
Cluster I/O with River: Making the Fast Case Common 

Abstract 

We introduce River, a dafa-flow programming environment and l/O 
substrate for clusters of computers. River is dcsioed to pmvide max- 

Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhat?, 
David E. Culler, Joseph M. Hellerstein, David Patterson, Kathy Yelick 

Computer Science Division 
University of California, Berkeley 

imum performance in the c&on case - even in the-race a* nor,- 
uniformities in hardware, software, and workload. River is based on 
two simple design features: a high-performanccdirniburedqueue, and 
a storage redundancy mechanism called gradunfed declusrering. We 
have implemented a number of data-intensive applications on River, 
which validate our design with near-ideal pxformancc in B variety of 
n&uniform performance scenarios. 

1 Introduction 

Scalable J/O systems form the basis for much of the high- 
performance computing market. In recent years, manufachu- 
cnhavcfoundthatgrowthincustomerappetiteforVOcapacity 
is outstripping Moore’s law [40]. Cluster systems are a key 
component in the design of today’s most scalable data-intensive 
aIchitectures [l. 2, 17,501. 

A tiustrating aspect of cluster l/O systems is that their 
cmnm~ncase performance is often a great deal worse than 
their reported peak performance. This discrepancy arises from 
various forms of performance heterogeneity across clustered 
components. The simplest heterogeneity is in hardware: a 
cluster may be composed of machines of diEwing speeds or 
capacities. In principle, this problem can be solved by fiat, as is 
done in packagedclusters such as IBM’s SP-2. More nefarious 
are heterogeneities in software performance, which can arise 
dynamically from a multitude of sources: unexpected operat- 
ing system activity, unevenload placement, or a heterogeneous 
mixture of operations across machines. Software hetemgcne- 
ity is particularly hard to contml, since it changes quickly over 
time. Surprisingly, hardware heterogeneity is non-trivial to 
control as well. For example, the inner cylinders of a disk have 
much less bandwidth than the outer [36], and two apparently 
identical disks can have different bandwidths depending on the 
locations of unused “bad” disk blocks. 

Rather than attempting to prevent performance hetemgene- 
ity, we instead have designed an I/O system that takes it into 
account as an inherent design consideration. In this paper 
we dcscnic River, a data-flow programming environment and 
f/O substrate for clusters. ‘fhe goal of River is to provide 
~cmmcmcase maximal perfomxmce to J/O-intensive applica- 
tions. ‘Ihis is achieved using two basic system mechanisms: a 
dktributed queue (DQ) balances work across consumers of the 
system, and a data layout and access mechanism called gradu- 
ored declwrerinz IGD) dvnamicallv adiusts the load eencrated 
by producers. - ~ ’ . ’ . 

At the center of tbc River deska is a hi&perfomtance 
DQ implementation. River uses DQ; to let d&&w between 
operators at autonomously adaptive rates: at any given time, 
each producer places data into the DQ as fast as it can, and 
each consumes takes data from the DQ as fast as it can. By 
imposing DQs between operators in a data flow, load is natu- 
rally balanced across consumcn running at different rates. An 
advantage of this simplicity is the lack of global coordination 
required: consumem can change their rate autonomously over 
time, without communicating with other clients. The result 
is full-bandwidth, balanced consumption: all available band- 
width is naturally utilized at all times, and all consumers of a 
given set of data complete near-simultaneously. 

The second important aspect of River is a flexible, re- 
dundant disk layout and access mechanism called graduated 
declustering. A generalization of a mechanism proposed for 
early parallel database systems [26], CD allows the task of 
data production to be shared among multiple pmduccrs in a 
flexible fashion. GD mirrors large sequential collections on 
the disks of di&vent producers. During data flow, a pro- 
ducer multiplexes its I/O bandwidth across all the data sets it 
is currently handling, to ensure that it produces its share of the 
global bandwidth available for each collection. The result is 
full-bandwidth, balanced production: all available bandwidth 
is utilized at all times, and all producers of a given data set 
complete near-sbnultaneously. 

In introducing River, we also describe its programming 
model, and a graphical interface for composing River pm- 
grams. These are based on traditional data-flow diagrams 
composed of operaton, similar to those used in database query 
plans 1241 and scientific data-flow systems [31, 461. This in- 
tuitive interface allows programmers to focus on application- 
specific logic, while River transparently handles the issues of 
high-performance IJO and parallelism within the application. 

We demonstrate the River interface with a number of data- 
intensive applications, and use them to validate the perfor- 

10 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F301816.301823&domain=pdf&date_stamp=1999-05-01


Figure 1: NOW-Sort Under Pertwbanee. The graph 
depicts the best-case performance of NOWSort, wrsw the 
performance under slight disk CPU, and memoryperkvba- 
tions AN performance results ore relative to the 8-n&NOW- 
Sort which delivers data at (I near-peak disk rate of 40 MB/s 
throughout the run. 

mace of the system. lo all cases River provides near-ideal 
performance in the face of seven performance perturbations. 

1.1 Motivation: A Case Study 

.To better motivate the problem of performance hetemgene- 
ity, WC perform a simple experiment with NOW-Sort [Z], a 
high-performance parallel external sort for clusters. Ln the ex- 
periment, the sort mns on 8 machines, and in each run, we 
perform a slight perturbation of the sort on just one of those 
machines. The results from these pertmbation experiments are 
shown in Figure I. 

As WC can see from the graph, each of the perturbations on 
just a single machine has a serious global performance effect. 
lf a single file on a single machine has poor layout (inner tracks 
versus outer), overall performance dmps by 50 percent. When 
a single disk is a “hot spot”, and has a competing data stream, 
performance drops by a factor of 3. CPU loads cm any of the 
machines decrease performance pmportional to the amount 
of CPU they steal. Finally, when the memory load pushes a 
machine to page, a factor of five in performance is lost. 

while it may be possible to build a systemthat avoids all of 
these situations by balancing load across the system perfectly 
at all times and meticulously managing all resources of the 
system, WC believe it is difficult. As system size and corn- 
plexity increase, carefully managing such a system becomes 
near-impossible. Therefore, we are approaching the problem 
in a different manner, by assumina the presence of such “tw- 
formance faults”, and providing a sub&ate that can ope&c 
well in spite of them. 

1.2 Outline 

The rest of the paper is structured as follows. In Section 2, we 
describe the design of the system and its current implemen- 
tation, Euphrates. In Section 3, we validate the performance 
pmpcrtios of our dynamic IJO infrastructure, with measure- 
ments of both distributed queues and graduated declustcring. 
We present initial application experience in Section 4. Related 
work is found in Section 5. In Section 6, we present our plans 
for future work, and in Section 7, we conclude. 

2 The River System 

This section describes the design of the River environment, as 
well as the current implementation,Eupkra~es. First, we briefly 
describe our hardware and software environment. Then, we 
present the River data model: how data is stored and accessed 
on disk. We continue by explaining the components of the 
River programming model, including details of how a typical 
River program is constructed. We conclude with a discussion. 

2.1 Hardware and Software Environment 

The River pmtotypc, Euphrates, currently runs on a cluster of 
Ultra1 workstations connected together by the Myrinet local- 
area network [9]. Each workstation has a 167 MHz Ultra- 
SPARC I pmccssor, two Seagate Hawk 5400 RPM disks (one 
used for the OS and swap space in the cmmncm case), and 
128 MB of memory. Solaris 2.6 is the operating system on 
each machine, a modem multi-threaded UNIX [29]. 

AU communication is performed with Active Messages 
(AM), a second generation communication layer designed for 
distributed computing [34]. AM exposes most of the raw 
performance of Myrinct while providing support for threads, 
blocking mt communication events, and multiple independent 
endpoints. Other fast message layers [39,48,49] do not support 
blocking on communication events and thus require polling 
the network interface to receive messages; boundless polling 
consumes CPU cycles and is not appmpriate for building an 
l/O infrastucturc such as River. 

2.2 The Data Model 

2.2.1 Single Disk Collections 

On a single disk, data is represented as a group of on-disk 
records known as a collection. Each record has a set of named 
fields, which can be of various types. This catalog of informa- 
tion is kept as meta-data by the system. 

Data can be acccsscd on disk as an unordered collection. 
Unordered coUections provide no ordering constraints between 
records of the collection. Thus, an application reading such a 
collection may receive records in an arbitrary order, subject to 
optimizations by the system. 

