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Abstract

We discuss the issues involved in implementing MPI-IO portably on multiple machines and �le

systems and also achieving high performance. One way to implement MPI-IO portably is to imple-

ment it on top of the basic Unix I/O functions (open, lseek, read, write, and close), which are

themselves portable. We argue that this approach has limitations in both functionality and perfor-

mance. We instead advocate an implementation approach that combines a large portion of portable

code and a small portion of code that is optimized separately for di�erent machines and �le systems.

We have used such an approach to develop a high-performance, portable MPI-IO implementation,

called ROMIO.

In addition to basic I/O functionality, we consider the issues of supporting other MPI-IO features,

such as 64-bit �le sizes, noncontiguous accesses, collective I/O, asynchronous I/O, consistency and

atomicity semantics, user-supplied hints, shared �le pointers, portable data representation, �le pre-

allocation, and some miscellaneous features. We describe how we implemented each of these features

on various machines and �le systems. The machines we consider are the HP Exemplar, IBM SP,

Intel Paragon, NEC SX-4, SGI Origin2000, and networks of workstations; and the �le systems we

consider are HP HFS, IBM PIOFS, Intel PFS, NEC SFS, SGI XFS, NFS, and any general Unix �le

system (UFS).

We also present our thoughts on how a �le system can be designed to better support MPI-IO.

We provide a list of features desired from a �le system that would help in implementing MPI-IO

correctly and with high performance.
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1 Introduction

Portable parallel programming has long been hampered by the lack of a standard, portable application

programming interface (API) for parallel I/O. Most parallel �le systems have a Unix-like API with

variations that are nonportable. Furthermore, the Unix API is not an appropriate API for parallel

I/O; it lacks some of the features necessary to express access patterns common in parallel programs,

such as noncontiguous accesses and collective I/O, resulting in poor performance [34]. To overcome

these limitations, the MPI Forum de�ned a new API for parallel I/O (which we call MPI-IO) as part

of the MPI-2 standard [17]. MPI-IO is a comprehensive API with many features intended speci�cally

for I/O parallelism, portability, and high performance. Implementations of MPI-IO, both portable and

machine-speci�c, are beginning to appear [6, 12, 22, 23, 33].

In this paper, we discuss the issues involved in implementing MPI-IO portably on multiple machines

and �le systems and also achieving high performance. We argue that if an implementation uses just the

basic Unix I/O functions in order to achieve portability, it will have limitations in both functionality

and performance. We describe an alternative approach, called ADIO, that achieves portability and

performance by combining a large portion of portable code with a small portion of code that is optimized

separately for di�erent machines and �le systems. We have used this approach in our portable MPI-IO

implementation, ROMIO.1

In addition to implementing basic I/O functionality (open, close, read, write, seek), we consider the

issues of supporting other MPI-IO features, such as 64-bit �le sizes, noncontiguous accesses, collective

I/O, asynchronous I/O, consistency and atomicity semantics, user-supplied hints, shared �le pointers,

portable data representation, �le preallocation, and some miscellaneous features. We describe how we

implemented each of these features on various machines and �le systems. The machines we consider are

the HP Exemplar, IBM SP, Intel Paragon, NEC SX-4, SGI Origin2000, and networks of workstations;

and the �le systems we consider are HP HFS, IBM PIOFS, Intel PFS, NEC SFS, SGI XFS, the Network

File System (NFS), and any general Unix �le system (UFS).

We also describe how a �le system can be designed to better support MPI-IO. We provide a list of

features desired from a �le system that would help in implementing MPI-IO correctly and with high

performance.

