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Abstract 

Java class files are often distributed as jar files, which 
are collections of individually compressed class files 
(and possibility other files). Jar files are typically about 
I/2 the size of the original class files due to compression. 
I have developed a wire-code format for collections of 
Java class files. This format is typically l/2 to l/5 of 
the size of the corresponding compressed jar file (l/4 to 
l/10 the size of the original class files). 

1 Introduction 

This paper examines techniques for compressing (collec- 
tions of) Java class files. Java class files are generated by 
Java compilers, are the standard distribution medium 
for Java programs and are the usual way of providing 
programs to a Java virtual machine. Java class files con- 
tain a substantial amount of symbolic information. In 
the javac benchmark from SPEC JVM98, only 21% of 
the uncompressed class file size is actually taken up by 
the method bytecodes. One purpose of this is to avoid 
the need to recompile all Java classes that use a class 
X whenever X is changed. So long as the functionality 
depended on doesn’t change, previously compiled Java 
classes will work with the new version of X. 

Few interesting Java applications are comprised of a 
single class. Many applications are composed of hun- 
dreds or even thousands of classes. Java class files can 
be collected in jar files, which are collections of com- 
pressed Java class files (and possibly other files, such as 
images). Jar files are used both on disk and for network 
transmission. 

In many applications, Java programs are transmitted 
across the network. While ample bandwidth is available 
in some situations, there are many applications in which 
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there are slow modem or mobile communication links 
in the network. The jar format normally uses the gzip 
compression mechanism to compress the files in a jar 
file. This typically provides a factor of 2 compression 
over standard Java class files. However, the compressed 
jar files for substantial applications can still be quite 
large (50-200K is not unusual), and take several minutes 
to transmit over a slow communication link. 

I use a number of approaches to creating smaller files 
that contain the same information as a jar file: 

l Developing a more efficient and compact organiza- 
tion of classfile information. 

l Taking steps to allow gzip to do a better job of 
compressing the information we use. 

l Sharing information across class files, to reduce 
transmission of redundant information. 

Although this paper focuses solely on the problem 
on compressing Java class files, many of the techniques 
described would be generally useful for developing com- 
pact object serialization protocols. 

2 Methodologies and Baselines 

In this paper, I explore wire-formats for collections of 
Java class files. I assume that bandwidth is the most 
precious resource. Time required to compress a Java 
archive is relatively unimportant, while the time re- 
quired to decompress must be reasonable (not signifi- 
cantly longer than using gzip). The wire-format is a 
sequential format: all of the class files must be decom- 
pressed in sequence. As they are decompressed, they 
can be written to disk as a conventional jar file or sepa- 
rate classfiles. These would be completely conventional 
classfiles that could be used by a standard JVM. Alter- 
natively, each class can be directly loaded into a JVM 
as it is decompressed, saving the expense of construct- 
ing the classfile. For this, a custom classloader would 
be required, but no other changes to the JVM would be 
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CLIPS expert shell system 

resident database 

120 68 62 
115 74 55 

sjOr non-classfiles excluded, debugging information stripped, no compression 
jar non-classfiles excluded, class files as distributed (debugging information often not stripped), files compressed individually 

sjar non-classes excluded, debugging information stripped, files compressed individually 
sjOr.gz non-classes excluded, debugging information stripped, individual files not compressed, jar file gzip’d as a whole 

Table 1: Benchmark programs studied in this paper 

required. See Section 11 for a discussion of eager class 
loading. 

While it would be possible to include debugging in- 
formation in a wire-format, we would typically prefer 
to save space by excluding it. I do not encode the at- 
tributes LineNumberAttribute, LocalVariableTable nor 
SourceFile. Also, because my approach requires that 
we renumber entries in the constant pool, I exclude any 
unrecognized attributes (we would not be able to up- 
date references to the constant pool in unrecognized 
attributes). 

I also exclude any non-class files (e.g., PNG image 
files) from archive in performing my size calculations. I 
report compression as the size of the compressed object, 
as a percentage of the size of the original object. To 
have a consistent and fair comparison of the size of my 
archive format with standard jar files, I performed the 
following transformations to the benchmarks I studied: 

l Remove LineNumberAttribute, LocalVari- 
ableTable and SourceFile attributes 

l Garbage collect the constant pool (remove unused 
constants) 

l Sort entries in the constant pool according to type 

l Sort UTF constants according to their content 

These changes typically give a 20% improvement in 
jar file size Sorting of the constant pool entries can give 

an improvement of several percent when the class file is 
compressed, because it enables zlib to do a better job 
of finding repeated patterns. In this paper, when I re- 
port the size of original and compressed class files, those 
sizes reflect the improvements gained by these transfor- 
mations. Any improvements I report for the new tech- 
niques in this paper reflect improvements beyond those 
gained by removing debugging information and garbage 
collecting the constant pool. 

I will often refer to gzip and zlib compression inter- 
changeable. However, in most situations where I apply 
gzip compression I do not include the 18 bytes for the 
GZIP header and trailer. 

2.1 Gzip’d jar files of uncompressed class files 

The compression done in normal jar files are on a file- 
by-file basis. We can achieve better compression if we 
compress an entire jar file, where the individual files 
in the jar file have not been compressed separately. In 
tables and text, I refer to these as jOr . gz files (0 for no 
compression within the jar file). 