When ordering is desired by the application, data can be 
acccsscd as a stz‘n,t. A stream is an ordered set of records. 
Thus, when an application writes a collection to disk as a 
stream, the write order is preserved; applications accessingthe 
collection directly will receive the records in that order. 

The Euphrates implementation uses the underlying Solaris 
2.6 UNIX file system (UFS) to implement record collections. 
To read from disk, we use either read ( ) with directio( ) 
enabled (an unbuffered read from disk), or the nunapt ) in- 
terface, both of which deliver data at the raw disk rate for 
sequential read access. Simple use of the read( ) interface 
without directio( ) leads to double-buffering inside of the 
tile system, which is undesirable for most of our applications. 
Writes to disk use the write ( ) system call, with or without 
directio( ) enabled. 

When implemented on top of UFS, layout information is 
not available, and therefore the optimizations that would be 
possible with unordered collections are not currently bnple- 
mcnted in the disk manager. The next implementation of River 
will include a disk manager on top of raw disk, in order to 
exploit the range of scheduling optimizations that would thus 
be enabled. 

11 



Figure 2: Graduated Declustering. These two diagrams depict two scenarios, without and with graduated declustering under (I 
perturbation Unperhubeddisks normally deliverB MB/s of bandwidth, and the oneperturbeddirk delivers hnlfof that, 812. On the 
iefi the dirk servingpartidonr I and 2 to cl&vu is perturbed, and thus only half of its bandwidth iv available to the application. Lefr 
unchecked, the result is that clients I and 2 do not receive IIS much bandwidth (IS clients 0 and3. On the right, the bnndwidtifiom 
each disk tmve been adjusted to compensate for theperhcrbotion, (IS is the case with graduareddesclustering. Wth the adjustments, 
each client receivesan equal share of the available bandwidth. 

2.2.2 Parallel Collections 

Most of the applications in om system wish to access data 
spread acmss multiple disks. To facilitate this, we provide the 
abstraction of a parallel coNectio~~. This allows the grouping 
of a set of single-disk collections into a single logical entity. 
The parallel collection facility only tracks parallel meta-data, 
such as the names and physical locations of each single-disk 
collection that form the parallel collection, and any desired 
ordering between the single-disk coUections. 

In Euphrates, the parallel collection m&data is stored in 
NFS. Because NFS provides no consistency guarantees un- 
der cmtcwrent access, all parallel me&data operations are 
serialized through a single process of the application. These 
operations are tam (that is, they only occm when a file is be- 
ing opened or created), and therefore arc not a performance. 
bottleneck. 

2.2.3 Redundancy 

In large scale clusters, the presenceof a data availability stmt- 
egy is important. Without one, data will frequently be unavail- 
able due to disk and machine failures. In River, applications 
that wish to have increased data reliability and availability 
can choose to mirror each single-disk collection across disks 
housed in different machines within the cluster. 

We am interested in exploiting the redundant data con- 
tained in mirrors to improve the consistency of application 
performance. We do so by building on earlier work in [26], 
in which the authors introduced chained declustering. ?l~e 
key insight behind chained declustering is that, at7cr the fail- 
ure of one disk in a mirrored system, a read-only load can be 
balanced evenly across the remaining, working disks. This 
balance is achieved through a carefully-calculated distribution 
of read requests to the mbmr segments on the remaining disks. 

We generalize this technique to what we call graduated 
deciusrering in order to solve the performance consistency 
problem. In the common case, all disks storing a mirrored 

collection are functional, but each may offer a ditXerent band- 
width over time (for reasmts enumerated earlier) to any in- 
dividual reader. Under traditional approaches to mirroring, 
these variations are unavoidable because a reader will choose 
one mirrored segment copy from which to read the entire seg- 
ment. Suchvariationscanleadtoaglobalslowdowninparallel 
programs, as slow clients complete later than fast ones. 

To remedy this, we approach the problem somewhat differ- 
ently. Instead of picking a single disk to read a partition from, 
a client will fetch data from all available data minors, as illus- 
trated in Figure 2. Thus, in the case where data is replicated on 
hvo disks, disk 0 and disk 1, the client will alternatively send 
a request for block 0 to disk 0, then block 1 to disk 1; as each 
disk responds, another request will be sent to it, for the next 
desired block. 

However, this alone does not solve the problem. Gradu- 
ated Declustaing must pmvjde each client that is reading a 
set of coUections an equal portion of the bandwidth available 
to the application as a whole. Clients that receive less than 
the expected bandwidth from one of the two disk mirrors must 
receive more bandwidth from the other mirror as compensa- 
tion. Thus, the implementation of graduated declustering must 
somehow observe these bandwidth differences across clients 
and adjust its bandwidth allocation appropriately. 

The Euphrates implementation of GD uses a simple algo- 
rithm to balance load amongst data sources. Each disk manages 
two different segments of a parallel collection, and continuaUy 
receives feedback from two consumers as to the total band- 
width that the consumers are receiving. When a performance 
inequity between two clients is detected, the disk manager bi- 
ases requests towards the lagging client, and thus attempts to 
balance the rates at which the readers progress. A0 example 
of the result of such a balancing is shown in the right-side of 
Figure 2. There, both disks 0 and 2 compensate for a pertur- 
bation to disk 1 by allocating 5/8 of their bandwidth to clients 
1 and 2. The resulting bandwidths to each client are properly 
balanced. 

12 



Figure 3: Module API. This is a simple River module. 
The module Get@ messages from ups!rea& performs some 
operation on them by culling or user-defined Operan(), and 
then (conditionally) Put()s messagesdownstrenm 

2.3 The Programming Model 

River provides a generic data flow environment for applica- 
tions, similar to parallel database environments such as Voi- 
cane 1241. Applications are constructed in a component-like 
fashion into a set of one or more modules. Each module has 
a logical thread of control associated with it, and must have at 
lcast one input or output channel, often having one m more of 
each. A simple example is a filter module, which gets a record 
from a single input channel, applies a function to the record, 
and if the function returns true, puts the data on a single output 
channel. 

Modules arc connected both within a machine and across 
machine boundaries with queues. A queue connects one or 
more producers to one or more consumers and provides rate- 
matching between modules. By dynamically sending more 
data to faster consumers, queues are essential for adjusting the 
work distribution of the system. 

To begin execution of a” application, a master program 
constructs a&w. A flow connects the desired set of modules, 
from source(s) to sink(s). Any time a single module is con- 
nected to another, a queue must be placed bctwee” them. When 
the flow is instantiated by the master program, the computation 
begins, and continues until the data has been processed. Upon 
temhation, contml is returned to the masterpmgram. 

2.3.1 River Modules 

A module is the basic unit of programming in River. Modules 
operate o” records, calling Get ( ) to obtaio records from one 
or more input channels, and the” calling Put ( ) to place them 
onto one ormme output channels. For convenience, we refer to 
a set of records that is moving thmugh the system as a message. 
Logically, each module is provided a thread of control. Thus, a 
one-input, one-output module perfmms a simple loop: Get ( ) 
to obtain records from an upstream channel. ooemte on those 
records, and the” Put ( ) to pass the records &wnstream, as 
illustrated io Figure 3. 

More complex modules may have more than one input or 
output; in that case, they must specify the input/output number 
as an argument to Get ( ) or Put ( ) Non-blocking versions 
of these interfaces are also available, as is the ability to perform 
a Select ( ) : this operation waits until one of a specified set 
of channels is ready, and then returns control to the user 

In Euphrates, modules are written as C++ classes. In the 
current implementation, eachmodule is given its own thread of 
control, which has both its benefits and drawbacks. The main 

advantage of this approach is that applications naturally over- 
lap computation with data movement; thus, the user is freed 
from the burden of carefully managing VO. However, thread 
switches can be costly. To amortize this cost, modules should 
pass data (a set of records) amongst themselves in relatively 
large chunks. I” om experience, this has “ot complicated mod- 
ules in any noticeable fashion; thus, we felt that the inclusion of 
complex buffer management was not worth the bnplcmentatio” 
effort. 

2.3.2 Queues 

Queues connect multiple producers to multiple consumers, 
both in the IocaI (same machine) and distributed (different 
machines) cases. During flow construction, queues are placed 
between modules and messages are transmitted from pmduc- 
CR to consumers. Modules that are placed on either side of 
local or distributed queues are oblivious to the type of queue 
with which they interact. 

Messages in River may move arbitrarily through the sys- 
tem, depending on run-time pcrfommnce characteristics and 
the constraints of the flow. Dynamicload balancing is achieved 
by muting messages to faster consumers through queues that 
have more than one consumer. 

