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ABSTRACT

Advances in energy harvesting hardware have created an opportunity to re-

alise self-powered wearables for continuous and pervasive Human Activity Recogni-

tion (HAR). Unfortunately, the power requirements of continuous activity sensing

using accelerometer sensors and burdensome on-node classification are relatively

high compared to the amount of power that can be practically harvested, which

limits the usefulness of energy harvesting.

This thesis makes three fundamental contributions. First, we propose HARKE,

Human Activity Recognition from Kinetic Energy, a novel approach to HAR that

does not use an accelerometer. Instead, HARKE employs and infers human physical

activities directly from the Kinetic Energy Harvesting (KEH) patterns generated

from a device that harvests kinetic energy to power the wearable device. We also

show the ability of HARKE to detect related details such as the steps taken by the

user in a walking activity. By not using an accelerometer, a significant percentage of

the limited harvested energy can be saved. Second, we introduce a novel framework

that reduces the on-node classification overhead and guarantees energy neutrality.

The proposed framework transmits an unmodulated signal, called an activity pulse,

and uses only the received signal strength of the activity pulse to classify human

activities. Neither accelerometer nor classifier is required on the wearable device,

which therefore, guarantees energy neutrality. Finally, we validate the feasibility

of using KEH patterns generated from human speech as a potential new source of

information for detecting hotwords, such as “OK Google”, which are used by voice

control applications to differentiate user commands from background conversations.

Unlike methods that use existing sensors like microphones or accelerometers, our

proposal enables pervasive voice control and HAR at minimum energy cost.

We believe that the findings in this thesis will open the door for a new direction

of research and development to realise the vision of pervasive self-powered HAR,

moving us closer towards self-powered autonomous wearables.
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Chapter 1

Introduction

Rapid growth in aging population is currently a big challenge for the community

and economy of the world. According to the 2015 Revision of World Population

Prospects report by the United Nations, the population aged 60 and over comprises

12% of the global population in 2015 and it is the fastest growing with a rate of 3.26%

per year [1]. By 2050, the aging population in Australia is projected to increase to

21% (8.4 million people) than 15% of the population (3.5 million people) in 2014

[2]. Similarly by 2030, more than 20% of U.S. residents are expected to be aged 65

and over, compared to 13% in 2010 [3]. This is due to the substantial improvements

in life expectancy that have occurred in recent years. Globally, life expectancy at

birth has increased from 65 years for men and 69 years for women in 2000-2005 to

68 years for men and 73 years for women in 2010-2015 [1]. Consequently, a higher

demand for health services is placed, leading to a significant rise in healthcare costs.

For example, in 2014, the U.S. healthcare expenditure has increased by 5.3% to

reach $3.0 trillion. Similarly, the overall healthcare expenditure in Australia has

significantly increased from $68.7 billion in 2002-03 to $147.4 billion in 2012-13 (1.6

times higher) [4].

One possible path to more affordable and scalable healthcare systems is hu-

man activity recognition (HAR). Automatic recognition and analysis of a patient’s

physical activities through HAR [5, 6] can enable the healthcare authorities to con-

tinuously monitor the current status of a patient from a remote location as shown

1
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Patient@Home
(No hospital admission)

Health care provider

Wearable Computer

Figure 1.1: An example of remote health care services using wearable devices and HAR.

in Figure 1.1. HAR is expected to play an important role in reducing healthcare

costs by reducing the need for hospital admissions.

HAR enables a wide range of activity-aware services in various domains, in-

cluding fitness management [7], smart living [8], military [9], security, and indoor

positioning [10]. For example, a system that can recognise various ambulation activ-

ities, such as walking, running, jogging, can help individuals to monitor their fitness

level and improve well being. Similarly, a smartphone capable of detecting activities

such as climbing a stair, riding a lift, or moving up a ramp, may infer the position

of a pedestrian in a complex indoor environment by matching the activities to an

indoor map that shows the precise locations of stairs, lifts, and ramps [11]. It is

clear that HAR has the potential to improve the user’s experience and quality of

life.

There are two fundamentally different approaches to HAR, using infrastructure

sensors [12, 13] and wearable sensors [14]. In the former, the sensors are installed

at fixed locations to detect human activity when a user visits these locations and

interacts with the sensors. For example, cameras installed at fixed locations can help

detect user activity whenever the user comes within their vicinity [15, 16]. However,

deployment and maintenance of infrastructure sensors are costly. On the other hand,

wearable sensors provide an alternative option by placing various types of sensors

on the human body. For example, an accelerometer in a wristband can help identify
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different activities by simply collecting and analysing the time series acceleration

data. Consequently, wearable sensors can help achieving pervasive HAR without

the need to deploy infrastructure sensors.

Almost all existing wearable products are powered by batteries. While battery

technology has improved over the years, battery-powered devices cannot provide

sustained operation. To achieve sustained operation, we either need to instrument

the wearables with large batteries or be prepared to manually replenish the bat-

teries when they die. Neither of these options is desirable because large batteries

make the wearables heavy and less convenient to wear, while manual replacement

is inconvenient and not a practical option for many elderly users, who may have to

critically depend on such systems. Due to this, researchers are now investigating

energy harvesting solutions to power these wearable sensors [17, 18, 19], which will

allow continuous and permanent operation of these sensors without any need for

battery recharge or replacement. Energy harvesting or scavenging is a process of

converting various forms of ambient energy sources, such as kinetic, thermal, radio

frequency, solar or light, into electrical energy, which can then be used to power a

small electronic device making it self-powered.

However, there is a caveat. Energy harvesting generally suffers from low power

output, which may challenge the power requirement of the wearable sensor’s compo-

nents, such as the accelerometer used for sampling human motion. Given that the

sensor will also have to turn on its radio for occasional communications with a nearby

sink, the power generated from energy harvesting is clearly too small to simply port

the existing accelerometer-based HAR techniques into an energy-harvesting wear-

able. How to achieve HAR using energy-harvesting wearables is indeed an extremely

challenging problem that requires new solutions. A recent survey [20] on HAR using

wearables has revealed that although significant research has been carried out for

battery-powered wearables, there exists very limited literature on energy-harvesting

wearables for HAR. The aim of this thesis is to study the limitations of energy har-

vesting wearables for HAR and propose new solutions to overcome these limitations

and therefore enabling self-powered wearable devices.

The remainder of this chapter is as follows. The motivation behind this research
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is explained in Section 1.1. Section 1.2 describes the research issues including a

critical examination of energy-harvesting wearables and their limitations in the con-

text of HAR. The research objective of this thesis is stated in Section 1.3, followed

by the contributions made towards this objective. Finally, Section 1.4 shows the

organisation of the dissertation.

1.1 Research Motivation

Over the past few years, a research trend in Energy Harvesting (EH) has emerged

and gained the attention of the research community [21, 22]. EH is commonly

defined as the conversion of ambient energy such as vibrations, heat, wind, or light

into electrical energy. EH devices can eliminate the need for battery replacement and

significantly enhance the versatility of consumer electronics. In fact, considerable

advancements have recently been made in EH hardware technology, leading to many

off-the-shelf products available at low cost. These developments point to future

wearable devices that will be equipped with some sort of EH hardware to ease the

dependence on batteries [23].

This means that it is conceptually possible to replace the battery of a wearable

sensor with an EH unit to achieve perpetual sensing in many applications including

HAR. Of all the ambient energy options, kinetic energy harvesting (KEH) is the

most relevant for wearables because it can power the wearable directly from human

motion. Advances in KEH hardware have motivated us to consider the concept

of self-powered wearables for continuous and pervasive human activity recognition

(HAR), where numerous tiny wearable devices sense and monitor the human con-

tinuously.

1.2 Research Issues

The most fundamental issue with KEH is the low power output [24]. The power

that can be practically harvested from human motion is too small to power all

necessary functions of a wearable sensor. A typical wearable sensor will need power
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Battery

Accelerometer

μController

Transmitter

Antenna

Figure 1.2: A block diagram of a conventional battery-based wearable sensor for HAR.

for accelerometer measurements at a high sampling rate and classification processing

in which the classifier detects human activities by analysing the features extracted

from the accelerometer data. A radio transmitter is also required for occasional

communication with a nearby sink.

1.2.1 Power Requirement of Wearable Devices

Figure 1.2 shows a simplified block diagram of a conventional battery-powered

accelerometer-based HAR. In this diagram, a battery is used to power three main

components: an accelerometer, a micro-controller, and a radio communication trans-

mitter. The power consumption of a wearable device is mainly due to three func-

tions: accelerometer sampling, activity classification and radio communication. The

accelerometer sampling and activity classification functions constitute the power

consumption of the HAR process. The radio communication is used to pass the de-

tected activity information to the base station, if the classification function is done

onboard the wearable platform. Otherwise, the classification function can be done

at the base station or a server outside the wearable, in which case the transmitter

needs to transmit the accelerometer data to the base station.

• Accelerometer sampling

Typically a triaxial accelerometer is used to measure human acceleration in

three dimensions. Generally, the more frequent the measurements, the more
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Figure 1.3: The mean power consumption of 6 commonly used accelerometers.

information is available to enable more accurate classification. The frequency

of measurement is called the sampling rate of the accelerometer, which is

expressed in Hertz or the number of measurements per second. To perform

a measurement, an accelerometer must be turned on for a few milliseconds.

Since the accelerometer consumes power when it is active, it is turned off when

it is not measuring. Therefore, an accelerometer is continuously turned on and

off, at a frequency dictated by the sampling rate.

Considering that capacitive accelerometers are the most widely used in wear-

able and mobile devices, Figure 1.3 compares the power consumption of six

commonly used capacitive accelerometers. The values presented in Figure 2.6

have been tested and verified by the authors in [25] using a 3.3 v power supply

and a 50 Hz sampling rate. These results confirm that accelerometers consume

hundreds of microwatts. Moreover, Figure 1.4 plots the power consumption

of three widely used accelerometers: ADXL150 (used in wearable sensors),

SMB380 (used in Samsung Galaxy smartphones), LIS302DL (used in IPhone

smartphones) as a function of the sampling rate.

We can see that the power consumption increases significantly with rising

the sampling frequency; moreover, the average power consumption of the ac-
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Figure 1.4: Power consumption of popular accelerometers as a function of the sampling rate.

celerometer is nearly a linear function of the sampling rate [26]. For example,

the data sheet of an ADXL150 accelerometer [27] shows that the accelerom-

eter consumes about 5 µW on average per Hz, which means that it would

require 250 µW if a sampling rate of 50 Hz were required for a given activity

set. The required sampling rate depends on the set of monitored activities

and typically ranges from 1-50Hz [28, 29, 30, 31]. This means the battery

must supply between 5-250 µW to the accelerometer. This is not a major

issue for battery-powered wearable devices. However, it is an issue for energy

harvesting wearable devices.

• Activity classification

Typically, a classifier is trained with a number of informative features extracted

from a large number of acceleration samples collected during various activities,

such as walking, running, or standing. Later, when new acceleration samples

are presented to the classifier, it can recognise the activity using the trained

model. A detailed measurement study in [32] indicates that the average power

consumption of an accelerometer running at 20 Hz is four times as much as the

average power consumption for extracting features and executing a classifier.

Consequently, the activity classification is responsible for 20% of the total

HAR power consumption.
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Figure 1.5: A block diagram of energy harvesting wearable sensor for HAR.

1.2.2 Power Generation of Energy Harvesting Devices

Let us now consider the future energy harvesting wearables that could be used

in HAR. If we simply port the conventional battery-powered HAR design to the

energy harvesting domain, we will end up with the wearable architecture shown in

Figure 1.5. The battery is simply replaced by a kinetic energy harvesting unit which

converts the kinetic energy generated from human activity into electrical energy.

Then the generated electrical energy is used to power the HAR system components.

However, we immediately face two major problems.

• We may not be able to supply enough power to the accelerometer for accurate

HAR. Accelerometers are usually considered low-power electronics drawing

only about a few µW per sample per second (Hz). However, when used in

kinetic-powered devices, the accelerometer power requirements is considered

relatively high compared to the total kinetic power available, which is also

measured in µW . Table 1.1 shows the amount of power that could be generated

using a commercial kinetic energy harvester for different activities [33]. It

shows that some activities generate only a few µW , which is much lower than

what is required to sample the accelerometer at a rate sufficiently high for

accurate activity classification. Clearly this will force the sensor to cut down

the power to the accelerometer, i.e., use a lower sampling rate and accept

lower activity classification accuracy, each time the user switches to one of

those activities that produce small amounts of power.
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Table 1.1: The average Harvested Power for different activities when the device is attached to
the shank.

Activity Average Harvested Power (µW )
Walking 10.30
Running 28.74
Cycling 0.36
Sitting 0.02
Lying 0.36

• Even if the harvested power is enough to operate the accelerometer at the

required sampling rate, it reduces the amount that could be accumulated in

the capacitor for future radio communications. Insufficient stored energy in

the capacitor will force more aggressive duty cycling of the radio or more

drastic reduction in transmission power. In summary, when the power supply

is limited by energy harvesting, powering the accelerometer trades off the

quality of radio communication.

In fact, using energy harvesting to provide a self-powered HAR is a very chal-

lenging problem that requires innovative sensing and communication solutions.

1.3 Research Contributions

This dissertation aims to provide a new paradigm for HAR that overcomes the power

limitations of energy harvesting, towards self-powered autonomous wearabales. The

main contributions towards our objective are summarised in this section.

1.3.1 HARKE: Human Activity Recognition from Kinetic

Energy

We propose HARKE, a novel approach for realising HAR in a kinetic-powered device.

Our approach employs kinetic energy harvesting and infers human activity directly

from the kinetic energy harvesting (KEH) patterns without using an accelerometer.

The proposed use of KEH patterns to classify human activities is based on the



Introduction 10

observation that different activities produce kinetic energy in different ways leaving

their signatures in the harvested power signal. Since no accelerometer is used in the

HARKE architecture, a significant amount of the harvested power can be saved.

We use both mathematical modelling and a real hardware prototype to examine

the generated patterns of a kinetic energy harvester. Our examinations show that

the generated KEH signal switches to clearly distinguishable patterns as the user

changes activities. By applying information theoretic measures on the estimated

KEH data, we confirmed that KEH patterns contain rich information for discrimi-

nating many typical activities of daily life. Using extensive data collected from ten

different subjects, for five common daily activities, we demonstrate the effectiveness

of KEH patterns as a new source of information for HAR. We further analyse the

energy savings of HARKE due to the removal of the accelerometer and we show that

HARKE saves up to 72% of HAR power consumption in a kinetic-powered wearable,

given that 80% of HAR power consumption is due to the accelerometer.

The details of this contribution are presented in Chapter 3 and Chapter 4. Chap-

ter 3 introduces the novel concept of HARKE and uses a mathematical model to

evaluate the performance of HARKE. Chapter 4 presents the ultimate validation of

HARKE using a commercially available piezoelectric KEH transducer.

1.3.2 Energy Neutral Self-powered Wireless HARKE

Although HARKE provides an important step forward for realising self-powered

HAR by eliminating the accelerometer’s power consumption, it still cannot guaran-

tee system energy-neutrality. Activity classification using KEH patterns would still

consume significant power in the device or, if the classification is done in the server,

then energy consumption due to communication of a massive amount of KEH voltage

data would challenge energy-neutrality. In Chapter 5 we propose a new framework

based on Bayesian Decision Theory that guarantees energy neutrality for HARKE.

The proposed Bayesian framework utilizes a capacitor to store the incoming energy

harvested for a fixed-length time window and then uses all the stored energy to

transmit an unmodulated signal, called an activity pulse.
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Since different activities generate power at different rates, the transmission and

receiving signal strengths also differ among different activities. Thus those signal

strengths can be used to classify the activities. Energy neutrality is guaranteed

because the transmission power of the activity pulse only uses the amount of energy

harnessed in the last time window, and no additional energy is required to power

any sensing or classification components in the wearable device. Using a real dataset

collected from a kinetic energy harvester coupled with a Bluetooth prototype, an

overall accuracy of 91% is achieved when the distance between the transmitter and

the receiver is set to 30 cm. We also point out that the overall accuracy falls to 85%

and 65% when the distance is increased to 60 cm and 100 cm, respectively.

1.3.3 Step Detection from Piezoelectric Energy Harvesting

Patterns

Step detection is increasingly being used in health and fitness monitoring and indoor

positioning applications. In Chapter 6 we show that the generated patterns of

a Piezoelectric Energy Harvesting (PEH) transducer are not only informative for

recognising a user’s activity (e.g. walking) but can also identify each step the user

has taken. To validate the concept of PEH-based step detection, we collected the

generated patterns of a PEH wearable device from four subjects under different

walking scenarios, including walking along straight and turning paths as well as

descending and ascending stairs, covering a total of 570 steps. We found that,

like acceleration, the generated PEH traces also exhibit distinctive peaks for steps,

which can be detected accurately using widely used peak detection algorithms. We

demonstrated that widely used peak detection algorithms can detect steps from

PEH power generation patterns with an accuracy of 96%.
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1.3.4 Hotword Detection from Vibration Energy Harvesting

Patterns

Finally, we apply the novel concept of HARKE in a slightly different application.

Here, we conduct the first experimental study to validate the feasibility of using the

Vibration Energy Harvesting (VEH) patterns generated from human speech as a

potential new source of information for detecting hotwords, such as “OK Google”,

which are used by voice control applications to differentiate user commands from

background conversations. Pervasive hotword detection requires continuous sensing

of audio signals, which results in significant energy consumption when a microphone

is used as an audio sensor. How to reduce audio sensing energy costs using other

low-power sensors that can also register voice signals is a recent research trend. For

example, researchers have shown that, instead of microphones, gyroscopes [34] or

even accelerometers [35] can be used to detect hotwords at a fraction of the energy

consumption. Unlike gyroscopes and accelerometers, our proposal enables pervasive

voice control at minimum energy cost.

This contribution is demonstrated in Chapter 7. Using piezoelectric energy har-

vesting circuits, we conduct a comprehensive experimental study involving 8 sub-

jects. Our experiments involve the analysis of two possible usage scenarios, indirect

and direct. In the first, the VEH is only expected to pick up the ambient vibrations

caused by user speech in the vicinity of the device. In the second, the user talks

directly to the surface of the piezoelectric beam. For both usage scenarios, we eval-

uate two types of hotword detection, speaker-independent, which does not require

speaker-specific training, and speaker-dependent, which relies on speaker-specific

training. Our analysis illustrates that hotwords can be detected from the power

generation patterns of VEH circuits with up to 85% accuracy, which is comparable

to accelerometer-based hotword detection.

1.4 Thesis Organisation

The rest of the thesis is organised as follows.
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Chapter 2 reviews the related work of accelerometer-based HAR and presents

recent advancements in energy harvesting hardware.

Chapter 3 introduces HARKE as a novel architecture of Human Activity Recog-

nition from Kinetic Energy.

Chapter 4 provides the experimental validation of HARKE using a commer-

cially available piezoelectric energy harvesting transducer.

Chapter 5 proposes a new framework based on Bayesian Decision Theory that

guarantees the energy neutrality of HARKE.

Chapter 6 presents the first experimental study to validate the concept of step

detection from the generated patterns of PEH wearable devices.

Chapter 7 investigates vibration energy harvesting as a potential new source of

information for detecting hotwords, such as “OK Google”, which are used by voice

control applications to differentiate user commands from background conversations.

Chapter 8 concludes the thesis by summarising the main outcomes and also

discuss possible future directions of this research.
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Related Work

Human activity recognition (HAR) has been an area of significant research in the lit-

erature over the past decade [36]. Figure 2.1 shows the number of scientific papers

per year given by searching for ”Human activity recognition” on Google Scholar.

These results confirm that HAR has attracted a large section of the research com-

munity with approximately 5690 citations between 2005 and 2014. Figure 2.2 shows

the basic process of HAR, which aims at recognising human activities by sensing

(measuring) and understanding the natural phenomena of human activity through

context modeling and reasoning [37, 38]. Existing HAR systems can be broadly

classified into two different approaches, as shown in Figure 2.3, using infrastruc-

ture sensors and wearable sensors. In the former, sensors that can detect motion,

pressure, temperature, and so on, are installed at specific locations and in furniture

to detect activity when a user visits these locations and interacts with the sensors

[12, 13]. For example, a pressure sensor installed beneath a sofa could detect sitting

activity from the pressure change whenever a user sits there. Cameras installed at

fixed locations can help detect user activities whenever a user comes within their

vicinity. However, deployment and maintenance of infrastructure sensors are costly.

Wearable sensors, on the other hand, provide an alternative option [39, 14].

By placing various types of sensors on the human body, accurate and pervasive

HAR can be achieved without the need for deploying significant infrastructure. For

example, an accelerometer in a wristband can help detect different activities by

14
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Figure 2.1: Number of scientific papers per year according to Google Scholar as of November 12,
2015.

simply collecting and analysing time series acceleration data. Because wearables

can continuously monitor user activities at all times and locations, they provide a

more pervasive HAR solution compared to the infrastructure-based approach that

requires the user to be within the sensing range for effective activity recognition.

Consequently, wearable sensor-based HAR has recently become the focus of in-

tense research and development [20], producing a wealth of tools and algorithms

to accurately detect human activities from data collected by wearables. Figure 2.1

confirms the attraction of wearable sensor-based HAR in the research community.

By adding the term ”wearable sensors”, we can see that between 30% and 40% of

the scientific papers published in the last four years refer to wearable sensors in-

stead of infrastructure sensors. In fact, deployments of such systems have already

begun, such as Fitbit, iWatch, and Google Glass. It is predicted that the market

for wearable health and fitness monitoring will grow to $70 billion by 2025 [40].

Almost all existing wearable products are powered by batteries. While battery
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Figure 2.2: The basic process of human activity recognition (HAR).

technology has improved over the years, battery powered devices cannot provide

sustained operation. To achieve sustained operation, we either need to instrument

wearables with large batteries or be prepared to manually replenish batteries when

they die. Neither of these options is desirable because large batteries make wearables

heavy and less convenient to wear, while manual replacement is not practical for

many elderly users, who may be critically dependent on such systems. Due to this,

researchers are now investigating energy harvesting solutions [17, 18, 19], which

will allow continuous and permanent operation of these wearables with no need for

battery recharge or replacement.

In this chapter, we first review some of the studies related to wearable sensor-

based HAR in Section 2.1. We then focus on the studies concerned with providing

energy efficient HAR to extend the battery life of wearables in Section 2.2. A brief

overview of kinetic energy harvesting, including the technological advancements in

hardware, is presented in Section 2.3. Finally, we discuss the opportunities and

challenges of using KEH to provide self-powered HAR in Section 2.4.

2.1 Wearable Sensor-based HAR

Typically, wearable sensor-based HAR relies on accelerometers to frequently sample

human motion. Typically a triaxial accelerometer is used to measure the acceleration

of a subject in three dimensions while performing different activities. Informative

features are then extracted from the acceleration data and used to train a classifier,
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Figure 2.3: The existing approaches of human activity recognition (HAR).

which is used later to detect activities from a given sample of acceleration values.

