
Evaluating Neural Networks as a Method for Identifying
Students in Need of Assistance

Anon
...
...
...

Anon
...
...
...

Anon
...
...
...

ABSTRACT
Course instructors need to be able to students in need of
assistance as early in the course as possible. Recent work
has suggested that machine learning approaches applied to
snapshots of small programming exercises may be an effec-
tive solution to this problem. However, these results have
been obtained using data from a single institution, and prior
work using features extracted from student code has been
highly sensitive to differences in context.

This work provides two contributions: first, a partial re-
production of previously published results, but in a different
context, and second, an exploration of the efficacy of neural
networks in solving this problem. Our findings confirm the
importance of two features (the number of steps required to
solve a problem and the correctness of key problems), indi-
cate that machine learning techniques are relatively stable
across contexts (both across terms in a single course and
across courses), and suggest that neural network based ap-
proaches are as effective as the best Bayesian and decision
tree methods. Furthermore, neural networks can be tuned
to be reliably pessimistic, so they may serve a complemen-
tary role in solving the problem of identifying students who
need assistance.

Keywords
introductory programming; CS1; at-risk students; source
code snapshot analysis; educational data mining; learning
analytics; replication; reproduction

1. INTRODUCTION
The drop and failure rate of computer programming courses

and, in particular, the first programming course (CS1) is
high – in the neighborhood of 30% [6]. The decision to drop
is complex and is typically the result of a combination of fac-
tors [19]. Common factors include the perceived difficulty
of the course and lack of support when a student reaches a
critical point [1].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

... ’17 ...
c© 2017 Copyright held by the owner/author(s).

ACM ISBN ...-.-....-....-./../...

DOI: http://dx.doi.org/10.1145/------.-------

The experience of receiving a bad grade on a major com-
ponent of the course is often the final event that triggers a
decision to drop a course [1]. As a result, it is important to
provide quality formative feedback as early as possible [33]
and, ideally, to identify and to provide targeted support to
students in need of assistance early in the course – before a
summative assessment is completed.

In this paper, we focus on the problem of identifying stu-
dents in need of assistance as early in the course as pos-
sible. The increasing use of online programming exercises
that are assessed in real time provides an opportunity to de-
velop heuristics – learning analytics [8] – that can identify
students while the course is in progress. While this topic
has been well studied, from Jadud’s error quotient [17] to
recent work on repeated error density [5], our focus is on
prediction using data available either before or early in the
course: demographic information and submissions to small
programming exercises in the first third of the teaching term.

This work builds directly on recent work that showed
that machine learning (ML) methods are effective at pre-
dicting student performance, with accuracy in the range of
80-90% [4]. Furthermore, they demonstrated that ML meth-
ods are fairly stable, as models generated from data from
one term can successfully predict student performance in an-
other term, albeit with lower accuracy (70-80%). However,
their approach has only been tested in one course. Recent
work has shown that established methods in this problem
space are sensitive to changes in context [25], and a recent
ITiCSE working group has called for additional work inves-
tigating the issue of sensitivity to context changes [16].

Therefore, this paper provides two contributions: first, a
partial reproduction of Ahadi et al’s earlier results, in a dif-
ferent context, and second, extension of the work using a
new type of model (neural networks). The paper is struc-
tured around the following three research questions:

RQ1 Can the results of Ahadi et al [4] be reproduced
in a different context?

RQ2 Are neural network (NN) models appropriate for
the task of identifying students in need of assistance?

RQ3 Are some of the models explored less sensitive
to varying contexts?

2. RELATED WORK
The goal of this work is to explore machine learning meth-

ods for identifying students at risk of dropping or failing the
course – students in need of assistance. As discussed in

Ihantola et al.’s 2015 ITiCSE working group report on ed-
ucational data mining, this area is of particular interest to
the community [16], and we recommend their work for an
overview of educational data mining literature published be-
tween 2005 and 2015. In this section, we focus on two partic-
ular topics: the use of repeated errors to identify students
at risk of failure, and the application of machine learning
techniques to model student behaviour.