To i”~prove performance, ordering may be relaxed across 
queues. I” a multi-producer queue, a consumer may receive 
an arbitrary interleaving of messages from the producers. The 
o”lyorderingguarantcepmvidedinaqueueispoint-to-point;if 
a producer places message A into queue Q before message 8, 
and if the same consumermccives both messages,it receives A 
before it receives B. Tl~is ordering is necessary, for example, 
to retain the ordering of a disk-resident stream. By attaching a 
single consumer to the single pmducerof a stream, the ordered 
property of the stream can be properly maintained. 

I” OUT implementation, local queues an data stmchlres 
shared between threads with the appropriate locking and sig- 
nailing protocol. The Euphrates implementation of the DQ is 
more interesting, and takes on two different flavors. I” the 
general case, we use a lightweight, randomized, credit-based 
scheme to balance load across consumcn. lo this push-based 
algorithm, each producer tracks the number of outstanding 
messages sent to any consumer, and sends new messages ran- 
domly only to consumers that have few messages currently 
outstanding (less than a threshold value). ‘Ibis has the desired 
behavior of automatically sending more records to nodes that 
are consuming at higher rates, and can be implemented cfti- 
ciendy: the randomized algorithm adds near-zero CPU over- 
head on top of the normal message transfer costs. 

In some cases, we have found that load balancing must 
be provided for larger-than-record size units. For example, 
after a sort module has sorted its input data, it may wish to 
pass the entire sorted run to a disk write module, with the 
order preserved (we will see this exact example in Section 4). 
To provide this functionality, the DQ implementation can be 
handed a” arbitrarily large sot of records; it the” uses a pull- 
based algorithm, with consumers querying producers for data, 
to balance load. The randomized, push-based algorithm does 
not work well in this case, because a single bad decision is 
quite costly. The guarantee provided by this version of the DQ 
is that a single e~nwn~r will receive the entire set of records, 
in the order that it is give” to the DQ. Thus, load balancing 
OCC”rs at the granularity of the large (potentiauy many MB) 
unit handed to the DQ. 

13 



/I simple copy program 
Flow f; 
nodule *ml, l mz: 
/I instantiate module instances 
ml - f .Place(“UFSRead”, “file=in.l”); 
m2 - f.Place(“UPSWrite”, "file-out.1"); 
/I attach read module to write 
f.Attach(ml, m2); 
/I execute flov 
f.Go(): 

Figure 4: Flow API. A simple reader to writer pow is shown. 
The UFSRead module reads in collection “in.1 “; ib output 
goes to the input of the UFSWrile module, which writes it to 
disk under the name “our.1 “. 

2.3.3 Flow Construction 

To execute a p”gmm in the River etwimttmcnf one or mom 
modules must be connected together to form aflow. A flow is a 
graph from data source(s) to sink(s), with as many intermediate 
stages as dictated by the given program. 

There are three phases involved in instantiating a flow: 
construction, operation, and tear-down. During construction, 
a masterprogrnm specities the global graph, describing where 
and how data will flow, including which modules to use and 
their spcciftc interconnection. When the construction phase 
is complete, the master program instantiates the flow. In the 
operation phase, threads are created acmss machines as neces- 
sary, and control is passed to each of the modules. The flow of 
date begins at the data smmxs, and flows through the system 
as specified by the graph, until completion. 

Flow construction can be performed pmgmmmatically (a 
flow API is provided) or graphically. The flow construction 
API is quite simple: to add a node to a graph, the Place( ) 
routine is called, specifying tic name of the module and any 
arguments it might take. For example, to read an on-disk col- 
lection, the programmer might specify the UFSRead module, 
with an argument of the filename, as shown in Figure 4. 

Place ( ) returns a reference to the module, which is then 
used to attachmodules together via a simple Attach ( ) inter- 
face, the itttetfacc used to specify graph edges. In the figure, a 
simple copy flow is formed: both a Read and Write module are 
placed in the flow, and then attached together. Attaching two 
modules together places a queue between them. Modules can 
have more than one input or output; in this case, the user must 
specitj extm arguments to the Attach( ) routine, to specify 
which input to connectto which output. 

Finally, to instantiate the flow, a Go ( ) interface is provided, 
which starts the threads, performs the necessary attachments, 
and waits for their completion. An asynchronous version of 
Go ( ) is also available. 

The flow description up to this point has been restricted to 
single-machine flow spccitication, for the sake of simplicity. 
To construct pamllelpows across multiple machines, the pm- 
gmmmer need only specify which nodes to place the various 
modules upon; local and distributed queues are inserted where 
appropriate, and when the pmgmm is run, it is spawned across 
the nodes of the system using a simple remote execution mod- 
ule, internal to the system. The user can add extra arguments 
to the Attach ( ) routine to specify details about remote con- 
ncctiotts between producers and consumen: whether to use a 
single m-to-n distributed queue, n l-to-l distinct queues, or 
an m x n ftdly-connccted graph. 

lo the Euphrates implementation, nmncmus languages can 
be used to program flows. AC++ interface is available, but WC 
have found it overly cumbersome to re-wmpiIe codes for each 
simple change to a flow. Therefore, we provide both Tel and 
Per1 interfaces, allowing for the rapid assembly of flows in a 
scripting language. 

Finally, we have built a graphical user interface (GUI) for 
specifying date flow graphs, similar in spirit to Tioga [46]. The 
GUI allows pmgmmmem to select modules fmm a module U- 
bmry and draw the data flow graph es desired. ‘Il~e user can 
then execute the program, 01 generate the flow construction 
code for later m-use. The GUI also allows variables to be 
added to tbc pmgmm, thus enabling the user to easily con- 
struct genetic programs. In the example of the simple copy, 
the USCI might choose to have the input and output collection 
natttc~ as variables, and then generate a general-purpose copy 
program. In general, we have found this simpler to “se than 
the programmatic inietface, end less bug-prone. 

2.4 Discussion 

We conclude the section with a discussion of the system, and 
how we expect it will be used. The typical programmer writing 
a new program will most likely spend their time pmgmmmieg 
the individual modules; this is where the bulk of application 
code should live. They will then use their modules and perhaps 
~omc of the modules that come with the system in order to 
construct a flow. We imagine that a user community interested 
in similar problem areas would have one or more libraries of 
standard modules that all would share, and that have been tuned 
for high performance. 

Achieving pamUelism is then rather straight-forward; the 
user must constmct the flow either in a script or with the 
GUI tool, and specify nodes on which to run; the system 
will spawn modules across multiple nodes quite easily, and 
generate the desired connections (queues, local or distributed) 
between modules. 

However, the focus of River is not simply enabling the con- 
struction of high-performance, pamllcl, l/O-intensive applica- 
tions; we seek to provide the necessary framework for building 
performance-robust programs. The system provides one part 
of the solution transparently to application writers, with the 
graduated declustering algorithm. By enabling minoring, ap- 
plications automatically gaiqrobustness to read perturbations. 

However, the other component of River that provides per- 
formance robustness is distributed queues, which must be in- 
serted by the application writer where appmpriate. In most 
cases, where to place DQs dependson program semantics, and 
therefore it is diacult to automate such a decision. In general, 
DQs can be quite easily inserted wherever there is embamss- 
ing pamUeUsm; in those cases, pmducers place work into the 
queue, and consmners take work from the queue, all at their 
individual rates. ‘Ibe addition of DQs in other situations is 
a bit more difficult, and requires a solid understanding of the 
application. 

OvcmU, the construction of performance-robust applica- 
tions requires the application titer to constmct and optimize 
sequential modules, and describe a flow to connect them, in- 
serting distributed queues where possible. By spending some 
pmgmmmer effort on DQ placement, the user will gain in re- 
bun a scalable application that runs well in the face of variable- 
rate producers and consumers; indeed, a well-designed River 
application wiU run with high performance acmss a set of ma- 
chines with highly varying performance characteristics. 

14 



180 

,* 
/‘ 

g ‘2o 
,A,‘& 

,’ 
1c.l ,’ 

% 

,’ 
80 

80 

ac 

20 

Figure 5: Distributed Queue Scaling. In this experimen& 
the scalability of the DQ is under scrutiny. During the run, 
from I to 32prcducersreaddati blocks from diskandpur them 
into the distributed queue, and I n, 32 sourcespuN data from 
the DQ. The ideal line shows the “ggregafe bandwidth that is 
available from disk. 