Therefore, the available approaches for accelerometer-based HAR share 3 basic com-

ponents, accelerometer data collection, feature extraction, and classification. In the

data collection phase, most published studies rely on attaching multiple accelerom-

eter sensors to different places on the human body [26, 41, 42, 43]. However, the

popularity of smartphones in the past few years has shifted the research attention

to use these devices for HAR [44, 45, 46, 47]. Table 2.1 summarises some of the

studies related to performing HAR using either wearable sensors or smartphones, in

terms of the position of the device on the user’s body, the number and description

of the features, and the classifier(s) used.

Table 2.1 does not provide a simple comparison between the different studies,

since each research paper was applied on different datasets and considered different

activities. It might be more difficult to distinguish two similar activities than dis-

tinguishing a large number of dissimilar activities. However, this table presents an

overall view of the basic framework used in the related studies. We note from Table

2.1 that, although the number of the basic features used seems small (on average

6), the exact number of features to be fed to the classifier is very large (up to 75)
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Table 2.1: Summary of some prior works on accelerometer-based HAR.

Device Ref. Position of the de-
vice

Features
No.

Features Classifiers

Wearable
Sensors

[41] Five 2-axis ac-
celerometers (differ-
ent places)

75 Mean, FFT Energy, Frequency Do-
main Entropy, Correlation

DTL, KNN , DT ,
NB

[26] One 3-axis ac-
celerometer(near the
pelvic region)

12 Mean, Standard Deviation, FFT En-
ergy, Correlation

DTL, DT, KNN,
SVM, NB

[42] One 2-axis ac-
celerometer (waist)

10 Mean, Standard Deviation, Skewness,
Kurtosis, Eccentricity

MLP

[43] Five 3-axis ac-
celerometer (differ-
ent places)

30 Mean, Variance, Skewness, Kurtosis,
Autocorrelation, The Peaks of the
DFT

BDM, RBL,LSM ,
KNN, DTW, ANN,
SVM

Smartphone [44] In the pocket of the
front pants leg

43 Average, Standard Deviation, Aver-
age Absolute Difference, Average Re-
sultant Acceleration, Time Between
Peaks, Binned Distribution

DT, LR, MLP

[45] In the user hand in
front of the body

25 Velocity, Distance, Mean, Variance,
Standard deviation, Interquartile
Range, Root Mean Square, Correla-
tion

SVM

[46] Strapped to the
user’s ankle

4 Mean, Variance, Skewness, Kurtosis,
Eccentricity, Correlation

NB, DTW

[47] In the right palm of
the hand with the
screen faced upwards

6 Mean, Standard Deviation NB

Note: Features No. means the exact number of features to be fed to the classifier.
Abbreviations: FFT), Discrete Fourier Transform (DFT), Decision Table (DTL), Decision Tree (DT), Näıve
Bayes (NB), K-Nearest Neighbour (KNN), Multilayer Perceptron (MLP), Support Vector Machine (SVM),

Logistic Regression (LR), BDM! (BDM!), Rule Based Learner (RBL), Least square method (LSM), Dynamic
Time Wrapping (DTW), Artificial Neural Network (ANN).

[41] which increases the HAR overhead not only in terms of the computational time

needed to calculate all of these features but also the complexity of the classifier

that will use these features to classify the activities. We also note that the num-

ber of features used for classification is not the only important factor that imposes

overhead for HAR, but also the types of these features. For example, features ex-

tracted from the frequency domain increase the computational burden and impose

additional complexities of storage (since the signal has to pass through Fast Fourier

Transform (FFT)).

References [46] and [47] use simple (time domain) and a small number of ex-

tracted features. However, in [46], the authors strapped the phone to the user’s

ankle to keep the y-axis of the phone aligned to the lower leg at all times. There-

fore, the activities had distinguishable characteristics in the accelerometer data.

This distinction in the signals made the classification process, to some extent, easy

and allowed the authors to rely on only 4 features. In [47], the chosen activities were

dissimilar (sitting, standing, walking, running and jumping) and hence were easy to
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be distinguished using a small number of features (6 features).

2.2 Energy-efficient Accelerometer-based HAR

Our work is related to energy-efficient HAR because we reduce the power consump-

tion of the HAR process in a self-powered device by not using the accelerometer.

Reducing HAR power consumption is also important in battery-powered devices

because if the sensors are out of energy, the HAR system fails to achieve its objec-

tive. As a consequence, energy efficient HAR systems have become essential. This

has motivated many researchers to look for new ways to reduce HAR battery con-

sumption. We can categorise them in three basic approaches: reducing the sampling

rate of the accelerometer, reducing the classification complexity, and reducing the

number of accelerometers placed on the human body.

• Reducing the sensor sampling rate

Reducing the sampling rate of the accelerometer is widely used to save the

system energy. However, this reduction is always achieved at the expense

of recognition accuracy. Therefore, improving the trade-off between sensor

energy consumption and the accuracy of HAR has been the focus of many re-

search studies. The authors in [26, 32] used a single activity monitoring tech-

nique to adjust the sampling rate and classification set of features to a choice

that is ”optimal” for this activity, hence reducing system energy overheads

without violating user accuracy requirements. In A3R [26], they used sets of

two classification features: time domain and frequency domain. However, Ad-

Sense [32] explores the feature set space by genetic programming techniques

and finds the optimal feature set that effectively reduces both the classification

and the sampling rates.

• Reducing the classification complexity

When a large number of activities are to be classified, the model responsible

for classification (the classifier) can be very complex. Higher complexity leads

to higher CPU usage and battery usage. Therefore, one way to reduce HAR



chap2 20

battery consumption would be to reduce classifier complexity. The authors

in [48] provided an adaptive HAR which, instead of using a single complex

classifier based on a large set of features, employs multiple simple classifiers,

each trained to classify only a subset of activities using a small number of

features. Then, at runtime, according to the current context, the system

switches to the right classifier as the given set of activities to recognise changes

with the context.

• Reducing the number of sensors An alternative approach to extend the

battery lifetime of HAR systems has been to reduce the number of accelerom-

eters used [49]. This approach works when the data collected by body sensors

are transmitted to a base station (PC or smartphone) to be analysed and clas-

sified. Such studies tried to exploit redundant and unreliable accelerometers

in order to reduce the communication cost between the sensor nodes and the

base station, and hence extend the lifetime of the monitoring system.

While it is possible to extend the battery life of HAR through the previously

mentioned ways, battery-powered sensors cannot provide sustained HAR without

the need for battery replacement. Recently, a research trend in energy harvesting [50]

has emerged and gained the attention of the research community. Energy harvesting

(EH) is a process of converting different types of energy available in the environment

into electrical energy so wearable sensors can continue to function without batteries.

EH devices can eliminate the need for battery replacement and significantly enhance

the versatility of consumer electronics. This has motivated us to consider energy

harvesting technology to provide pervasive human activity recognition (HAR), where

numerous wearable tiny devices continue to sense and monitor the human on a

permanent basis.

2.3 Kinetic Energy Harvesting Overview

In theory, electrical energy can be obtained from many types of energy, including

kinetic (vibration) [52, 53], thermal [54, 55], Radio Frequency (RF) [56, 57]. Ta-
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Table 2.2: Power Density Estimates of typical ambient energy sources.

Energy Source Characteristics Harvested Power Density
Vibration Human 4µW/cm2

Machine 100µW/cm2

Light Indoor (illumnated office) 10µW/cm2

Outdoor (direct sun) 10mW/cm2

Thermal (Heat) Human 25µW/cm2

Industrial 1− 10mW/cm2

Radio Frequency GSN 0.1µW/cm2

WIFI 1µW/cm2

Source: Texas Instruments, Energy Harvesting White Paper 2009 [51].

ble 2.2 shows the power density estimates of typical ambient energy sources from

Texas Instruments [51]. Of all the ambient energy options, kinetic energy harvesting

(KEH) is the most relevant for wearables because it can power the wearable directly

from human motion. Kinetic energy also produces 4 times as much energy as RF

(WIFI) and is more abundant. A brief review of KEH is presented in this section.

Kinetic energy harvesting (KEH) is a process of converting environmental vibra-

tions into electrical energy. Kinetic EH and vibration EH are synonyms, environment

around us is full of sources of kinetic or vibration energy such as natural seismic vi-

bration (e.g. earthquakes), wind movement, sea waves, vehicular traffic, machinery

vibration and human motion. In this section, we discuss the system architecture

of a KEH-based device, the transduction mechanisms, the commercially available

products implementing KEH, and the possible applications of KEH.

2.3.1 System Architecture

Figure 2.4 shows a block diagram of a KEH-based device. KEH-based Hardware

typically comprises three parts: a transducer to convert vibration into electrical

energy, an AC/DC converter to convert the Alternating Current (AC) generated

from the transducer into regulated Direct Current (DC), and a battery or capacitor

to store the harvested energy and provide a constant power flow to the load. The

load normally consists of sensors (e.g. accelerometer), microprocessor, and Radio

Frequency Transceiver.
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Figure 2.4: A Block Diagram of a KEH-based sensor node.

2.3.2 Transduction Mechanisms

From a hardware point of view, there are three main transduction mechanisms for

converting vibration energy to electric power [58]: piezoelectric, electromagnetic

(capacitive), and electrostatic (inductive). Depending on the mechanism used, the

operating principle differs.

• Piezoelectric harvesters make use of certain piezoelectric materials such as

Lead-zirconate-titanate (PZT) andMacroFiber Composite (MFC), which have

the ability to generate an electrical potential when subjected to a mechanical

strain [59, 60]. The resulting strain on the material will result in an output of

alternating current which is converted into power.

• Electromagnetic harvesters make use of an oscillating mass (magnet) which

traverses across a fixed coil, creating a varying amount of magnetic flux, in-

ducing an alternating current that is converted to power [61].

• Electrostatic (capacitive) harvesters are based on separating the plates of an

initially charged variable capacitor (varactor) using vibrations and convert-

ing mechanical energy into electrical energy [62]. Electrostatic harvesters are

widely used though they are not as popular as piezoelectric or electromagnetic

transducers since Electrostatic harvesters need a polarization source to work

and to convert mechanical energy from vibrations into electricity.

Table 2.4 summarises the advantages and disadvantages of the three transduction

mechanisms. Generally speaking, piezoelectric and electrostatic systems are well
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Table 2.3: Transduction mechanisms of VEH.

Type Advantage Disadvantage
Piezoelectric

• No need for smart material

• Compatible with MEMS

• Compact configuration

• Depolarization

• brittleness in PZT

• charge leakage

Electromagnetic

• No need for smart material

• No need for external voltage
source

• Bulky size

• Difficult to integrate with MEMS

Electrostatic

• No need for smart material

• Compatible with MEMS

• External voltage source (or
charger) is needed

• Mechanical constraints are needed

suited to micro-scale (small scale) applications, while electromagnetic systems are

preferable for macro-scale (medium scale) devices. Piezoelectric transducers are

the most favorable due to their simplicity and compatibility with Micro-electro-

mechanical Systems (MEMS) [63]. Electromagnetic-based energy harvesters are

usually bulky in size and difficult to integrate with MEMS. Moreover, electrostatic

transducers need external voltage to operate. Many kinetic or vibration EH models

have been recently developed [64, 65, 58, 66, 67]. The main focus of these models

is to optimise the parameters of the harvester to maximise the output harvested

power. To maximise the output power, the harvester is mechanically tuned to an

optimized resonant frequency present in the application environment.

2.3.3 Commercially Available KEH/VEH Devices

Several kinetic or vibration energy harvesters are commercially available. The preva-

lent commercial KEH devices are based on the piezoelectric and electromagnetic

transduction mechanisms. Table 2.4 provides a list of the commercially avail-

able VEH devices. Perpetuum and Ferro Solutions produce electromagnetic-based

VEHs, however, MIDÉ, MicroGen, PI Ceramic GmbH, and Smart Material pro-

duce piezoelectric-based VEHs. MicroStrain produces both electrodynamic gener-
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Table 2.4: Commercially available KEH/VEH devices.

Manufacturer
(Country)

Product Material Dimensions (in)
L×W ×H

Weight
(grams)

Output (in
voltage)

Perpetuum (UK) PMG FSH Electromagnetic 3.4× 2.6 1075 DC (5 V and
8 V)

Ferro Solutions
(USA)

VEH 460 Electromagnetic − 430 DC (3.3V)

LORD
MicroStrain(

U
SA)

PVEH Piezoelectric 1.87× 1.75 185 DC (3.2 V)

MVEH Electromagnetic 2.25× 2.56 216 DC (3.2 V)
MicroGen (USA) BoLT PZEH Piezoelectric 1.18×1.04×0.69 10 DC (3.3 V)

MIDÉ (USA) Volture
V25W

Piezoelectric 2.00×1.50×0.03 8 AC

PI Ceramic GmbH
(Germany)

P-876.A11
DuraAct

Piezoelectric 2.4× 1.38× 0.02 - AC

Smart Material
(USA)

MFC
M2503-P1

Piezoelectric 1.81×0.93×0.01 - AC

OMRON and Holst
Centre/imec

Still under
testing

Electrostatic 1.96× 2.36 15.4 DC

ators (MVEH Harvester) and piezoelectric materials (PVEH Harvester). Recently,

OMRON and Holst Centre/imec unveiled a prototype of an extremely compact

electrostatic-based VEH. Figure 2.5 shows some of the commercially available VEHs.

Piezoelectric transducer are simple and compatible with MEMS [63]. The character-

istic of the products show that electromagnetic-based energy harvesters are usually

bulky and not compatible with MEMS as mentioned previously. Moreover, the only

electrostatic transducer is still under testing and not commercially available.

Most VEH devices are available as packaged systems, including the transducer,

power conditioning circuit, and local storage. They provide a constant (regulated)

DC voltage which is suitable to power multi-sensor nodes, controllers, peripherals,

memory, etc; however, the intermediate outputs such as the AC voltage, or the un-

regulated DC, cannot be accessed. Some companies (such as MIDÉ) make these

intermediate outputs accessible by offering customizable energy harvesting evalua-

tion kits, which provide modular components for power conversion and storage that

afford plug-and-play compatibility with their transducers.
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(a) Perpetuum (b) Ferro Solution (c) MVEH MicroStrain (d) PVEH MicroStrain

(e) MIDÉ Volture (f) MicroGen (g) PI Ceramic

(h) Smart Material (MFC) (i) OMRON and Holst Cen-
tre/imec (under testing)

Figure 2.5: Commercial kinetic or vibration energy harvesters (a) Perpetuum, (b) Ferro Solution
(VED 460), (c) MicroStrain MVEH, (d) MicroStrain PVEH, (e) Mide Volture, (f) MicroGen, (g)
PI Ceramic, (h) Smart Material (MFC), and (i) OMRON and Holst Centre/imec (under testing).
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2.3.4 KEH Applications

KEH has a wide area of applications, such as medical implants, consumer applica-

tions, building technologies, vehicles and aerospace. A brief summary of how KEH

can be used for each of these applications is presented below.

• Medical Implants

KEH can use a patient’s own body movement and heartbeat to provide power

for medical devices deployed inside the body, and which are vital to the life

and well being of the patient.

• Consumer Electronics

KEH is suitable for many low-power consumer electronics, used as a sole power

source or as a means to extend battery life.

• Building Technologies

KEH is suitable for building technology applications such as infrastructure

sensing system battery and safety systems for buildings in the event of a power

loss.

• Vehicles and Aerospace

KEH provides safe, reliable, cost effective solutions to those applications in

which traditional power sources are not reliable or preferred, e.g. supplying

power to tyre air pressure sensors (where batteries are difficult to change and

hard-wiring is impossible), supplying power to sensors mounted inside an air-

craft which monitor in-flight mechanical loads on the airframe.

2.4 KEH-based HAR: Opportunities and Chal-

lenges

KEH-based HAR aims at providing a self-powered HAR which does not need batter-

ies to operate. It allows continuous and permanent monitoring of a user’s activities,
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which will improve the user’s experience and quality of life. KEH uses the harvested

kinetic energy from human motion to supply power to the required sensors (e.g.

accelerometer), microprocessor and radio communication. However, the most fun-

damental issue with KEH is its low power output [24]. The amount of power that

can be practically harvested from human motion is too small to power all necessary

functions of a wearable sensor.

2.4.1 HAR using Accelerometer

An accelerometer is used to measure human acceleration in three dimensions. Then,

the acceleration samples are used to train a classifier which in turn is used to de-

tect activities based on a window of acceleration samples. Generally, the more

frequent the measurements, the more information is available to enable more ac-

curate classification. The frequency of measurement is called the sampling rate of

the accelerometer, which is measured in Hertz or the number of measurements per

second. To perform a measurement, an accelerometer must be turned on for a few

milliseconds. Since the accelerometer consumes power when it is active, it is turned

off when it is not measuring. Therefore, an accelerometer is continuously turned on

and off, at a frequency dictated by the sampling rate.

There are several types of accelerometers; however, the type that is most used

in wearable and mobile devices is the capacitive accelerometer. In a capacitive ac-

celerometer, a capacitor is formed by a ”stationary” plate (the housing which moves

with the base acceleration) and a moving plate attached to the seismic mass. The

distance between these plates determines the capacitance which can be monitored

to infer acceleration (change in capacitance related to acceleration). The authors in

[25] tested the power consumption of six commonly used capacitive accelerometers.

Figure 2.6 shows the results of their test when a 3.3 v power supply and a 50 HZ

sampling rate were used. The results showed that accelerometers consume hundreds

of microwatts at only 50 Hz.

Moreover, Figure 2.7 plots the accelerometer’s power consumption as a function

of the sampling rate.
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Figure 2.6: The mean power consumption of 6 commonly used accelerometers a 3.3 v power
supply and a 50 HZ sampling rate were used.

Using the datasheets of three widely used capacitive accelerometers ADXL150

(used in wearable sensors), SMB380 (used in Samsung Galaxy smartphones), LIS302DL

(used in IPhone smartphones), We can see that the average power consumption of

the accelerometer is a linear function of the sampling rate. For example, the data

sheet of an ADXL150 accelerometer [27] shows that the accelerometer consumes

about 5 µW on average per Hz, which means that it would require 250 µW if a

sampling rate of 50 Hz were required for a given activity set. The required sampling

rate depends on the set of activities monitored and typically ranges from 1-50Hz

[28, 29, 30, 31]. This means the battery must supply 5-250 µW to the accelerome-

ter. This is simple for battery-powered wearable devices. However, it is an issue for

energy harvesting wearable devices.
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Figure 2.7: Power consumption of popular accelerometers as a function of sampling rate.

2.4.2 KEH Limitation

The most fundamental issue with KEH is that the power that can be practically

harvested from human motion is too small to power all necessary functions of a

wearable sensor. KEH from human activities can produce only limited power (mea-

sured in µW ), which is not sufficient to simultaneously power all components in a

wearable device including the accelerometer.

Table 2.5 shows the power that could be generated using a commercial kinetic

energy harvester for different activities [33]. It shows that some activities generate

only a few µW , much lower than what is required to sample the accelerometer at a

sufficiently high rate for accurate activity classification. Clearly, this will force the

sensor to reduce the power to the accelerometer, i.e., use a lower sampling rate and

accept a lower activity classification accuracy, each time the user switches to one of

the activities that produce small amount of power. Even if the harvested power is

enough to operate the accelerometer at the required sampling rate, it reduces the

amount that could be accumulated in the capacitor for future radio communications.

Insufficient stored energy in the capacitor will force more aggressive duty cycling of

the radio or more drastic reduction in the transmission power. In summary, when

the power supply is limited by energy harvesting, powering the accelerometer trades
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Table 2.5: Average Harvested Power different activities when the device is attached to the shank.

Activity Average Harvested Power (µW )
Walking 10.30
Running 28.74
Cycling 0.36
Sitting 0.02
Lying 0.36

off the quality of radio communication.

In fact, using KEH to provide a self-powered HAR is a challenging problem

that requires innovative sensing and communication solutions. We therefore explore

an alternative approach to HAR that does not use an accelerometer, which can

have relatively high power requirements on relatively low-power energy harvesting

wearables, but instead uses the generated KEH signal for HAR.



Chapter 3

HARKE: Human Activity

Recognition from Kinetic Energy

3.1 Introduction

Continuous human activity recognition (HAR) is becoming critical in many appli-

cations, including aged health care [5, 6], smart living [8], and indoor positioning

[10, 68] to name a few. At the same time, there is a growing research and devel-

opment momentum in realising various types of energy harvesting wireless devices

[50]. These trends promise a new pervasive human activity monitoring paradigm

where numerous wearable tiny devices continue to sense and monitor the human on

a permanent basis.

Conventional HAR relies on accelerometers to frequently sample human motion

(acceleration). Typically a triaxial accelerometer is used to measure the acceleration

of a subject in three dimensions while performing different activities. Informative

features are then extracted from these data and used to train a classifier, which is

used later to detect activities from a given sample of acceleration values. Accelerom-

eters are usually considered low-power electronics drawing only about a few µW per

sample per second (Hz). However, the power requirements of the accelerometer for

HAR, when used in kinetic-powered devices, are considered relatively higher com-

pared to the total kinetic power available, which is also measured in µW . A linear

31
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reduction in accelerometer power consumption is possible by reducing the sampling

rates, but only at the expense of reduced accuracy for activity recognition.

In this chapter, we propose and evaluate a novel paradigm for human activity

recognition using kinetic energy harvesting (KEH) patterns. The proposed use of

KEH patterns for classifying human activities is based on the observation that dif-

ferent activities produce kinetic energy in different ways leaving their signatures in

the harvested power signal. Indeed, it was recently reported that we could harvest

612-813 µW if a user was running, but walking would generate only 155-202 µW

[64]. Interestingly, due to the gravitational effect, going up the stairs would generate

less power than going down the stairs [64], which indicates that we could even dis-

tinguish between these two similar activities using energy harvesting data. All this

could be achieved without using an accelerometer, thereby conserving the scarce

power harvested from the environment.

The key contributions of this chapter are summarised as follows.

• Using experimental accelerometer data, we first model the HAR accuracy

degradation in HAR under power constraints. The derived model demon-

strates that down-scaling the power supply to the accelerometer reduces HAR

accuracy exponentially. Next, we study the power consumption of the ac-

celerometer relative to the amount of power harvested in a kinetic-powered

device. We show that the power requirement of the accelerometer for HAR

ranges between 71-515% of the harvestable kinetic power. These results in-

dicate that although accelerometers are considered low-power electronics in

general, they can be the bottleneck of self-powered pervasive HAR.

• We propose the use of kinetic energy harvesting (KEH) patterns as a new

source of realising HAR in a kinetic-powered device. We call this approach

HARKE, which stands for Human Activity Recognition from Kinetic Energy.

By not using the acceleration for activity classification, the proposed HARKE

eliminates the need for accelerometer sampling, making HAR practical for

self-powered devices.

• We use a well known mathematical model to estimate the KEH power genera-
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tion for different human activities. By applying information theoretic measures

on estimated KEH data, we demonstrate that kinetic harvested power patterns

contain rich information for discriminating many typical activities of our daily

life.

• We test the performance of HARKE on 14 different sets of common activities,

each containing between 2-10 different activities to be classified. We find that

HAR accuracies vary from 68% to 100%, depending on the set of activities.

The average accuracy over all activity sets is 83%, which is within 13% of what

could be achieved with an accelerometer not subjected to power constraints.

