections in an xml-centric
world. IBM Systems Journal, 45(2):389–409, 2006.

[21] M. Scriney and M. Roantree. Efficient cube
construction for smart city data. In Proceedings of the
Workshops of the EDBT/ICDT 2016 Joint
Conference, EDBT/ICDT Workshops 2016, Bordeaux,
France, March 15, 2016., 2016.

[22] B. Vrdoljak, M. Banek, and S. Rizzi. Designing web
warehouses from xml schemas. In Data Warehousing
and Knowledge Discovery, pages 89–98. Springer,
2003.