2.1 Repeated Errors and Context Sensitivity
Recent work in this area has been based on analysis of

compilation behaviour and error frequency. Jadud’s work
on an error quotient (EQ), which demonstrated that stu-
dent compilation behavior can be used effectively to model
students and to predict their performance in a CS1 context,
focused on the importance of repeated errors in a sequence
of compilations [17]. Later work on EQ added other fac-
tors, such as time between compilations and attributes of
programmer behaviour [28, 27]. The work culminated in an
unsuccessful effort to predict student midterm scores [29].

Perceived shortcomings in EQ sparked a number of later
efforts to better model programmer behaviour. Watson and
Godwin incorporated the time spent correcting errors into
the model, improving performance [32, 31], and Carter et
al. incorporated a sense of semantic correctness to create
the Normalized Programming State Model (NPSM) [9]. All
of these efforts compared their results to EQ. They found
that it did not work as well in their contexts and that their
new models were more effective.

Petersen et al. focused on the issue of performance across
contexts [25]. They evaluated EQ using data from four dif-
ferent courses which varied in terms of language, submission
tool, assignment format, and institution. They found that,
while repeated errors remained a significant predictor of per-
formance, the performance of EQ varied across contexts and
that the most effective weighting of the parameters in the
EQ algorithm was highly volatile. This work suggests that
metrics need to be tuned to apply to different contexts – or
that more stable methods are necessary. In response, Becker
proposed a new error-based metric, Repeated Error Density
(RED), that they found to be less sensitive to changes in
context [5].

2.2 Machine Learning Approaches
Machine learning approaches have been extensively used

to model student behaviour and performance in computer
programming activities. Many of these approaches have
been based on a priori factors. For example, Bergin et al.
validated a model that used past performance in math do-
mains [7], and El Gamal et al. attempted to isolate variables
and extract rules for predicting student performance in pro-
gramming using features collected prior to the course [10].
Osmanbegovic et al. investigated a range of factors, includ-
ing socio-demographic variables, results from high school
and from a university entrance exam, and attitudes towards
studying, across several different models (C4.5, multilayer
perception, and naive Bayesian) [24]. In their context, the
naive Bayesian model had the highest accuracy.

Another cluster of recent research has examined the use
of social interaction and participation data generated during
the course, with mixed results. Fire et al. analyzed social
network graphs and found the strongest predictor from the
graph to be a students “best” or nearest friend [13]. El-

badrawy et al. found online forum and discussion activity
to be of low importance, while metrics related to accessing
course material were of high importance [11], and Luo et
al. [21] found comments by students on the course and labs
to be a strong predictor of course grades.

Finally, other efforts have attempted to use factors de-
rived from attempts to solve exercises, like repeated errors
and the number of steps required to obtain a correct so-
lution, in models. Mullier classified students according to
their responses to tutorial questions [23], and Minaei-Bidgoli
et al. investigated the usefulness of correctness, time spent
per problem, and number of attempts as inputs to a genetic
algorithm approach [22]. Most recently, Liao et al. used ML
techniques to model students using in-class clicker data and
obtained up to 70% accuracy categorizing students as at-
risk as early as week 3 of a 12 week course [20], and Ahadi
et al. proposed using machine learning classifiers on pro-
gram snapshot data like that used for EQ, NPSM, and RED,
and found a random forest model to be more effective than
Watwin score in their particular experimental context [4].

One goal of our work is to evaluate the context sensitivity
of this recent work, as researchers did to EQ, by applying
the same techniques used by Ahadi et al. in a new context.
In addition, we also seek to extend the work by exploring
the use of neural network models that might prove to be
either more accurate or more stable. There is precedent for
doing so: random forest and neural network models have
been found to outperform one another across various do-
mains, depending on features of the problem [18, 12] Rich-
mond et al. likened the tradeoff between these approaches
as one of speed (random forest) vs performance (neural net-
work) [26].

3. METHODOLOGY
This project involves the production and evaluation of

various machine learning models to classify students by ex-
pected performance. The neural networks were built using
TensorFlow [3], and all other models were constructed using
Weka [14].

3.1 Data Sources
Two sources of data were obtained to perform the com-

parison across contexts. The first source of data is a Python-
based CS1 course at a large, research-intensive North Ameri-
can university (Uni-A). Course topics include variables; con-
ditionals; loops; functions; built-in types (numeric, string,
lists, and dictionaries); basic I/O; and basic algorithms.
Data was collected in Fall 2015 (F15) and Winter 2016 (W16),
with 897 students providing consent for the data to be ana-
lyzed in F15 and 519 providing consent in W16.