The rest of this chapter is organised as follows. Related work is reviewed in Sec-

tion 3.2. Section 3.3 presents the derivation of the exponential model that captures

the HAR accuracy as a function of power available to the accelerometer. The power

requirements of the accelerometer relative to the available KEH power is explored

in Section 3.4. We present the proposed concept of using energy harvesting data

for HAR in Section 3.5, followed by its performance evaluation in Section 3.6. We

conclude the chapter in Section 6.6.

3.2 Related Work

Our work is related to energy-efficient HAR because we reduce the power consump-

tion of the HAR process in a self-powered device by not using the accelerometer.

Reducing HAR power consumption is also important in battery-powered devices,

which motivated many researchers to look for new ways to reduce battery consump-

tion of HAR. We can categorise them in three basic approaches, reducing the sam-

pling rate of the accelerometer, reducing the classification complexity, and reducing

the number of accelerometers placed on the human body.

Reducing the sampling rate of the accelerometer is a widely used method to save

the system energy. However, this reduction is always achieved at the expense of

the recognition accuracy. Therefore, improving the trade-off between sensor energy

consumption and accuracy of HAR has been the focus of many research studies.
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The authors in [26, 32] used a single activity monitoring technique to adjust the

sampling rate and classification set of features to a choice that is optimal for this

activity and hence to reduce system energy overheads without violating user accu-

racy requirements. In A3R [26], they used sets of two classification features: time

domain and frequency domain. However, AdSense [32] explores the feature set space

by genetic programming techniques and finds the optimal feature set that effectively

reduces both the classification and the sampling rates.

When a large number of activities is to be classified, the model responsible

for classification (the classifier) can be very complex. Higher complexity leads to

higher CPU usage and battery usage. Therefore, one way to reduce HAR battery

consumption would be to reduce classifier complexity. The authors in [48] provided

an adaptive HAR which, instead of using a single complex classifier based on a

large set of features, employs multiple simple classifiers each trained to classify

only a subset of the activities using a small number of features. Then, at runtime,

according to the current context, the system switches to the right classifier as the

given set of activities to recognise changes with the context.

An alternative approach to extend the battery lifetime of HAR systems is to

reduce the number of accelerometers used [49]. This approach works when data

collected by body sensors are transmitted to a base station (PC or a smartphone)

to be analysed and classified. Such studies tried to exploit redundant and unreliable

accelerometers in order to reduce the communication cost between sensor nodes and

the base station, and hence extend the life time of the monitoring system.

While it is possible to extend the battery lifetime of HAR through the previously

mentioned ways, battery-powered sensors cannot provide sustained HAR without

the need for battery replacement. Recently, a trend in energy harvesting [50] has

emerged and gained the attention of the research community. Energy harvesting

is commonly defined as the conversion of ambient energy such as vibrations, heat,

wind, and light into electrical energy. EH devices can eliminate the need for battery

replacement and significantly enhance the versatility of consumer electronics. Many

energy harvesting models have been recently developed [64, 65, 58, 66, 67]. The main

focus of these models is to optimise the parameters of the harvester to maximise the
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output harvested power. These recent advances in energy harvesting devices have

motivated us to consider the concept of self-powered pervasive HAR. The novelty

of our work is the use of harvested power patterns to classify the activities that

generate the power, which to our knowledge has not been addressed before.

3.3 Accuracy Degradation of HAR Under Power

Constraints

Accelerometer-based HAR relies on accelerometers to frequently sample human mo-

tion. Typically, a classifier is trained with informative features extracted from a

large number of acceleration samples collected during various activities, such as

walking, running, standing, and so on. Later, when extracted features from new

acceleration samples are presented to the classifier, it can recognise the activity us-

ing the trained model. Generally, the more frequent the measurements, the more

information is available to enable more accurate classification. The frequency of

measurement is called the sampling rate of the accelerometer, which is measured

in Hz or the number of measurements per second. A decade of research has con-

firmed that accelerometers are effective in accurately detecting human activities.

The purpose of this section is to model the HAR accuracy degradation under power

constraints. In order to achieve this purpose, we evaluate HAR accuracy for a given

set of activities by varying the sampling rate of the accelerometer. The evaluation

process of HAR using accelerometer data from different activities is explained below.

3.3.1 Accelerometer Data Collection

Using a handhekd Samsung Galaxy Nexus smartphone, we collected accelerometer

traces from five different subjects for ten basic activities. Since different combina-

tions of activities pose different challenges for classifications, we created 14 different

sets of activities from these 10 basic activities, as shown in Table 3.1. The original

data was collected at 100Hz, but we later subsampled each of these traces at 1-50

Hz to study the effect of sampling rate on activity recognition accuracy.
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Table 3.1: The considered activity sets.

Activity
Set (AS)

Included Activities

AS 1 Walking (W), Running (R).
AS 2 Standing (S), Vacuuming (V).
AS 3 Going up the stairs (SU), Going down the stairs (SD).
AS 4 Standing on escalator going up (EU), Standing on escalator going down (ED).
AS 5 Standing, Walking, Going up the stairs, Going down the stairs.
AS 6 Standing, Walking, Going up the ramp (RU), Going down the ramp (RD).
AS 7 Standing, Walking, Standing on escalator going up, Standing on escalator going

down.
AS 8 Going up the stairs, Going down the stairs, Standing on escalator going up,

Standing on escalator going down.
AS 9 Going up the stairs, Going down the stairs, Going up the ramp, Going down

the ramp.
AS 10 Standing, Walking, Running, Going up the stairs, Going down the stairs.
AS 11 Standing, Walking, Standing on escalator going up, Standing on escalator going

down, Going up the ramp, Going down the ramp.
AS 12 Going up the stairs, Going down the stairs, Standing on escalator going up,

Standing on escalator going down, Going up the ramp, Going down the ramp.
AS 13 Standing, Walking, Running, Going up the stairs, Going down the stairs, Vac-

uuming, Standing on escalator going up, Standing on escalator going down.
AS 14 Standing, Walking, Running, Going up the stairs, Going down the stairs, Vac-

uuming, Standing on escalator going up, Standing on escalator going down,
Going up the ramp, Going down the ramp.

3.3.2 Feature Extraction and Classification

In this study, we use K-nearest neighbour (KNN) classifier, which has been widely

used by other researchers [69, 70, 28] due to its simplicity and effectiveness in activity

classification. The KNN classifier is trained with 12 features (see table 3.2) extracted

from 5-sec windows with 50% overlapping of the accelerometer traces. Finally, for

each sampling rate, we perform 10-fold cross validation test to obtain the accuracy.

Next, we show the recognition accuracy as a function of the sampling rate.

3.3.3 HAR Recognition Accuracy vs Accelerometer Sam-

pling Rate

Fig. 3.1 shows the HAR accuracy as a function of sampling frequency of the ac-

celerometer for three different sets, 1, 3 and 7. We make several observations. We

can see that the HAR accuracy increases with increasing sampling rate, but its rate

of increase continues to slow down as it approaches a limit (saturates). The char-
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Table 3.2: The considered feature set.

Feature Name Description

Mean The central value of a window of samples.

Standard deviation A measure of the amount of variation or dispersion from the mean.

Maximum The maximum value in a window of samples.

Inter-quartile
Range

The difference between the upper quartile and the lower quartile of the
window of samples.

Root Mean Square The square root of the arithmetic mean of the squares of the values of
the window of samples. It is a measure of the magnitude of a varying
quantity.

Mean Absolute De-
viation

The mean of the absolute deviations from a central point. It measures
dispersion or variability in values of the window of samples.

Skewness A measure of the asymmetry of the probability distribution of the win-
dow of samples.

Kurtosis A measure of the ”peakedness” of the probability distribution of the
window of samples.

Auto-Correlation The cross-correlation of a signal with itself. It measures the similarity
between observations as a function of the time lag between them.

Dominant Fre-
quency

The maximum spectral component of the Fourier transform of the signal.

Power Spectrum
Mean

The mean of the power spectrum of the signal.

Frequency Domain
Entropy

The normalized information entropy of the discrete FFT component
magnitudes of the signal.

acteristic of this growth in HAR accuracy is captured by the exponential function

f(x) = a(1−e−λx), where a is the limiting value of HAR accuracy and λ is a constant

defining the shape or slope of the curve (curve fitting results shown in the legend).

Note that different sets have different limiting values and reach the limiting value at

different sampling rates, which we call critical sampling rates. For example, activity

set 1 has a critical sampling rate of 10 Hz, because the accuracy does not improve

any further beyond this rate, whereas the accuracy for set 7 continues to increase

until 30 Hz.

A second observation is that the accuracy falls exponentially if the accelerometer

is sampled below the critical sampling rate. This means that if there is insufficient

harvested power, then the accelerometer will be forced to operate at a lower sampling

rate, which would cause exponential decrease in accuracy. This observation high-

lights the challenge facing the realisation of pervasive HAR using energy harvesting

wearable devices. Next, we discuss in more details the limitations of accelerometer-

based HAR in future kinetic-powered devices.
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Figure 3.1: HAR accuracy as a function of accelerometer rate for three different activity sets.

3.4 Accelerometer Power Requirement in KEH-

powered Devices

To study the power consumption of the accelerometer relative to the amount of

power harvested in a kinetic-powered device, we first estimate the power that could

be harvested for each activity set in Table 3.1. We compare it to the power require-

ment of the accelerometer. We use known mathematical models to estimate the

harvested kinetic power generation from human motion data. Then we investigate

the accelerometer power requirements relative to the available harvested power for

given sets of human activities.

3.4.1 Estimating KEH Power Generation Patterns

Here, we use the recently developed mathematical model of Gorlatova et al., which

has been shown to accurately estimate the amount of harvestable kinetic power from
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Table 3.3: Average harvested power of different activities.

Activity Average Harvested Power (µW )

Standing 0.063
Walking 53.50
Running 153.40
Stairs Up 44.94

Stairs Down 97.39
Vacuuming 29.94

Escalator Up 0.2198
Escalator Down 0.2522

Ramp Up 64.68
Ramp Down 56.02

accelerometer data using a standard mass-spring damping system [64]. This model

has been validated using a comprehensive dataset collected from 40 participants

going through unrestricted motions. Once the gravity is filtered out from the raw

acceleration values, the filtered acceleration is converted to proof mass displacement

using the Laplace domain transfer function:

z(t) = L−1{Z(s)} =
A(s)

s2 + b
m
s+ k

m

(3.1)

where m is the proof mass, k is the spring constant, b is the damping factor, A(s) and

Z(s) denote, respectively, the Laplace transforms of a(t) =
√
ax(t)2 + ay(t)2 + az(t)2,

the overall magnitude of the acceleration, and z(t), the proof mass displacement.

Next, the resulted proof mass displacement, z(t), is limited by the limit of the proof

mass displacement, ZL. Finally, the generated harvested power, p(t), is determined

by:

p(t) = bż2(t) (3.2)

We used the configuration values, m = 10−3kg, ZL = 10mm, k = 0.17, and b =

0.0005, optimised in [64] for typical human activities. The entire procedure was

implemented using MATLAB and SIMULINK [71]. The outcome is a trace of kinetic

power samples, which we use for further analysis.
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Table 3.4: Sampling rates and power consumptions of the accelerometer for different activity
sets.

Activity
Set

Average Har-
vested Power
(µW ))

Required Ac-
celerometer
Sampling Rate
(Hz)

Required
Power (µW ))

Percentage
of Harvest-
ing Power
consumed (%)

Achievable
Accelerometer
Sampling (Hz)

AS 1 103.45 10 50 48.33 20.69

AS 2 15.00 5 25 166.6 3

AS 3 71.17 5 25 35.13 14.234

AS 4 0.236 5 25 10593.2 0.047

AS 5 48.97 10 50 102.10 9.79

AS 6 43.56 30 150 344.35 8.71

AS 7 13.51 30 150 1110.3 2.70

AS 8 35.70 15 75 210.08 7.14

AS 9 65.76 15 75 114.05 13.15

AS 10 69.86 10 50 71.57 13.97

AS 11 29.12 30 150 515.11 5.82

AS 12 43.92 30 150 341.53 8.78

AS 13 47.46 20 100 210.70 9.49

AS 14 50.04 15 75 149.88 10.01

3.4.2 Accelerometer Power Requirement Relative to Avail-

able KEH Power

In this subsection, we study the power consumption of the accelerometer relative to

the available harvested power. Table 3.3 shows the average harvested power for each

activity1. Table 3.4 presents the average harvested power for each activity set (col-

umn 2) along with the required sampling rates of the accelerometer to achieve the

maximum (limiting) accuracy (column 3). Column 4 shows the power requirement

of the accelerometer to achieve the maximum accuracy assuming a 5 µW power con-

sumption per Hz on average. This means that the accelerometer can work without

power constraints only as long as the harvested power (column 2) is greater than

the power in column 4. Column 5 shows the percentage of harvested power that

would be required by the accelerometer to work without power constraints.

We can see that apart from a few activity sets (sets 1, 3, and 10), the accelerom-

eter would require more power than could be harvested, forcing it to work under

1The average power generated by some of the considered activities is slightly lower compared
to those reported in [64]. This is due to the different holding positions of the sensing device. In
our experiment, the device was held in the hand while in [64] the sensors were placed in shirt and
pant pockets.
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power constraints or at reduced sampling rates, as shown in the final column. Con-

sidering only the sets for which we have five or more activities to recognise, i.e.,

sets 10 to 14, we find from column 5 that the power requirement of the accelerom-

eter is between 71-515% of the harvestable kinetic power. Our findings reveal that

the accelerometer becomes the bottleneck of self-powered HAR, in spite of having

relatively low-power requirements.

3.5 Proposed Architecture of HARKE

Figure 3.2 contrasts the proposed HARKE and the conventional accelerometer-based

HAR architectures. In the conventional HAR, the acceleration samples are used to

train a classifier which in turn is used to detect activities based on a window of

acceleration samples. In contrast, no acceleration data is used in the proposed

architecture. Instead, training and classification are accomplished entirely using

the output signal of the kinetic energy harvester. Energy saved by not using the

accelerometer can be used by other on-board units, such as the radio.

Figure 3.3 compares the accelerometer signal with the estimated kinetic power

signal when a subject goes through a series of five activities in 35 seconds. It provides

a clear visual confirmation that, like the accelerometer signal, the power signal is

affected differently by different activities. Therefore, it should be possible to use

the kinetic power signal to achieve HAR. In the following section, we measure the

discriminating ability of the kinetic power more formally using information theory

and investigate the HAR accuracy that it can achieve for typical human activities.

3.6 HARKE Performance Evaluation

The main purpose of this section is to evaluate HAR accuracy when the kinetic

power signal is used to classify different activities in a given activity set. But first,

we provide an information theoretic analysis to formally assess the discriminating

capacity of the kinetic power signal for typical human activities.
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Figure 3.2: HAR Architectures: (a) Conventional accelerometer-based HAR and (b) Proposed
HAR based on kinetic power signal
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harvested power trace for the activity sequence: stairs up-standing-walking-running-stairs down.
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3.6.1 Information Gain

Information gain (IG) is a measure that determines how useful a given feature is

for discriminating between the classes (activities) to be learned [72]. The IG of

feature fi measures the expected reduction in entropy caused by partitioning the

data (instances) according to this feature. The calculation of information gain is

based on calculating the entropy H(S) of a set of classes S.

H(S) = −
n∑
i=1

pi log2 pi (3.3)

where n is the number of different activity classes and pi is the proportion of all

instances belonging to the ith class. The information gain is then calculated using:

Gain(S, fi) = H(S)−
∑

v∈V alues(fi)

|Sv|
|S| H(Sv) (3.4)

where |S| denotes the cardinality of the set S and Sv is the subset of S for which

feature fi has a value v (i.e., Sv = s ∈ S|V alues(fi) = v).

A feature that cannot help with classification has zero IG. If the kinetic power

signal does not contain any useful information for activity classification, then it will

be difficult to find a feature with positive IG. Next, we compute IG for a range

of commonly used statistical features on the kinetic power samples. The outcome

for activity set 14 is shown in Figure 7.5 and the averages for all sets with 5 or

more activities, i.e., sets 10-14, are shown in Table 3.5 . We see that there are

many features with significant IG, confirming that the kinetic power signal contains

rich information that can be used to train a classifier to detect activities (see the

following subsection).

An interesting observation is that the Maximum feature, i.e., the maximum

power in a window of 5-sec, provides the most information gain, beating the Mean

feature. This is interesting because in the literature it is often mentioned that the

average kinetic power of different activities is different [64], which may give the

impression that the Mean kinetic power would be the key for activity classification.

In the following subsection, we will compare the accuracies that could be obtained
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Figure 3.4: Information gain of kinetic power signal of AS 14 for 12 features commonly used for
HAR.

by using different power features.

3.6.2 Classification Accuracy

In this subsection, we use the same method used in Section 3.4 to obtain HAR

accuracy. There are some subtle differences in how we obtain the features from the

acceleration and the kinetic power traces. For the accelerometer traces, we consider

both single, i.e., the overall acceleration, and 3-axial data, which means we extract

12 features for the single but 36 features for the 3-axial traces. For the kinetic power,

we only have a single trace, so only 12 features are extracted. Table 3.6 compares

the accuracies of kinetic power-based HAR when different power features (Mean

and Maximum) are used in isolation and also when all 12 features are used. First,

we find that the Maximum feature provides better accuracy than the Mean, as is

expected from the IG results presented in the previous subsection. Second, using

multiple features together does not provide any accuracy gain in kinetic power-based
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Table 3.5: Average Information Gain for Activity Sets 10 to 14.

Feature Average IG

Maximum 1.5299

Mean Absolute Deviation 1.4388

Mean 1.4364

Auto-correlation 1.4364

Dominant Frequency 1.4364

Standard Deviation 1.4131

Power spectrum mean 1.4109

Root mean square 1.4109

Inter-quartile Range 1.3615

Skewness 0.4476

Frequency Domain Entropy 0.4148

Kurtosis 0.4090

HAR. This is surprising because it is well known that for accelerometer-based HAR,

many features are to be used in combination to achieve high accuracy and in fact we

found the same for our accelerometer dataset. It is also known that the use of the

individual acceleration components in x, y, and z directions, albeit more complicated,

improves accuracy significantly. We therefore evaluate two sets of accuracies for the

accelerometer-based HAR, one with the overall acceleration and the other applying

the 12 features on each of the three components.

Accuracies for accelerometer-based HAR are shown in Table 3.7 along with those

obtained for kinetic power-based HAR with the Maximum feature used for classifi-

cation. We see that kinetic power-based HAR performs better than accelerometer-

based HAR only when the overall acceleration is used and remains with 13% on

average when individual acceleration components are considered. These results are

encouraging because Table 3.7 presents the best case results for the accelerome-

ter, i..e, when the accelerometer is not power constrained. As shown in Table 3.4,

the accelerometers in a self-powered device may often have to operate under power

constraints due to insufficient kinetic power.

Next, we take a closer look into the classification results to identify the source of

lower accuracy for kinetic power-based HAR. We examine the sets that achieved the

three lowest accuracies in Table 3.7. These are sets 9 (68.40%), 12 (73.91%), and 14
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Table 3.6: Accuracies for kinetic power based HAR.

Activity Set EH-based HAR Accuracy (%)

Using Maximum
Feature

Using Mean Fea-
ture

Using 12 Features
in Table 3.2

AS 1 96.20 93.59 98.43

AS 2 100 100.00 100

AS 3 90.93 61.53 65.97

AS 4 82.67 60.00 63.21

AS 5 86.88 63.24 80.00

AS 6 81.84 60.26 67.35

AS 7 88.19 74.50 56.46

AS 8 86.21 61.36 61.07

AS 9 68.40 30.96 31.84

AS 10 84.06 55.53 79.73

AS 11 79.52 53.98 46.53

AS 12 73.91 41.80 41.39

AS 13 78.57 51.83 60.93

AS 14 72.00 41.51 49.00

Average 83.53 60.72 64.42

(72%). We find that these are the sets that contain the activities going up the ramp

(RU) and going down the ramp (RD). In our experiments we collected data when

subjects walked over ramps with small slopes with angles ranging between 10◦-30◦.

For such low-angle ramps, they are very similar to the walking (on a flat surface)

activity.

A triaxial accelerometer is fundamentally advantaged in separating RU, RD,

walking, or any other very similar human activities due to the multi-dimensional

measurement of the motion, hence achieving very high accuracy for all activity sets

in our experiments including sets 9, 12, and 14. By measuring acceleration in three

dimensions, new discriminating opportunities arise, which is not possible with a

single-dimensional power measurement.

The advantage of a triaxial accelerometer against the single-dimensional har-

vested power signal is illustrated in Figure 3.5 by plotting the samples from three

activities, RU, RD, and walking. We see that the signals of these three activities

look very similar regardless of whether acceleration or power samples are used. Even

when each axis is considered separately, they look very similar. However, when we

consider the acceleration signals in y and z directions together, we find two clear
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Table 3.7: Comparison of accuracies for accelerometer-based and kinetic power-based HAR.

Activity Set HAR Accuracy (%)

Kinetic power Accelerometer (Over-
all)

Accelerometer (3-axis)

AS 1 96.20 100 100

AS 2 100 100 100

AS 3 90.93 80 93.20

AS 4 82.67 62.14 100

AS 5 86.88 76.24 96.06

AS 6 81.84 64.47 95.86

AS 7 88.19 73.04 99.90

AS 8 86.21 63.07 96.50

AS 9 68.40 55.78 92.20

AS 10 84.06 81.21 94.64

AS 11 79.52 57.19 96.96

AS 12 73.91 51.71 94.25

AS 13 78.57 72.88 98.16

AS 14 72 64 95.45

Average 83.53 71.55 96.66

Power: using a single feature (max).
Accelerometer (Overall): using 12 Features (see Table 3.2).

Accelerometer (3-axis): using 36 features (12 features (see Table 3.2) from each axis).

discriminating patterns between the three activities.

The y and z acceleration signals closely follow the shape of a sinusoidal wave due

to the periodic motion of walking and the tilting of the smartphone in the hand, but

they have a phase shift relative to each other. The relative shift for walking is the

maximum (close to 180◦) and minimum for RU. We also see that the offsets between

these two signals are different for different activities. During training, a classifier

quickly learns such important differences, which allows it to accurately distinguish

the activities from each other. However, when a single-dimensional power signal is

used, the classifier does not have access to such information, leading to confusion.

Whether we can extract multi-dimensional motion information from the harvested

power signal remains an open question.

3.7 Conclusion

Although accelerometers are considered low-power electronics in general, our study

has revealed that the accelerometer becomes the power bottleneck in realising self-
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(a) Kinetic power signal for RU, RD, and W (Classification Accuracy=74.10%).

(b) 3-axis accelerometer signal for RU, RD, and W (Classification Accuracy=94.31%).

Figure 3.5: A comparison of kinetic power signal in (a) with 3-axis accelerometer signal in (b).
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powered HAR. We have shown that the kinetic power signal itself contains signatures

for the human activities that are to be classified and recognised. A standard KNN

classifier can detect many activities with very high accuracies using only the kinetic

power signal and not using an accelerometer at all. Since the kinetic power is readily

available from the energy harvesting circuit, HAR based on kinetic power signals

conserves a significant fraction of the scarce harvested power that would have been

consumed by the accelerometer. Thus, the proposed use of energy harvesting signals

for HAR can be considered a key enabler for realising the vision of pervasive self-

powered human activity recognition.