3 Basic approaches 

When considering techniques for compressing Java 
classfile archives, one of the first techniques that jumps 
to mind is reusing constant pool entries. Constant pool 
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Uncompressed 
Size (Kbytes) 

Component swingall javac 
Total size 3,265 516 
excluding jar overhead 3,010 485 

Field definitions 36 7 
Method definitions 97 10 
Code 768 114 
other 72 12 
constant pool 2,037 342 

Utf8 entries 1,704 295 
if shared 371 56 

II if shared & factored 235 26 11 

Table 2: Classfile breakdown 

entries are the things that can be referenced within a 
classfile: examples include classes, methods, integers, 
doubles, and utf8 encodings of Unicode strings. Of- 
ten, constant pool entries reference to other constant 
pool entries. For example, the constant pool entry for 
a method reference consists of a reference to (the con- 
stant pool entry for) the class containing the method, 
and a reference to the signature of the method. 

As you can see in Table 2, the constant pool entries 
often make up most of the size of a classfile. In fact, 
the Utf8 entries alone often make up most of size of a 
classfile. Simply sharing Utf8 entries across classfiles 
leads to substantial reduction. 

But now we have to face another issue: encoding 
of references to constant pool entries. In most class- 
files, the number of constant pool entries is relatively 
small. While the standard classfile format usually al- 
lots 2 bytes to encode a reference to a constant pool 
entry, we can often do so in a single byte. If we com- 
press single byte control pool references, we are likely 
to get good compression. But if we pool constant pool 
entries, it is unlikely that we will be able to encode most 
constant pool entries in a single byte. 

Numerous data compression algorithms have been 
developed. Many of the lossless compression algorithms 
in wide use were originally designed as text compression 
algorithms, and work on a stream of bytes. In partic- 
ular, the Lempel-Ziv family of compression algorithms 
have a very strong byte orientation. While it might be 
possible to adapt them to compress a stream of larger 
values (e.g., 16-bit values), it isn’t clear how efficient 
they would be. At any rate, efficient implementations 
of the byte-oriented zlib library exist on most platforms 
and is part of the standard Java API, so utilizing the 
existing library makes sense. 

A first solution is to use different numbering for dif- 
ferent kinds of constant pool entries (e.g., we can have 
Class 17, and MethodRef 1’7, and IntegerConstant 17). 

In almost all’ contexts, we know the type of the con- 
stant pool entry whenever we reference it, so this won’t 
cause confusion. 

This helps some and might be sufficient for small 
archives. However, on large archives these techniques 
will not be sufficient to allow us to encode most refer- 
ences in a single byte. In addition to encoding most 
references within a single byte, we would also like the 
encoding bytestream to have a very skewed distribu- 
tion, so that it can be further compressed. Techniques 
for encoding references are discussed in more detail in 
Section 5. 

Even sharing the Utf8 entries still results in a fair bit 
of redundancy. Each time a classname is encoded, the 
full package name is encoded (e.g., java.lang), and class- 
names appear in full text in the types of fields and meth- 
ods. For example, the type of a method that takes one 
string as an argument and returns a string is encoded as 
(Ljava.lsng.String;)Ljava.lang.String;. If we factor 0Ut 

this duplication, we get another substantial reduction in 
the space required for string constants. Note that this 
factoring amounts to a wholesale reorganization of the 
classfile; the reorganization is described in more detail 
in Section 4. 

The savings in uncompressed size realized by elim- 
inating redundancy often doesn’t fully materialize in 
the size of a compressed archive. By eliminating re- 
dundancy, we have removed one of the elements the 
compressor was using to get better compression. While 
factoring and other techniques are useful, they are often 
not as effective as they seem at first. 

4 Structuring information 

In order to reduce redundancy in my archive format, I 
redesigned the basic structure of information in a Java 
classfile. You can think2 of this restructuring as being 
an in-memory format for encoding classfiles, which is 
built and then encoded into a bytestream. 

Some of the things I did in my reorganization: 

l Classnames are encoded as a package name and 
a simple class name. All classes from the same 
package will share the same package name, and 
classes from different packages can share the same 
simple class name. For example, the package name 
j ava . lang will occur only once. 

l In Java classfiles, the types of methods and fields 
are encoded as strings. In my restructured for- 
mat, a method type is encoded as an array of 

‘The exception to this is the bytecode instructions for loading 
constants (LDC, LDC-W, and LDCP-W). We can handle this by in- 
troducing new pseudo-opcodes in the compressed files that describe 
the type of constant being loaded (e.g., LDC-Integer). 

‘In fact, my implementation creates an encoding as it traverses 
the classfile without completely building an in-memory restructured 
classfile. 
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classes containing the return type and the argu- 
ment types. A field type is just a class. Primi- 
tive types and array types are encoded as special 
class references that are converted back to primi- 
tive types when decompressed. 

l Generic Attributes have been eliminated. Instead, 
additional flags are set in the access flags that say 
whether specific attributes apply to this object. 
For example, there is a bit in the access flags for 
a Field definition that tells whether the field has 
a constant value. If so, then there is an additional 
reference to a constant value (e.g., an integer or a 
string). 

Once we have a collection of class files in our internal 
format, the wire code is generated/parsed by a preorder 
traversal of the data-structure, starting from the roots. 
As each edge is traversed, an appropriate reference is 
encoded. As each primitive (int, long, float, or double) 
is encountered, it is encoded. 

The internal format for Code (attached to Methods- 
Definitions) is more complicated. I separate bytecode 
into streams of opcodes, registers numbers, integer con- 
stants, virtual method references, field method refer- 
ences, and so on. The encoding of bytecodes is discussed 
more throughly in Section 7 

5 Compressing References 

Given a structure for the data we which to encode (Sec- 
tion 4), we need a way of encoding a reference to an ob- 
ject we may have seen before. For primitives (ints, dou- 
bles, . ..). I just encode the value of the object, without 
bothering to check if I have seen the object previously. 