3 Experimental Validation 

In this section, we perform experiments to validate the expected 
perfomunce properties of tbc system. First, we explore the 
absolute performance and adaptability ofthe distriiuted queue. 
The petfonnance of the queue is crucial to the system, as this 
is the primary mechanism for providing load balancing within 
a flow. We will see that the distributed queue is effective in 
balancing load across consumers, and moving mope data to 
faster consumers. 

We then perform experiments on graduated declustering, 
our perfomnncc enhancement for minored collections. Bal- 
ancing work across consumers (via distributed queues) alone 
does not solve the problem of achieving consistent perfor- 
mance; when a single producer slows, performance of the 
system drops proportionally. In this case, it is important for 
the system to avoid the producer “hot-spot”. T&is is precisely 
what GD transparently provides, using a simple distributed 
algorithm to adapt to run-time perturbations of data sources. 

3.1 Distributed Queue Performance 

3.1.1 Absolute Performance 

First, we explore tbc scaling behavior of the distributed queue. 
In the lint experiment, we have the following set-up: data is 
read from n disks, put into a distributed queue, and consumed 
by n CPU sinks. We scale n fmm 1 to 32. The results of this 
scaling experiment are show in Figure 5. 

As the graph reveals, the scaling properties are near ideal. 
Each disk is capable of delivering 5.45 MB/s. From 32 disks, 
we thus would expect a peak read bandwidth of 174.4 MB/s. 
With the data moving through the DQ, we achieve 168.6 MB/s, 
or about 97 percent of peak. If the distributed queue is found to 
have scaling problems at a given cluster size, we could design 
a less aggressive algorithm, where each producer only sends 
data to some subset of the consumers; we have not yet seen the 
need for this. The petfomnncc when writing to disks tbmugh 
a DQ (not shown) scales equally well. 

““\/ SLa 
4 

i 
i 

Figure 6: DQ Read Under Perturbation. This figure shows 
thepercenrofpeakpetformanceachievedos consumerperhu- 
bations are added info the system. Without n DQ to bakance 
load across unperturbed consumers, performance drops as 
soon as a single ~cmwmer ir slowed Wth (I DQ, performance 
is unaffected until a large number of nodes are perturbed. A 
CPUperktrbadonsfeals 75% of thepmcessor; the test consists 
of 1Spmducersnnd 15 separate c0n.umer.9. 

3.12 Performance Under Perturbation 

We next examine the results when one or more consumers is 
arbitrarily slower than the rest. ‘Ibis type of perturbation could 
arise from dynamic load imbalance or hot spots in the system, 
or could be due to the presence of CPUs or disks with different 
performance capabilities. 

Figure 6 shows the effect of slowing down 1 to 15 CPU 
c~mumers both with and without a DQ, when reading from 
1 to 15 disks. Without a DQ, work is prc-allocated across 
consumers; thus, if a single consumer slows down, the perfor- 
mance is as bad as if all consumers had slowed down (this is 
labeled “static” for static allocation in the figure). 

When a DQ is inserted between the producers (disks) and 
consumers, more data flows to unperturbed consumers, thus 
flowing around the hot spots in the system. Because the CPUs 
are not fully utilized in the unperturbed cast, there is no no- 
ticeable performance drop-off under perturbation until 8 to 10 
comumers are perturbed. 

Whereas tic previous experiment was a form of a parallel 
read,thenextexperimentisaparallelwrite. Inthisexperiment, 
we place a DQ between CPU sources (which generate records) 
and the disks in the system. The results of the write experiment 
are shown in Figure 7. 

Once again, the static allocation behaves quite poorly un- 
der slight perturbation. In this case, however, the petfomxmce 
when writing to disks through the DQ degrades immediately 
under perturbation, gradually falling off; in fact, performance 
becomes slightly worse than the static application when all 15 
of the disks arc under perturbation. The cause of the immedi- 
ate degradation is that tbc disk bandwidth is fully utilized to 
begin with, unlike the CPUs in the DQ read experiment above. 
Thus, when a single disk of the system is perturbed, tbc total 
bandwidth available is reduced. The diffcrcncc is that with the 
DO, more data is sent to unperturbed disks, whereas the static 
application does not adapt. 

We have now demonstrated that the distributed queue has 
the desired properties ofbalancing load among data consumers; 
however, without minoring, eachproducerof data has a unique 

15 



f $J . . . . . . ...” . .._....,.,,, z: 

Figure 7: DQ Write Under Perturbation. Tbirjigureshows 
the effect of diskpermrbadon during writes, and how the DQ 
dynamicoliy adapti. 7hhesystemunder testconsistsof 15disk.v. 
Instead offalling off the performnce cl@ the DQ routes data 
to where bandwidth is available, and thus grac&lIy degrades 
In this case, each pemrber condnunlly perfomls sequentin.! 
Inrge-block, writes to the loco1 disk, stealing roughly half of 
the avai[nble bandwidlh 

collection of records, and to complete a flow, must deliver that 
data to tbe consumers. Thus, when tbc pmducers are the 
bottleneck in the system (as is often the case when streaming 
through large data sets), slowing a single producer will lead 
to a large global slowdown, as tbc pmgmm will not complete 
until tbc slow producer has tin&bed. This “producer” problem 
is the exact problem that graduated declustetig attempts to 
SOlVe. 

3.2 Graduated Declustering 

We now dcscnie our experimental validation of the graduated 
declustering implementation. We tind that both the absolute 
performance and behavior under perturbations is as expected 
in our initial implementation. 

3.2.1 Absolute Performance 

The performance of graduated declustering under reads, with 
no disk perhnbation, is slightly wwsc than the non-minored 
case. Tlds is a direct result ofourdesign, which always fetches 
data from both mirrors instead ofselecting asingle onc,inordcr 
to be ready to adapt when pcfiomrance characteristics change. 
Multiplexing two streams onto a single disk has a slight cost, 
because a seek must occur between streams. increasing the 
disk request size to 512KB or 1MB amortizes most of tbe cost 
of the seek, and thus we achieve 93 percent of the peak non- 
minored bandwidth, as seenin Figure 8. Writes, cacbofwbicb 
must go to hvo disks, incur the same problem. 

3.2.2 Performance Under Perturbation 

The real strengths of CD come forth for read-intensive work- 
loads, such as decision support or data mining. In these cases, 
applications reading from a non-adaptive mirroring system 
would slow to tbe rate of the slow disk of tbe system. With 
GD, the system shifts tbe bandwidth allocation per disk, and 
thus each consumer of tbe data receives data at the same rate. 

Figure 8: Graduated Declustetig Scaling. The graphs 
shows theperformmceof CD under scaling. The onlyperfor- 
monce loss is due to the fact that GD reads activeIyfrom both 
mirrors for a given segment; thus, a seek cost is incurred, and 
roughly 93% ofpeakperformanceis delivered. 

” ” . .._...___ 
.‘..... ‘* -.-..F GO 

I eo?A r--~-‘-+x 
t 

‘1.. k 

k=---l 

1 4m 

Figure 9: GD Under Read Perturbation. The graphs shows 
theperformonce of CD under readpertirbation. Performance 
degrades slowly for tie GD case, whereas II typical non- 
adaptive mirrored system su,$ers immediate slowdown. Each 
perturher is n competing read-sbeam to disk. 

The results of a 2%machine experiment are shown in Fig- 
ure 9. In this scenario, half of the machines serve as disk nodes, 
and the other half serve as data consumers. As explained above, 
the performance of GD mirroring as compared to no mirroring 
is slightly worse in the unperturbed case. However, a single 
perturbation slows the application on the non-CD system to 
the bandwidth of the slow disk, which in this case delivers data 
at roughly half of peak rate due to a single competing stream. 
With GD, performance degrades slowly, spreading available 
bandwidth evenly acmss consumers. However, when all disks 
are equally perturbed, tbc performance of GD once again dips 
below tbe non-GD system, again due to tbe overhead of seeking 
between multiple streams. 

Finally, perturbing a write stream to a collection and its mir- 
mr has the expected effect of slowing the mite to the speed of 
the slower disk. In some sense, this represents the fundamental 
cost of using minoring; applications that write out scratch data 
or other data of lesser value should not “SC mirroring because 
of this potential performance cost. 

16 



4 Applications 

We no” describe some initial application experience. We be- 
gin with an example of how an unmodified, sequential program 
can use the River infmstmcture. Then, we proceed with two 
parallel applications that we have written, a paraM sort and 
a parallel hash-join. The section focuses mt how application 
writers add robustness into their applications via distributed 
queues, and therefore does not show performance with mirror- 
ing enabled (as mirroring would be transparent to the user). 