The work presented in this chapter is the first study of recognising human activity

directly from the energy harvesting signal. Although we have shown that good

HAR accuracies are possible for many common activities, we have also found that

the kinetic power signal cannot distinguish very similar activities, such as walking

on a flat surface and walking on a ramp, with high accuracy. For such cases, an

accelerometer has a clear advantage with its 3-axis measurement capability, which

provides more detailed (multi-dimensional) motion information of these activities

leading to high recognition accuracy. We have analysed HAR accuracy when the

accelerometer and the energy harvester are used in a mutually exclusive manner. A

logical future direction is to consider a hybrid system where a triaxial accelerometer

is sampled at a low sampling rate (low power consumption), but the classifier is

trained using both acceleration samples and kinetic power samples, thus enabling

very accurate HAR with low power consumption. The hybrid system combines the

advantages of both signals to realise a more flexible HAR with a goal to achieve a

better accuracy-power trade-off than the one possible with the mutually exclusive

method.

In this chapter, we used a known mathematical model to estimate the harvested

kinetic power signals from human motion because portable kinetic energy harvesting

dataloggers are currently not readily available. In the next chapter, the experimental

validation of HARKE is provided by building a portable KEH datalogger that could

be worn by a user performing different activities and collect real KEH data.



Chapter 4

Experimental Validation of

HARKE

4.1 Introduction

Recent advancements in energy harvesting hardware have created an opportunity to

realise self-powered wearables for continuous and pervasive human activity recogni-

tion (HAR). Unfortunately, the power consumption of accelerometers used in con-

ventional HAR is relatively high compared to the amount of power that can be prac-

tically harvested, which limits the usefulness of energy harvesting. In the previous

chapter, we showed that the power requirement of the accelerometer for detecting

common human activities with high accuracy ranges between 0.71 to 5 times the

harvested kinetic power. This clearly proves that power consumption of accelerom-

eters becomes a bottleneck for realising pervasive self-powering HAR because the

amount of power that can be practically harvested from the environment is small.

Instead of using an accelerometer, we propose the use of the kinetic energy

harvesting (KEH) patterns as a novel source of information for HAR when motion

(kinetic) energy is being harvested to power the device. The proposed use of KEH

patterns is motivated by the fact that different activities produce kinetic energy in

different ways, leaving their signatures in the harvested power signal. The proposed

energy harvesting wearable sensor architecture is called HARKE, which stands for

50
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Human Activity Recognition from Kinetic Energy.

In the previous chapter, we used a mathematical model to estimate KEH data

from human motion data. A smartphone with incorporated accelerometer was used

to collect human motion. This option allowed us to validate HARKE without the

need to use special hardware. However, the generated KEH data were an approx-

imation of the real data. For the ultimate validation of HARKE, we build a data

logger to collect real KEH data. Our objective is to investigate (a) whether the

generated patterns by real KEH hardware contain information about human activ-

ity as reported in the previous chapter from estimated KEH power patterns, and

(b) if it does, how does the performance of HARKE compare with the conventional

accelerometer-based HAR.

The contributions of this chapter can be summarized as follows:

• Using off-the-shelf products, we built a datalogger prototype which enabled us

to record the generated signals of a commercially available KEH transducer.

We also added an accelerometer to the prototype to compare the performance

of HARKE against accelerometer-based HAR.

• We collected extensive data from ten different subjects with a diversity of gen-

der, age, weight and height. Our data was collected for five common activities:

standing (S), walking (W), running (R), going up the stairs (SU), going down

the stairs (SD). We considered two placements of the device on subjects bodies

(hand and waist) to study the impact of placement on recognition accuracy.

• Our analysis showed that the patterns generated from real KEH hardware

switch to clearly distinguishable patterns as the user changes activities. This

confirms the feasibility of using the real KEH patterns for HAR.

• We compared the performance of HARKE to accelerometer-based HAR using

five different classifiers, K-Nearest Neighbour (KNN), Decision Tree (DT),

Multilayer Perceptron (MLP), Support Vector Machine (SVM), and Näıve

Bayes (NB). We showed that the KNN classifier gives the highest performance

of HARKE when specific vibration features are used.
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Figure 4.1: Detailed block diagram of HARKE architecture.

• We employed Correlation Feature Selection (CFS) to reduce the number of

features used for HARKE to make it more energy efficient. Our results showed

that the CFS algorithm is effective in reducing the number of features without

affecting the recognition accuracy. This is because the CFS algorithm selects

the most useful features and discards the redundant and non-informative ones.

• We showed that HARKE is as accurate as accelerometer-based HAR for distin-

guishing dissimilar activities such as standing, walking, and running. However,

the performance of HARKE is reduced for very similar activities such as going

up and down stairs, which agrees with the validation of HARKE using the

mathematical modelling presented in the previous chapter. We also showed

that the fundamental advantage of the accelerometer in distinguishing similar

human activities is due to the multi-dimensional measurement of the motion

against the single dimensional measurement of the KEH hardware.

The rest of the chapter is organized as follows. The detailed hardware architec-

ture of HARKE is explained in Section 4.2 followed by its experimental validation in

Section 4.4. The results of the experimental validation are presented and analyzed

in Section 4.5. A discussion of the results is presented in Section 4.6. We conclude

the chapter in Section 4.7 with a discussion of future directions.
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4.2 Detailed Architecture of HARKE

The detailed hardware architecture of HARKE is depicted in Figure 6.2(a) with no

accelerometer. Instead, it contains a kinetic energy harvesting (KEH) system to

harvest energy from human motion. The harvested energy is then used to power the

classifier and the radio when it is turned on for communication. The KEH system

typically consists of three basic components:

1. A generator (transducer) to convert human motion into electrical power, typ-

ically a varying AC voltage;

2. A power conditioning circuit to provide power rectification and regulation; and

3. A storage element to store the harvested energy.

A storage element such as a battery or capacitor is needed to accumulate the

harvested energy and supply regulated power, typically a constant DC voltage, which

is suitable to power the classifier and the radio communication. The regulated DC

voltage is not suitable for detecting human activities, because regulation would wipe

out any potential pattern in the generated signal that might be used for activity

recognition. Therefore, HARKE uses the AC voltage from the transducer as an

input to the classifier to perform HAR.

4.3 Energy Savings by HARKE

The energy savings of HARKE is directly due to the removal of the accelerometer.

A detailed measurement study in [32] indicates that the average power consumption

of an accelerometer running at 20 Hz is four times as much as the average power

consumption for extracting features and executing a classifier. Consequently, the

accelerometer is responsible for 80% of the total HAR power consumption. Com-

pared to the energy saved by removing the accelerometer, the power consumption

for recording the AC voltage for activity classification is minimal. To continuously

record AC voltage, HARKE needs an analog-to-digital converter (ADC) to sam-

ple the analog AC signal into digital data that can be used for feature extraction
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Figure 4.2: Phases of the experimental validation of HARKE.

and classification. The datasheet of ADS7042, an ultra low-power ADC from Texas

Instruments, shows that the ADC consumes approximately 1µW per KHz [73].

Comparing this to 100 µW consumed by an ADXL150 accelerometer running at

20 Hz (assuming a 5 µW/Hz power consumption), we find that 99% of the power

that would be consumed by the accelerometer could be saved using our architecture.

Given that 80% of HAR power consumption is due to the accelerometer, HARKE

saves 72% of HAR power consumption in a self-powered wearable. By adopting the

HARKE architecture, a significant amount of limited harvested energy can be saved

in the next generation self-powered wearables. The question is how accurately can

we classify human activities using the generated patterns from a KEH hardware?

4.4 Experimental Validation of HARKE

The basic idea of HARKE is to use the patterns generated by KEH hardware to

classify common human activities. In order to do so we need to go through five

phases. These phases are presented in Figure 4.2. First, we build a prototype to

collect the generated patterns by the KEH hardware. This hardware is then used

to collect real KEH data for common human activities. The collected data is then

prepared and analyzed to extract informative features. To reduce the computational

complexity, we use feature reduction techniques to reduce the size of the feature vec-

tors by removing the redundant and non-informative features. Finally, the extracted

features are used to train and validate a classifier model which will be used in real

time to recognize human activities from KEH patterns. The details of each phase

are given in this section.
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4.4.1 Hardware Setup

Our datalogger hardware includes a product called Volture from MIDÉ1, which im-

plements only the KEH transducer, providing AC voltage as its output. A triaxial

accelerometer (MMA7361LC) was added to the design for comparison purposes. We

used an Arduino Uno as a micro-controller device for sampling the data from both

the KEH transducer and the accelerometer. A sampling rate of 1 KHz was used for

data collection. The sampled data was saved on an 8 GB microSD card which was

connected to the Arduino using microSD shield. A nine volt battery was used to

power the Arduino. The data logger also includes two switches, one to switch the

device on or off and the other to control the start and stop of data logging. Figures

4.3(a), 4.3(b), 4.3(c), and 4.3(d) show the block diagram, the external appearance,

the circuit diagram, and the internal appearance of the datalogger hardware, re-

spectively. In the circuit diagram, a 750 KOhm load resistor was soldered at the

harvester output to obtain the AC voltage and 2× 10 KOhm resistors to make the

offset at 2.5 V instead of 0 to access the negative side of the AC voltage. Once the

device is assembled it can be attached to different parts of the subject under test to

gather the data. Below, a detailed description of each component of the datalogger

is presented.

• Piezoelectric KEH transducer

Piezoelectric KEH transducer is the most favourable type of transduction

mechanisms due to its simplicity and compatibility with MEMS [63]. The

piezoelectric effect was discovered in natural quartz crystals, but today’s piezo-

electric transducers are typically made from patented proprietary ceramics.

Figure 4.4(a) shows a typical usage configuration of a piezoelectric cantilevered

beam. One end of the beam is fixed to the device, while the other is set free to

oscillate (vibrate). When the piezoelectric material is subjected to a mechani-

cal stress due to any source of environmental vibration, it expands on one side

and contracts on the other. Positive charges accumulate on the expanded side

and negative charges on the contracted side, generating an AC voltage as the

1http://www.mide.com

http://www.mide.com
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(a) A block diagram of the datalogger hardware.
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(d) The internal appearance.

Figure 4.3: The datalogger hardware setup: (a) a block diagram of the datalogger hardware, (b)
the external appearance of the data logger, (c) the circuit Diagram and (d) the internal appearance
of the data logger.
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Contraction (V-)

V+/V-

V+/V-

Free endFixed end

(a) A piezoelectric cantilevered beam. (b) The dimensions of the used piezoelectric KEH
product, from the datasheet of Volture2.

Figure 4.4: Piezoelectric KEH overview: (a) a piezoelectric cantilevered beam and (b) the di-
mensions of the piezoelectric KEH product, from the datasheet of Volture3.

beam oscillates around the neutral position. The amount of voltage is pro-

portional to the applied stress, which means that different vibration patterns

generate different AC voltage patterns.

We used a piezoelectric KEH transducer called Volture from MIDÉ company.

It employs a cantilever that attaches to a piezoelectric crystal. When vi-

brations set the cantilever in motion it generates an AC voltage. Volture is

available in six standard sizes. Here, we used the v25w product which has the

dimensions shown in Figure 4.4(b). The typical thickness of this product is

0.024 in. Volture v25w is sensitive to the vibration frequency range 40 Hz-120

Hz and it is able to generate a maximum of 34 mW at 80 Hz. Since human

motion frequency is rarely higher than 3 Hz, the output power is expected

to be a few magnitudes lower. We used a 7 gm mass to make the harvester

sensitive to lower frequencies. The mass was placed at the free oscillating tip

of the cantilever as shown in Figure 4.3(d).

• Triaxial accelerometer

We added a triaxial accelerometer (MMA7361LC) to the hardware prototype

to collect both KEH and accelerometer patterns simultaneously, for compari-

son purposes. The MMA7361LC is a low power, low profile capacitive micro-

machined accelerometer featuring signal conditioning, a 1-pole low pass filter,

3http://www.mide.com/pdfs/Volture_Datasheet_001.pdf

http://www.mide.com/pdfs/Volture_Datasheet_001.pdf
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Table 4.1: The specifications of the Arduino Uno microcontroller.

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (6 provide PWM output)

Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (0.5 KB used by bootloader)

SRAM 2 KB

EEPROM 1 KB

Clock Speed 16 MHz

Length 68.6 mm

Width 53.4 mm

Weight 25 g

temperature compensation, self-test, 0g-Detect which detects linear freefall,

and g-Select which allows for the selection between 2 sensitivities (±1.5g,±6g).

The 0-g offset and sensitivity are factory set to 800mV/g@1.5g. The MMA7361LC

operates on 2.2− 3.6 V. It has a current consumption of 400µA and only 3µA

at sleep mode which makes it ideal for handheld battery powered electronics..

• Processor (Micro-controller)

We used an Arduino Uno as a microcontroller. Table 4.1 shows the specifica-

tions of the Arduino Uno. Arduino Uno uses the ATmega328 microcontroller

board. The ATmega328 has 32 KB (with 0.5 KB used for the bootloader). It

also has 2 KB of SRAM and 1 KB of EEPROM (which can be read and writ-

ten with the EEPROM library). The Arduino Uno can be powered via USB

connection or with an external power supply (either an AC-to-DC adapter or

battery). The power source is selected automatically. The board can operate

on an external supply of 6 to 20 V. However, the recommended range is 7 to

12 V since the use of less than 7 V may make the board unstable and more

than 12 V may overheat the voltage regulator and damage the board. In our

design, we used a 9 V battery to power the Arduino.

• Storage memory
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Since the internal storage of the Arduino is very limited, we equipped it with

an 8 GB microSD card through microSD shield so it can be used for data-

logging. This provides the ability to save information to a file system and

retrieve megabytes of data.

• Other features

We added two switches to the dataolgger hardware, one to switch the device on

and off and the other to control the starting and stopping of the data logging

process.

4.4.2 Output Transformation

The Arduino is programmed to sample data from the Volture and accelerometer

and store them on an 8 GB microSD card. It has 10 bits of output resolution (i.e.

1024 different values). Therefore, the range of the output measurements is from 0 to

1023. To map the range of the measurements to the actual voltage range (0− 5V ),

we used Eq. (4.1).

V oltage =
5×m
1023

, (4.1)

where m is the measurement sampled by the Arduino.

For the accelerometer output, we then used Eq 4.2 to calculate the corresponding

acceleration of the three axes.

Acceleration =
V oltage− 1.65

0.8
, (4.2)

where 1.65 is the 0g acceleration, which is usually defined as half the supply voltage

(in this case 3.3 V) and 0.8 is the scaling factor between the measured voltage and

acceleration in g. Then we divide Eq (4.2) by 9.81 to get the acceleration in m/s2.

Finally, we subtract 2.5 from the Volture output to compensate changing the Volture

offset to 2.5V instead of 0V in the hardware setup. The Volture’s offset has been

changed in the design to allow accessing the negative samples of the AC voltage.
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Figure 4.5: Data Preparation Procedure
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Table 4.2: The physical characteristics and the statistics of the volunteers for data collection.

Subject ID Gender Age Weight (kg) Height (cm)
1 Female 27 75 171
2 Female 28 61 160
3 Female 26 65 164
4 Female 34 73 164
5 Female 29 58 158
6 Female 29 58 154
7 Male 27 70 175
8 Male 35 91 184
9 Male 28 65 175
10 Male 27 77 180

range 26-35 58-91 154-185
mean 29 69.3 168.5

standard deviation 3.06 10.21 9.98

Figure 4.5 shows the output transformation procedure.

4.4.3 Data Collection

Our data was collected using the previously explained datalogger and ten different

subjects volunteered to participate in this study. The data includes diversity in

gender (4 male and 6 female), age, weight, and height. Table 4.2 shows the physical

characteristics of each subject. We considered five different activities from the most

basic and common activities in daily life: standing (S), walking (W), running (R),

going up stairs (SU), and going down stairs (SD). All subjects performed the last

four activities at their natural speed, i.e., there was no special speed requirement.

We considered two different placements of the datalogger on the subject’s body to

study the impact of the device placement on both the accelerometer and the KEH

data. The subjects were asked to first hold the data logger in either their left or right

hand and perform the five mentioned activities and then repeat the data collection

process using the waist placement. Figures 4.6 and 4.7 show the data collection

process of the five activities and the two placements of the device on the subject’s

body, respectively.

At the beginning of the data collection process, each user had to make sure that
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(a) Standing (b) Walking (c) Running

(d) Going up the stairs (e) Going down the stairs

Figure 4.6: Data Collection Process (a) Standing, (b) Walking, (c) Running, (d) Going up stairs,
and (e) Going down stairs.

(a) Hand (b) Waist

Figure 4.7: Device placements on the person’s body: (a) hand and (b) waist.
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Figure 4.8: The accelerometer patterns of the five activities for two placements of the device: (a)
hand (left) and (b) waist (right).

the device is switched on, then uses the start/stop switch to start and stop data

collection at the beginning and end of each activity. Subjects were asked to stop

and wait a few seconds after one activity and before starting the next. The data

collected between the start and stop times of an activity was recorded in a separate

file on the microSD card which was labeled with the name of that activity. Each

file on the microSD card contains a trace of single-axis KEH signal (first column)

and a triaxial accelerometer signal (the next three columns). With 1000 Hz data

collection frequency, we have 1000 1D samples of KEH data and 1000 3D samples

of accelerometer data for each second of the trace.

Our traces were of variable length, each subject provided between 20 to 30 sec-
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(b) Waist

Figure 4.9: The KEH patterns of the five activities for two placements of the device: (a) hand
(left) and (b) waist (right).

onds of data per trace for standing (S) and walking (W), 10 to 12 seconds of data

per trace for running (R), and 8 to 10 seconds of data per trace for going up (SU)

and down (SD) stairs. For each placement of the device on the person’s body, we

collected a total of 80 traces, including 10 Ws, 10 Ss, 20 Rs, 20 SUs, and 20 SDs.

Figures 4.8 and 4.9 show the accelerometer and the KEH signals, respectively, for

the two placements of the datalogger and the five activities.

4.4.4 Features Extraction

Feature extraction is a critical initial step in any classification process. This step

is responsible for extracting the hidden information from the raw input data in
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order to perform the desired task. A technique of window overlapping is usually

considered for feature extraction. In this technique, the data traces are subdivided

into smaller windows, then the features are extracted from consecutive windows.

Using overlapping windows is a common practice to reduce the information loss at

the edges of a window.

We used the raw collected data without applying noise filtering techniques. For

each of the 80 traces collected in the previous section, we divided each trace into

5-second windows with 50% overlap between consecutive windows. Each window

represents an instance for feature extraction and classification. For the hand place-

ment case, we have a total of 262 windows (instances), including 64 Ws, 73 Ss,

54 Rs, 39 SUs, and 32 SDs. For the waist placement case, we have a total of 285

windows (instances), including 66 Ws, 72 Ss, 66 Rs, 42 SUs, and 39 SDs. For each

window, we extracted the features presented in Table 4.3.

As the accelerometer generates three time series along the X-, Y-, and Z-axes,

some features are extracted from each axis separately (single-axis features) and

some are extracted as a combination between the three axes (multiaxial features).

Table 4.3 includes nineteen single-axis features and five multiaxial features that

are commonly used for accelerometer-based HAR. Table 4.3 shows both time and

frequency domain features. For the accelerometer signal, the single-axis features are

extracted from each axis separately giving a total of 57 features, in addition to the

5 multiaxial features extracted as a combination between the three axes, giving a

total of 62 features. On the other hand, the KEH transducer generates one series of

AC voltage, giving a total of 19 single-axis features. Overall, we extracted a total

of 62 features from the accelerometer signal and 19 features from the KEH signal.

We call this the Original Feature Set (OFS) of both accelerometer and KEH data.

Since the accelerometer is generally a vibration sensor and KEH is a vibration

generator (the conversion of ambient vibrations generated from human motion into

electrical energy), we proposed to use the seven features presented in Table 4.4.

These features are used to quantify the vibration level which is a characteristic

describing the severity of the vibration. Therefore, we call it the Vibration Feature

Set (VFS). All the features in the VFS are single-axis features which are extracted
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Table 4.3: The original feature set (OFS) of both accelerometer and KEH data.

Feature Abbreviation Description
mean mean the central value of a window of samples.
variance var a measure the amount of variation or dispersion from the mean.
standard de-
viation

std the square root of the variance.

minimum min the minimum value in a window of samples
maximum max the maximum value in a window of samples
range range the difference between the maximum and the minimum values in a window

of samples

T
im

e-
d

o
m

a
in

fe
a
tu

re
s

Absolute
Mean

absMean average of absolute values,

Coefficient of
Variation

CV ratio of standard deviation and mean times 100; measure of signal dispersion,

Skewness skew measure of asymmetry of the probability distribution of the window of sam-
ples,

Kurtosis kurt measure of peakedness of the probability distribution of the window of sam-
ples,

Quartiles:
1st Quartile: Q1
2nd Quartile Q2 measures the overall distribution of the signal samples over the window,
3rd Quartile Q3

S
in

g
le

a
x
is

fe
a
tu

re
s

Inter Quar-
tile Range

IQR the difference between the upper (third) quartile and the lower (first) quartile
of the window of samples; also measures the dispersion of the signal samples
over the window,

Mean Cross-
ing Rate

MCR measures the number of times the signal crosses the mean value; captures
how often the signal varies during the time window,

Absolute
Area

absArea the area under the absolute values of the signal samples. It is the sum of
absolute values of the signal samples over the window,

Dominant
Frequency
Ratio

DFreqR it is calculated as the ratio of highest magnitude FFT coefficient to sum of
magnitude of all FFT coefficients.

F
re

q
u
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cy

-d
o
m

a
in

fe
a
tu

re
s

Energy FDEnergy it is a measure of total energy in all frequencies. It is calculated as the sum
of the squared discrete FFT component magnitudes.

Energy =

L/2∑
i=1

F 2
i (4.3)

where Fi is the magnitude of FFT coefficients.
Entropy FDEntropy captures the inpurity in the measured data. It is calculated as the information

entropy of the normalized values of FFT coefficient magnitude.

Entropy = −
L∑

i=1

Fnilog2(Fni) (4.4)

where Fni is the normalized value of FFT coefficient magnitude.
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Total abso-
lute area

TAA sum of the absolute area of all three axis.

totalAA =

L∑
i=1

|Accx|+ |Accy |+ |Accz | (4.5)

where |Accx|, |Accx|, and |Accx| are the absolute values of the three axes of
the accelerometer x, y, and z respectively. L is the length of the window.

total magni-
tude area

MMA the signal magnitude of all accelerometer signal of three axis averaged over
the time window.

totalMA =

∑L
i=1

√
Acc2x +Acc2y +Acc2z

L
(4.6)

Correlation
Corr(X,Y) CorrXY it measures the dependence relationship between two axes of the
Corr(X,Z) CorrXZ accelerometer signal
Corr(Y,Z) CorrYZ
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Table 4.4: The vibration feature set (VFS) which is added to quantify the vibration level in both
accelerometer and KEH data.