Otherwise, we need an encoding that either says we 
have never seen the object before, or identifies the pre- 
viously seen object. If we have never seen the ob- 
ject before, then at that point we encode all of the 
fields/components of the object. 

I consider a number of approaches to encoding refer- 
ences. The basic approach that worked best was to use 
a move-to-front encoding. In a move-to-front encoding, 
we maintain an ordered list of all of the objects seen. 
Whenever a previously seen object is to be transmitted, 
we transmit the position of the object in the list (1 for 
the first object in the list) and move the object to the 
front of the list. To transmit an object not seen previ- 
ously, we transmit the value 0 and insert the object at 
the front of the list. 

I implemented move-to-front queues using a modi- 
fied form of a Skiplist [PugSO] (the Skiplist structure 
was modified so that each link recorded the distance it 
travels forward in the list). By starting the search for 
an element at the bottom level of the Skiplist, increas- 
ing the level to the appropriate level for traversing the 

Skiplist, and then using a normal Skiplist traversal, I 
was able to achieve an expected time bound of O(log Ic) 
to do a move-to-front operation on element Ic of the 
queue, regardless of the total number of elements in the 
queue. 

This was all that was needed in the decompressor. 
In the compressor, we also need a way, given an element 
we may have seen before, to determine if we have seen 
the element before and if so, where the element is now 
in the queue. This was implemented by a hashtable 
from elements to the Skiplist nodes that store them. 
Once we are at the Skiplist node for an element, we 
can walk forward to the end of the list (at each node, 
follow the highest link out of that node, keeping track 
of the distance traversed by each link). Knowing the 
distance to the end of the list and the total size of the 
list allows us to calculate the distance of the element 
from the front of the list. These operations can all be 
done in expected time O(logn), where n is the number 
of elements in the queue. 

A move-to-front generally does an excellent job of 
producing lots of references with small encodings, which 
then can often be encoded in a single byte and com- 
presses well with a Huffman encoding. However, a 
move-to-front encoding pretty much destroys any pat- 
terns in the object stream (e.g., an aload- instruction 
is often followed by a getf ield instruction). I tried 
using a move-to-front encoding for JVM opcodes, then 
using zlib on the result, and got much worse compres- 
sion than using zlib on the original JVM opcodes. The 
zlib compression scheme both finds repeating patterns 
and uses a Huffman-like encoding to efficiently trans- 
mit a stream of bytes with a nonuniform distribution 
pattern. Thus, a move-to-front encoding may do an ex- 
cellent job when zlib cannot find significant repeating 
patterns to exploit, but do poorly when they exist. 

I compared using zlib on the byte stream generated 
by a move-to-front encoding with using a Arithmetic 
encoding on the indices generated by a move-to-front 
scheme. In the Arithmetic encoding, encoding an in- 
dex that occurs with probably p requires log2 l/p bits. 
Given the hypothesis that a move-to-front encoding de- 
stroys references patterns and only produces a skewed 
probably pattern, we would expect the Arithmetic en- 
coding to do better. In the cases I examined, this ex- 
pectation was fulfilled. For example, for references to 
virtual methods in rt.jar, using zlib gave results that 
were 2% bigger than an Arithmetic encoding. 

However, these results do not include the size of the 
dictionaries for the arithmetic encoding, and arithmetic 
encoding is rather expensive to compress and decom- 
press. The size of the dictionary would be larger than 
the savings unless it was fitted to a curve and just the 
parameters for the curve were encoded. Given the negli- 
gible or non-existent benefits and the performance cost 
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ClassDefinition [] classesDefined; 
class MethodRef { 

class PackageName ( String name; ) ClassRef & owner; 

class SimpleClassName ( String name; ) MethodName & methodName; 

class MethodName ( String name; ) ClassRef t type[]; 

class FieldName { String name; ) 3 
class MethodDef inition { 

class ClassRef { MethodRef & method; 

PackageName & packageName; 
int access-flags; 

SimpleClassName & simpleClassName; Code code; 

3 ExceptionRef & exceptionsThrown[]; 

class ClassDefinition { 
ClassRef t thisclass; 
int access-flags; 
ClassRef & superclass; 
ClassRef & [I interfaces; 

) 
class FieldRef ( 

ClassRef & owner; 
FieldName & f ieldName ; 
ClassRef & type; 
7 

MethodDefiniton [] methods; J 

FieldDefinition [] fields; class FieldDefinition C 

3 
FieldRef & field; 

class ExceptionRef 1 int access-f lags ; 

ClassRef & clazz; 
Object & constantvalue; 

3 3 
& is used to indicate a reference to an object that may be shared and might have been seen before 

Figure 1: Fragment of Internal format for class files 

Benchmark 
rt 
swingall 
tools 
icebrowserbean 
jmark20 
visaj 
ImageEditor 
Hanoi 
Hanoi-big 
Hanoi-jax 
javafig-dash0 
javafig 
201 -compress 
202-jess 
205raytrace 
209..db 
213-javac 
222mpegaudio 
228-jack 

Simple Basic fieq Cache 
503,522 480,535 398,303 337,201 
172,372 159,869 136,241 117,254 
94,293 85,547 71,396 64,417 
16,935 14,907 12,945 11,616 
18,041 14,497 12,583 9,897 