2 Achieving Portability and Performance

The basic Unix I/O functions (open, lseek, read, write, and close) [28] are supported without

variation on all machines with a Unix-like operating system. One way to implement MPI-IO portably,

therefore, is to implement MPI-IO functions on top of the basic Unix I/O functions. Since the Unix

I/O functions are portable, such an MPI-IO implementation will be portable to many machines and �le

systems. This approach, however, has limitations in both functionality and performance, as explained

below:

1. The basic Unix I/O functions are not su�cient to implement all of MPI-IO on all �le systems for

the following reasons:

� The basic Unix I/O functions are blocking functions. Many �le systems provide a di�erent

set of (nonportable) functions for nonblocking I/O.2

� On many �le systems, the basic Unix I/O functions work only on �les of size less than

2Gbytes. Di�erent functions must be used for larger �les, and these functions are also

1URL: http://www.mcs.anl.gov/romio
2It is possible, however, to implement nonblocking I/O by spawning a thread that calls a blocking I/O function.
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nonportable. (We note that an MPI-IO implementation is not required to support large �le

sizes, but most high-quality implementations will.)

� Some �le systems allow the user to control �le-striping attributes with special, nonportable

functions (e.g., IBM PIOFS and Intel PFS).

� Some �le systems support additional features such as �le preallocation (e.g., SGI XFS, Intel

PFS, HP HFS) and a choice of atomic and nonatomic �le-access modes (e.g., IBM PIOFS

and Intel PFS). The corresponding functions are also nonportable.

Since all these features are available at the MPI-IO level, an MPI-IO implementation cannot

support them if it uses only the basic Unix I/O functions.

2. Although the basic Unix I/O functions are supported on all �le systems, they are often not the

recommended functions (for performance) on all �le systems. For example,

� On the Intel Paragon, the recommended functions are cread and cwrite.

� On SGI IRIX 6.5, the recommended functions are pread64 and pwrite64; on IRIX 6.4 and

earlier, they are called pread and pwrite.

� On HP machines running the SPPUX operating system (and not HPUX), the recommended

functions are pread64 and pwrite64.

3. When using the Network File System (NFS), it is not su�cient to call just the Unix read/write

functions. Since NFS performs noncoherent client-side caching by default, �le consistency is not

guaranteed if multiple processes write to a common �le [27]. Client-side caching must be disabled

by locking the portion of the �le being accessed, by using fcntl. A lock and unlock are therefore

needed across the read/write call.

4. Many research �le systems provide their own APIs [8, 3, 10, 14, 19]. Implementing MPI-IO on

top of Unix I/O functions will not be portable to these �le systems.

An alternative is to implement MPI-IO on top of the POSIX I/O interface [11] instead of the basic

Unix I/O functions. The POSIX interface is an international standard with greater functionality than

basic Unix I/O. For example, POSIX supports asynchronous I/O and list-directed I/O. This approach,

however, also has limitations. Although POSIX is a standard, it is not yet widely implemented. One,

therefore, cannot assume that POSIX I/O functions will be available on all �le systems. Furthermore,

many vendors do not follow the POSIX standard strictly. They implement only parts of it, and even the

implemented portion may not conform strictly to the standard (particularly in the case of asynchronous

I/O). Some vendors provide a separate set of functions for 64-bit �le sizes. POSIX also does not support

some features that MPI-IO supports, for example, �le preallocation and varying �le-striping attributes.

Nonstandard functions must be used on �le systems that support these features. In all, implementing

MPI-IO on top of POSIX I/O is not su�cient either.

We believe that the only way to implement MPI-IO portably with complete functionality and high

performance is to have a mechanism that can utilize the special features and functions of each �le

system. We describe such an architecture, called ADIO, which we use in our MPI-IO implementation,

ROMIO [33].

2.1 Abstract-Device Interface for I/O

A key component of ROMIO that enables such a portable MPI-IO implementation is an internal layer

called ADIO [30]. ADIO, an abstract-device interface for I/O, is a mechanism speci�cally designed for
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implementing parallel-I/O APIs portably on multiple �le systems. We developed ADIO before MPI-

IO became a standard, as a means to implement and experiment with various parallel-I/O APIs that

existed at the time.

ADIO consists of a small set of basic functions for parallel I/O. Any parallel-I/O API can be

implemented portably on top of ADIO, and ADIO itself is implemented separately on each di�erent

�le system. ADIO thus separates the machine-dependent and machine-independent aspects involved

in implementing an API. The ADIO implementation on a particular �le system is optimized for that

�le system. We used ADIO to implement Intel's PFS API and subsets of IBM's PIOFS API and the

original MPI-IO proposal [35] on PFS, PIOFS, Unix, and NFS �le systems. By following such an

approach, we achieved portability with very low overhead [30]. Now that MPI-IO has emerged as the

standard, we use ADIO as a mechanism for implementing MPI-IO portably (see Figure 1), and this

MPI-IO implementation is called ROMIO [33].