Feature Abbreviation Description
root mean
square

RMS it is the square root of the arithmetic mean of the squares of the
values. The RMS is a measurement of the effective energy content in
a the signal.

peak-to-peak PktPk it is the difference between the maximum peak value and the minimum
peak value. It indicates the maximum excursion of the signal.

peak-to-peak
difference

PktPkDiff The difference between the maximum difference between peak values
and the minimum difference between peak values of the sinusoidal
wave. It indicates the maximum excursion of the time periods.

mean Peak meanPk The mean value of the differences between all the peak values. It
quantifies the average variation level of the values of the signal.

mean Peak Dis-
tance

meanDisPk The mean value of the differences between the all the distances (time
periods) between peak values. It quantifies the average variation level
of the time periods of the signal.

maximum Peak maxPk The maximum value of the differences between all the peak values.
It quantifies the maximum variation level of the time periods of the
signal.

maximum Peak
Distance

maxDisPk The maximum value of the differences between all the distances (time
periods) between peak values. It quantifies the maximum variation
level of the time periods of the signal.

separately from each axis of the accelerometer signal and from the single axis KEH

signal. Adding the VFS to the OFS gives a total of 83 features extracted from the

accelerometer signal and a total of 26 features extracted from the KEH signal.

4.4.5 Feature Selection

The purpose of this subsection is to first assess the discriminating capacity of the

KEH signal for HAR, and second to select the most useful features which can be

used for HAR, discarding the redundant and non-informative ones. We employ two

classical techniques for feature selection [74], Information Gain (IG) and Correlation

Feature Selection (CFS).

• Information Gain: IG is usually used to determine how well a given feature

can accurately classify the considered activities. It is usually used in decision

tree analysis to select the candidate feature for branching at each step, while

growing the tree [75]. The IG of feature fi measures the expected reduction

in entropy caused by partitioning the instances according to this feature. The

calculation of information gain is based on calculating the entropy of a set of

features S, from:

H(S) = −
n∑
i=1

pi log2 pi (4.7)
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Figure 4.10: Information Gain Accelerometer Hand.

where n is the number of activity classes (in our case, 5 activity classes) and

pi is the proportion of all traces belonging to the ith class. The information

gain is then calculated using:

Gain(S, fi) = H(S)−
∑

v∈V alues(fi)

|Sv|
|S| H(Sv) (4.8)

where Sv is the subset of S for which feature fi has a value v (i.e., Sv =

s ∈ S|V alues(fi) = v) and |S| denotes the cardinality of the set S.

Figures 4.10 and 4.11 show the IG of the combined feature set (OFS+VFS) for

the accelerometer data for hand and waist placements, respectively. The IG of

the single-axis features is shown separately for X-, Y-, and Z-axes, while the

multiaxial features have the same IG value for each axis. Figure 4.12 shows

the IG of the combined feature set (OFS+VFS) for the KEH data for both

hand and waist cases.

It is interesting that the ranking of features based on IG is different for KEH
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Figure 4.11: Information Gain Accelerometer Waist.
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Figure 4.12: Information Gain HARKE, Hand and Waist.
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and the accelerometer; it is even different for different placements. In the waist

placement case, for both accelerometer and KEH results, no features with zero

information gain were identified. In the hand placement case, the accelerome-

ter results identified the CorrYZ feature with zero information gain, however,

the KEH results found the Skewness and Kurtosis features to have zero infor-

mation gain. A reduced feature set is usually obtained by discarding features

with zero information gain. It is clear that the IG analysis had no effect in

reducing the number of features but it confirms that, like the accelerometer

signal, the KEH signal contains rich information that can be used for HAR.

• Correlation Feature Selection: The set of n features is partitioned to subsets

of size k, 1 ≤ k ≤ n, CFS then evaluates the worth (or merit) of each subset

of features, MS, using:

MS =
kr̄cf√

k + k(k − 1) ¯rff
(4.9)

where, r̄cf is the mean feature-class correlation (f ∈ S), and ¯rff is the av-

erage feature-feature inter-correlation. The merit score takes into account

the usefulness of individual features for predicting the class label. Broadly

speaking, feature subsets with high average correlation to the class and low

inter-correlation receive higher merit scores. CFS, then acts as a simple filter

algorithm that ranks feature subsets having a reasonably high merit, accord-

ing to a search strategy based on a correlation evaluation function, and the

optimal subset is the one that satisfies the CFS criterion in:

CFS = max
Sk

[
rcf1 + rcf2 + · · ·+ rcfk√

k + 2(rf1f2 + · · ·+ rfifj + · · ·+ rfkf1)

]
(4.10)

where Pearson’s correlation coefficient is used to calculate the correlation be-

tween pairs of features (rfifj) and Spearman’s correlation coefficient for each

feature with the target (rcfi). More details about CFS are given in [76].

The reduced subsets of features, based on the CFS algorithm, for both ac-

celerometer and KEH signals in both placement cases are presented in Table

4.5. For the accelerometer data, the number of features is reduced from 83
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Table 4.5: The resulted feature sets of the Correlation Feature Selection (CFS) algorithm.

Accelerometer-based HAR HARKE
Hand Placement Waist Placement Hand Placement Waist Placement

Hand Waist Hand Waist
varZ CVY absArea absMean
stdZ VarY var absArea
IQRZ FDEnergyY IQR RMS

PktPkDiffY IQRY Q3 Q1
CVX Q3Y min range

meanDismPkX Q1Y Q1 min
PktPkZ MaxY range Q3

MaxPeaksY PktPkDiffY PktPk PktPk
PktPkDiffX meanDisPksY max maxPk

RMSX stdX PktPkDiff
MaxPeaksX FDEnergyX

IQRY RMSX
MinZ DFRatioX

meanDisPkY skewY
meanDisPkZ skewZ

Q1Z CorrXZ
CVY

totalMA
absArea
CorrXY
MinY
SkewX

to 22 in the hand placement case and 16 in the waist placement case. For

the KEH data, the number of features is reduced from 26 to 10 in the hand

placement case and 9 in the waist placement case. These results show that the

CFS algorithm is more effective than the IG algorithm in reducing the number

of features. But whether this reduction affects the recognition accuracy or not

will be investigated in the coming subsections.

4.4.6 Classification

Based on the success of other researchers in classifying a range of human activi-

ties using accelerometer data, we chose the following five classifiers to evaluate the

recognition accuracy of HARKE and compare it with accelerometer-based HAR.

• Decision Tree (DT)

DT is a powerful and popular tree-based tool for classification and prediction

[77]. The classification process starts at the root of the tree and grows se-

quentially until reaching a leaf node. The central focus of the tree growing

algorithm is testing and selecting the attribute with the most inhomogeneous
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class distribution, based on its information gain, explained in the feature selec-

tion subsection in this section. A well-known algorithm, which has been widely

used for building decision trees over the years, is C4.5 [78]. In this algorithm,

pruning is used to reduce the tree to its optimal size, without reducing predic-

tive accuracy. A tree that is too large risks overfitting the training data and

poorly generalizing to new samples. A small tree might not capture important

structural information about the sample space [79].

• K-Nearest Neighbour (KNN)

KNN is one of the simplest machine learning algorithms. It is a type of

instance-based learning, or lazy learning where the function is only approx-

imated locally and all computation is deferred until classification [80]. The

KNN algorithm classifies new examples based on identifying the k-nearest ex-

ample(s) in the training set of features according to some distance metric (in

WEKA, the Euclidean distance is used) and then taking the majority vote.

The parameter k is a positive integer, typically small. If k=1, then the object

is simply assigned the class of its nearest neighbour. The best choice of k

depends upon the data.

• Multilayer Perceptron (MLP)

MLP represents the most prominent and well researched class of Artificial

Neural Network techniques in classification, implementing a feedforward and

supervised paradigm [81]. Although many types of neural network techniques

can be used for classification purposes, MLP remains one of the fastest tools

for neural network studies [82] [83]. MLP consists of several layers of nodes,

interconnected through weighted acyclic arcs from each preceding layer to the

following, without lateral or feedback connections. Each node calculates a

transformed weighted linear combination of its inputs.

• Support Vector Machine (SVM)

SVM is a classifier method that relies on the concept of decision planes that
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define decision boundaries. It works by constructing hyperplanes in a mul-

tidimensional space that separate instances having different class labels. A

subset of training points called support vectors is used in the decision func-

tion. Different decision (kernel) functions can be specified. SVM is known to

be effective in high dimensional spaces. However, if the number of features is

much greater than the number of instances, the method is likely to give poor

performance.

• Näıve Bayes (NB)

NB classifier employs a simplified version of Bayes formula [84], with strong

(näıve) independence assumptions, to decide to which class a new instance

belongs. The posterior probability of each class is calculated, given the feature

values present in the instance; the instance is assigned to the class with the

highest probability. Equation (4.11) shows the NB classifier, which makes the

assumption that feature values are statistically independent within each class.

cNI = arg maxci∈C P (ci)
∏
j

P (fj|ci) (4.11)

Where cNI is the class of the new instance, C = (c1, c2, . . . , cn) is the classes,

and fj is the feature value.

The following section presents the results of applying the previously discussed

classifiers to evaluate the performance of HARKE and compare it to accelerometer-

based HAR.

4.5 Results

In this section, we evaluate the performance of HARKE using the previously men-

tioned classifiers against conventional accelerometer-based HAR for the two place-

ment cases, hand and waist. First, we show the performance of both HARKE and

accelerometer-based HAR when the OFS, shown in Table 4.3, is used. Next, we
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explore if adding the VFS, shown in Table 4.4, to the OFS yields an improvement in

the performance. Then, we investigate whether the use of the CFS reduced feature

set, shown in Table 4.5, affects the recognition performance of both HARKE and

accelerometer-based HAR. To train and test the classifiers with different datasets,

we apply a k-fold cross validation scheme [85]. The entire dataset is divided into

k sets, where k − 1 of them are used for training and one set for testing. This is

repeated k times and then the average of the results is reported. We used k = 10.

Table 4.6 compares the accuracies of accelerometer-based HAR and HARKE

when the OFS is used for both hand and waist placement cases. Table 4.7 compares

the accuracies of accelerometer-based HAR and HARKE when the combined feature

set of OFS and VFS is used for both hand and waist placement cases. Table 4.8

compares the accuracies (%) of accelerometer-based HAR and HARKE when the

reduced feature set of the CFS algorithm is used for both hand and waist placement

cases. For each case, the highest accuracy obtained is shown in bold.

We make the following observations.

• Although MLP and DT classifiers give slightly better accuracies in a few

cases, in most cases the KNN classifier achieves the highest accuracies for

both accelerometer-based HAR and HARKE.

• Table 4.6 shows that, using the KNN classifier and the OFS, the recognition

accuracies of accelerometer-based HAR are 95.44 % and 99.64% for hand and

waist placement cases, respectively. The corresponding recognition accuracies

of HARKE are 70.21 % and 83.51 %.

• Table 4.7 shows that adding the VFS to the OFS has negligible impact on

the performance of accelerometer-based HAR. However, it improves HARKE

accuracies noticeably from 70.21 to 80.11% for the hand placement case and

83.51 % to 87.36 % in the waist placement case, when the KNN classifier is

used.

• Table 4.8 shows that using the reduced feature set of the CFS algorithm

does not reduce the recognition accuracies of accelerometer-based HAR and
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Table 4.6: Comparing the accuracies (%) of accelerometer-based HAR and HARKE when the
original feature set (OFS) is used for both hand and waist placement cases.

Accelerometer-based HAR HARKE
Classifier Hand placement Waist

placement
Hand placement Waist

placement
KNN 95.44 99.64 70.21 83.51
MLP 95.78 98.95 74.39 82.78
DT 87.02 90.59 76.34 79.27
SVM 90.43 96.86 72.89 75.74
NB 84.69 88.44 70.58 69.15

Table 4.7: Comparing the accuracies (%) of accelerometer-based HAR and HARKE when the
combined feature set of OFS and VFS is used for both hand and waist placement cases.

Accelerometer-based HAR HARKE
Classifier Hand placement Waist

placement
Hand placement Waist

placement
KNN 95.81 99.64 80.11 87.36
MLP 95.78 98.60 73.26 87.71
DT 88.19 91.27 79.76 80.34
SVM 88.89 98.24 72.89 79.66
NB 85.44 88.09 70.58 70.90

HARKE in either placement cases. This is because the CFS algorithm tries to

reduce the number of features by removing the redundant features which have

high correlation with other features. This result shows that the CFS algorithm

is effective in reducing the number of features significantly with a noticeable

effect on recognition accuracy.

• In all cases, we found that waist placement gives higher classification accuracies

than hand placement for both accelerometer-based HAR and KARKE. This is

quite meaningful because in waist placement case, the device is more attached

to the body and hence it captures the activity more accurately.

• Our results show that, in all cases, accelerometer-based HAR achieves better

performance than HARKE. There is about 18% gap in classification perfor-

mance between accelerometer-based and HARKE for hand placement when

the KNN classifier is used. The gap is 15% for waist placement.

To better assess the performance of HARKE against accelerometer-based HAR
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Table 4.8: Comparing the accuracies (%) of accelerometer-based HAR and HARKE when the
reduced feature set of the CFS algorithm is used for both hand and waist placement cases.

Accelerometer-based HAR HARKE
Classifier Hand placement Waist

placement
Hand placement Waist

placement
KNN 95.01 99.15 80.19 86.08
MLP 93.00 98.09 71.98 80.27
DT 86.33 93.26 74.93 77.89
SVM 88.38 87.51 71.72 72.41
NB 88.54 91.51 70.80 73.63

and identify the source of the performance gap between them, we use the confusion

matrix tool. The confusion matrices of accelerometer-based HAR for hand and

waist placements are presented in Tables 4.9 and 4.10, respectively. The confusion

matrices of HARKE for hand and waist placements are presented in Tables 4.11 and

4.12, respectively. The true positive (TP) rate is shown in the last column in all

tables. We make the following observations from the confusion matrices.

• Standing (S) and running (R) activites are identified with very high (100%)

accuracy in both placement cases for both the accelerometer-based HAR and

HARKE.

• There is confusion of the three activities, W, SU and SD, due to their high

similarity which imposes challenges in distinguishing one from another.

• The performance of HARKE is reduced due to the confusion of those three

activities and hence the TP rate is reduced.

• Accelerometer-based HAR performs better with the three activities, W, SU

and SD, and hence the TP rate is better.

• The confusion of the three activities, W, SU and SD, is reduced for both

accelerometer-based HAR and HARKE when waist placement is considered.

As mentioned previously, this is because the waist placement means the device

is attached to the lower part of the body and hence it recognises the activities

more accurately.
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Table 4.9: Confusion Matrix of accelerometer-based HAR for hand placement using the CFS
reduced feature set when the KNN classifier is used.

Classified as
W R S SU SD TP Rate

W 64 0 0 0 0 1
R 0 54 0 0 0 1

Actual Activity S 0 0 73 0 0 1
SU 1 0 0 34 4 0.75
SD 1 0 0 7 24 0.95

Table 4.10: The confusion matrix of accelerometer-based HAR for waist placement using the
CFS reduced feature set when the KNN classifier is used.

Classified as
W R S SU SD TP Rate

W 66 0 0 0 0 1
R 0 66 0 0 0 1

Actual Activity S 0 0 72 0 0 1
SU 0 0 0 42 0 1
SD 2 0 0 0 37 0.95

In the next section, we discuss the main differences between accelerometers and

KEH transducers which may provide a better understanding of the performance of

both accelerometer-based HAR and HARKE.

4.6 Discussion

Both accelerometers and KEH transducers rely on the same principle, however,

they serve different purposes. Accelerometers are used to sense vibration, but KEH

Table 4.11: The confusion matrix of HARKE for hand placement using the CFS reduced feature
set when the KNN classifier is used.

Classified as TP Rate
W R S SU SD

W 48 0 0 12 4 0.75
R 0 54 0 0 0 1

Actual Activity S 0 0 73 0 0 1
SU 17 0 1 18 3 0.46
SD 10 0 0 6 16 0.5
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Table 4.12: The confusion matrix of HARKE for waist placement using the CFS reduced feature
set when the KNN classifier is used.

Classified as TP Rate
W R S SU SD

W 61 0 0 2 3 0.92
R 0 66 0 0 0 1

Actual Activity S 0 0 72 0 0 1
SU 5 0 1 29 7 0.69
SD 9 3 0 9 18 0.46

is used to generate electrical energy from the wasted vibration energy. Generally

speaking, accelerometers require some means for inferring acceleration from sensed

vibration.

4.6.1 Capacitive Accelerometers Vs. KEH Transducers

In this work, we used an analog accelerometer made by Freescale. This accelerometer

relies on a capacitive sensing mechanism using silicon micromachined beams. In a

capacitive accelerometer, a capacitor is formed by a stationary plate (the housing

which moves with the base acceleration) and a moving plate attached to the seismic

mass. The distance between these plates determines the capacitance, which can

be monitored to infer acceleration (change in capacitance related to acceleration).

Capacitive accelerometers are capable of measuring constant acceleration such as

gravity as well as slow transient and periodic acceleration.

On the other hand, the KEH transducer used in this work, which is made by Mide

Technology, uses a piezoelectric transducer to convert kinetic energy into electricity.

It employs a cantilever that attaches to a piezoelectric crystal. When vibrations set

the cantilever in motion it generates alternating electrical current. One feature of

the piezoelectric material is that it cannot measure constant force such as gravity

which explain the performance gap between accelerometer-based HAR and HARKE.
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4.6.2 Accelerometer (3-axis) versus KEH Volture (1-axis)

A triaxial accelerometer provides X, Y, and Z components of acceleration, whereas

the KEH transducer gives a 1-axial AC voltage output. A triaxial accelerometer is

fundamentally advantaged in separating similar human activities such as going up

and down stairs due to the multi-dimensional measurement of the motion, hence

achieving high accuracy for our considered activity set. By measuring acceleration

in three dimensions, new discriminating opportunities arise, which are not possible

with a single-dimensional AC-voltage measurement.

The advantage of a triaxial accelerometer over a single-dimensional harvested

power signal has been illustrated in the previous chapter, showing clear discrimi-

nating patterns when the three axes of the accelerometer are considered. To show

the effect of using only single-axis data on the performance of accelerometer-based

HAR, we run the K-nearest neighbour classifier on the features extracted separately

from each axis and show the results in Table 4.13. We found that the accuracy of

accelerometer-based HAR in the hand placement case is reduced from 95% when

triaxial accelerometer data is used to 83% on average when single-axis accelerometer

data is used.

Table 4.13: Accelerometer-based HAR accuracies (%) for single-axis accelerometer data in the
hand placement case when the K-nearest neighbour classifier and the OFS are used.

Data Accuracy (%)
Accelerometer X-axis 86.64
Accelerometer Y-axis 79.39
Accelerometer Z-axis 83.97

Average over three axis 83.33

4.7 Conclusion

Our analysis shows that accelerometer power consumption is a major obstacle for

realising HAR in self-powered energy-harvesting wearables. In this chapter, we ex-

perimentally validated HARKE, which infers human activity directly from energy

harvesting patterns without using an accelerometer. We show that HARKE con-
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sumes only a small fraction of energy compared to the conventional accelerometer-

based HAR. Using off-the-shelf products, we built a datalogger prototype which

enabled us to record the generated signals of a commercially available KEH trans-

ducer. We also added an accelerometer to the prototype to compare the performance

of HARKE against accelerometer-based HAR. We collected extensive data from ten

different subjects, five different activities, and two different placements of the device

on the body.

Our experimental results demonstrated that HARKE is as accurate as accelerom-

eter based HAR for dissimilar activities such as standing, walking, running. How-

ever, the performance of HARKE is reduced for similar activities such as ascending

and descending stairs. This confirms the validation of HARKE using mathematical

modelling presented in the previous chapter. The accelerometer is fundamentally

advantaged in distinguishing similar human activities due to its multi-dimensional

measurements (triaxial). An interesting future direction would be to investigate the

possibility of extracting multi-dimensional (multi-axial) information from the kinetic

power signal. One possibility is to consider energy harvesting methods capable of

harvesting kinetic power separately from each components of human motion. This

would yield three separate power signals, one for each axis, enabling more advanced

training of the classifier, similar to a HAR based on a triaxial accelerometer.



Chapter 5

Energy Neutral Self-powered

Wireless HARKE

5.1 Introduction

Human activity recognition (HAR) using wearable sensors has become a topic of

intense research due to its immense economic benefits in health and medical domains

[86, 87, 88]. Deployments of such systems have already begun, such as Fitbit, Apple

Watch, and Google Glass. It is predicted that the wearable market for health and

fitness monitoring will grow and reach 70 billion dollars by 2025 [40]. Almost all

existing wearable products are powered by batteries. While battery technology has

improved over the years, users are still required to recharge them frequently, which

is inconvenient and impractical for many elderly users, who may have to critically

depend on such systems. Due to this, researchers are now investigating kinetic

energy harvesting solutions [17, 18, 19], which will allow continuous and permanent

operation of wearable sensors with no need for battery recharge or replacement.

The most fundamental issue with kinetic energy harvesting is that the amount of

power that can be practically harvested from human motion is insufficient to power

all necessary functions of a wearable device. A typical wearable device will need

power for accelerometer measurements at a high sampling rate, which would con-

sume most of the limited power that can be possibly harvested in a small form factor

81
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[89], leaving insufficient power for processing and communication. Self-powering an

activity-monitoring wearable sensor is therefore a challenging problem that requires

innovative sensing and communication solutions.

In the previous two chapters, we showed that HAR is possible using only the

piezoelectric energy harvesting (PEH) generated patterns. Although this is an im-

portant step forward for realising self-powered activity monitoring, it still cannot

guarantee system energy neutrality. Activity classification using PEH signals would

still consume most of the power in the device, and if classification is done in a server

then energy consumption due to communication of massive amounts of PEH voltage

data would challenge energy neutrality. How to guarantee energy neutral operation

for continuous activity monitoring using energy-harvesting wearable sensors there-

fore remains an unsolved problem.

In this chapter, we build on our previous work, but propose a new framework

based on Bayesian Decision Theory [90] that guarantees energy neutrality for activity

recognition with wearable sensors. The proposed Bayesian framework utilizes a

capacitor to store incoming energy harvested from a PEH for a fixed-length time

window and then uses all the stored energy to transmit an unmodulated signal,

called an activity pulse. Since different activities generate power at different rates,

the transmission and receiving signal strengths also differ, so those signal strengths

can be used to classify the activities. Energy neutrality is guaranteed because the

transmission power of the activity pulse uses only the energy harnessed in the last

time window; no additional energy is required to power any sensing or classification

components in the wearable device.

The contributions of this chapter can be summarised as follows:

• We propose an energy-neutral HAR framework which uses the accumulated

energy within a fixed interval to transmit an activity pulse. The receiver

uses Bayesian decision theory to classify activities based on the detected sig-

nal strength of the received pulse. Neither accelerometer nor classifier is re-

quired on the wearable devices, which therefore guarantees the system energy-

neutrality.
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• We show that the accumulated energy within a fixed time window is a random

variable that follows a Gaussian distribution where different activities have

different values of the statistical parameters.

• We validate our proposed energy-neutral HAR framework theoretically and

experimentally.

• Using long-length traces (up to 700 seconds) collected from a healthy subject

by a PEH wearable device coupled with a Bluetooth prototype, we were able

to achieve an overall accuracy of 91% when a distance of 30 cm between the

transmitter and the receiver is considered. We also point out that the overall

accuracy falls to 85% and 65% when the distance is increased to 60 cm and

100 cm, respectively.