124,297 116,316 99,216 84,854 
25,669 23,473 19,886 16,871 

5,953 4,704 4,245 3,824 
3,866 2,973 2,617 2,370 
3,078 2,376 2,112 1,883 

22,727 19,963 17,768 16,870 
27,897 23,285 20,596 19,573 

757 516 506 497 
10,032 8,256 6,831 6,347 
2,603 1,966 1,812 1,762 

843 575 489 483 
22,338 17,815 15,109 14,325 

4,568 3,440 3,143 2,917 
6,025 4,559 4,077 3,993 

Move-to-front 
Transients 

Basic Transients Use Context and Context 
301,704 299,159 293,451 291,052 
110,370 109,211 107,247 106,223 
57,207 56,778 55,408 54,998 
10,596 10,550 10,260 10,233 
9,879 9,954 9,622 9,658 

76,585 76,080 74,800 74,400 
15,834 15,750 15,361 15,323 
3,788 3,794 3,648 3,650 
2,316 2,318 2,243 2,242 
1,852 1,874 1,814 1,832 

15,954 15,891 15,450 15,380 
18,199 18,079 17,630 17,481 

461 477 456 470 
6,224 6,176 5,969 5,876 
1,646 1,671 1,550 1,576 

466 476 455 467 
14,193 14,041 13,622 13,504 
2,706 2,708 2,644 2,674 
3,723 3,747 3,521 3,542 

Table 3: Size (in bytes) of compressed references 
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ditching the built-in zlib decoder for a. arithmetic de- 
coder, I decided that this option wasn’t worth pursuing. 

5.1 Variants 

I considered the following variants, as 

l baselines, to see the advantages given by the move- 
to-front encoding; 

l competitors, that in the end were not as effective; 
and 

l variants, that provide minor improvements in com- 
pression. 

Except where noted, seperate pools were used for 
virtual, interface, static and special method references, 
and for static and instance field references. The re- 
sulting indicies are encoded as a byte stream and com- 
pressed as described in Section 6. 

5.1.1 Baseline: Simple 

Each object is assigned a fixed id. Id’s are assigned se- 
quentially, as objects are first seen. All id’s are encoded 
as two bytes. A single pool is used for all method refer- 
ences, and a single pool is used for all field references. 

5.1.2 Baseline: Basic 

Each object is assigned a fixed id. Id’s are assigned 
sequentially, as objects are first seen, but are encoded 
compactly. 

5.1.3 Competitor: Freq 

Like Basic, except that ids were assigned to objects 
so that the most frequently referenced objects had the 
smallest id’s. Elements that only occur once are all en- 
coded with the same special id. 

5.1.4 Competitor: Cache 

The Freq scheme was augmented with a LRU cache of 
16 elements, implemented as a move-to-front queue. If 
an object is in cache, it is encoded according to its po- 
sition in the cache. Separate caches were used for each 
context. 

5.1.5 Variant: move-to-front, transients 

In this scheme, objects that are seen exactly once are 
encoded specially and are not entered into the move-to- 
front queue. 

5.1.6 Variant: move-to-front, use context 

For method references, in addition to maintaining dif- 
ferent MTF queues for different method kinds (virtual, 
interface, . ..). we also maintain different MTF queues 
based on top two values of the computed approximate 
stack state (described in Section 7.1). Thus, we have 
one MTF queue for virtual methods invoked when there 
are two integers on top of the stack, and another MTF 
queue for virtual methods invoked when the top two 
values on the stack are a reference and an integer. 

I do use a common pool for method names across all 
method types (virtual, static,...), particularly to avoid 
creating duplicate constant pool entries. However, un- 
der this option, we maintain different MTF queues for 
each method type. 

One complication here is that when a method refer- 
ence is seen for the first time, it must be inserted into 
all of the MTF queues where it might be seen later. 

6 Encoding integers 

Both in encoding integers that naturally appear in a 
classfile (e.g., integer constants in bytecode, maximum 
stack size for code) and in encoding the indices arising 
from an encoding of references, we need to consider how 
to convert them into a bytestream we can hand off to 
the compressor. 

Of course, a sequence of 16 or 32 bit integers can 
easily be turned into a sequence of 8 bit integers. But 
this sequence would contain a mixture of high bytes and 
low bytes, which would likely have different frequency 
distributions and result in poor compression. 

The approach we take for encoded unsigned integers 
is to encode the lowest seven bits in a byte, with the 
high bit set if more bits are coming. This works well 
in cases where we don’t know the maximum value or 
distribution but expect that the distribution is skewed 
towards small numbers (it works very poorly if most 
numbers being encoded are in the range 128-255). 

In other situations both the encoder and the decoder 
know the range of possible values (e.g., that the integer 
to be encoded is in the range 0...4242). In such cases, 
we use a scheme that takes into account the range of 
values that need to be transmitted. If we know that 
values 0 . . . (n - 1) need to be transmitted (n I 2m), 
we reserve the highest T = [SJ bit patterns in the 
first byte to indicate that this is a two-byte value. If 
x 2 256 - r, x is encoded as 

[((x - (256 - ~1) mod r) + 256 - T, [(x - (256 - r))/rJ] 

Using variable length encodings as above for signed 
integers would result in a multi-byte encoding of all neg- 
ative numbers since their representation is at the high 
end of the unsigned range. We fix this by essentially 
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Compression for 
Bytestream 

Opcodes 
using Stack State 
using Custom opcodes 

Register numbers 
Branch offsets 
Method references 

1 Benchmark programs 
javac mpegaudio 

) 48% 43% 
36% 17% 

I 
35% 15% 
34% 13% 
39% 34% 
41% 52% 
35% 28% 

Table 4: Compression for bytecode components 

moving the sign bit of signed integers into the least sig- 
nificant bit position; x is encoded as x 2 0 ? 2x : 
-2x - 1. Thus, (-3, -2, -l,O, 1,2,3} is encoded as 
{5,3,1,0,2,4,6}. 