ADIOADIO

MPI-IO

Unix
NFS NEC

SFSHPSGI
XFSPIOFS

IBMIntel
PFS HFS

Portable Implementation

network

remote site

Implementations
File-system-specific

Figure 1: ROMIO architecture: MPI-IO is implemented portably on top of an abstract-device interface

called ADIO, and ADIO is optimized separately for di�erent �le systems.

Another application of ADIO is for implementing remote I/O. An MPI-IO program running on one

machine can access �les from remote machines by developing an ADIO implementation that accesses

data from an ADIO server running at a remote site. Such an implementation is described in [7] and

also illustrated in Figure 1.

A similar abstract-device interface is used in MPICH [9] for implementing MPI portably.

3 Implementing MPI-IO

We describe how we implemented each feature of MPI-IO on various machines and �le systems. The

many variations among machines clearly demonstrate the need for an ADIO-like approach to imple-

menting MPI-IO portably, where the variations are accounted for in the ADIO implementation.

3.1 Basic File Access

We �rst consider the basic �le-access operations: open, close, read, write, and seek. We consider reads

and writes in which data is contiguous in both memory and �le; noncontiguous accesses are considered

in Section 3.2.
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3.1.1 Open

MPI File open is a collective function. One of its arguments is an MPI communicator [18] that speci�es

the group of processes that will call this open function and any other MPI-IO collective function that

the user may choose to use on the open �le. Most �le systems, other than Intel PFS, support only

the regular Unix open and do not have collective open functions. On these �le systems, ROMIO just

calls the open function on each process. Intel PFS supports two open functions: regular Unix open and

gopen. gopen is a \global open," recommended to be used when all processes in the application open

a common �le. It cannot be used when a subset of processes open the �le; the function will hang if all

processes do not call it.

MPI-IO also supports a few additional �le-access modes that are not de�ned in Unix or POSIX.

3.1.2 Close

The close function on most �le systems is identical to close in Unix or POSIX. MPI File close can

be implemented in a straightforward manner on top of Unix close. If the �le was opened with the

mode MPI MODE DELETE ON CLOSE, the implementation must delete the �le. Most �le systems support

the Unix function unlink for deleting a �le.

3.1.3 Large Files

Most �le systems distinguish between �les of size less than 2Gbytes and greater than or equal to

2Gbytes. The reason is that �le o�sets and �le sizes are usually represented by 4-byte integers in

the regular I/O functions. The largest number that can be represented by a 4-byte signed integer is

(2Gbytes { 1). With the regular �le-system functions, therefore, it is not possible to access data from

locations beyond 2Gbytes. To overcome this problem, most �le systems provide separate functions that

use 8-byte integers to represent �le o�sets.

In MPI-IO, �le o�sets are of type MPI Offset, which is a data type de�ned by the MPI-IO imple-

mentation. The implementation is free to de�ne it to be of any size; the standard does not mandate

that the implementation support large �les. In ROMIO, however, on those �le systems that support

large �les (such as IBM PIOFS, HP HFS, NEC SFS, and SGI XFS), ROMIO treats all �les as large

�les; that is, it de�nes MPI Offset as an 8-byte integer and uses the corresponding �le-system functions

for large �les (even though the �le may be smaller than 2Gbytes). On �le systems that do not support

large �les, ROMIO also does not support large �les and de�nes MPI Offset as a 4-byte integer.

3.1.4 Seek

MPI-IO has two kinds of �le pointers, individual and shared, and, correspondingly, two seek functions

to move these �le pointers. Most �le systems (other than Intel PFS), however, support only individual

�le pointers. In Section 3.8 we describe how an MPI-IO implementation can implement shared �le

pointers on top of individual �le pointers.