4.1 Trace-Driven Simulation 

The tint application we examine is a trace-driven simulator, 
a second generation version of a file system simulator used 
in [35]. This complex, sequential program simulates multiple 
file system layout policies, buffer management, and includes a 
complete disk simulator. This application uses River as a fast 
data source; the simulator did not have to be modified it, order 
to do so. 

To access data in the River system, the simulator loads 
data into the River system via a simple copy-in script, and 
then accesses it with a copy-out script. The latter constructs 
a flow from a record collection to standard output, which is 
piped into tbe standard input of the simulator. In this case, 
the main benefit of River is the use of a fast, switch-based 
network between application and disk. Before using River, the 
simulator accessed data via an NFS tile server over an Ethernet 
shared network. However, because there is no pamllclism in 
tic application, distributed queues can not be used to provide 
robust perfonnancc. 

4.2 Parallel External Sort 

The next set of experiments involve a more complicated ap- 
plication, external sorting. In this case as with the next, the 
program has been written entirely within the River environ- 
ment. Sort is a good benchmark for clustered systems because 
its performance is largely determined by disk, memory, and 
interconnect bandwidth. WC compare an external sort built in 
the River framework to an “ideal” statically partitioned soti, by 
ideal we mean that the parallel sort reads in data from disk at 
full disk bandwidth, takes zem time to perimm the in-memory 
sort, and then “rites back to disk at full bandwidth, all with 
no overhead to parallelism. For the sake of simplicity, we only 
consider a single-pass sort (where the records are read into 
memory. sorted, and written to disk in a single pass); evenht- 
ally, we plan to extend ou work to include two-pass sorting, 
which places mom severe memory management demands on 
the system. 

Figure 10 presents the flow of data in the simple version 
of external sort in River (the flow is quite similar to NOW- 
Sort [Z]). First, data begins as an unsorted parallel collection 
on a number of disks. Data is read in on each disk node via 
the disk read module (DR), and then passed to a partitioning 
module (P). The partitioning modules perform a key-range 
partitioning of the data; thus, each partitioning module reads 
the top few bits of each record to determine which sorter (S) 
module should be sent a particular record. When a sate, 
module has received aU of the input, it sor@ the data, and begins 
streaming it to the disk write module (Dw), which proceeds to 
write tic data out to disk as a stream (thus preserving order). 
Thus, the application proceeds in three phases: read/partition, 
serf and “rite. 

Simple Single-Pass External Smi 

Figure 10: Parallel External Sort in River. This Jigure 
depicts the fogicoi data flow in a single-pass external sort. 
Data proceedrfim disk inlo 0 set ~Jstaticpartitioners, which 
split data (based on (1 key range in each record) (IUOSS (I set 
of serf modules. When the data has been read in, the sort 
modules sort entirely in pamlleL and hand data N, the write 
modules, which send them to disk (IS an ordered stre~~~~ The 
two markers, a circled I and 2, indicate hvopoin~~ where the 
flow could be altered to add robustness, as discussed below. 

First, we discuss the scaling behavior of the sort. Figure 11 
shows the result of scaling the River sort to 14 machines. 
TIC graph compares the River sort to the idealized, statically- 
partitioned parallel sort. The performance of the sort in the 
River framework begins at around 90% of peak efficiency, and 
dmps slightly to 86% at 14 nodes. ‘Ilx majority of the incf- 
Eciency can be attributed to a poody tuned in-memory sort, 
which contributes to 10% of the total elapsed time. Even with 
the un-tuned, in-memory, sort, we. learn from this graph that it 
is relatively easy to build a high-p-xfonnance, non-trivial appli- 
cation that does not lose much efficiency inside the framework. 
Further, the application does not have to write a single line of 
code to manage IfO. Qualitatively, all the application titer 
has to write is the partitioning module and the sort module; 
scaling to a parallel smt is then just a matter of wnstmcting 
the proper flow. 

However, as it stands, the simple River parallel sort is not 
mbust to performance perturbations. With graduated dcclus- 
tering, the smt can tolerate read perturbation. Here, we focus 
cm the read/partition and write phase of the sort, both of which 
have potential for performance robustness. 

First, we examine whether we can perturb the partition 
modules and still achieve reasonable performance. To add a 
level of robustness to the partition phase, WC insert a distributed 
queue between the disk read modules and the partitionen C&i- 
bclcd with a circled 1 in Figure 10). Because the sort is par- 
titioning the data, there is no order yet imposed at this stage 
of the sort, and therefore inserting the distributed queue only 
changes the performance characteristics of the sort, not the 
correctness. 

Figure 12 shows the result of pertmbittg the partitioncr 
modules. In this experiment, the disk modules and sort mod- 
ules arc placed on one set of 14 machines, and the partitionem 
are placed on another set of 14 machines (28 total). When 
perturbations are applied to the partitioncn, other pattition 
modules take over the slack, until the system is overloaded, 
degrading slowly after 8 of the 14 partition nodes are per- 
turbed. 

The other location in the flow that can be modified to avoid 



,m* .._............. ~.~. - . . . . . . - -,.~saac.??l 

-SC4 

i, 

!Ei 
p** l 0 

NC2 ‘O ‘2 ” 

Figure 11: ParaUelExtemalSorl Scaling, Thisfigureshows 
the scaling behavior of the sort built in the River framework, 
(IS compared to an idealized stnticaRy-partitioned sort. The 
River serf scales well; its only deficciency is an under-runed 
in-memory sort 

run-time perhuhations is between the sort modules and the 
disk write modules, labeled with a 2 in Fii 10. Our desire 
is to tolerate one or more disks slowing down during the write 
phase. However, we can not simply move records abitiy 
amo”~~ the different disk, we must preserve the set of sorted 
partitions as generated by each sort module. Thus, instead 
of balancing load acmss the disks at the record-level, we can 
balance load at a higher level of granularity, by dynamically 
deciding where to place each sorted partition. 

In order to balanceload among n consumers with data from 
n producers, then must be more than n data items produced. 
In its original form, the sort allocates a single sort module per 
producer (and thus per consumer); to remedy this, and allow 
for load balancing at the disks, we instead allocate c . n sort 
modules, where c is a small ccmstant. Note that this produces a 
slightly modified output, in that there are more sorted partitions. 

The performance of load balancing sorted-runs under disk 
perturbation is shown in Figure 13. As expected, by tit- 
in8 runs through the DQ, performance degrades much more 
gracefully than with the static allocation. However, under full 
petturbation, the performance is lower than expected; in this 
case, the overhead of the current implementation results in only 
40% of peak performance, roughly 10% lower than expected. 

4.3 Parallel Hash Join 

Hash-join is another important database operation, and is used 
extensively in decision-support benchmarks such as TPC-D. 
Hash-jointakestwo collectionsofrecords asinput, andoutputs 
all pairs that have equal vatncs on the join key. Both one-pass 
and two-pass variants exist [45, 281: the one pass algorithm 
is suitable for use when the smaller collection tits into the 
aggregate cluster memory. 

For simplicity, we discuss the one-pass hash join. Figure 14 
shows the flow of data. In the first phase, the smaller collection 
(or building collection, because a hash table will be built over 
it) is read from disk, partitioned using a hash function across 
nodes, and internally hashed inside each join module (labeled 
J in the diagram) to prepare for the join phase. ln the second 
phase, the second (probing) collection is read fmm disk, and 
partitioned across nodes via the same hash function. As records 
pass into the join module, matching records from the building 
collection are found, and the output proceeds immediately to 

Figure 12: Perturbing the Sort Partitioner. This figure 
shows the sort when the partition modules areperturbed. The 
dtik and sort modules run on one set of 14 machines, and 
the partition modules run on another set. The River serf is 
compared to (I “perfect” sort that is statically partitioned 
Each perturbation steals 75 percent of the CPU. 

Figure 13: Perturbing the Sort Writer. This fgure shows 
performance when writers areperlurbed during the writephase 
of the sorf. Ttw runs are on one set of I4 machines, and are 
writing fo disks on a separateset of 14 machines. In thir case, 
each perturbation is a compeiing wife-stieam fo disk. 

disk. Thus, during this phase, both reading of the second 
collection and writing of the output will operate concurrently. 