The rest of the chapter is structured as follows. Related work is reviewed in

Section 6.2. Section 5.3 explains our proposed energy-neutral HAR framework. Sec-

tion 5.4 presents the data collection campaign. Section 5.5 introduces the Bayesian

decision theory for human activity recognition, and defines the mathematical model.

We validate our proposed framework theoretically in Section 5.6. The experimental

validation is presented in Section 5.7. We conclude the chapter in section 5.8.

5.2 Related Work

Almost all existing wearable devices are battery-operated, therefore, reducing power

consumption is considered the most challenging task for continuous activity recog-

nition using wearable sensors. Existing studies in power-efficient human activity

recognition achieve energy savings by optimizing the trade-off between classification

accuracy and energy efficiency. Krause et al. [91] studied the trade-off between

power consumption and classification accuracy for the eWatch wearable device.

They proved that the deployment lifetime of the device can be extended by selecting

the optimal sampling strategy without losing accuracy. Their results indicate the

existence of a sampling threshold, below which accuracy falls dramatically. They

also suggest using a sampling rate equal to the sampling threshold to save energy.
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Similar results are given in [89], in which the authors use commercial smartphone

to find the accuracy for different sampling frequencies. In [92], the authors pointed

out that the trade-off is activity-specific, and introduced the A3R algorithm, which

adapts the sampling frequency and classification features in real time, based on the

activity type.

Instead of managing the sampling rate, many projects achieve energy efficiency

by reducing feature set complexity, because an imprudent selection of features can

also result in high energy consumption. In the work of Palmerini et al. [93], a feature

selection algorithm was implemented for Parkinson’s disease (PD) detection. The

algorithm maximises the robustness of feature selection in the identification of a

subset of measures that classifies the behavior of PD and control subjects [93]. More

recently, in [94] the authors introduced the notion of power-aware feature selection,

and proposed a graph-based model to characterise the computing complexity of

individual features.

Although it is possible to achieve a longer lifetime of continuous activity recogni-

tion by applying the previously mentioned methods, battery recharge or replacement

is still needed. Thus, researchers are now investigating the kinetic energy harvesting

solutions to self-power wearable devices [17, 18, 19]. Unfortunately, the power that

can be practically harvested from human activities is insufficient to power all neces-

sary functions of wearable devices [95]. In a more recent work [89, 95], we proposed

the idea of using the power generation features of the PEH to classify human activity.

Although it is the first attempt to achieve self-powered activity monitoring, it still

cannot guarantee system energy neutrality because classification onboard the device

still consumes much power. In contrast, our approach ensures the system energy-

neutrality by removing the classification component from the wearable device, and

monitoring the activity using only the power of the energy harvester.

5.3 Proposed Energy-neutral HARKE Framework

Fig. 5.1 shows our proposed architecture, which achieves the system energy neutral-

ity. The idea behind our proposed architecture is that different activities produce
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Figure 5.1: Our proposed energy-neutral HARKE framework.

different amounts of harvested power. We assume that the harvested power is usu-

ally accumulated in a capacitor for a certain time. By using all the stored harvested

energy to power the radio component, to transmit an unmodulated signal called

an activity pulse, the transmission power of this activity pulse will be affected by

the power harvested from the activity. Thus, the transmitted and received signal

strengths of the activity pulse differ for different activities.

As a consequence, the signal strength can be used as a feature to recognize the

activity. Assuming that the distributions of the signal strength of the activities

are known, then the Bayesian decision theory can be used for HAR, based on the

observed signal strength of the activity pulse. Bayesian decision theory is a widely

used statistical approach which is usually used for decision making and pattern

recognition [90]. Our proposed architecture guarantees energy neutrality because

the transmission power of the activity pulse uses only the amount of accumulated

energy in the last time window, and no additional energy is required to power any

sensing or classification components in the wearable device.

5.4 Energy Harvesting Data Collection

We used the datalogger presented in Chapter 4 to collect PEH power signals. The

data logger includes a piezoelectric energy harvesting product from MIDÈ Tech-

nology called Volture, which provides AC voltage as its output. An Arduino Uno

was used as a micro-controller device for sampling the data from the Volture. A
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sampling rate of 1 KHz was used for data collection. The sampled data was saved

on an 8GB microSD card.

We collected our data from a healthy subject. The subject was asked to hold

the datalogger in the hand and perform five different activities with the natural

speed: standing (S), walking (W), running (R), stairs-up (SU), and stairs-down

(SD). The subject was asked to stop and wait a few seconds after an activity and

before starting the next activity. To avoid mislabeling during the data collection,

we used a switch to control the start and stop of data collection at the beginning

and end of each activity. Since we need to infer the probability distributions that

the different activities follow, long activity traces were required to raise the accuracy

of the fitted distributions for the Bayesian analysis. Therefor, we collected over 700

seconds of data for each of the five activities at a sampling frequency of 1000 Hz.

The output of the datalogger is AC voltage signal. To calculate the corresponding

PEH power signals, we used Eq. 5.1.

Power =
V 2

R
, (5.1)

where V is the output PEH voltage signal, R is the load resistance which is 750KΩ.

The power signals are then presented in dBm.

Figure 5.2 shows the output PEH power signals for the five activities. The

amounts of the harvested power on average are -33, -45, -43, -39, and -55 dBm for

running, walking, stairs-up, stairs-down, and standing, respectively. Obviously, the

amount of PEH power from human activities is very low, thus the energy neutrality

of the system is not guaranteed. The next section presents a version of Bayesian

decision theory accommodated to HAR to achieve energy neutrality.

5.5 Proposed Bayesian Framework for HAR

To apply the Bayesian decision theory for HAR, we need to analyse the distributions

of the harvested power signals of the activities. Therefore, we first discuss the

distributional analysis of our PEH data for the five activities. Next, we describe
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Figure 5.2: The output harvested power signals of our PEH device for the five considered activ-
ities. Note that different scales are used in the y axis.
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Table 5.1: The estimated means (µ) and standard deviations (σ) of the Gaussian distributions
of PowerH(i) using different time windows w.

window size (second)
w = 4 w = 8 w = 10

Activity µ σ µ σ µ σ
S -56.65 2.60 -56.46 2.42 -56.41 2.38
W -45.71 1.82 -45.58 1.56 -45.53 1.47
R -33.35 1.63 -33.29 1.42 -33.30 1.38

SU -43.84 2.03 -43.51 1.14 -43.51 1.10
SD -39.37 1.51 -39.23 1.08 -39.22 1.02

HAR using Bayesian decision theory, followed by the mathematical modelling of our

PEH-based HAR.

5.5.1 Distribution Analysis

For an activity i ∈ I, (i = 1, . . . , 5), we define the amount of harvested power

(in dBm) from activity i, PowerH(i), as a random variable. We assume that the

PowerH(i) follows a Gaussian distribution with mean µi and standard deviation σi:

PowerH(i) ∼ N (µi, σ
2
i ) (5.2)

This assumption is experimentally validated in this section. Using the power

calculations of the collected PEH dataset, we obtained estimates of the statistical

parameters, µi and σi, using different window sizes w. When the sampling frequency

used in collecting the data is 1 KHz with a window size of w seconds, 1000 × w

observations are used to estimate the average harvested power. The estimates of

the statistical parameters for PowerH(i) with different w are shown in Table 5.1.

The results indicate that, for all five activities, the estimates of the means µi remain

stable with the increase of w, while the estimates of σi decrease with the increase of

w.

Figure 5.3 shows the cumulative distribution functions (CDF) of the experimen-

tal data obtained from a ten-second window for all activities. The results indicate

that the harvested power, PowerH(i), follows Gaussian distributions with different
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Figure 5.3: (a)-(e) The CDFs of the empirical distributions and the Gaussian distributions for
the five activities using a window size of 10 seconds. (f) The coefficient of variation (CV) for
different window sizes.
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parameters. Fig. 5.3(f) plots the coefficient of variation (CV) for all five activities.

The CV tends to be stable as the window size increases. This suggests that a win-

dow of ten seconds will keep the dispersions in the harvested power stable at an

acceptable level.

5.5.2 Bayesian Decision Theory

For each activity i ∈ I, (i = 1, . . . , 5), we assume the signal strength, P , is a random

variable. Our objective is to classify a given observation p of P to belong to the

activity i. According to Bayesian decision theory, p will be assigned to the activity

i if P(p | i) is the largest as shown in Eq. 5.3.

P(p, i) ≥ P(p, j), ∀p ∈ Ri, ∀j ∈ I, (5.3)

where P(p | i) denotes the conditional pdf of p given the activity i and Ri is the

decision region. Thus, the overall recognition accuracy of each activity using the

Bayesian decision rule is obtained using Eq. 5.4 and Eq. 5.5, respectively.

A(overall) =
i∈I∑
i

∫
Ri

P(p, i)dp, p ∈ Ri (5.4)

A(i) =

∫
Ri

P(p, i)dp, ∀i ∈ I (5.5)

where,

P(p, i) = P(p | i)P(i), ∀i ∈ I (5.6)

Assuming uniform prior probabilities for all activities (i.e., P(i) = 0.2, ∀i ∈
I), Eq 5.6 can be rewritten as:

P(p, i) = 0.2× P(p | i), ∀i ∈ I (5.7)
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5.5.3 Mathematical Modeling

We define the transmission signal strength of the activity pulse as PowerTX (i):

PowerTX (i) = PowerH(i) + 10 log10K, (5.8)

where, K is defined as the transmission power amplification factor, and is affected

by the transmission duration of the activity pulse, tTX , and the accumulation time

of the harvested energy in the capacitor, tACC . Thus, K is obtained by:

K = tTX × tACC =
r

8p
× tACC , (5.9)

where, r is the data rate used to transmit the activity pulse (in bps), and p is the

packet size (in Bytes, where one Byte equals 8 bits). we note when K equals 1, the

transmission time of the activity pulse is one second and the transmission power is

the accumulated harvested power over a one-second window. Based on the additive

property of the Gaussian distribution, PowerTX (i) is given by:

PowerTX (i) ∼ N (10 log10K + µi, σ
2
i ), (5.10)

Further, given PowerTX (i), the receiving signal strength at the remote receiver

with distance d can be defined as follows:

PowerRX
(i, d) = PowerTX (i)− PL(d) +Noise, (5.11)

where, d is the distance between the transmitter and receiver. PL(d) indicates the

reduction in the signal strength due to path loss and shadowing. This loss is, in

general, a logarithmic function of the distance d, and is given by:

PL(d) = PL(d0) + 10n log10(
d

d0

) +Xσ, (5.12)

where n is the path loss exponent which depends on the propagation medium and

decides the speed of the signal power reduction with distance; PL(d0) is the reference
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free space path loss at a short distance d0 [96]; Xσ is a random variable (in dB) and

follows a Gaussian distribution with zero mean and a standard deviation of σX . Xσ

is introduced to represent the uncertainty of the power loss during transmission in

different environments.

The values of σX range from 2 to 12 dB depending on the specific environment

[97], and vary cubically with the distance d [98]. The variable Noise used in Eq.

5.11 is the Gaussian noise with mean µN , and standard deviation σN . We further

assume that the random variables Xσ, Noise, and PowerTX are independent. Thus,

with Eqs. 5.8 to 5.12, one observes that the receiving signal strength, PowerRX
(i, d),

follows a Gaussian distribution:

PowerRX
(i, d) ∼ N (µRX

, σ2
RX

), (5.13)

where,

µRX
= 10 log10K + µi + µN − PL(d), (5.14)

σ2
RX

= σ2
i + σ2

X + σ2
N , (5.15)

By using the distribution analysis of PowerH(i) and applying the previously

explained mathematical model, we obtain the distributions of the transmission power

strength, PowerTX (i), and the receiving signal strength, PowerRX
(i), for all five

activities.

5.6 Theoretical Validation

This section provides the theoretical validation of our proposed HAR framework. We

apply Bayesian decision theory for HAR based on the observed signal strength of the

activity pulse, which can be either the transmitted signal strength or the received

signal strength. This is followed by the use of the transmission power amplification
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Figure 5.4: The Gaussian distributions of PowerTX
for the five activities.

Table 5.2: The estimated statistical parameters and the HAR classification accuracies using
Bayesian decision theory based on transmitted signal strength.

Activity
Ii

Decision Region
Ri

µTX σTX Accuracy

S (−∞,−49.94) -56.39 2.37 99.72%
W (−49.99,−44.60) -45.53 1.47 73.55%
SU (−44.60,−41.31) -43.51 1.10 81.76%
SD (−41.31,−36.60) -39.22 1.02 97.36%
R (−36.60,+∞) -33.30 1.38 99.21%

factor (K) to improve the accuracy of HAR.

5.6.1 HAR based on the transmitted signal strength

We assume that the PEH-enabled wearable device is embedded in a smartphone,

so the smartphone can easily capture the transmitted signal strength of the activ-

ity pulse. We first consider the case in which the transmission signal strength is

used for activity recognition. According to Eq. 5.10, we estimate the statistical

parameters of PowerTX (i) from our PEH dataset using a ten-second time window.

The transmission power amplification factor K is configured to be 1. The values of

Table 5.3: The estimates of the parameters in the theoretical model.

Parameter Value
n 4
d0 0.02 meter
µN -90 dBm
σX 1 dB
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Figure 5.5: The empirical distributions of the received signal strength at three different distances
between transmitter and receiver.
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the statistical parameters, together with the corresponding decision region and the

classification accuracies for all five activities are given in Table 5.2. We note that

the overall accuracy of HAR is 90.32%. The empirical distributions of PowerTX

for the five activities are shown in Figure 5.6. From the figure, it can be seen

that a high overlap between walking, stairs-up, and stairs-down distributions exists,

while the distributions for standing and running are well separated. This overlap

(or separation) has resulted in high accuracies for standing and running activities

(99.72% and 99.21%, respectively), and lower accuracies for stairs-up, walking, and

stairs-down (81.76%, 73.55%, and 97.36% , respectively).

5.6.2 HAR based on the received signal strength

The activity pulse is transmitted over uncertain wireless medium and its signal

strength is detected by the remote smartphone. Apart from the transmitted signal

strength, the received signal is usually affected by the harvested power, environmen-

tal noise, and path loss. We obtain the distributions of PowerRX
from our PEH

dataset using Eq. 5.13. The estimates of the parameters in the theoretical model

are given in Table. 5.3. The path loss exponent, n, is set to 4, in order to simulate

the obstructed environment [96]. The reference distance d0 for the free space path

loss model is set to 2 cm. The standard deviation of the random variable in the

log-normal path loss model σX is set to 1 dB. The strength of the noise signal is

configured to -90 dBm.

Our primary interest at this point is to figure out the effect on the HAR accuracy

of any increase in the distance between the transmitter and receiver. With the value

of K fixed at 1, we set the initial distance between the transmitter and the receiver

to 2 cm with successive increments of 10 cm until it reaches 200 cm. This is done to

simulate the wearable device scenario, in which the receiver would be a smartphone

held in the user’s hand, and the transmitter is a PEH-enabled wearable sensor

attached to the human body.

We notice that the path loss of the signal strength increases logarithmically

with the distance between transmitter and receiver. Consequently, the mean of
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Figure 5.6: (a) The accuracies of HAR based on the received signal strength at different distances
and using σX equals to 1; (b) The accuracies of HAR as a function of σX when the distance between
transmitter and receiver d0 is set to 2 cm.

the received signal strength decreases and eventually becomes equal to the signal

strength of the background noise (-90 dBm), leading to a high overlap among the

distributions of activities. Figure 5.5 plots the variation in the distributions of

the received signal strength at three different distances. The distributions are well

separated when the distance is 2 cm. However, when the distance is increased to

200 cm, the distributions become highly overlapped.

Figure 5.6(a) plots the achieved HAR accuracy versus the increase in the dis-

tance. As expected, the HAR accuracy drops dramatically when the distance in-

creases. As shown in Figure 5.6(a), the achieved HAR accuracy using the received

signal strength is much worse than that of using the transmitted signal strength.

This phenomena has occurred due to the high variance of the received signal strength

at the receiver side caused by noise and interference from the surrounding environ-

ment.

From Eq. 5.15, the standard deviation σRX
of the received signal strength is

affected by the standard deviation of the random variable Xσ. In practice, the value

of σRX
is usually estimated using the recorded data, and ranges between 2 to 12 dB.

Fig. 5.6(b) plots the HAR accuracy at 2 cm distance when σX is allowed to vary

from 0 and 12. It shows that HAR accuracy drops with the gradual increase in σX ,

due to the uncertainty introduced by the environment.
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5.6.3 Improving HAR Accuracy by increasing the transmis-

sion power amplification factor (K)

Increasing the distance between the transmitter and the receiver leads to a drop

in the received signal strength, due to the path loss during the transmission. As a

result, the signal-to-noise ratio (SNR) also drops and makes it difficult to distinguish

the received signal strength from the background noise. Figure 5.5(c) indicates that,

as distance rises to 200 cm, the received signal strength becomes almost equal to

that of background noise (-90 dBm), resulting in low HAR accuracy. To resolve

this problem, we propose the use of the transmission power amplification factor K

to control the SNR. As defined in Eq. 5.9, K can be adjusted by allowing the

accumulation time of the harvested energy in the capacitor to vary. As a result the

average received signal strength will increase resulting, in a higher SNR at a given

distance. This will consequently reduce the overlap among the distributions of the

received signal strengths and hence achieving better HAR accuracy.

Keeping the same configuration presented in the previous subsection (as shown

in Table 5.3), we allowed K to take the values, 1, 100, 1000, 3205, 10000, and 20000.

In order to simulate the case of using Bluetooth low energy (BLE), K is assigned

the value 3205. This is because the transmission data rate of BLE is typically 1

Mbps and the packet size is 39 Bytes. This value of K is obtained by adjusting the

accumulating window tACC to one second. Moreover, enlarging the accumulation

window of the capacitor, one can harvest more power to transmit the pulse with a

higher transmission power and accordingly a higher value of K.

Figure 5.7 shows the achieved HAR accuracies at different distances and different

values of K. It is noted that an increase in the distance between the transmitter

and the receiver leads to a reduction in the accuracies of all five activities. However,

the concavities of all the curves shows that this reduction in accuracy decreases at a

decreasing rate with the increase in K. For instance, in Figure 5.7(f) with K being

larger than 10,000, an overall accuracy over 70% can be achieved, even when the

distance is increased to 200 cm.

Eq. 5.9 asserts that K is determined by both the transmission duration of the
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Figure 5.7: The classification accuracies of applying the Bayesian decision theory based on the
received signal strength for each of the five activities using different vales of K (note that different
scales are used in y axis).
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activity pulse, tTX , and the accumulation window of the harvested power in the

capacitor, tACC . As an example, if tACC is equal to one second, the transmission

frequency of the activity pulse will be 1 Hz. Similarly, if tACC is extended to ten

seconds, the transmission frequency will be 0.1 Hz. Thus, there is a trade-off between

HAR accuracy and latency. By extending tACC , we can get a larger K and higher

HAR accuracy at the expense of higher latency. This is because we must wait longer

to accumulate more energy in the capacitor. This leaves an open question about

the trade-off between HAR accuracy and latency, which can be considered as future

work.

5.7 Experimental Validation

In this section, we validate the practicality of the proposed method by using a

Bluetooth testbed. We used the iBeacon product from the Kontakt.io as the sig-

nal transmitter. The details of the bluetooth device are shown in Fig. 5.8(a). It

implements the nRF51822 Bluetooth chip from Nordic Semiconductor to support

2.4 GHz Bluetooth Low Energy wireless communication. It offers eight levels of

transmission power, from -30 dBm to 4 dBm, with sensitivity of -93 dBm. The

data transmission rate is 1 Mbps. The device is powered by a 3 V cell battery. We

used a Samsung Galaxy Note 4 smartphone as the receiver and applied the Android

application (nRF master control panel) implemented by Nordic Semiconductor to

monitor the received signal strength indication (RSSI).

5.7.1 Experiment Setup

We configured the transmission power of the Bluetooth device at five different power

levels, each of them corresponding to one of the five activities. Based on our PEH

dataset, shown in Table 5.1, the average harvested power over one-second windows

for each of the five activities are -56.39 dBm (for standing), -45.53 dBm (for walk-

ing), -43.51 dBm (for stairs-up), -39.22 dBm (for stairs-down) and -33.30 dBm (for

running). We assume that the capacitor stores enough power to provide an am-
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Figure 5.8: The Bluetooth hardware and the experimental setup.
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Figure 5.9: The plots of the RSSI at three distances between transmitter and receiver.
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Table 5.4: The estimated statistical parameters of the RSSI (mean µ and standard deviation σ)
for three distances between transmitter and receiver.

Activity (power)
Distance

30 cm 60 cm 100 cm
µ σ µ σ µ σ

R (-4dBm) -57.21 1.46 -69.02 4.99 -75.32 6.29
W (-20dBm) -72.57 1.39 -86.29 2.76 -88.06 3.73
SD (-12dBm) -64.53 2.06 -78.53 5.94 -82.57 3.30
SU (-16dBm) -67.20 1.47 -78.91 1.60 -85.64 3.30
S (-30dBm) -82.02 1.14 -95.11 1.99 null null

Table 5.5: The accuracies of HAR using RSSI for different distances between transmitter and
receiver.

Distance
Activity (power) 30 cm 60 cm 100 cm

R (-4dBm) 99.89% 77.09% 69.24%
W (-20dBm) 99.89% 98.47% 43.49%
SD (-12dBm) 72.96% 61.24% 13.60%
SU (-16dBm) 85.36% 91.82% 57.82%
S (-30dBm) 100% 99.74% 100%

Overall 91.62% 85.67% 65.83%

plification of 26 dB in the transmission power. To simulate the five activities, we

configure the transmission power of the Bluetooth devices as -30 dBm (for standing),

-20 dBm (for walking), -16 dBm (for stairs-up), -12 dBm (for stairs-down) and -8

dBm (for running). The advertising intervals of the Bluetooth devices are set to 20

ms, and the smartphone continuously records the RSSI of the advertising packets.

To show the impact on HAR accuracy of the distance between the Bluetooth device

and the smartphone, we studied three different distances: 30 cm, 60 cm, and 100

cm.

5.7.2 Simulation Results

Table 5.4 presents the estimated values of the statistical parameters of the measured

RSSI at three distances for five activities. The results indicate that the means of

RSSI drop as the distance increases, while the standard deviations rise. This is due

to the drop in signal strength caused by path loss and standard deviations rise due
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Table 5.6: The confusion matrix of HAR using RSSI at 30 cm distance between transmitter and
receiver.

Activity R W SD SU S
R 894 0 1 0 0
W 0 894 0 1 0
SD 0 48 653 194 0
SU 0 48 83 764 0
S 0 0 0 0 895

to the uncertainty introduced by the surrounding environment. Figure 5.9 plots

the recorded RSSIs at the three distances. As indicated in Figure 5.9(a), when

the distance is 30 cm, the RSSIs for all five transmission powers are well separated.