Most �le systems support the Unix lseek function. One some �le systems we need to use a di�erent

function for large �les: lseek64 on SGI XFS, HP HFS, and NEC SFS; llseek on IBM PIOFS.

3.1.5 Contiguous Reads and Writes

Contiguous reads and writes in MPI-IO can be mapped directly onto the reads and writes of the

underlying �le system. The recommended functions for read and write, however, vary considerably

among machines. ROMIO uses the following functions:

� cread/ cwrite on Intel PFS.
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� pread64/pwrite64 on HP HFS if the operating system is SPPUX and read/write if it is HPUX.

� pread64/pwrite64 on SGI XFS if the operating system is IRIX 6.5. On IRIX 6.4 and earlier, the

same functions are called pread/pwrite.

� read/write elsewhere.

The functions pread64/pwrite64 take the �le o�set as an argument; therefore, a separate lseek64 is

not required.

3.2 Noncontiguous Accesses

MPI-IO allows users to access noncontiguous data from a �le into noncontiguous memory locations with

a single I/O function call. The user can specify noncontiguous locations in the �le by creating a �le

view with MPI's derived datatypes [17]. Noncontiguous locations in memory can be speci�ed by using

a derived datatype in the read/write call.

The ability of users to specify noncontiguous accesses in a single function call is very important,

because noncontiguous accesses are very common in parallel applications [1, 4, 20, 25, 26, 31]. Most �le

systems, however, do not provide functions for noncontiguous I/O. The Unix functions readv/writev

are widely supported, but they allow noncontiguity only in memory and not in the �le. Noncontiguous

memory accesses are not as commonly needed in parallel applications as noncontiguous �le accesses.

Furthermore, most �le systems impose a limit of at most sixteen noncontiguous memory locations in a

single readv/writev call.

Some �le systems support the POSIX list-directed I/O function lio listio, which allows users to

submit multiple I/O requests at a time. This function also has limitations, because of the way it is

de�ned. For one, it is tied too closely to nonblocking (asynchronous) I/O. The POSIX standard [11]

says that each of the requests in the list will be submitted as a separate nonblocking request. It is

known, however, that issuing too many nonblocking I/O requests at a time can lower performance.

Furthermore, POSIX allows the requests in the list to be a mixture of reads and writes. All these

speci�cations make it di�cult for the POSIX implementation to optimize I/O for the entire list of

requests, for example, by performing data sieving [32].

In the absence of proper support for noncontiguous I/O from the �le system, one way to implement

a noncontiguous MPI-IO request is to access each contiguous portion of the request separately by

using the regular contiguous read/write functions of the �le system. Such an implementation, however,

results in a large number of small requests to the �le system, and performance degrades drastically [32].

ROMIO instead performs an optimization called data sieving to access noncontiguous data with high

performance. The basic idea in data sieving is to make large I/O requests to the �le system and extract,

in memory, the data that is really needed. Details of this optimization can be found in [32].

3.3 Collective I/O

MPI-IO provides collective-I/O functions, which must be called by all processes that together opened

the �le.3 This property enables the MPI-IO implementation (or �le system) to analyze and merge

the requests of di�erent processes. In many cases, the merged request may be large and contiguous,

although the individual requests of each process are noncontiguous. The merged request can therefore

be serviced e�ciently, and such optimization is broadly referred to as collective I/O. Collective I/O

has been shown to be a very important optimization in parallel I/O and can improve performance

signi�cantly [5, 13, 24, 29].

3An MPI communicator is used in the open call to specify the participating processes, and the communicator could

represent any subset (or all) of the processes of the application.
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Since none of the �le systems on which ROMIO is implemented perform collective I/O, ROMIO

performs collective I/O on top of the �le system. ROMIO's collective-I/O implementation is described

in detail in [32], and it is a generalization of the two-phase method originally proposed in [5] and

extended further in [29]. In two-phase I/O, as the name suggests, I/O is performed in two phases: a

communication phase and an I/O phase. The communication phase uses interprocess communication

to rearrange data into large chunks. In the I/O phase, processes perform parallel I/O in large chunks

and therefore obtain high I/O performance.