The addition of distributed queues in the hash join is quite 
similar to that of the sort. A queue cm be placed between data 
sourcesandpartitionen,aUawingfasterpartitioncrstopartition 
mme data. After the join is performed, if the output relation 
is not kept in hash form, another DQ can be inserted, easily 
balancing load across the disks. If the application wishes to 
keep the output records in hashed partitions, a situation similar 
to the balancing of sorted runs in the external sort could be 
employed. 

More interestingly, the hash-join can avoid performance 
perturbations to the join modules by using replication. If each 
building collection is replicated to two or more nodes, each 
record that is partitioned during the probing phase can dynam- 
ically choose between sites via a DQ. 

Because of some functionality limitations of our current 
infmstmcture, we do not yet have perfom~ance numbers for 
hash-join at scale. However, our initial results (on only 4 
machines) are promising. 

18 



Simple One-Pass Hash 

Figure 14: Parallel External Hash in River. This j&ye 
depicts the logical data pow in (I single-pass hash-join. The 
solid lines indicate the path of the first relation, from disk, 
info the hash-partition modules (P), and then into the hnsh- 
join modules (J). The dashed lines indicate the path of the 
second relation, similar to the path of the first relation. When 
the second relation passes through the hash-join mod&s, the 
join is performed, and the output r&tin is generated 

5 Related Work 

River relates to work fmm a number of often distinct areas: fiIe 
systems, programming environments, and database research. 
In this section, we discuss work from the three areas. 

5.1 Parallel File Systems 

High-performance parallel file systems an abundant in the 
literature: PPFS [27], Galley [37], Vesta [16], Swift [lo], 
CFS [38], SFS [33], and the SIO specification [6]. However, 
most assume performance-homogeneousdevices; thus, perfor- 
mattce is dictated by the slowest component in the system. 

Further, devoid of a specific pmgramming model, applica- 
tions could be constructed in an single-program, multiple-data 
(SPMD)-like fashion; thus, even if the parallel file system could 
deliver consistent high-perfotmance, it would go wasted inside 
of a rigidly-designed program. 

More advanced parallel tile systems have specified highcr- 
level interfaces to data via coIlectivc I/O (a similar concept is 
expressed with hvophasc I/O) [30, 131. In the original pa- 
per, Katz found that many scientific codes show tremendous 
improvement by aggregating l/O requests and then shipping 
them to the underlying I/O system; the l/O nodes can then 
schedule the requests, and often noticeably increase delivered 
bandwidth. However, because requests are made by and n- 
turned to specitic consumers, load is not balanced across those 
consumers dynamically. Thus, though these types of systems 
provide more flexibility in the interface, they do not s&e the 
problems we believe are common in today’s clustered systems. 

Finally, there has becnrecentfile-system work extolling the 
virtue of “adaptive” systems [35, 441. As hardware systems 
increase in complexity, it can be argued that more intelligent 
software systems are necessary to extract perfomnncc from 
the underlying machine architecture. Whereas some of these 
systems employ off-line reorganization to improve global per- 
formance [3.5], the goal of River is balance load on-line (at 
run-time). However, long-term adaptationcould also be useful 
in our system. 

5.2 Programming Environments 

There are a number of popular parallel pmgramming envi- 
ronments that support the SPMD programming style, includ- 
ing messaging passing environments such as MPI [47] and 
PVM [Zl], as weU as explicit parallel languages, such as Split- 
C [18]. ll~ese packages all provide a simple model of par- 
allelism to the user, thus allowing the ready construction of 
parallel applications. However, none provide any facility to 
avoid run-time perhxbations 01 adapt to hardware devices of 
differing rates. Our own experience in writing a parallel, ex- 
ternal sort in Split-C led us to realize some of the problems 
with the SPMD approach; while it was possible to run the sort 
weU once (NOW-Sort broke the world record on two database- 
industry standard sorting benchmarks), it was difficult to attain 
a high-level of performance consistently [2,3]. 

There have been many parallel programming environments 
that are aligned with our River design philosophy of run-time 
adaptivity. Some examples include Cilk 17, Lazy Threads [23], 
and Multipol [12]. All of these systems balance load across 
consumers in order to allow for highly-irregular, line-g&cd 
parallel applications. 

The main di&rcnce between River and the systems above 
is the granularity of communication. Because River limits itself 
to I/O workloads, data is pushed through the interconnect in 
large-sized blocks. All of these other systems are run-times for 
general-purpose pamlIe pmgramming, with a focus on fine- 
grained or irregular applications. On today’s clusters, latency 
to remote memory is much higher than latency to local memory, 
perhaps by two orders of magnitude (10 microseconds versus 
100 nanoseconds). This forces locality to be the dominant 
issue in many of the systems. However. remote II0 bandwidth 
is no worse than local l/O bandwidth; hence, while diEcult to 
hide remote memory latency, l/O data can be pushed through 
the system with Little cost. Further, none of these systems 
attempt to deal with the problem of slow pmducers, which is 
important in our envimnment. 

Perhaps more similar to the River environment is Linda, 
which provides a shared, globally-addressable, tuplcspace to 
parallel programs [ll, 221. Applications can perform atomic 
actions on htple-space, inserting tuplcs, and then querying the 
space to find records with certain attribulcs. Because of the 
generality of this model, high performance in dis&uted cnvi- 
moments is diEicult to achieve [4]. Thus, while the distributed 
aspects of River could be built on top of Linda, they would 
likely suffer fmm performance and scaling pmblcms. 

5.3 Databases 

Perhaps most relevant to River is the large body of work on 
parallel databases. Data flow techniques are well-known in 
the database literature [19], as it stems quite naturally &mu the 
relational model [14]. 

One example of a system that takes advantage of unordered 
processing of records is tbe IBM DBZ for SMPs [32]. In this 
system, shared data pools are accessed by multiple tbrcads, 
with faster threads acquiring more work. This is referred to 
as “the sti.w model”, because each thread “slurps” on its data 
straw at a (potentially) different rate. Implementing such a sys- 
tem is quite natural on an SMP; a simple lock-protected queue 
will suffice, module perfomunce concerns. With River, we 
argue that this same type of data distribution can be performed 
on a cluster, due to the bandwidth of the interconnect. 

There are a number of pamlIe databases found in the litcr- 
atue, including Gamma [15], Volcano [24], and Bubba [20]. 

19 



These systems all use similar techniques to distribute data 
among pmccsscs. Both the Gamma split table, Volcano er- 
change opemtws, and a generalized split table known as a 
“river” in [S], arc used to move data between producers and 
con~umcrs in a distributed memory machine; however, all use 
static data partitioning techniques, such 8s hash partitioning, 
range partitioning, or round robin. ?hcse functions all do not 
adapt at run-time to load variations among consumers. 

Current commercial systems, such as the NCR TctaData 
machine, cxclusivcly use hashing to partition work and achieve 
pamllelism. A good hash function has the effect of dividing 
the work equally among processors, providing consistent per- 
formance and achieving good scaling properties. However, as 
Jim Gray recently said of the TenData system, “Tiu p&x- 
mancc is bad, but it never gets worse” 12.51. Consistency and 
scalability were the goals of the system, perhaps at the cost of 
@ting the best “se of the underlying hardware. 

6 Future Work 

In the future, there arc many research areas which we wish 
to explore. The first three of these are enhancements to the 
system h&ast~cturc, and will serve to move the system from 
the realm of a system for expert pmgrammers to one more 
easily used. 

. Process and Data Placement. Process placement and 
data placement are two important decisions which are 
currently determined entirely by the user in River. In 
the ideal system, such decisions would be automated, 
perhaps by a higher-level entity such as a compiler or 
query planner. 

. Process and Data Migration. River currently moves 
data through the system quite effectively. Initial cxpc- 
rience suggests the feasibility of code migration, which 
would also improve the dynamic performance pmperties 
of the system. Long-tcmt data migration would also be 
useful; in this, short-term locally optimal placement de- 
cisions could be wevaluated and perhaps result in data 
m~vcmcnt to optimize for cuncnt usage. This would 
especially be useful 

. Application Fault Tolerance. The ultimate goal is 
to w&c applications to the River interface that not only 
have robust perfomnnce, but also can continue operation 
under machine failure, similar to work in other dynamic 
programming envimnmcnts [S, 431. Some form of auto- 
matic check-pointing may be the solution, as suggested 
in IS]. 