The dataset consists of course marks and snapshots from
30 small coding exercises presented in an online program-
ming environment [2]. These exercises are completed in-
dividually, in an unsupervised environment, with support
available on the discussion board and in a CS help room
staffed by teaching assistants. Each snapshot represents a
“submission.” When a student submits the code, it is exe-
cuted and feedback, in the form of an interpreter error or
results of tests, is provided. A similar set of exercises was
used in both the F15 and W16 terms, allowing for compar-
ison across terms.

The second source of data is from a Java-based CS1 course
at a research-intensive European university (Uni-B). Course

topics are comparable to Uni-A but include more object
oriented material: variables, methods, basic objects, condi-
tionals, loops, lists, arrays, basic I/O, and basic algorithms.
Data was collected from 263 students in Fall 2014 (F14).

Similar to the Uni-A dataset, the Uni-B set contains course
marks and snapshots from 116 small coding assignments pre-
sented in an online environment [30]. The exercises are com-
pleted individually, in an unsupervised environment, with
assistance available in open computer labs staffed by teach-
ing assistants. Finer grained snapshots are available – in-
cluding “save,” “compile,” “run,” and “test” events – where
the “run” and “test” events are roughly comparable to the
“submission” events available in the Uni-A dataset.

3.2 Data Processing
The student code behavior snapshots were first translated

into the Progsnap format [15]. Progsnap is a standardized
format for code snapshot data. Features were extracted from
the Progsnap data files and saved in Weka’s arff format. The
default parameters were used for all Weka models. Datasets
were validated on a randomly sampled 70% train, 30% test
split and results were averaged over 50 trials.

To generate neural networks, the data was vectorized but
not normalized. The model used has the following charac-
teristics: rectified linear units in the internal layers, a cross
entropy cost function, 200 nodes per layer, fully connected
layers, and randomly initialized parameters. We evaluated
neural networks with 1, 2, and 3 hidden layers; the model
with 1 layer had the best performance. Recurrent and con-
volutional neural networks were not explored because the
low feature dimensionality of the data made them unsuit-
able. After filtration, there were 23 features per student.

3.2.1 Features
To compare with Ahadi et al [4], two features were ex-

tracted: the number of “Steps” required to complete an as-
signment and “Correctness.” “Steps” were calculated as the
number of submission events recorded for each coding exer-
cise. “Correctness” is the fraction of tests passed for each
lab exercise. (If a student’s final submission passes 3 of 4
tests, the correctness is 0.75.)

Several additional features were explored: “time spent”;
“finishing time”; and “pass”, “fail”, and “error” counts. The
“time spent” on an exercise was defined to be the difference
between the timestamps of the initial and final submission
of an exercise. The “finishing time” is the timestamp of
the final submission. The counts indicate the number of
submissions for an exercise that returned a particular status:
“pass,” when the submission passes all tests; “fail,” when the
execution runs without error but fails at least one test; and
“error,” when the execution generates an error.

3.2.2 Null Values
Some fields in the data sets contained null values. For

example, a student may fail to attempt a particular exercise,
resulting in a null value in a feature representing the number
of attempts required to successfully complete an exercise.
Weka allows null values to be represented in two ways (-1 or
‘?’), but the two types of null values are handled differently
by different algorithms. To handle nulls consistently with
TensorFlow, we chose to represent nulls using ‘-1.’

Null course grades are handled differently. A null course
grade indicates that a student dropped the course. Since

Semester Mean Median Std Dev
Uni-A F15 Steps 12.7 6.0 21.2
Uni-A W16 Steps 9.3 3.0 20.0
Uni-A F15 Correctness 0.3 1.0 0.9
Uni-A W16 Correctness 0.7 1.0 0.7

Table 1: Average Steps and Correctness at Uni-A

the objective of the study is to identify students in need
of assistance, we made the assumption that students who
dropped were in need of assistance and interpreted a null
grade as a failing grade.