For example, Figure 2 shows the performance of an astrophysics application template, DIST3D,

when I/O is performed in three ways: using Unix-style independent I/O, data sieving, and collective

I/O. This application accesses a three-dimensional distributed array of size 512� 512� 512 from a �le.

Depending on the machine, data sieving performs either slightly better or much better than Unix-style

independent I/O. Collective I/O always performs the best and results in I/O bandwidths of hundreds

of megabytes/sec. For detailed performance results, see [32].

Figure 2: Performance of DIST3D using Unix-style independent I/O, data sieving, and collective I/O.

The top �gure shows read bandwidth, and the bottom �gure shows write bandwidth.

3.4 Nonblocking (Asynchronous) I/O

Many �le systems support nonblocking I/O, and one way to implement MPI-IO's nonblocking I/O

functions is to use the nonblocking functions of the �le system. Intel PFS supports nonstandard functions

called iread and iwrite. Other vendors (SGI, IBM, DEC, Sun) support POSIX asynchronous I/O

(aio) functions, but, in many cases, they do not follow the POSIX de�nition strictly. IBM supports
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nonblocking I/O on Unix and NFS �le systems, but not on PIOFS. HP supports nonblocking I/O only

on HPUX version 11.0 and higher, but not on SPPUX or earlier versions of HPUX. Nonblocking I/O

functions are not yet available in Linux, FreeBSD, or on the NEC SX-4.

Another way to implement nonblocking I/O is by explicitly using threads that call blocking I/O

functions. This approach, however, requires good thread support on the machine and a thread-safe MPI

implementation, neither of which are common on parallel machines as yet.

ROMIO implements nonblocking I/O by using the nonblocking I/O functions of the �le system

where available. On machines and �le systems that do not support nonblocking I/O, ROMIO just calls

the corresponding blocking I/O functions.

3.5 Consistency Semantics

MPI-IO's consistency semantics (Section 9.6 of [17]) de�ne the results users can expect with concurrent

�le accesses from multiple processes. MPI-IO's consistency semantics are actually weaker than the

consistency semantics in Unix [28] or POSIX [11]. In Unix and POSIX, after a write function returns,

the data is guaranteed to be visible to every other process in the system. MPI-IO guarantees that

writes from one process are immediately visible only to those processes in the communicator that was

used to open the �le. Any other process can access the data only after both the writer and reader call

MPI File sync.

MPI-IO's consistency semantics are therefore automatically guaranteed on �le systems that support

Unix consistency semantics. NFS, by default, does not [27]. To obtain Unix consistency semantics

on NFS, ROMIO uses byte-range locking (fcntl) across the reads and writes in order to turn o� the

noncoherent client-side caching that NFS otherwise performs. Turning o� client-side caching reduces

performance considerably, but is, nonetheless, necessary for correctness. We believe that the other �le

systems on which ROMIO is implemented do support Unix consistency semantics correctly.

3.6 Atomicity Semantics

Atomicity semantics de�ne the results when multiple processes issue concurrent requests to overlapping

regions in the �le, and one or more of those requests are write requests. MPI-IO supports two atomicity

modes. The default mode is nonatomic, in which the results of such concurrent requests are unde�ned.

The user can change the mode to atomic, in which case the overlapping region will contain data from

any one process only.

The atomic mode is the only mode supported in Unix and POSIX. On �le systems that support

Unix atomicity semantics correctly, the atomic mode is therefore implemented by default, at least for

contiguous MPI-IO requests. If the MPI-IO request is noncontiguous in the �le, however, and the

implementation writes it by making more than one write function call, then atomicity is not guaranteed

for the entire noncontiguous MPI-IO request. To guarantee atomicity in such cases (when the user has

set atomic mode and the request is noncontiguous), ROMIO locks the range of bytes being accessed in

the �le and then performs the necessary I/O.