We also believe River is well-suited to a large class of cx- 
tcmal, distributed applications, including traditional scientific 
codes and perhaps multimedia programs as well. Some evi- 
dence for this exists in the literature about Volcano 1511, where 
scientific data-intensive applications are pmgrammed and op 
timized in the Volcano data-flow environment. We plan on 
exploring how to add robust performance features into these 
types of applications. 

Finally, we are developing simple models of how various 
“performance faults” should ticct the system. With well- 
developed analytical models, we will be able to easily compare 
the performance of our system versus the theoretical ideal in 
any grvcn perturbation scenaio. 

7 Conclusions 

As hardware and sofhvare systems spiral in size and complcx- 
ity, systems that arc designed for controlled envtionments will 
experience serious pcrfomxmcc defects io real-world settings. 
This has long been realized in the area of wide-area nctwork- 
ing, where the end-to-ad argument [42] pcrvadcs the design 
methodology of protocol stacks such as TCP/IP. In such sys- 
tems, it is clear that a globallycontrolled, well-behaved envi- 
ronment is not attainable; therefore, applications in the system 
treat it as a black box. adjusting their behavior dynamically 
hasedon feedback from the system to achieve the best possible 
performance under the current cinxmstattces. 

Complexity has slowly grown beyond the point of man- 
ageability in smaller distributed systems as well. Comprised 
of largely autonomous, complicated, individual components, 
clusters exhibit many of the same properties (and hence, the 
same pmblems) of larger scale, wide-area systems. This pmb- 
lem is further exacerbated as clusters move towards serving as 
a general-purpose computational inbastmcturc for large orga- 
nizations. As msourccs arc pooled into a shared computing 
machine, with hundreds if not thousands of jobs and users 
present in the system, it is clearly difficult, if not impossible, 
to believe that the system will behave in an orderly fashion. 

To address this increase in complexity and the concspond- 
ing decrease in predictability, we introduce River, a substrate 
for building I/O-intensive cluster applications. River is a con- 
fluence of a pmgramming environment and an l/O system; by 
extending the notion of adaptivity and flexibility from the low- 
est levels of the system up into the application, River programs 
can reliably deliver high petfom~ance. Even when system re- 
sources arc over-committed, performance of applications wit- 
ten in this style will degrade gracefully, avoiding sudden (and 
often frustrating) pmlongations in expected run time. 

From our initial study of applications, we found that avoid- 
ingperhnbations amongconsumers is relatively straight-forward 
via distriiuted queues. One important issue in balancing load 
is the granulnriry of ordering required by the applications. Tbc 
most tine-grained applications (those that can balance load on 
the level of the individual records) are the simplest to construct 
i,, a perfomnnce-robust manner. While distributed queues 
have proven excellent as load balancen, they do require the 
programmer to insert them where appropriate in the flow. 

Avoiding perturbations at the producers is the other pmb- 
lem solved by River, with graduated declustering. By dynami- 
cally shifting load away from perturbed producers, the system 
delivers the proper proportion of available bandwidth to each 
client of the application. 

For high-performance l/O in clusters, getting consistent 
performance is easy (it can always be had); getting peak per- 
formance is a matta of persistence (one good run when evct’y- 
thing is “just right”); getti”g both is the goal of the River UO 
environment. 

Source code is available upon request. 

8 Acknowledgements 

First and foremost, we would like to thank Jim Gray for all of his 
advice and encouragement. We’d also like to thank Alan Mainwaring 
for his work on and support of Active Messages; it is the sine quo 
non of our work. Many thanks to the anonymous reviewen for all of 
their helpful commc~ts. Finally, thanks to Andrea Avci-Dusseau, 
Amin “ahdat, and the I-Store grovp at Berkeley far su&7stions that 
improved the presentation and content of the paper. 

20 



‘MS work was funded in part by DARPA F3MOZ-95-C-0014, 
DARPA NOO600.93.G2481,NSFCDA 94-01156,NASA FDNAGW- 
5198, and the California State MICRO Rogram. 

References 

[l] Supcrcomputen: Plug and Play. Ihe Economirt, November 
1998. 

[Z] A. C. Arpaci-hseau, R. H. Arpaci-Dwseau, D. E. tiller, 1. M. 
Hcllcntcin, and D. A. Pattcnon. High-Performance Sorting on 
Nctvmrks of Workstations. lo S,GMOD ‘97, May 1997. 

[3] A. C. Arpaci-Duseau,R. H. Arpaci-Dusscau, D. B. tiller, 1. M. 
Hcllcmtein, and D. A. Pancmon. Searching for the Sordng 
Record: Expcricnccs in ‘hning NOW-Sm. In SPDT ‘98, Aug. 
1998. 

[4] H. E. Ba,, M. F. t&shock, and A. S. Tanenbaum. Grca: A Ia,- 
guagc for Parallel Programming of Distributed Sysfcms. lEEE 
Tramacdons on Software Engineering, 18(3):19&205, Mar. 
1992. 

[S] T. Barclay, R. Barnes, 1. Gray, and p. Sundaresm,. ,,xdb,g 
Databases Using Data&w Parallelism. SIGMOD Record (ACM 
Special Interest Group on Mc,“ogeme”r of Dam,, 23(4):72-83, 
Dcccmbcr 1994. 

[6] B. Bersbad,D. Black, D. DcWltt, G. Gibson,K Li, L. Petmsor~, 
and M. Snir. Operating system support for high-perfommncc 
parallel UO systems. Technical Rcpon CCSF-40, Scalable “0 
Initiative, Caltech Concurrem Supercomputing Facilities, a- 
tech, 1994. 

[7] R. D. Blumofe, C. E loerg, B. C. Kusrmau,, C. E. Lcisemm, 
K H. Randall, and Y. Zhou. Cti An Efficient Multithreaded 
Runtime System. In Proceedings ofthe 5th Symposium on Prti- 
cipks o”dPracdce 0fPnraNel Programming, July 1995. 

[S] R. D. Blumofe and R A. Lisiccki Adaptive and Reliable Par- 
allel Computing on Networks of Workstations. In USEm 
editor, 1997Annuol TeehnicolConferenee.Janunry610.1997. 
Anaheim CA, pages 133-147, Berkeley, CA, USA, Jan. 1997. 
USENIX. 

191 N. Bode”, D. Cohen, R. E. Feldcrman, A. Kulawik, and C. Seitz. 
Mytic,: A Gigabit-per-second Local Area Network. IEEE Mi- 
cro, Febmary 1995. 

[lo] L-F. Cabrem sod D. D. E. Lang. Swift Using distributed disk 
striping to provide high VG data rates. Computing Sysremr, 
4(4):405-l36,Fall 1991. 

[I I] N. 1. Carriera Impleme”mti” of tip& space. PbD thesis, De- 
pa~entofComputcrScicnce,Ya,c Univenity, Dcccmbcrl987. 

[12] S. Cbakmbard, E. Deprit, E.-I. Im, I. Jones, A. Krishnamunhy, 
C.-P. Wen, and K Yelick. Muhip& A Distributed Data Sbucmre 
Library. Technical RcponCSD-95.879,Univcnity ofCalifornia, 
Berkeley,lu,y 1995. 

[13] A. Cboudhmy,R. Bordawckar.M. Harry, R. Krishnaiyer,R. Pon- 
nusamy,T. Sir@, and R.Thzkur. PASS,GN:pam,,c,and scalable 
software for input-output. Technical Report SCCS636, ECE 
Dept., NPAC and CASE Canter, Syracuse University, September 
1994. 

[I41 E. E Cndd. A Relational Model of Data for Lxrge Shared Dam 
Banks. CommunicotionsoftheACM, 13(6):377-387,lune 1970. 
Also published in/as: ‘Readings in Databaw Systems, 3rd Edi- 
tion’, M. Stoncbmkcr and I. Helleatcin, Morgan-Kaufmann, 
1998,pp. 5-15. 

1151 G. Copeland, W. Alexander, E. Boughter, and T. Keller. Dam 
Placement in Bubba. SIGMOD Record (ACM Special Inkrest 
Group o”Mn”ogeme”,ofDom,, ,7(3):99-108, Sept. ,988. 

[I61 R E Cmbea and D. G. Feilelson. The “csta parallel hle sys- 
tem. ACM Tnm.saetiom on Computer Sys,ems, ,4(3):225-264, 
August 1996. 

[17] T. P. Council. TPGD Individual ResulU, 1998. 
http:/huww.tpc.orglnsulWtpcd.nsulu.pagc.. 