3.2.3 Bias in the Dataset
The models were built to classify students as “passing”

(final grade above 50%) or “failing” (final grade below 50%
or null). The raw data is heavily biased toward passing
(fortunately!), with roughly 75% of students earning a pass-
ing grade in the course. This imbalance could cause models
trained on the data to be similarly biased, encouraging them
to naively classify all students as passes. To prevent this, the
training data is balanced by randomly selecting a sample of
students from the larger category so that the two categories
have the same number of members. A new random sample
is selected for each trial that is run.

4. RESULTS
In the tables presented in this section, all data reported

is the average over 50 trials for each model. “accuracy” is
the overall accuracy of the model: the number of students
who were correctly classified. “fail acc” and “pass acc” are
the percentages of students who were correctly classified as
“fail” and “pass,” respectively.

While multiple features were explored (as described in
Section 3.2.1), only “Steps” and “Correctness” were found
to contribute, so all of the tables in this section only report
results from models based on those features. Table 1 de-
scribes the average number of steps and correctness of the
exercise in the Uni-A datasets. While the specific values
are not relevant, the variance between terms is of particu-
lar interest, as it signals significant differences even between
courses taught in the same context.

Table 2 describes the classification accuracy of the vari-
ous models when data from the entire term is available. This
represents an unrealistic scenario, as final marks are being
predicted after the entire term is complete, but it provides
an upper bound on the obtainable accuracy. The models
are generally comparable: overall accuracy ranges from 80-
85 across both contexts. The Naive Bayesian and Random
Forest models perform well, as does the best Neural Network
(NN) model. However, there is a difference between the NN
model and all others: it is distinctly pessimistic, accurately
classifying more failing students but mis-categorizing rela-
tively more passing students.

Table 3 describes results from more realistic scenarios:
prediction of a student’s final classification early in the term.
The first set of data, from Uni-A, illustrates a scenario when
prediction is performed one-third of the way through the
term (at week 4 in our 12 week term), shortly before the
first midterm. In comparison to Table 2, overall accuracy is
noticeably lower: by 13%, on average, for all models. How-
ever, the accuracy of categorizing failing students remains

Uni-A (F15): all data Uni-B (F14): all data
Model Accuracy Fail Acc Pass Acc Accuracy Fail Acc Pass Acc
bayes.NaiveBayes 85.29 80.56 89.90 82.10 73.54 90.30
Neural Network 84.91 89.48 81.17 83.20 86.96 79.96
trees.RandomForest 84.77 78.73 90.66 84.48 81.91 86.94
rules.DecisionTable 81.25 77.77 84.63 80.00 80.74 79.29
trees.DecisionStump 82.80 72.62 92.70 80.10 80.54 79.66
rules.PART 81.51 81.08 81.92 80.38 79.57 81.16
trees.J48 81.33 81.78 80.90 82.19 82.10 82.28

Table 2: Classification accuracy (using steps and correctness) using all available data. Top performers bolded.

Uni-A (F15): first 4 weeks Uni-A (F15): first week Uni-B (F14): first week
Model Accuracy Fail Acc Pass Acc Accuracy Fail Acc Pass Acc Accuracy Fail Acc Pass Acc
bayes.NaiveBayes 72.90 61.01 85.00 61.29 36.56 87.08 70.10 51.97 87.08
Neural Network 72.04 85.50 59.74 62.74 85.02 40.87 66.40 80.62 50.21
trees.RandomForest 71.10 66.47 75.80 60.95 56.95 65.11 68.29 60.24 75.83
rules.DecisionTable 68.04 58.19 78.06 57.46 32.10 83.92 67.90 64.76 70.85
trees.DecisionStump 67.66 48.21 87.42 54.28 13.48 96.84 65.05 49.80 79.34
rules.PART 66.62 62.03 71.29 61.16 44.14 78.91 61.62 61.22 61.99
trees.J48 67.83 64.76 70.95 60.60 46.50 75.31 62.19 60.24 64.02

Table 3: Classification accuracy (using steps and correctness) using early-term data. Top performers bolded.