7 Compressing Bytecodes 

Java bytecode sequences are a mixture of opcodes, in- 
teger constants, register numbers, constant pool refer- 
ences and branch offsets. As has been suggested pre- 
viously [EEF+97], we might be able to achieve better 
compression if we separate that information into sepa- 
rate streams and compressed them independently. 

Of course, note the “we might”. It isn’t guaran- 
teed. For example, local 0 is initially (and generally 
throughout a method) used to store this (for non- 
static methods). There are some instruction patterns 
that depend on the registers and other values in the 
bytecode sequence. For example, an aload instruction 
is much more commonly followed by a getf ield in- 
struction when the aload instruction loads local 0. As 
it turns out, we would pick this up even though byte- 
codes are separated, because a special opcode is used for 
loading a reference from local 0 (aload-0). When we 
separate out the operands from the opcodes, we don’t 
separate out the implicit operands in opcodes such as 
iconst2 and aload-0. 

Table 4 shows sample compression factors for byte- 
codes, and for various components of bytecodes. As you 
can see, we get substantially better compression factors 
for a sequence of opcodes than for a sequence of byte- 
codes. In some unusual cases, such as mpegaudio, we 
get absolutely incredible compression ratios. The other 
sequences don’t always compress as well, but the overall 
effect is a substantial win. 

7.1 Approximate Stack State 

I also performed a calculation of the current stack state 
(a computation of the number and types of values on 
the stack before executing each instruction). This stack 
information was used to collapse opcodes. For exam- 
ple, if we know the type of the element on the top of 

the stack, we can collapse all four addition opcodes into 
the iadd instruction, and regenerate the correct opcode 
upon decompression. No backwards branches were con- 
sidered, and I only remembered the stack state over 
one forward branch at any one time (because the de- 
compressor has to duplicate this computation, it would 
be impossible to consider backward branches) ~ Because 
of these limitations, the calculation was an approxima- 
tion: sometimes, the system would not know what state 
the stack was in. The improvements realized by this 
optimization are modest, as seen in Table 4, but not 
expensive to computing while compressing or decom- 
pressing. Computing the stack information is also use- 
ful in compression references (§5). I have incorporated 
this optimization into my baseline results. 

7.2 Using Custom Opcodes 

I tried a custom opcode approach to compressing JVM 
opcodes [EEF+97, FP95]. The program looked for pairs 
of adjacent opcodes, that, if replaced by new opcode, 
would most reduce the estimated length of the pro- 
gram, where an opcode that occurred with frequency 
p was expected to require log,(l/p) bits. It also consid- 
ered skip-pairs, that allowed for a slot between the two 
opcodes being combined. After each new opcode was 
introduced, the frequencies were recalculated. 

Although this approach substantially decreased 
number of opcodes, gzipping the resulting sequence of 
opcodes gave a result that was only about slightly bet- 
ter than gzipping the original sequence of opcodes (see 
“Custom opcodes” in Table 4). As implemented, com- 
puting the custom opcodes was relatively expensive, but 
was very inexpensive to decompress. However, given the 
meager improvements, I decided not to incorporate this 
technology in the results reported here. Using custom 
opcodes may be an attractive in situations where gzip 
compression is not being used (because it is not avail- 
able on the client or it is too expensive to run on the 
client). 

8 Compressing Sets of Strings 

The zlib compression algorithm works very well on text, 
and so we correctly expect that it would work well on 
a list of strings. However, because strings make up a 
substantial portion of the information in Java class file 
(even once we have factored out information like class 
names and package names), it is important to do as well 
as possible. 

Our approach to handling strings is similar to that 
for objects in general. The first time a string is en- 
counted, we encode a special index to indicate a value 
not seen before, and we write the Unicode string using 
the UTF encoding. Different categories of strings (e.g., 
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% of size of jar file 
of gzip’d classfiles 

Option javac mpegaudio 
Standard 22% 37% 
Packed Separately 52% 56% 
Not gzip’d 49% 99% 
Packed Separately and not gzip’d 87% 118% 

Table 5: Effects of separate packing and not gzipping 

string constants or method names) are put into seper- 
ate streams. Strings lengths are written to a separate 
stream than the Unicode characters (mixing the two de- 
grades compression). When a string is encounted again, 
we encode a reference to it using the scheme used for 
objects in general, as discussed in Section 5 (e.g., the 
index into a move-to-front queue or a fixed-id). 

9 Other issues 

One reason that my packed format is more compact 
is that multiple class files are combined into a single 
packed format that shares information. If each class file 
were packed separately, the total amount of data that 
needs to be communicated increases. Another question 
is how much of the compression in my packed format is 
due to gzip, and how much is because of the more com- 
pact encoding. On normal classfiles, gzip provides a 
compression factor of about 2. These effects of combin- 
ing classfiles and using gzip are broken out in Table 5. 
Not using gzip may be appropriate on very lightweight 
clients where running zip is impossible or too expensive. 

There is one issue we must be careful about when 
decompressing an archive. Normally, when we need to 
create a reference to a constant pool entry in a recon- 
structed classfile, we can just assign the element refer- 
enced to any free slot in the constant pool. However, the 
bytecode LDC instruction can only encode an index in 
the range l-255. These instructions can only reference 
integer, float and string constants. 

The first fix is to assign integer, float and string con- 
stant pool entries the smallest available index. Other 
constant pool entries are assigned in the largest avail- 
able index; we transmit the total number of constant 
pool entries required as part of are encoding. 