On �le systems that support only the atomic mode, the nonatomic mode is also implemented by

default, since it has weaker semantics than the atomic mode. Some �le systems, such as IBM PIOFS and

Intel PFS, support both modes, because it is possible for the �le system to deliver higher performance

when the access mode is nonatomic. On PIOFS, the default mode is nonatomic (called NORMAL); the

user can change the access mode to atomic (called CAUTIOUS) with the function piofsioctl. On

PFS, the default mode is atomic (called M UNIX); nonatomic mode (called M ASYNC) can be selected

by using either the function gopen or setiomode. Both gopen and setiomode, however, are \global"

functions: all processes in the application must call them. In MPI-IO, a user can create a communicator
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containing a subset of all processes and open the �le with this communicator. In such cases, the MPI-IO

implementation cannot use the nonatomic mode on PFS.

3.7 Hints

MPI-IO provides a mechanism for the user to pass hints to the implementation. Hints, such as access-

pattern information, can help the implementation optimize �le access [2, 21]. Hints do not change

the semantics of the MPI-IO interface; an implementation may choose to ignore all hints, and the

program would still be functionally correct. MPI-IO has some prede�ned hints for specifying �le-striping

parameters, access patterns, and so on. An implementation is free to de�ne additional hints.

ROMIO supports some prede�ned hints and some additional hints. The prede�ned hints supported

are the �le-striping parameters (number of disks and striping unit) and the bu�er size and number of

processes to use for collective I/O. Additional hints supported by ROMIO are the disk number from

which to begin striping the �le, bu�er sizes for data sieving, and, on Intel PFS only, a hint to turn on

server bu�ering. ROMIO uses the �le-striping hints only on the two �le systems that allow the striping

parameters to be varied, namely, Intel PFS and IBM PIOFS; they are ignored on other �le systems.

On PFS, ROMIO uses the fcntl function to vary �le-striping parameters. On PIOFS, the function is

piofsioctl.

MPI-IO also allows users to query the current value of a hint. With this feature, users can, for

example, determine the default �le-striping parameters or the bu�er sizes ROMIO uses for data sieving

and collective I/O.

3.8 Shared File Pointers

Most �le systems, other than Intel PFS, do not support shared �le pointers. On such �le systems, the

MPI-IO implementation must implement shared �le pointers above the �le system. Doing so requires

some mechanism for maintaining the value of the shared �le pointer for each �le and for processes to

access and atomically update this value. One way is to store the value of the shared �le pointer in a �le

and have processes update the value atomically by using �le locks. Another way is to have one process

or thread maintain the value, and other processes can access the value from this process or thread.

ROMIO does not use the latter approach because it requires that the MPI implementation support

dynamic processes, or one-sided communication, or multiple threads, and none of these features are

commonly supported by MPI implementations as yet.

ROMIO stores the value of the shared �le pointer in a �le in the same directory as the data �le being

accessed. When a process needs to access data using the shared �le pointer, it locks the �le containing

the shared-�le-pointer value, reads the value, increments it by the amount of data to be read or written,

writes the new value back, releases the lock, and then performs the read or write of actual data. The

shared-�le-pointer �le is created when the shared �le pointer is �rst used in the program and is deleted

when the user closes the data �le.

3.9 Portable Data Representation

MPI-IO supports multiple data-storage representations: native, internal, external32, and also user-

de�ned representations. native means that data is stored in the �le as it is in memory; no data

conversion is performed. internal is an implementation-de�ned representation that may provide some

degree of �le portability. external32 is a speci�c, portable data representation de�ned in MPI-IO.

A �le written in external32 format on one machine is guaranteed to be readable on any machine

with any MPI-IO implementation. MPI-IO also provides a mechanism for users to de�ne a new data
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representation by providing data-conversion functions, which MPI-IO uses to convert data from �le

format to memory format and vice versa.

The native representation is implemented by default, and an implementation can use external32

as its internal representation. One way to implement external32 is to convert each datatype explic-

itly from/to the external32 representation, which may require byte swapping, truncation, or padding,

depending on the machine. Another way to implement external32 is via the data-conversion func-

tions: The implementation can provide the data-conversion functions to translate from external32 to

native representation and vice versa, and the implementation itself will use these functions to support

external32.