Uni-A (F15 -> W16): first 4 weeks
Model Accuracy Fail Acc Pass Acc
bayes.NaiveBayes 70.33 63.81 76.59
Neural Network 70.43 77.05 63.52
trees.RandomForest 70.14 71.69 68.66
rules.DecisionTable 69.90 68.39 71.36
trees.DecisionStump 71.81 60.89 82.28
rules.PART 67.05 69.36 64.83
trees.J48 67.00 72.96 61.29

Table 4: Classification accuracy of early prediction
(using steps and correctness) across terms. Top per-
formers bolded.

relatively high for neural net models: only 4% is lost.
The next two sets of data, from both Uni-A and Uni-B,

illustrate a scenario when prediction is performed after the
first week of the term: in essence, as early as possible, if
data from within the course is to be used. For Uni-A, an
additional 5-10% accuracy is lost relative to the four week
scenario, but again, the neural net model successfully classi-
fies a significant fraction of failing students, albeit at the cost
of even more false positives (misclassified passing students).

Finally, Table 4 presents the result of using a model trained
on the previous term to classify students in a new term. This
is the most realistic scenario, where historical data is being
used to classify students early in a term. Comparing to the
first dataset in Table 3, we see that overall accuracy drops
slightly for most models but remains comparable. The De-
cisionStump model is an anomaly, as performance increases
almost 4%. Otherwise, the relative performance of the mod-
els remains the same, with the Bayesian, random forest, and
neural net models performing the best.

4.1 RQ1: Are the results of Ahadi et al. re-
producible?

In large part, yes. We did not examine the demographic
features explored by Ahadi et al. (age, major, gender, etc.) [4],

since only major was found to be relevant and that feature
does not apply directly at Uni-A. At Uni-A, the students are
in the first term of their first year, so they have no previous
academic history and will not be accepted into a major until
the beginning of their second year. However, both of Ahadi
et al.’s snapshot-based features – steps and correctness –
were effective, and none of the other snapshot-based fea-
tures we explored, including time spent and more detailed
data on the results of steps, contributed to more effective
models.

The accuracy and relative performance of our models are
also comparable to the results observed by Ahadi et al [4].
With the addition of the demographic features mentioned
earlier, Ahadi et al. observed accuracies ranging from 73-
90% when predicting the final course grade, in comparison
to our 80-85%. Furthermore, the most effective classifier
they observed, random forest, is among the higher perform-
ing classifiers we observed. However, in our context, the
Bayesian classifiers performed relatively better, and our ob-
servations suggest that it may not be possible to identify a
single best classifier across contexts.

One significant difference between our Uni-A data and the
data used by Ahadi et al. is the number of exercises included
in the set. Our data set has less than half the number of
exercises. It may be possible that we are not observing the
variation between classifiers seen by Ahadi et al. because
there is insufficient data for the classifiers to differentiate
themselves.

4.2 RQ2: Are neural networks effective at iden-
tifying students in need of assistance?

Yes. The neural network model achieved performance
comparable to the best Bayesian, rule learner, and decision
tree methods evaluated. The neural net was evaluated with
1,2 and 3 internal layers. Additional layers were not found
to change performance. The most effective model was that
with the least layers, which is equivalent to a simple regres-
sion model. This is likely due to there being little to be

gained from inter feature dependencies.
The particular model identified may have an advantage

in practice. Compared to the other methods evaluated, the
neural net model was consistently pessimistic. Although it
achieved comparable overall accuracy when compared to the
other models, it favored fail classifications while the Weka
models favored pass classifications. In practice, this means
that instructors utilizing these models to identify students in
need of assistance will successfully identify a larger fraction
of the truly at-risk students (more true positives and less
false negatives) at the cost of identifying a relatively larger
number of students who will eventually pass the class (more
false positives). Furthermore, this pessimism is relatively
stable: the neural net model continues to identify truly at-
risk students, even early in the course or across terms. This
pessimism is potentially advantageous, if the goal of the in-
structor is to identify as many at-risk students as possible.

4.3 RQ3: Are some models less sensitive to
changes in context?

The differences are not very large, but almost all of the
methods observed were fairly stable. Since the features in
the two sets are not comparable, we cannot use models
trained in one context at the other. Instead, we can only
compare the relative performance of the models in both con-
texts. Overall, the neural net, naive Bayes, and random for-
est models generally have a higher accuracy than the other
models, with the neural net model having the highest over-
all average ranking. However, it also had the highest overall
fail accuracy by a wide margin, and that result was clearly
stable across contexts.