[18] D. E. CuUcr, k Dusseau. S. C. Goldstein, A. Krisbnamutiy, 
S. Lumcffa, T. van Eicken, and K. Yelick. Parallel Programming 
in Split-C. In Proceedings of Supereomputing ‘93. pages 262 
273.1993. 

1191 D. DeWin and 1. Gray. parallel database sys1cms: Tbc fuhxc 
of high-performance database systems. Communications of the 
ACM, 35(6):85-98,lunc 1992. 

[20] D. 1. DeWin, S. Gbandeharizadeh, and D. Schneider. A Pcr- 
fonnance Analysis of tbc Gamma Database Machine. SIGMOD 
Record (ACM Special Interesf Group on Monngemenr of Dam), 
17(3):350-360, Sept. ,988. 

[Zl] 0. GeistandV Suodemm. TbeEvolutionofthcPVM Concurrent 
Computing System. In COMMON, February 1993. 

[ZZ] D. Gclcmtcr, N. Cardem, S. Chandrao, and S. “mng. Pam”e, 
programmingin Linda. In D. Dcgmo,,cditor, 1985lnrernotionol 
Conference on Puralk?, Processing, pages 255-263, ,985, 

(231 S. C. Goldstein, K E. Schauscr, and D. E. cU”er. Lazy Tbmads: 
Implementing a Fast Parallel Ca,,. ,oourno, of Parallel and Dis- 
nibtad Compuring, 37(1):5-20,Aug. 1996. 

[24] G. Gracfc. Encapsulation of Parallelism in Ule Volcano Gucry 
Processing System. SIGMOD Record (ACM Special Inrerest 
Group on ManngemenrofDom), 19(2):102-lll,lunc 1990. 

1251 J. Gray. What Happens When Pmcessors AK Infioitely Fast And 
Storage Is Free? invited Talk: ,997 IGPADS, November 1997. 

[Xl H.-I. Hsiao and D. DcWitt. Chained Dcclustcring: A new 
availability strategy for muhiprocessor database machines. Lo 
Proceedings of&h I”rematioMI Dam Engineering Conference, 
pages 456-465, ,990. 

[27] I. Huber, C. L Elford, D. A. Reed, A. A. Cbicn, and D. S. 
Blumenthal. PPFS A high performance portable parallel Nc 
system. InP~~ceedi”gsofthe9,hACM,“re,“n,~”n,C”f~,~”~~ 
onSuperrompuring,pages385-394,Barce,ona,lu,y 1995.ACM 
Press. 

[28] M. Khsumgawa, H. Thnaka, and T. Mote-Gka. GRACE: Rela- 
tiona, algebra machine based an hash and son - its design con- 
cepts. Jarno, of rhe Information Processing Society of Japan, 
6(3):14&155,1983. 

[29] S. Klciman, 1. Vo,,, J. Eykbob, A. Sbivalingiah, D. Williams, 
M.Smith,S. Barton,andG. Skinner. SymmetricMulfiproccssing 
in Solaris 2.0. In Proceedings of COMPCON Spring ‘92.1992. 

[30] D. Katz. Disk-directed UO for MIMD mulliprocesson. In 
Proceed+ of rhe 1994 Symposium on Operaring Sysrems De- 
sign and Implemenmtion, pages 61-74. USENlX Association, 
November 1994. Updated as Dartmouth TR PCS-X+94-226 on 
No”cmber8, ,994. 

[31] S. Kubica. T. Robcy, and C. Moorman. Da@ parallel progmm- 
ming wilh tic Khoros Data Services Library. Lecture Noler in 
CompurerScienee, 1388:96~973,1998. 

[32] B.Lindsey. SMPIntm-~ueryPamllclisminDB2UDB. Database 
Seminar at UC. Berkeley, Fcbmary 1998. 

[33] S. I. bkno, M. Isman, A. Nanopoulos. W. Ncshcim, E. D. 
Mi,nc,and R. Wheeler. sfs: ApamllelNesystcmfortheCM-5. In 
Pmceedingsofrhe IW3Summer”~~N~Tech”icn,Co”fere”ce, 
pages 291-305, ,993. 

[34] A. Mainwaring and D. Cullcr. Active Message Applications 
Programming htcrface and Communication Subsystem Orfani- 
radon. Technical Report C-SD-96-918, Univcnity of California 
at Berkeley, Oclobcr ,996. 

[35] I. N. Matthews, D. Roselli, A. M. Cosfc,,o, R. Y. Wang, and 
T. B. Anderson. Improving the performance of log-stmcmrcd 
file systems with adaptive methods. In Proceedings of the 16th 
Symposium on OperoringSysremr Pr~ciples (SOSP-97), volume 
31,5 of *per&n*Sys*ems Review, pages 238251, Saint-Malo, 
France, Gctobcd-8 1997. ACM SIGOPS, ACM Press. 

21 



1361 R. V. Meter. Observing the Effects of Multi-Zone Dish. In 
Proceedingsof the 1997 USENN Conference. Jan. 1997. 

[37] N. Nieuwejaar and D. Rotr The Gtiey parallel 6le system. 
In Proceedings of the lOtI, ACM InrmrioMl Confmncc on 
Supcrcomputing. pages 374-381. Philadelphia. PA, May 1996. 
ACM Fms. 

1381 B. Niaberg. Perfmmancc of the iPSCiS60 Gxsunent File Sys. 
1sm. Technical Repot RND-92-020, NAS Systems Division, 
NASA Ames, December 1592. 

1391 S. Pakin, M. Lauria, and A. Chicn. High Perfmmance Mesag- 
ing on workst?.lions: mnois Pasf Messages (FM) for Myrirwt. 
In Proceedings of the 1995 AChflLEEE Supemmputing Confer- 
ence, December 3-8,199$ San Diego Conrmrion Ccntq Son 
fie&~ C4 USA. ACM Fess and IEEE Computer Society h&s, 

[41] D. M. Rilcbie. A Stream Input-Output System. E&T,, 63(g, Pa,, 
2):1897-1914Oclobsr 1984. 

[42] I. H. Sahzer, D. P. Rexd,andD. D. Qark. End-to-End Arguments 
in System Design. ACM Tram~ctiom on Compuvr Syrfrmr, 
pages 277~2Sg,Novemk,,984. 

1431 D. Scales and M. Lam. hspannt Fault Tblcmncc for Par&, 
ApplicalionsonNetworksof Workstaions. InPmceedingsoftbe 
1996 USENLY Conference, Jan. 1996. 

1441 M. Seltzer and C. Small. Self-Monitoring ad Self-Adapting 
Systems. In Prmeedingsof dre 1997Wor~hoponHor Topics on 
opemingsysums. cladlam, bL% May 1997. 

[45] L D. Shapiro. Join processing in databasc systems with lqe 
main memories. ACM Tnm.wcaOm on Darobare Smrmr, 
11(3):239-264,Sept. 1986. 

[46] M. Stoncbmker, J. Chcn, N. Nathan, C. Pawn, and 1. Wu. 
Tioga:providhg data management suppat for scientific visual- 
ization applications. In bremorionnl Conference On Very Large 
Da10 Bpres (VZDB ‘93). pages 25-38, San Pmncisco, Ca., USA, 
Aug. 1993. Morgan KauImann Publishem, Inc. 

[47] The MPI Forum. MPI: AMcssagePassinghterface. InProceed- 
ins of Supereompuling ‘93, pages 878-883, November ,993. 

[48] T. van Eicken, A Basu, V. Such, and W. Vogcls. U-Net: A 
User-Level Network h&face for Parallel and Distributed Corn- 
puti”g. InPmceedingsof~eJ4~ACMSymposiumon Opemdng 
System.sPrincipler, pages 4t?-53, December 1995. 

[49] T. “00 Eicken, D. E. Chllcr, S. C. Gold.stch, and K. E. Schauscr. 
Active Messages: a Mechanism for Integrated Communication 
and Computation. In Proceedings of the 19th Annuollnterno- 
tioml Symposium on Computer Arcbilecwe, pages 256-266, 
Gold Coast, Australia, May 1%21,1992. ACM SIGARCH and 
IEEE Computer Society TCCA. Cornpurer AmhirectireNew, 
20(Z), May 1992. 

[50] R. Wmfcr and K Aucrbacb. Tbc Big The: 1998 Winter VLDR 
Survey. DotabosePmgrommingnndDesign, ,998. 

[51] R. Wohiewicz and 0. Gracfe. Algebraic Optimization of Corn- 
putations over Scientific Databases. In VLDB ‘93, pages 1>24, 
1993. 

22 