This almost fixes the problem. However, if there 
are more than 255 integer, float and string constants 
referenced in a classfile, which ones are assigned small 
indices? We would like to ensure that the same set 
of constants is assigned small indices as in the origi- 
nal classfile; otherwise, we would have to change some 
LDC instructions to LDC-W instructions, which are of 
different sizes. This would then require patching all 
jump offsets that traversed the changed instruction. 

Instead, if a integer, float or string constant is refer- 
enced with a LDCW instruction, then it is assigned a 

high constant pool index; if it is referenced with a LDC 
instruction, it is assigned a low constant pool index. 
This assumes that a classfile doesn’t reference the same 
constant pool entry with both a LDC and a LDC-W 
instruction. It would be inefficient to do so, and can 
be fixed (and made more efficient) when the classfile is 
encoded if necessary. 

This almost fixes the problem, except that a inte 
ger, float or string constant can also be referenced as a 
constant value for a field. We use an additional bit in 
the access flags for a field to encode whether a constant 
value int/float/string should be assigned a high index. 

10 Evaluation 

I report my compression results in Table 6. I used the 
move-to-front with transients and context scheme for 
references and used calculated stack state to collapse 
JVM opcodes. 

I report the size of jar files, jOr.gz files (jar files with- 
out individual classfile compression but with overall zlib 
compression), Jazz files [BHV98] (Section 13.1) and the 
archives produced by the techniques described in this 
paper. 

I also report, in the archives I produce, how much 
space is occupied by strings (string constants, class and 
method names , . ..). opcodes, integers, references and 
other (including floating point constants, branch offsets 
and registers). As you can see, no one element domi- 
nates, so obtaining substantial additional reduction in 
archive size would likely require substantial reductions 
in all elements. 

10.1 Execution time 

We timed the execution speed of both the compression 
routine and the decompression routine. In the decom- 
pressor; we just computed the time required to build 
each classfile internally; we did not include the time re- 
quired to store the class files into a jar file. Thus, these 
times would be appropriate for an application using ea- 
ger class loading (Section 11). 

The decompressor can decompress about 75-120 
Kbytes of wire-format classfiles per second (which 
would expand into a substantially larger collection of 
classfiles). This is on a Sun Ultra 5 workstation with 
a 333Mhz processor using the Sun Solaris production 
JVM, version 1.2fcs, which achieves a JVM98 Specmark 
of 16.6. 

The compressor is about 15 times slower than the 
decompressor, but at the moment it still contains a fair 
bit of code for generating statistics and is a very general 
purpose compressor (i.e., can implement many differ- 
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__---- -_--.--- -- 
Size in KBytes Size as % of jar format Size as % of packed format 

Benchmark jar jOr.gz Jazz Packed jOr.gz Jazz Packed Strings Opcodes Ints Refs Mist 
209-db 6 5 4 3 84% 66% 49% 34% 28% 9% 17% 13% 
201 -compress 10 6 4 3 59% 41% 29% 29% 32% 14% 17% 8% 
Hanoi-jax 21 16 12 7 74% 58% 32% 21% 30% 13% 27% 9% 
205saytrace 24 15 12 7 64% 50% 30% 20% 33% 9% 22% 16% 
Hanoi-big 30 20 15 9 67% 52% 29% 25% 27% 14% 26% 8% 
Hanoi 46 31 23 13 67% 49% 29% 22% 29% 12% 29% 8% 
228-jack 55 36 30 17 65% 55% 30% 32% 21% 14% 21% 11% 
222mpegaudio 62 45 34 23 73% 54% 37% 9% 24% 37% 12% 18% 
icebrowserbean 116 88 80 39 76% 69% 34% 21% 31% 11% 26% 12% 
javafig-dash0 131 113 102 53 86% 78% 41% 23% 28% 8% 29% 12% 
202-jess 136 64 42 23 47% 31% 17% 23% 28% 12% 26% 11% 
javafig 170 143 122 64 84% 71% 38% 28% 26% 8% 27% 11% 
jmark20 173 91 86 35 53% 50% 20% 22% 25% 13% 28% 12% 
213-javac 226 143 90 50 63% 40% 22% 18% 29% 15% 27% 11% 
ImageEditor 257 162 123 64 63% 48% 25% 22% 28% 16% 24% 10% 
tools 737 513 477 204 70% 65% 28% 26% 27% 10% 27% 11% 
visaj 1,157 703 691 238 61% 60% 21% 23% 26% 12% 31% 8% 
swingall 1,657 998 887 338 60% 54% 20% 19% 28% 13% 31% 9% 
rt 4,652 2,820 8,435 1,069 61% 181% 23% 22% 28% 13% 27% 10% 

jar Size of jar file with individual class files stripped of debugging information and compressed 
jOr .gz Size of gzip of jar file with class files stripped of debugging information and but not compressed 

Jazz Size of Jazz archive [BHV98] (See Section 13.1) 
Packed Size of archive produced by techniques in this paper 

100% 

a2 70% 
a 
-5 60% 

Table 6: Compression ratios 

10 100 1,000 10,000 

Size of jar file (KBytes) 

Figure 2: Graph of compression ratios 
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_l--_l. 
Compression Decompression 

File time (sets) time (sets) Kbytes/sec 

rt 170.62 8.58 125 
swingall 54.97 2.92 116 
tools 27.61 1.51 135 
icebrowserbean 4.72 0.31 127 
jmark20 5.59 0.42 83 
visaj 36.5 2.07 115 
ImageEditor 7.47 0.53 122 
Hanoi 1.74 0.13 101 
Hanoi-big 1.07 0.10 86 
Hanoi-jax 0.80 0.09 75 
j avafig 8.72 0.41 157 
javafig-dash0 7.16 0.49 109 
201-compress 0.25 0.09 31 
202-jess 3.18 0.24 95 
205raytrace 1.02 0.13 56 
209-db 0.27 0.09 31 
213-javac 6.56 0.39 129 
222mpegaudio 2.42 0.19 121 
228-jack 2.50 0.18 92 

Table 7: Execution times 

ent compression schemes). A rewrite of the compressor 
should provide substantial speed improvements. 