We also used data from one semester (F15) as training
data and data from the other semester (W16) as test data
(Table 4). The result in this case is very positive: while
most models trained in one term were less accurate when
applied to the next term, the penalty was not large for any
of the models. Furthermore, to make this comparison, only
exercises common to both data sets could be retained (so
that the resulting model would not be based on irrelevant
features). In our case, this reduced the number of features
available, so the model in Table 4 was produced with less
data. In a situation where all of the features are preserved
across terms, the relative performance loss may be even less.

5. CONCLUSIONS
This study provides welcome news to researchers – and

instructors – interested in identifying at-risk students early
in the term. We explored a range of Bayesian, decision tree,
rule learner, and neural network models and found that the
performance of most of the models was fairly stable across
contexts and, more importantly, across terms in the same
course. We also confirmed that features identified as impor-
tant in previous work [4] – the number of “steps” required
to complete exercises and the “correctness” of particular ex-
ercises – remained the relevant features in a new context.

This work is the first that we are aware of to use neural
networks to identify at-risk students from code snapshots.
We found that shallow (1-level) neural networks performed
as well as more complex networks and that neural network
approaches performed as well as the best Bayesian and de-
cision tree models we explored. In addition, the neural net-
work produced had the potential benefit of being pessimistic
– reducing the number of at-risk students“missed”– and this

pessimism was a stable feature across contexts and terms.
We anticipate several avenues for future work. First, since

many of the models achieved similar performance, there may
not be much to be gained from particular models. Instead,
future gains in accuracy may be obtained by extracting more
effective features or simply from using more data (such as
feeding the raw code itself into the model). Second, since
some models are more pessimistic and others are more opti-
mistic, it may be possible to use a hybrid approach to place
students on a continuum from “definitely at risk” to “defi-
nitely passing.”

6. ACKNOWLEDGEMENTS
We gratefully acknowledge the support of ,

who provided permission to use data from Uni-B.

7. REFERENCES
[1] ... Anonymized for review. In Proceedings of ..., 20XX.

[2] ... Anonymized for review. In Proceeding of ..., 20XX.

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available
from tensorflow.org.

[4] A. Ahadi, R. Lister, H. Haapala, and A. Vihavainen.
Exploring machine learning methods to automatically
identify students in need of assistance. In Proceedings
of the eleventh annual International Conference on
International Computing Education Research, pages
121–130. ACM, 2015.

[5] B. A. Becker. A new metric to quantify repeated
compiler errors for novice programmers. In
Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science
Education, pages 296–301. ACM, 2016.

[6] J. Bennedsen and M. E. Caspersen. Failure rates in
introductory programming. ACM SIGCSE Bulletin,
39(2):32–36, 2007.

[7] S. Bergin and R. Reilly. Predicting introductory
programming performance: A multi-institutional
multivariate study. Computer Science Education,
16(4):303–323, 2006.

[8] J. Bichsel. Analytics in higher education: Benefits,
barriers, progress, and recommendations, 2012.
Accessed August 24, 2016.

[9] A. S. Carter, C. D. Hundhausen, and O. Adesope. The
normalized programming state model: Predicting
student performance in computing courses based on
programming behavior. In Proceedings of the eleventh
annual International Conference on International
Computing Education Research, pages 141–150. ACM,
2015.

[10] A. El Gamal. An educational data mining model for
predicting student performance in programming

course. International Journal of Computer
Applications, 70(17), 2013.

[11] A. Elbadrawy, S. Studham, and G. Karypis.
Personalized multi-regression models for predicting
students performance in course activities. UMN CS,
pages 14–011, 2014.

[12] M. Fernández-Delgado, E. Cernadas, S. Barro, and
D. Amorim. Do we need hundreds of classifiers to
solve real world classification problems. J. Mach.
Learn. Res, 15(1):3133–3181, 2014.

[13] M. Fire, G. Katz, Y. Elovici, B. Shapira, and
L. Rokach. Predicting student exam’s scores by
analyzing social network data. In International
Conference on Active Media Technology, pages
584–595. Springer, 2012.

[14] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[15] D. Hovemeyer and J. Spacco. Progsnap specification.
Accessed August 26, 2016.