This results in good HAR accuracy using the proposed Bayesian framework and

achieves an overall accuracy of 91.62%. However, Figures 5.9(b) and 5.9(c) show

that when the distance increases, the RSSIs for the five transmission powers overlap

and as a result the HAR accuracy falls, which conforms with our theoretical analysis

given in Figure 5.5. Note that, in Figure 5.9(c), no RSSI of standing activity is

recorded by the smartphone because the RSSI of standing (-30dBm) is lower than

the sensitivity threshold (-93dBm) of our device. Figure 5.10 plots the CDFs of the

empirical RSSI with the corresponding Gaussian distribution with a 100 cm distance.

The plots indicate that the measured RSSI follows the Gaussian distribution, which

proves the feasibility of the proposed Bayesian framework for HAR.

The detailed results of the achieved HAR accuracies using the Bluetooth proto-

type are presented in Table 5.5. The overall accuracies of our proposed HAR are

91%, 85%, and 65% for 30 cm, 60 cm, and 100 cm, respectively. To analyse the re-

sults reported in this chapter, we show the confusion matrix for HAR accuracy using

RSSI at 30 cm. While the classification results of running and standing activities are

high (up to 100% accuracy), there is high confusion between walking, stairs-down,

and stairs-up activities. This is due to the high similarity between these activities.

The RSSI distributions are highly overlapped, which conforms with our theoretical

analysis results given in Figure 5.5(a).

By increasing the distance between the Blutooth device and the smartphone,

the confusion of these three activities increases and results in reduced accuracy.
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Figure 5.10: The CDFs of the empirical RSSI and the corresponding Gaussian distributions
using 100 cm distance between transmitter and receiver.
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However, as indicated in Table 5.5, the proposed method can achieve an overall

HAR accuracy above 85% using 60 cm, which is generally the average distance

between the wearable sensors and smartphone.

5.8 Conclusion

Achieving energy efficiency is a challenging task in human activity recognition. Con-

tinuous activity sensing using an accelerometer and burdensome on-node classifica-

tion rapidly deplete the limited battery resources of wearable nodes. To reduce

the energy overhead and achieve the system energy neutrality, we propose a novel

Bayesian framework for energy-neutral human activity recognition with PEH-enable

wearable devices. The proposed framework ensures system energy neutrality by re-

moving both the accelerometer and the activity classifier from the wearable device,

and using only the signal strengths of the activity pulse to fulfill continuous hu-

man activity recognition. Using a collected PEH power generation dataset from an

energy-harvesting wearable device, we demonstrate the feasibility of the proposed

framework through theoretical analysis, and validate the results using a Bluetooth

prototype. The experimental results show that an overall accuracy of 91% is achieved

when the distance between the transmitter and the receiver is 30 cm. We also show

that the overall accuracy drops to 85% and 65% when the distance increases to 60

cm and 100 cm, respectively.

It is worth noting that the recognition accuracy for both 30 cm and 60 cm is

higher than the accuracy reported in the previous chapter (80%) where the classifi-

cation was assumed to be done on board with no communication. This is due to the

personalized model used in this chapter which was built with data from one subject

and then applied to new data from the same subject. In fact, it has been demon-

strated in many research studies that the personalized models perform dramatically

better than impersonal models built using training data from a panel of subjects

and then applied to new users [99]. Therefore, these studies strongly argue for the

construction of personal models whenever possible.



Chapter 6

Step Detection from Piezoelectric

Energy Harvesting Patterns

6.1 Introduction

Step detecting wearable devices are increasingly being used for monitoring health

and fitness [100, 101]. These devices use accelerometers to detect steps as human

acceleration exhibits distinctive peaks when steps are taken. Step detection accura-

cies close to 100% can be achieved by using simple peak-detection algorithms that

continuously monitor the accelerometer signal. Figure 6.1 shows a real accelerome-

ter trace from a wearable device carried by a subject walking along a straight indoor

walkway. The peaks, which correspond to steps, are unmistakable.

While high step detection accuracy is considered a remarkable feature of wear-

ables, their power supply remains heavily dependent on batteries, which must be

recharged or replaced. It is only recently that technological advancements in piezo-

electric energy harvesting (PEH) materials have created some real opportunities for

wearables to generate power of their own by converting natural phenomena such as

human motion into usable electricity [50, 58]. This is a very important development,

which may ultimately help realise self-powered wearable devices in the future.

The focus of this chapter is to propose and validate the concept of step detection

directly from the patterns of power generation in wearable devices when human

105
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Figure 6.1: The raw output patterns of an accelerometer from a wearable device attached to the
waist of a subject walking along straight walkway for 11 steps.

motion is used as the basis of energy harvesting. The concept is intuitive because

if steps are known to show distinctive acceleration peaks, they are also expected

to produce power peaks if power generation is based on motion (acceleration). The

concept is also immensely beneficial from energy conservation points of view, because

if steps can be detected directly from power generation patterns, then no power

needs to be allocated to an accelerometer to measure acceleration. Finally, the

proposed concept can help simplify the circuit board of the device by removing the

accelerometer, which can further reduce the overall device power consumption as

well as the form factor.

The contributions and outcomes of this chapter can be summarized as follows:

• We conducted the first experimental study to validate the concept of step

detection from the generated patterns of PEH wearable devices.

• We collected the generated patterns of a PEH wearable device from four sub-

jects under different walking scenarios, including walk along straight and turn-

ing paths as well as descending and ascending stairs, covering a total of 570

steps.

• We found that, like acceleration, power traces also exhibit distinctive peaks

for steps, which can be detected accurately using widely used peak detection

algorithms.
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• We demonstrated that widely used peak detection algorithms can detect steps

from PEH power generation patterns with an accuracy of 96%.

The rest of the chapter is structured as follows. Related work is reviewed in

Section 6.2. Section 6.3 provides a review of peak-detection algorithms widely used

for detecting steps from accelerometer signals. PEH-based step detection, including

data collection experiments and threshold determination, is explained in section 6.4.

Results are presented in Section 6.5. We conclude the chapter in Section 6.6.

6.2 Related Work

Step detection algorithms have been widely used in health monitoring and indoor

positioning applications [102, 103, 104, 105, 106]. In these applications, steps are

usually detected by using the output of an accelerometer. Three different algorithms

have been discussed in the literature for step detection: peak detection, zero-crossing

detection, and moving variance detection.

1. The peak detection algorithm is one of the most widely used methods for step

detection [102, 103, 104, 105, 106]. It searches for the peaks and valleys of the

waveform by selecting thresholds in order to identify a distinct step. The step

is detected when a valid maximum peak and a valid minimum peak (valley)

are detected in sequence in a certain interval.

2. The zero crossing detection algorithm determines the number of steps by

counting the number of times the signal crosses the zero level and dividing

it by two [107, 103]. The division by two is due to the observation that the

signal crosses the zero level twice in each step during walking.

3. The moving variance detection algorithm implements the moving variance fil-

ter while keeping in view that acceleration variance has a tendency to increase

with respect to step length [107]. Then the local mean acceleration is calcu-

lated for each sample of the overall acceleration. Finally, a step is detected

when the acceleration variance is above a certain threshold level.
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Ayub et al., [107] have shown that the zero crossing detection algorithm is more

robust than the moving variance detection algorithm for step detection. On the

other hand, Kang et al., [103] have shown that the zero crossing and the peak

detection algorithms are precise enough to detect user steps.

In our work, we have used the peak detection algorithm to demonstrate the

feasibility of detecting steps from the output voltage of a PEH wearable. However,

it would be interesting to study the performance of the two other algorithms when

the PEH signal is used for step detection. To the best of our knowledge, this is the

first study to demonstrate that step detection is viable using PEH wearables.

6.3 Accelerometer-based step detection using peak

identification

Step detection is usually defined as the automatic identification of the moments

in time at which footsteps occur. In the literature, steps are usually detected

by using the output of the accelerometer. The accelerometer records acceleration

in three axes ax(t),ay(t), and az(t). The overall magnitude of the axes, a(t) =√
ax(t)2 + ay(t)2 + az(t)2, is usually used to represent the accelerometer signal for

step detection. Figure 6.1 shows the raw output patterns of an accelerometer in a

wearable device attached to the waist of a subject walking along a straight walkway

for 11 steps. The peaks, which correspond to steps, are unmistakable.

One of the most widely used methods for step detection is peak detection. Several

studies [108, 109] showed that the peak detection method is precise enough to detect

user steps. In this method, a step is detected when a local maxima (local peak) is

detected. A local maxima is a data point that is larger than its two neighbours as

shown in Figure 6.1. However, because of irregular movements and hardware noise,

not all detected peaks are valid steps. Some peaks can be very low in amplitude

or very close to each other. Two thresholds are used to filter out these peaks and

recognize the steps:

1. The minimum peak height, T1.
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(a) Device placement on the sub-
ject’s body.

(b) Experimentation while turning walkways scenario.

Figure 6.2: Experiments Design: (a) Device placement on the subject’s body, and (b) Experi-
mentation while turning walkways scenario.

2. The minimum distance between every two consecutive peaks, T2.

T1 is determined from the amplitude of the signal and T2 is determined from the

time between two consecutive peaks. Using these thresholds, the only valid peaks

that represent steps are those that are higher than T1 and separated by at least T2.

6.4 Proposed PEH-based step detection

In this section, we validate the concept of using the generated patterns of PEH

devices for step detection. First, we collect experimental data using a PEH device

with real subjects taking steps in different scenarios. Then, the widely used peak

detection algorithm is used to identify a user’s steps from the PEH patterns.

6.4.1 Data Collection

To validate the concept of PEH-based step detection, we used the datalogger pro-

totype presented in Chapter 4 to collect the generated patterns of a PEH trans-

ducer when steps are taken by the subject. Simultaneously, accelerometer data were

recorded for comparison purposes. Four subjects, two male and two female, between

26 and 35 years of age, volunteered to participate in this study. The subjects were

asked to place the prototype at their waist as shown in Figure 6.2. We considered

four different walking scenarios:
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Figure 6.3: The raw output patterns of a piezoelectric vibration energy harvester from a wearable
device attached to the waist of a subject walking along straight walkway for 11 steps.

• Straight walkways (7.5 meters long).

• Turning walkways (a square path of 4 × 4 meters, 16 meters in total).

• Ascending stairs.

• Descending stairs.

Each of these walking scenarios was performed twice by each subject. All sub-

jects performed all the walking scenarios at normal walking speed. A switch was

used to start and stop data collection at the beginning and end of each scenario.

Subjects were asked to stop and wait a few seconds after and before each scenario.

To allow a natural walking style, subjects were not asked to count their steps. In-

stead, one more volunteer was responsible to monitor the walking of each subject

and count the actual number of steps taken in each scenario. In this way, we had the

ground truth values which are used in the performance evaluation stage. In total,

we had 570 steps from all subjects, experiments and scenarios.

6.4.2 Thresholds Determination

Figure 6.3 shows the raw output pattern of the PEH when the device was attached

to the waist of a subject walking along the straight walkway for 11 steps. We
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Table 6.1: Experimentally determined thresholds for a step detection algorithm for both ac-
celerometer and PEH patterns.

Accelerometer Thresholds T1 = 11 m/s2

T2 = 0.4 ms
PEH Thresholds T1 = 0.2 volt

T2 = 0.4 ms

clearly see the step occurrences in the PEH output pattern. This confirms that,

like acceleration, power traces also exhibit distinctive peaks for steps, which can be

detected accurately using widely used peak detection algorithms. Note that some

steps are observed to be higher than other steps in both accelerometer and PEH

outputs when the patterns are collected from a waist placement. The steps taken

by the leg that is closer to the device have more effect on the output patterns.

As explained in Section 6.3, in order to detect a valid step, two thresholds are

required. The minimum peak height, T1, and the minimum distance between every

two consecutive peaks, T2. T1 is determined from the amplitude of the signal and T2

is determined from the time between every two consecutive peaks. These thresholds

are usually determined experimentally.

The PEH transducer and the accelerometer have different output patterns. In

our prototype, the accelerometer gives acceleration in m/s2 but the PEH transducer

gives AC voltage in volts. As shown in Figures 6.1 and 6.3, the amplitudes (the

range of the output) of the accelerometer and the PEH patterns are different. T1 was

found experimentally in our data to be 11 m/s2 for accelerometer and 0.2 volt for

PEH. T2 was found to be 0.4 milliseconds for both accelerometer and PEH patterns.

This is due to the fact that at normal walking speed, humans take approximately

two steps per second.

6.5 Results

In this section, we investigate the performance of PEH-based step detection and

compare it to accelerometer-based step detection. Table 6.1 shows the experimen-

tally determined threshold for both accelerometer and PEH based on our data.
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Figure 6.4: The output patterns of the accelerometer (top) and the PEH (bottom), with the
detected steps marked on both (turning walkways scenario).

Figure 6.4 shows the identified steps using the previously determined thresholds

for both accelerometer (overall magnitude) and PEH signals when square walking

scenario and waist placement of the device are considered. The accuracies of the

step detection algorithm in both the accelerometer and PEH cases are calculated

using Equation 6.1.

Accuracy = (1− |Actual − Estimated|
Actual

)× 100%, (6.1)

where Actual is the actual step count and Estimated is the estimated step count.

Tables 6.2, 6.3, 6.4, and 6.5 show the accuracy (%) of PEH-based step detection

for the four considered scenarios: straight line, turning walkway, ascending, and

descending stairs, respectively. These tables also show the actual number of steps

(ground truth), the estimated number of steps for each individual subject per each

experiment.
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Table 6.2: PEH-based step detection accuracy for the straight walkway scenario for each subject
and over all the subjects.

Subject
No.

Experiment
No.

Actual # of
steps (Ground
Truth)

Estimated # of
steps

Accuracy
(%)

S1 E 1 12 12
E 2 12 12 100

S2 E 1 12 12
E 2 12 12 100

S3 E 1 11 12
E 2 12 12 100

S4 E 1 12 12
E 2 13 14 96.15

Accuracy (%) overall subjects 99.04

Table 6.3: PEH-based step detection accuracy for the turning walkway scenario for each subject
and over all the subjects.

Subject
No.

Experiment
No.

Actual # of
steps (Ground
Truth)

Estimated # of
steps

Accuracy
(%)

S1 E 1 24 24
E 2 24 24 100

S2 E 1 25 25
E 2 25 25 100

S3 E 1 21 21
E 2 21 21 100

S4 E 1 27 27
E 2 27 27 100

Accuracy (%) overall subjects 100
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Table 6.4: PEH-based step detection accuracy for the ascending stairs scenario for each subject
and over all the subjects.

Subject
No.

Experiment
No.

Actual # of
steps (Ground
Truth)

Estimated # of
steps

Accuracy
(%)

S1 E 1 17 15
E 2 17 17 94.12

S2 E 1 17 17
E 2 17 17 100

S3 E 1 18 16
E 2 18 13 80.56

S4 E 1 18 17
E 2 18 18 97.22

Accuracy (%) overall subjects 92.97

Table 6.5: PEH-based step detection accuracy for the descending stairs scenario for each subject
and over all the subjects.

Subject
No.

Experiment
No.

Actual # of
steps (Ground
Truth)

Estimated # of
steps

Accuracy
(%)

S1 E 1 17 17
E 2 17 15 94.12

S2 E 1 17 15
E 2 17 13 82.35

S3 E 1 18 18
E 2 18 18 100

S4 E 1 18 18
E 2 18 17 97.22

Accuracy (%) overall subjects 93.42

Our analysis shows that PEH-based step detection can be achieved with 99.08%

and 100% accuracy for straight and turning walkways, respectively. However, the

accuracies for ascending and descending stairs scenarios are 92.97% and 93.42%,

respectively.

By looking at the step counts for each scenario, we found that only one placement

in the straight walkway scenario shows overcount. On the other hand, in ascending

and descending stairs, the results were more inclined to undercount than overcount.

Figures 6.5 and 6.6 show the accelerometer-based and PEH-based step detection for

ascending stairs of subject 3, experiment 2 and for descending stairs of subject 2,

experiment 2, respectively. Some steps have been missed by the PEH-based step
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Figure 6.5: Showing the false negative errors of PEH-based step detection when the ascending
stairs scenario of subject 3, experiment 2 is considered.
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Figure 6.6: Showing the false negative errors of PEH-based step detection when the descending
stairs scenario of subject 2, experiment 2 is considered.
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Figure 6.7: Comparing PEH’s output patterns for two placements of the prototype on the sub-
jects’s body: waist placement (up) and hand placement (down).

detection due to the irregular shape of the signal in these scenarios, leading to

some false negative errors. These false negative errors could be due to the use of

a universal threshold which might not be correct, because of the different styles of

motion for normal walking and ascending or descending stairs.

In total, over all subjects and all walking scenarios, 550 steps out of 570 were

successfully detected achieving a 96% step detection accuracy when PEH patterns

are used, compared to 100% accuracy when the accelerometer is used.

All of our results were based on waist placement. Previous studies [110, 111,

112] have shown that different placement of the accelerometer affects step detection

accuracy. To investigate this for PEH signals, we conducted a simple experiment to

compare waist placement to hand placement. One volunteer was asked to hold our

prototype in her hand and walk along straight walkway for 11 steps.

Figure 6.7 shows the PEH’s output signals for waist and hand placement of the

device. One observation is that the steps have less contribution to the peaks of
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the signal. This is because, in the hand holding position, leg movement is not con-

tributing to the signal’s output, making step occurrences unclear. This means that,

for hand placement, PEH-based step detection will be more challenging. Further

experimentation is still needed in this direction.

6.6 Conclusion

Energy-harvesting wearable devices generate power by converting natural phenom-

ena such as human motion into usable electricity. In this chapter, we proposed the

concept of step detection directly from the patterns of power generation in wearable

devices when human motion is used as the basis of energy harvesting. This proposal

is particularly beneficial in energy conservation, because if steps can be detected

directly from the power generation patterns, then no power needs to be allocated to

an accelerometer to measure acceleration. Thus, the accelerometer can be removed

from the design, leading to further savings of overall device power consumption as

well as reduced size.

Using experimental data, we have shown that steps can be accurately detected

from PEH power generation patterns with an average accuracy of 96%. We believe

that the proposed idea will contribute toward the realisation of more pervasive and

permanent step detection. To our knowledge, this is the first study investigating

the viability of step detection using piezoelectric energy harvesting signals. More

experimentation is still needed to study how different device placements affect the

results.

Although this is specific research focused only on step detection, the positive

outcomes imply that PEH signals may have a wide range of applications for sensing

and tracking human health. For example, it may be possible to identify a ”walking

signature” of a person that could help realise various applications including user

authentication or detecting abnormal walking behaviour. Investigations of these

applications remain the focus of our ongoing efforts [113, 114, 115].



Chapter 7

Hotword Detection from Vibration

Energy Harvesting Patterns

7.1 Introduction

With increasing user demand for more power and functionality, manufacturers of

mobile devices are forced to find new energy solutions beyond batteries. For this,

there is a recent focus on vibration energy harvesting (VEH) as a viable option for

mobile devices to generate electrical energy from ambient sources [116, 117]. VEH is

considered one of the most effective energy harvesting options for the future internet

of things, due to the ubiquitous presence of vibration sources in the environment.

Recent research confirms that VEH can harvest usable electric power for personal

mobile devices by harnessing vibrations caused by human motion [118, 64, 119].

These developments point to future mobile devices that will be equipped with some

sort of VEH hardware to ease the dependence on batteries.

Although the primary purpose of VEH is to convert vibrations to electric power,

in principle it could also be used as a potential sensor to detect or identify the

source of the vibration. The ability to detect the vibration source can lead to

many potential applications for VEH hardware beyond its primary use of energy

harvesting. Indeed, we have convincingly demonstrated in the previous chapters

that VEH can be used as an effective sensor for human activity recognition due to

118
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the fact that different activities create characteristic patterns of ambient vibration,

which produce different energy generation patterns in the VEH circuit.

In this chapter, we investigate VEH as a potential new source of information

for detecting hotwords, such as “OK Google”, which are used by voice control ap-

plications to distinguish user commands from background conversations. Pervasive

hotword detection requires continuous sensing of audio signals, which results in sig-

nificant energy consumption when a microphone is used as an audio sensor. How

to reduce audio sensing energy costs using alternative low-power sensors that can

also register voice signals is a recent research trend in the literature. For exam-

ple, researchers have shown that, instead of microphones, gyroscopes [34] or even

accelerometers [35] can be used to detect hotwords at a fraction of the energy con-

sumption. Unlike gyroscopes and accelerometers, our proposal enables pervasive

voice control at a minimum energy cost.

The contribution of this chapter can be summarized as follows:

• We conduct the first study to assess the viability of using the generated VEH

signal for hotword detection.

• Using off-the-shelf piezoelectric energy harvesting circuits, we conduct a com-

prehensive experimental study involving 8 subjects. Our experiments involve

the analysis of two possible usage scenarios, indirect and direct. In the first, the

VEH is only expected to pick up the ambient vibrations caused by user speech

in the vicinity of the device. In the second, the user talks directly to the sur-

face of the piezoelectric beam. For both usage scenarios, we evaluate two types

of hotword detection, speaker-independent, which does not require speaker-

specific training, and speaker-dependent, which relies on speaker-specific train-

ing.

• We show that, in the direct scenario, VEH can detect hotwords with accuracies

of 73% and 85%, respectively, for speaker-independent and speaker-dependent

detections. We further demonstrate that these accuracies are comparable to

what could be achieved with an accelerometer sampled at 200 Hz.
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• Finally, for the direct scenario, we provide evidence that orientation of the

piezoelectric beam relative to the speaker has an impact on hotword detection

accuracy. This finding may serve as an important input to the design of next

generation energy-harvesting mobile devices.

7.2 Related Work

Voice control applications such as Siri [120] and Google Now [121] have emerged re-

cently to improve device interactivity. These voice control applications use hotwords

such as ”Okay Google” or ”Hi Galaxy” to distinguish user’s voice command from

other conversations. One major challenge of voice control applications is the inten-

sive sensing of audio signals which requires the microphone to be continuously ON

to monitor user’s voice commands [122]. One way to reduce the energy cost of au-

dio sensing is the use of less power sensors such as Microelectromechanical Systems

(MEMS) sensors, (e.g., accelerometers and gyroscopes) instead of microphones.

MEMS sensors have been widely used for human activity recognition [123, 124,

125, 20] and indoor positioning applications. Matic et al, [126] have shown that

accelerometers can also be used for recognizing speech activity based on detecting

phonation caused vibrations at the chest. This can help in activating voice control

applications automatically, which usually require user interaction by a simple gesture

on a button, or using a Near Field Communication (NFC) tag.

In an attempt to reduce audio sensing energy cost, Michalevsky et al., [34] used

a gyroscope sensor for digit recognition instead of a microphone. Gyroscope sensors

consume less power than microphones, however, the authors in [34] had to upsample

the received gyroscope samples at 4000 Hz to achieve acceptable accuracy, which

is also power consuming. On the other hand, Zhang et al., [35] exploited an ac-

celerometer sensor for energy-efficient hotword detection. They showed that an

accelerometer sampled at only 200 Hz can detect hotwords with accuracy compa-

rable to microphones. They also showed experimentally that the accelerometer is

more energy efficient than both microphone and gyroscope sensors.
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Figure 7.1: Effect of shouting on the VEH piezoelectric beam.

To our knowledge, this is the first work to demonstrate that hotword detection

is viable with VEH signals. Since VEH does not require power supply, the proposed

method provides hotword detection at minimum energy cost, which will contribute

to more pervasive deployments of voice control applications.