The decompressor is 36 Kbytes in jar format, so 
if the decompressor had to be downloaded along with 
a packed archived, it would only be advantageous for 
larger archives. The decompressor is 23 Kbytes in jOr.gz 
format, so it could be loaded by first downloading (a 
tiny) a classloader than understood jOr.gz archives, and 
then downloading the decompressor. If the decompres- 
sor were installed as an standard extension, then this 
wouldn’t be an issue and would be fine for even very 
small archives. 

11 Eager class loading 

Normally, Java classfiles are loaded on demand. Partic- 
ular when each classfile is loaded via a separate file or 
net connection, this can be a huge win. However, when 
classfiles are loaded out of an archive (a jar file or other 
Java classfile archive) that is downloaded over the net, 
it is a more dubious idea. To allow on-demand loading, 
the archive must be cached on disk or in memory. If it 
is cached on disk, that bytes forming the archive may 
need to be copied in memory several times (with a good 
and large file system cache, they probably won’t need 
to be retrieved from disk). 

In Sun’s (Spare Solaris 1.2) implementation of class- 
loading from downloaded jar files, no entries can be ex- 
amined until the jar directory is downloaded, which is at 
the very end of the jar file. The jar file is cached on disk 

and kept open until the virtual machine shuts down. It 
might be possible to fix some of these implementation 
issues, so that entries could be accessed once they have 
arrived, and the jar file would be deleted once the class- 
loader than opened it was unreachable. But the archive 
would still have to be kept cached while classes were 
still being loaded, and classes would likely be copied in 
memory several times before being loaded. 

An alternative approach would be ea- 
ger class loading - to load classes into the 
JVM as soon as they arrive (i.e., invoke 
java.lang.Classloader.defineClass(. . .)), with- 
out buffering them or waiting for the entire archive to 
arrive. This allows us quicker access to some of the 
class files in the archive, and eliminates the need to 
cache or buffer a copy of the jar file. 

If this resulted in loading many classes that were 
not needed, it might result in increased resource costs 
or performance problems. But this is already an issue 
for Java archive. If you are going to download a large 
archive over a network for direct execution, you already 
want to make sure that most of the classes will be ac- 
tually used. Otherwise, you will pay the transmission 
costs for classfiles you won’t use. There are several ap- 
proaches to increasing the percentage of classfiles that 
are actually used. A tool such as JAX may be used to 
eliminate from third-party libraries classfiles that can- 
not be loaded by the application being distributed. Pro- 
filing [KCLZ98] could be used to determine a desirable 
order for classes. You could also break up packages into 
separate archives, and have rarely used classfiles loaded 
separately. 

The eager class loading approach works with a stan- 
dard jar archive, as well with the packed format. Note 
that before a class X can be loaded, the superclass of X 
and all interfaces implemented by X must be loaded. If 
the request to load X is done in a thread separate than 
the one which is handling the download and spawning of 
threads to load classes, the system won’t deadlock, but 
it also won’t be efficient. Instead, we should make sure 
that the superclass of X and the interfaces implemented 
by X appear in the archive before X. 

12 Jar functionality 

Java jar files provide functionality beyond just being 
an archive of class files. In particular, jar files can con- 
tain non-class files (gif images, property files) and the 
jar manifest, which contains information such as digital 
signatures. 

The basic solution to this is to combine a packed 
java archive with a standard jar file that contains all 
of the non-class files from the jar archive being emu- 
lated. One issue that needs to be dealt with is that 
compressing and decompressing a Java classfile using 
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Paper 
Slim Binaries [KF97, KF, Frar-- 
JShrink, Dashb, and Jax 
jar.gz format (82.1) 
Clazz format [HC98] 
Jazz format [BHV98] 
This paper (on programs > 10K bytes) 

classfiles 
59 

65 - 83 
55 - 85 
52 -- 90 
40 - 70 
17 - 41 

Table 8: Results on wire-code program compression in 
related work 

the format proposed in this paper will likely modify the 
classfile by renumbering the constant pool. Thus, any 
signatures for the original classfiles will be invalid for 
the decomposed classfiles. However, the decompression 
is deterministic: decompression of a packed archive will 
always result the identical set of classfile. Therefore, if 
you wish to sign your classfiles, you must use the follow- 
ing approach: compress the classfiles, and then decom- 
press the classfiles. Sign the decompressed classfiles, 
and ship the signed manifest from the decompressed 
classfiles along with the packed archive. 

13 Related Work 

Many papers have argued and discussed different as- 
pects of machine independent intermediate forms, such 
as their suitability for run-time optimization. Given 
the wide-spread use of Java, my goal was to develop a 
compact wire-code format for Java, without regard to 
the merits or problems of the Java virtual machine. A 
comparison of quoted compression results from related 
work is provided in Table 8. 