[16] P. Ihantola, A. Vihavainen, A. Ahadi, M. Butler,
J. Börstler, S. H. Edwards, E. Isohanni, A. Korhonen,
A. Petersen, K. Rivers, M. A. Rubio, J. Sheard,
B. Skupas, J. Spacco, C. Szabo, and D. Toll.
Educational data mining and learning analytics in
programming: Literature review and case studies. In
Proceedings of the 2015 ITiCSE on Working Group
Reports, ITICSE-WGR ’15, pages 41–63, New York,
NY, USA, 2015. ACM.

[17] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the Second
International Workshop on Computing Education
Research, ICER ’06, pages 73–84, New York, NY,
USA, 2006. ACM.

[18] N. Jaques and J. Nutini. A comparison of random
forests and dropout nets for sign language recognition
with the kinect.

[19] P. Kinnunen and L. Malmi. Why students drop out
CS1 course? In Proceedings of the Second
International Workshop on Computing Education
Research, pages 97–108, 2006.

[20] S. N. Liao, D. Zingaro, M. A. Laurenzano, W. G.
Griswold, and L. Porter. Lightweight, early
identification of at-risk cs1 students. In Proceedings of
the 2016 ACM Conference on International
Computing Education Research, ICER ’16, pages
123–131, New York, NY, USA, 2016. ACM.

[21] J. Luo, S. E. Sorour, K. Goda, and T. Mine.
Predicting student grade based on free-style comments
using word2vec and ann by considering prediction
results obtained in consecutive lessons. International
Educational Data Mining Society, 2015.

[22] B. Minaei-Bidgoli and W. F. Punch. Using genetic
algorithms for data mining optimization in an

educational web-based system. In Genetic and
evolutionary computation conference, pages
2252–2263. Springer, 2003.

[23] D. Mullier, D. Moore, and D. Hobbs. A neural-network
system for automatically assessing students. In World
conference on educational multimedia, hypermedia and
telecommunications, pages 1366–1371, 2001.

[24] E. Osmanbegović and M. Suljić. Data mining
approach for predicting student performance.
Economic Review, 10(1), 2012.

[25] A. Petersen, J. Spacco, and A. Vihavainen. An
exploration of error quotient in multiple contexts. In
Proceedings of the 15th Koli Calling Conference on
Computing Education Research, pages 77–86. ACM,
2015.

[26] D. L. Richmond, D. Kainmueller, M. Yang, E. W.
Myers, and C. Rother. Mapping stacked decision
forests to deep and sparse convolutional neural
networks for semantic segmentation. arXiv preprint
arXiv:1507.07583, 2015.

[27] M. M. Rodrigo, E. Tabanao, M. B. Lahoz, and M. C.
Jadud. Analyzing online protocols to characterize
novice java programmers. Philippine Journal of
Science, 138(2):177–190, 2009.

[28] M. M. T. Rodrigo, R. S. Baker, M. C. Jadud,
A. C. M. Amarra, T. Dy, M. B. V. Espejo-Lahoz,
S. A. L. Lim, S. A. Pascua, J. O. Sugay, and E. S.
Tabanao. Affective and behavioral predictors of novice
programmer achievement. In Proceedings of the 14th
Annual ACM SIGCSE Conference on Innovation and
Technology in Computer Science Education, ITiCSE
’09, pages 156–160, New York, NY, USA, 2009. ACM.

[29] E. S. Tabanao, Ma, and M. C. Jadud. Predicting
At-risk Novice Java Programmers Through the
Analysis of Online Protocols. In Proceedings of the
Seventh International Workshop on Computing
Education Research, ICER ’11, pages 85–92, New
York, NY, USA, 2011. ACM.

[30] A. Vihavainen, T. Vikberg, M. Luukkainen, and
M. Pärtel. Scaffolding students’ learning using test my
code. In Proceedings of the 18th ACM conference on
Innovation and technology in computer science
education, pages 117–122. ACM, 2013.

[31] C. Watson and F. W. Li. Failure rates in introductory
programming revisited. In Proceedings of the 2014
conference on Innovation & technology in computer
science education, pages 39–44. ACM, 2014.

[32] C. Watson, F. W. Li, and J. Godwin. Predicting
performance in an introductory programming course
by logging and analyzing student programming
behavior. In In Advanced Learning Technologies, pages
31–323. IEEE, 2013.

[33] M. Yorke. Formative assessment and its relevance to
retention. Higher Education Research & Development,
20(2):115–126, 2001.