7.3 Impact of speech on VEH

As mentioned in Chapter 2, VEH is the process of capturing environmental vi-

brations and converting it into electrical energy. Human speech creates vibrations

(sound waves) which move through the air in the form of pressure. Therefore, a P-

VEH transducer should be able to detect changes in air pressure caused by human

voice. To experimentally demonstrate this effect, we asked a user to shout three

times on top of a piezoelectric cantilever, while the generated voltage signal was

being recorded. Figure 7.1 shows the impact of the air pressure on the piezoelectric

material. The device responds by giving a voltage peak each time the air pressure

hits the beam. This small experiment provides evidence that VEH may be used as

a potential sensor to detect the presence of speech. As the patterns of air pressures

would be different when the human pronounces different phrases, we should be able

to detect hotwords using VEH.
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Figure 7.2: Proposed architecture for VEH-based hotword detection.

7.4 Proposed use of VEH for hotword detection

Figure 7.2 shows the proposed architecture for hotword detection using VEH. AC

voltage data is continuously fed to a trained binary classifier, which classifies the

input signal into either hotword or non-hotword. No actions will be taken during

the normal conversation (speech contains no hotword), but if hotword is detected,

the system will switch to command mode. To realise the proposed binary classifier,

we first need to collect AC data from both hotword and non-hotword speeches, and

then train a suitable classifier to detect hotwords. These steps are explained in the

following sections.

7.5 VEH Data Collection

In this section, we explain the process of hotword data collection from a piezoelectric

VEH (P-VEH) transducer.

7.5.1 VEH Data Logger

We refer to the hardware presented in Chapter 4 as the VEH datalogger to be used

in this chapter. However, the piezoelectric VEH transducer is used here to pick up

vibrations generated from human speech. The triaxis accelerometer added in the

middle of the data logger is used to record any ambient vibrations in the form of
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Table 7.1: Experimental Setup.

Participants 8 volunteers: 4 male and 4 female.

Classes 2 classes: ‘hotword’ and ‘non-hotword’:

• ‘hotword’ class includes one phrase

– ‘Okay Google’

• ‘non-hotword’ class includes three phrases

– ‘Fine, thank you’

– ‘Good morning’

– ‘How are you?’

Dataset 60 instances/participant: 30 ‘hotwords’ and 30 ‘non-
hotwords’. In total, 480 instances.

Device orienta-
tion

2 orientations: horizontal and vertical (as shown in Figure
7.3).

Device position on a table with 3 cm distance between subject’s mouth and
the device.

acceleration. We also used a sampling rate of 1000 Hz for both the VEH and the

accelerometer. The start/stop switch in the data logger was used to save the data

from different phrases into different files.

7.5.2 Experimental setup

We collected data from different experimental setups as summarised in Table 7.1.

We collected data from eight participants, four males and four females. Since our

aim is to detect hotwords from phrases commonly used in typical conversations, we

collected data in two different phases. In phase one, the user was asked to repeat the

hotword ‘OK Google’ 30 times. In the second phase, the user was asked to repeat

each of three choices of a non-hotword phrases, ‘fine, thank you’, ‘good morning’,

and ‘how are you’ 10 times, giving a total of 30 non-hotword cases per user. The

subjects were asked to utter all the phrases at normal speaking levels and took a

break of a few seconds between phrases. All experiments were carried out in a quiet

room to eliminate background noise as much as possible.
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7.5.3 VEH Usage Scenarios

During data collection, we considered two possible usage scenarios of the VEH hard-

ware, direct vibrations and indirect vibrations. The former scenario represents the

case when the user is expected to bring the device close to his mouth when giv-

ing a command and talk directly on the surface on the piezoelectric beam. In our

design, the piezoelectric energy harvester is left visible outside the VEH hardware

case to implement the direct scenario. The latter scenario is designed for cases when

it is not practical or desirable to have a visible piezoelectric surface, but hotwords

are expected to be detected from ambient vibrations captured by a VEH embed-

ded somewhere in the mobile device. Data collection for these two scenarios are

explained below.

• Direct vibration scenario:

In this scenario, the subject is asked to direct his voice towards the piezo-

electric beam from 3 cm away. To study the effect of the piezoelectric beam

orientation on hotword detection, we considered two orientations. The data is

first collected while the piezoelectric beam has a horizontal orientation. Then,

the data is collected with the beam in a vertical orientation. Figure 7.3 shows

the two orientations and how the direction of the airflow from subject’s speech

affects the cantilever beam.

• Indirect vibration scenario:

In this scenario, the VEH is only expected to pick up ambient vibrations caused

by speech in the vicinity of the device. The triaxis accelerometer in the data

logger is used to capture the ambient vibration in terms of acceleration using

the 2nd order mass spring damping model explained in Chapter 3. This model

was used in Chapter 3 to estimate the amount of power harvested from hu-

man motion vibrations. The configuration values, m = 10−3kg, ZL = 10mm,

k = 0.17, and b = 0.0005, were optimised for typical human activities. In

this study, we use the same model parameters to capture the vibrations gen-

erated by speech in the vicinity of the device, as our main interest is hotword

detection rather than power maximization and the VEH in mobile devices is
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Figure 7.3: Horizontal and vertical orientations of the VEH data logger.

likely to be configured to maximise power from human activity. The entire

procedure is implemented using MATLAB and SIMULINK.

Although, our prototype collects both VEH and accelerometer data at 1000 Hz

sampling rate, most mobile devices restrict the accelerometer sampling rate to a

maximum of 200 Hz in order to reduce power consumption [35]. Therefore, we

downsampled our accelerometer sampling rate to 200 Hz to match the current avail-

ability of accelerometer sampling rate in mobile devices and to provide a fair com-

parison. In total, we have five different datasets. Three of them are VEH datasets

for indirect scenario, and two direct scenario orientations (horizontal and vertical).

The remaining two sets are accelerometer datasets for two sampling rates: 1000 Hz

and 200 Hz. The accelerometer datasets are used for comparing the performance of

accelerometer-based hotword detection with VEH-based hotword detection.

7.5.4 Hotword Training and Classification

The VEH data obtained in both indirect and direct scenarios were used to evaluate

VEH-based hotword detection in comparison with accelerometer-based hotword de-

tection. We refer to the original feature set (OFS) presented in Table 4.3 of Chapter
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4 as the considered features set for VEH-based hotword detention, which was also

considered previously in [35] for hotword detection from accelerometer data. As

discussed previously, the table shows single axis features, which are extracted from

the single axis signals of VEH, in both direct and indirect scenarios, and each axis

of the accelerometer signal separately. Besides the single axis features, the table

shows multiaxis features extracted from the combination of the three axes of the

accelerometer signal. Because all hotwords were completed within 2 seconds, we

used a time window of 2 seconds to extract the features.

Like the authors in [35], we chose Decision Tree (DT) classifier, a simple, yet

powerful and popular tree-based tool for classification and prediction [77]. In the

DT classifier, the classification process starts at the root of the tree and grows

sequentially until reaching a leaf node. The focus of the tree-growing algorithm is

testing and selecting the feature with the most inhomogeneous class distribution,

based on its information gain (IG), explained in Chapter 3. A well-known algorithm,

which has been widely used for building decision trees over the years, is C4.5 [78].

In this algorithm, pruning is used to optimise the size of the tree, without reducing

predictive accuracy. A tree that is too large risks overfitting the training data and

poorly generalizing to new samples. A small tree might not capture important

structural information about the sample space [79].

In all usage scenarios, we evaluate two types of hotword detection, speaker-

independent and speaker-dependent. In the speaker-dependent case, the classifica-

tion process is applied on the data collected from each individual participant. In

the speaker-independent hotword detection, all of the data gathered from the eight

participants were first mixed and then fed to the classifier. In both cases, a 10-fold

cross validation scheme [85] is used to get the results. In this scheme, the original

data set is randomly divided into 10 equally sized subsets, where 9 of them are used

for training and one subset is used for testing. This is repeated 10 times (the folds)

and then the average of the results is reported.
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7.6 Results

In this section, we present the results of our hotword detection study using piezo-

electric VEH. We present results for the indirect usage scenario, followed by the

direct scenario. For both scenarios, we analyse the results for speaker-independent

and speaker-dependent detections. The results of VEH-based hotword detection is

compared with accelerometer-based detection. We also investigate speaker identifi-

cation using piezoelectric VEH and compare it to accelerometer-based identification.

Finally, we analyse the effect of speech direction relative to the piezoelectric beam

on the performance of hotword detection. In all of our results, we use the total

accuracy as our evaluation metric. The total accuracy is calculated using Eq. 7.1

as a percentage.

Accuracy =
TP + TN

N
× 100(%), (7.1)

where TP is the number of instances where speaking the hotword is correctly rec-

ognized as speaking the hotword, TN is the number of instances where speaking

the non-hotword is correctly recognized as speaking the non-hotword, and N is the

total number of instances.

7.6.1 Indirect Vibrations

Recall, that in this scenario, VEH is expected to capture only ambient vibrations

caused by the speech. Figure 7.4(a) shows the triaxial accelerometer output signals

sampled at 1000 Hz, which represent these ambient vibrations. We see that there are

no or negligible vibrations when the user remains silent (the top graph). However,

the presence of ambient vibration is clearly captured in the next four graphs. These

results are in line with [35], which showed that human speech can be detected by

accelerometers.

As explained in Section 7.5, accelerometer traces can be used to estimate the

power that may be potentially harvested by VEH. Figure 7.4(b) shows estimated

traces of power if VEH was used to harvest ambient vibrations caused by speech.
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Figure 7.4: Ambient vibrations captured by the internal accelerometer: (a) raw acceleration data
and (b) VEH power estimated from acceleration data using the mass-spring model.

We can see that the amount of power that could be harvested from such ambient

vibrations is very low, in the order of tens of nW. However, we are not really inter-

ested in the amount of power generated by speech, but rather the patterns of power

generation that could be used to detect hotwords. In this regard, we see that the

power amplitudes for all four phrases are certainly higher than silence and that they

all exhibit different power patterns. This implies that the indirect usage scenario

may be able to detect hotwords with some success.

To formally assess the discriminating capacity of the patterns of VEH power

generation for hotword detection, we use the information gain theoretic analysis
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Figure 7.5: Information gain of VEH power signals for the first nine features used for hotword
detection.

explained in Section 7.5.4. IG is a measure that determines how useful a given feature

is for discriminating between the classes to be learned. Figure 7.5 shows the IG of

VEH power signals for the first nine features used for hotword detection. Indeed,

this analysis shows that many features provide positive gains, giving evidence that

even these low power signals contain information to detect hotwords.

Table 7.2 shows the hotword detection accuracy results for indirect VEH. We

find that for speaker-independent, VEH can detect hotwords with 54% accuracy,

which means that users would have to repeat the hotword about once to pet the

voice control system into the command mode. However, the accuracy improved to

63% with speaker-dependent training.

To see how these results compare to hotword detection using the triaxial ac-

celerometer itself, we conducted the training and classification with the acceleration

data collected at 1000 Hz and sub-sampled at 200 Hz. Table 7.3 shows the hotword

detection results that could be achieved using the accelerometer. Once more, we

found that speaker-dependent outperform speaker-independent, but we find that
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Table 7.2: Accuracies (%) of hotword detection for indirect VEH.

Speaker Independent 54.38
F1 53.33
F2 63.33
F3 46.67
F4 56.67

Speaker Dependent M1 78.33
M2 66.67
M3 70.00
M4 75.00
Average 63.75

Table 7.3: Accuracies (%) of hotword detection for accelerometer.

Accelerometer Sampling Rate 200 Hz 1000 Hz
Speaker Independent 76.04 83.13

F1 81.67 83.33
F2 83.33 83.33
F3 86.67 95
F4 85 87.33

Speaker Dependent M1 96.67 96.67
M2 93.33 98.33
M3 90 85
M4 80 95
Average 87.08 90.5

accelerometer achieves much higher accuracies than VEH. For example, even with

200 Hz, accelerometer can achieve accuracies of 76% and 87%, respectively, for

speaker independent and speaker-dependent detections. The better performance of

accelerometer compared to VEH can be explained by the 3-dimensional information

available in the accelerometer (VEH has only 1-dimensional power data). However,

VEH performance can be improved by harnessing voice vibrations more directly as

examined in the following section.

7.6.2 Direct Vibrations

In this subsection, we examine the benefit of capturing voice vibrations more di-

rectly from the user. As explained in Section 7.5, with this scenario, we conduct

the training and classification using the AC voltage signal collected directly from
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Figure 7.6: VEH output signals for the direct scenario.

the piezoelectric beam in our VEH data logger. Figure 7.6 shows the patterns of

AC voltage for silence and when the four phrases are spoken. We see that volt-

age produced by silence is significantly lower than those produced by voice. We

also notice that silence has a more periodic voltage pattern, which captures the

background (noise) vibrations, while the voltage is markedly biased in the positive

direction when phrases are spoken. This is expected because, in this scenario, sound

waves continuously hit directly on one surface of the piezoelectric beam causing it

to vibrate asymmetrically around the neutral position.

Table 7.4 presents accuracies when VEH AC Voltage is used for hotword detec-

tion with the subject speaking directly to a flat surface of the piezoelectric beam.
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Table 7.4: Accuracies (%) of hotword detection for direct VEH.

Speaker Independent 73.04
F1 81.67
F2 76.67
F3 88.33
F4 88.33

Speaker Dependent M1 96.67
M2 85.00
M3 75.00
M4 93.33
Average 85.63

Compared to the ambient vibration examined in the previous subsection, we see

marked improvement in the performance. With direct vibration capture, VEH can

detect hotwords with accuracies of 73% and 85%, respectively, for speaker-dependent

and speaker-independent detections, which are now comparable to accelerometer-

based results with 200 Hz sampling.

7.6.3 Speaker Identification

Previous work [35] has noted that an accelerometer can be used to distinguish a voice

from others, which can be useful for user authentication applications. Therefore, in

this subsection, we investigate VEH AC Voltage for speaker identification. To do

so, we perform a multiclass classification by considering the data of each of the eight

participants as a separate class. Table 7.5 shows the confusion matrix when VEH

AC Voltage is used for speaker identification with the subject speaking directly to a

flat surface of the piezoelectric beam. The results of the accelerometer-based identi-

fication are shown in parenthesis for comparison purpose. The results show that the

accelerometer outperforms VEH for speaker identification. The overall accuracy of

VEH-based speaker identification is 56.87% compared to 85.83% for accelerometer-

based identification. This reveals that VEH-based speaker identification still has

room for improvement which we consider as possible future work.
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Table 7.5: Confusion matrix of VEH-based speaker identification. Results of accelerometer-based
identification are shown in parenthesis for comparison.

Classified as
F1 F2 F3 F4 M1 M2 M3 M4

F1 41 (50) 7 (0) 1 (0) 2 (0) 1 (6) 4 (3) 2 (0) 2 (1)
F2 8 (1) 26 (55) 5 (2) 0 (1) 1 (0) 7 (0) 10 (0) 3 (1)

A
ct

u
al

U
se

r F3 4 (0) 6 (2) 29 (51) 6 (7) 2 (0) 1 (0) 9 (0) 3 (0)
F4 1 (0) 1 (3) 6 (4) 33 (49) 2 (0) 5 (3) 5 (1) 7 (0)
M1 2 (6) 0 (0) 2 (0) 2 (0) 47 (53) 0 (1) 7 (0) 0 (0)
M2 4 (2) 8 (0) 0 (1) 4 (5) 2 (0) 34 (45) 6 (4) 2 (3)
M3 2 (0) 3 (0) 4 (2) 4 (1) 7 (0) 3 (6) 34 (51) 3 (0)
M4 6 (0) 4 (0) 5 (0) 4 (0) 0 (1) 5 (1) 7 (0) 29 (58)

Table 7.6: Accuracies (%) of hotword detection for vertically speaking to VEH.

Speaker Independent 62.92
F1 88.33
F2 80
F3 83.33
F4 65

Speaker Dependent M1 90
M2 80
M3 56.67
M4 83.33
Average 78.33

7.6.4 Impact of VEH Orientation

Finally, we examine the impact of the orientation of the piezoelectric beam relative

to the speaking or air flow direction. Table 7.6 shows the accuracy results when the

subject is speaking vertically to the beam (see Section 7.5). Interestingly, although

the distance between the subject and the beam is the same in both orientations, the

vertical orientation degrades hotword detection performance. These results show

that if a direct vibration usage scenario is planned for VEH-based hotword detection,

VEH placement within the mobile device may have to be carefully designed.
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7.7 Conclusion

Power consumption of microphone-based audio sensing for hotword detection is a

major issue for enabling voice control in mobile devices. To combat battery con-

straints, next generation mobile devices may incorporate vibration energy harvesting

(VEH) circuits to generate renewable energy from ambient vibrations. In this chap-

ter, we investigated VEH as a potential new source of information for detecting

hotwords, such as “OK Google”, used by popular voice control applications to dis-

tinguish user commands from other conversations. Unlike existing sensors, such as

microphones, gyroscopes, or accelerometers, our proposal enables pervasive voice

control at minimum energy cost. The idea of using power signals of VEH to detect

hotwords is based on the fact that human voice creates vibrations in the air, which

could potentially be measured by the VEH hardware inside a mobile device.

Using experiments with a piezoelectric VEH device and real subjects, we have

shown that hotwords can be detected from the power generation patterns of VEH cir-

cuits with up to 85% accuracy, which is comparable to accelerometer-based hotword

detection. Our study has further revealed that the orientation of the VEH device

relative to the speaking direction can have a major impact on the performance of

VEH-based hotword detection.



Chapter 8

Conclusion and Future Work

This chapter highlights the key outcomes and conclusions of this dissertation, fol-

lowed by a discussion of possible future directions of this research.

8.1 Conclusions and key outcomes

This thesis investigated the power requirements of accelerometer-based HAR, demon-

strating the power limitation of kinetic energy harvesting (KEH) when it is used to

power a wearable device. The research undertaken in this thesis demonstrated the

effectiveness of using the generated KEH patterns for three main applications: hu-

man activity recognition, step counting, and hotword detection. The key outcomes

and conclusions of this thesis are presented below.

• Our study revealed that, although accelerometers are considered low-power

electronics in general, they can be the bottleneck of self-powered pervasive

HAR. Accelerometers are usually considered low-power electronics drawing

only about a few µW per sample per second (Hz). However, when used in

kinetic-powered devices, accelerometer power requirements is considered rela-

tively high compared to the total kinetic power available, which is also mea-

sured in µW .

• We proposed HARKE as a novel approach for HAR. The proposed HARKE

135
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infers human activity directly from energy harvesting patterns, without using

an accelerometer. By eliminating the accelerometer, a significant amount of

the harvested power is saved.

• Using extensive data collected from a commercially available piezoelectric en-

ergy harvester (PEH), we demonstrated the potential effectiveness of using

generated KEH patterns as a new source of information for human activity

recognition (HAR). We showed that the generated KEH signals changes to

clearly distinguishable patterns when the user changes activities.

• Although we have shown that good HAR accuracies are possible for many

common activities when HARKE is adopted, we have also found that the

kinetic power signal cannot distinguish very similar activities, such as going up

and down the stairs, with high accuracy. For such cases, an accelerometer has a

clear advantage with its triaxial measurement capability, which provides more

detailed (multi-dimensional) motion information, leading to high recognition

accuracy.

• We introduced a new framework based on Bayesian Decision Theory that

guarantees energy neutrality for HARKE. Our framework uses a capacitor to

store incoming energy harvested from a PEH for a fixed-length time window

and then uses all the stored energy to transmit an unmodulated signal, called

an activity pulse. Because different activities generate power at different rates,

the transmission and receiving signal strengths also differ. Thus, those signal

strengths can be used to classify the activities. Energy neutrality is guaranteed

because the transmission power of the activity pulse uses only the amount of

energy harnessed in the last time window, and no additional energy is required

to power sensing or classification components in the wearable device.

• We conducted the first study investigating the viability of step detection using

piezoelectric energy harvesting signals. We demonstrated that, like accelera-

tion, power traces also exhibit distinctive peaks for steps. We demonstrated

that widely used peak detection algorithms can detect steps from PEH power

generation patterns with an accuracy of 96% when the device is attached to
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the waist. However, more experimentation is still needed to study the effect

of different device placement.

• We demonstrated that VEH generated patterns can potentially be used as

a new source of information for detecting hotwords, such as “OK Google”,

used by popular voice control applications to distinguish user commands from

other conversations. Unlike existing sensors, such as microphones, gyroscopes,

or accelerometers, VEH enables pervasive voice control at a minimum energy

cost. We have shown that hotwords can be detected from the power generation

patterns of VEH circuits with up to 85% accuracy, which is comparable to

accelerometer-based hotword detection.

• Our study of VEH-based hotword detection has further revealed that the ori-

entation of a VEH device relative to speaking direction can have affect the

performance of VEH-based hotword detection. This finding may serve as an

important input to the design of next generation energy-harvesting mobile

devices.

8.2 Future Work

Some of the future research directions can be summarised as follows:

• The experimental analysis provided in this thesis was based on a single axis

kinetic energy harvester. However, exploring the possibility of using multi-

dimensional (multi-axial) kinetic energy harvesters may lead to more accurate

HAR, especially in the case of distinguishing very similar activities, such as

going up and down stairs. Using multi-dimensional (multi-axial) kinetic energy

harvesters which allow the generation of three output signals, one for each axis,

will enable more advanced training of the classifier, similar to HAR based on

a triaxial accelerometer.

• We analysed HAR accuracy when the accelerometer and the energy harvester

are used in a mutually exclusive manner. A logical future direction is to



chap8 138

consider a hybrid system where a triaxial accelerometer is sampled at a low

sampling rate (low power consumption), but the classifier is trained using

both the accelerometer samples and the KEH samples, thus enabling very

accurate HAR with low power consumption. The hybrid system combines

the advantages of both signals to realise a more flexible HAR with a goal to

achieve a better accuracy-power trade-off than that which is possible with the

mutually exclusive method.

• Harvesting energy from multiple sources, such as kinetic, thermal, and light,

is a recent trend to maximize the amount of power generation to cover the

power requirements. This would be another source for improving the accuracy

of HAR. For example, human body temperature may change for different

activities. We suspect that new thermal energy harvesting circuits may be

able to detect this change in the output signal, so thermal energy harvesting

may be used to improve the accuracy of HAR.

• Studying the relationship between the form factor (size) of the energy harvester

and the recognition accuracy of HAR is a valid future direction. It is known

that reducing the form factor of the harvester minimizes the amount of power

that can be generated. However, it is not known how this may affect the recog-

nition accuracy of HAR. It is also interesting to study how nanoscale energy

harvesting would affect both the output power and the recognition accuracy.

Exploring new materials such as graphene would also be very interesting.

• Power generation from a VEH in a wearable can be predicted using activity

switching probabilities because activities influence power generation. This

can lead to accurate power generation predictions, which may be useful in

designing more robust wireless communication systems for such devices.

• Using energy harvesting signals as a novel source of information may be applied

in a wide range of applications for sensing and tracking human health. For

example, it may be possible to identify a ”walking signature” of a person

that could help realise various applications including user authentication or

detecting abnormal walking behaviour. Structural health monitoring, such as
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bridges, buildings, or trains, might also be an interesting future application.
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