Ernst et al. [EEF+97] discussed two kinds of code 
compression: wire-code and directly executable. The 
technique I have proposed is a wire code, so I will limit 
myself to comparisons with the wire-code described by 
Ernst et al. [EEF+9’7]. Ernst et al. consider only 
code segments of full executables, and thus don’t deal 
with significant amounts of symbolic linkage informa- 
tion nor data such as strings and floating point con- 
stants. They use the ICC intermediate form [FH95], 
which is a tree based format. It has been suggested 
that a tree based intermediate form is more suited to 
compression [KF97]. Despite these differences, our ba- 
sic approach is very similar: break out dissimilar objects 
into different streams which are compressed separately. 

Michael Franz has proposed Slim Binaries jKF97, 
KF, Fra97] as a mechanism for distribution of compact, 
machine independent programs. It is based on an en- 
coding of the abstract syntax tree and symbol table of 
a program. The papers on Slim Binaries do not give de- 
tails of the encoding, but do give limited experimental 

results (Table 8). 
Lars Raeder Clausen et al. [CSCM98] describe a 

method of factoring Java classfiles by finding custom 
macros or opcodes, similar to the techniques described 
in [EEF+97]. They focus on embedded systems with 
small amounts of memory, and focus on reducing the 
size of bytescodes for loaded classfiles. Their techniques 
reduce the size of the bytecodes to about 70% -- 80% of 
their original uncompressed size and require modifica- 
tions to the JVM. 

Normally, an entire class file must be transmitted 
before a class loader will start to process it, and an 
entire jar file is transfered before it is used by a class 
loader. Krintz et al. [KCLZ98] describe methods that 
determine (based on profile information) which classes 
and methods are likely to be needed first, transmit the 
data needed for these classes and methods first, and al- 
low execution to start while the remaining information 
about classes and methods is still being transferred. In- 
voking a method which hasn’t arrived yet blocks until 
the method arrives. I have incorporated parts of this 
idea in my provision for eager class loading (5 11). Inter- 
mingling different classes could change the effectiveness 
of compression (since there would likely not be as much 
locality of reference). 

Tools such as Jax [LTS], Dash-O and JShrink per- 
form shrinking and obfuscation by renaming classes, 
methods and fields to have short, meaningless names 
and stripping out debugging information. The Jax tool 
(and perhaps the others) performs transformations such 
as removing methods that are never called and merg- 
ing a class into its superclass when it can prove that 
such a transformation doesn’t effect the semantics of 
the program. These tools typically give reductions of 
17% - 32% of the classfile size. Surprisingly, the tech- 
niques of Section 2, applied after applying DashO, gave 
an additional reduction of 2% in the size of the resulting 
compressed jar file. The apparent reason is the Dash0 
doesn’t sort the constant pool, leading to poorer com- 
pression. Transformations applied by these tools could 
be usefully combined with the techniques in this paper 
to provide greater compression than either technique 
alone. Tools such as Jax are particularlly using when 
an application uses a small portion of a library that is 
not installed on most clients. By extracting just the 
used portion of the library, the potential savings are 
unbounded. 

13.1 Jazz compression 

The Jazz format [BHV98] is also a custom compressed 
format for collections of Java class files. In that regard, 
it is very similar to the work described in this paper. 
However, the Jazz format does not achieve as good com- 
pression rations as the work described here. The Jazz 
format is a less radical format. It retains the exist- 
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ing kinds of Constant Pool entries, although it uses a 
global constant pool, sharing them across classfiles. But 
it doesn’t do the factoring my work does, which elimi- 
nates the repetition of package names in classnames and 
of classnames in signatures. Also, it uses a fixed Huff- 
man encoding indices for each kind of constant pool en- 
try, that doesn’t take locality of reference into account. 

The Clazz format described by Horspool and Cor- 
less [HC98] was a predecessor of the Jazz format. While 
there are a number of similarities, the Clazz format is 
applied to individual classfiles in isolation, and there- 
fore does not achieve a high compression as Jazz or the 
compression techniques described in this paper. 

14 Conclusion 

The Java classfile format is rather fluffy and it should 
come as no great surprise that a different format could 
lead to smaller files, particularly when information du- 
plicated across multiple class files is combined. On the 
other hand, a good compression algorithm can work 
wonders, and a more efficient format with less redun- 
dant information will often not compress as well. So the 
amount of additional compression available over gzip’d 
classfiles was not obvious. As it turns out, we can ob- 
tain compression factors of 2-5 over individually gzip’d 
classfiles, which will make an important difference in 
mobile and other low bandwidth applications. 

We have been making the assumption that for each 
kind of data, one particular encoding scheme is opti- 
mal. Of course, this isn’t the case: different schemes 
will work better with different benchmarks. To achieve 
even better compression, the compression stage could 
try several encoding methods of each kind of data, and 
select the one that happens to work best. The encoded 
data would include a description of the encoding mech- 
anism used for each data sequence, and would not be 
substantially harder to decode than if a fixed policy was 
used for each kind of data. 

There are a number of other approaches that might 
give minor performance improvements. The only 
change I can think of that would likely give non-trivial 
improvements would be assume a standard set of pre- 
loaded references to frequently used package names, 
classes, method references and so on. It actually 
isn’t guaranteed that this would improve compression 
(preloaded references that were never used would de- 
grade compression), but I expect it would help on small 
archives. This would also likely increase the size of the 
decompressor, so in the situations where the decom- 
pressor is not pre-installed, there would not be any net 
benefit. 

As a research tool, the goal is to get as much com- 
pression as possible. However, as a tool that might be 
widely distributed and reimplemented, it might be bet- 

ter to have a specification of the packed format that 
is simple and clear. It may be appropriate to simplify 
the format by, for example, dropping approximate stack 
state ($7.1). 

I expect that an implementation will be available for 
download from http://www.cs.umd.edu/Npugh by the 
date of the conference. 
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