ROMIO currently supports only the native representation. We plan to implement external32

via the data-conversion functions, mainly because this approach is modular, easily extensible to new

platforms, and also serves as a template that users can use to de�ne other data representations.

3.10 File Preallocation

Only a few �le systems provide a function to preallocate disk space for a �le. Intel PFS has a function

called lsize, on SGI XFS one can preallocate space via fcntl, and HP HFS has functions prealloc and

prealloc64. On other �le systems that do not support �le preallocation, the MPI-IO implementation

must allocate space by actually writing data to the �le (which is expensive).

3.11 Miscellaneous Issues

Here we consider some miscellaneous issues in implementing MPI-IO.

3.11.1 Library versus Client-Server Implementation

An MPI-IO implementer is faced with the choice of implementing it as a library or as a client-server

implementation. We believe that if the underlying �le system supports high-performance access from

multiple processes to a common �le, a library approach is su�cient. Any further optimizations needed,

such as data sieving and collective I/O, can be implemented within the library. Such is the case on

parallel machines like the IBM SP, Intel Paragon, SGI Origin2000, HP Exemplar, and NEC SX-4.

A client-server approach is needed if no common �le system exists for all processes to access, for

example, when the processes run on clusters of independent machines, each with their own local �le

system. In such a case, the MPI-IO implementation would need to have servers that implement a virtual

shared �le system on top of the individual �le systems on these machines. Another example is when

MPI-IO is used to access �les from remote machines, as described in [7].

3.11.2 Operating with Multiple MPI-1 Implementations

MPI-IO can be implemented in a way that it can operate with any MPI-1 implementation that also

has a few functions de�ned in the MPI-2 external-interfaces chapter. These functions allow the MPI-IO

implementation to access a few internal data structures of the MPI implementation.

ROMIO is designed to operate with multiple MPI implementations. It currently works with MPICH,

HP MPI, and SGI MPI, because these implementations provide the external-interface functions ROMIO

needs.

3.11.3 Automatic Detection of File-System Type

ROMIO allows users to access �les on multiple �le systems in the same program; therefore, it needs to

know the type of �le system on which a given �le resides. The �rst version of ROMIO (1.0.0) required

9



users to pre�x the �lename with a string (like nfs:) indicating the type of �le system. This requirement

can be inconvenient to users and can make programs nonportable. In the next version of ROMIO, we

therefore eliminated this requirement. ROMIO can now determine the �le-system type on its own by

using functions that are available for this purpose on most �le systems.4 On most �le systems, the

function is statvfs, on some it is statfs, on Intel PFS it is statpfs, and on the NEC SX-4 it is stat.

3.11.4 Automatic Con�gure and Build

Many parts of the ROMIO source code are conditionally compiled, depending on the features of the

environment (machine, �le system, MPI implementation). These features are detected automatically by

using GNU's autoconf utility. We distribute ROMIO in the form of source code, and users can build

it on any machine by simply doing

% configure

% make

We learnt early on to have the con�gure script look for features of a particular environment and not for

things like version numbers of the underlying operating system and other software. By following this

approach, we are able to adapt easily to constantly changing version numbers and features. Users are

also able to build ROMIO easily on new environments where we, the developers, had never before built

or tested ROMIO.

4 Implications for File-System Design

File-system designers may want to know how they could design their �le system to better support MPI-

IO. We provide a list of features desired from a �le system that would help in implementing MPI-IO

correctly and with high performance.

1. High-Performance Parallel File Access. The �le system must be designed to support high-

performance access frommultiple processes to a common �le. This implies that concurrent requests

(particularly writes) must not be serialized within the �le system.

2. Data-Consistency Semantics. The data-consistency semantics in the presence of concurrent

accesses from multiple processes must be clearly de�ned and correctly implemented. The �le

system must have a mode that supports byte-level consistency; it could support additional modes

with weaker consistency semantics. (By byte-level consistency we mean that if a process writes

some number of bytes starting from some location in the �le, the data written must be visible

to other processes immediately after the write from this process returns, without requiring an

explicit cache ush.) Unix or POSIX consistency semantics, which support byte-level consistency,

are su�cient for implementing MPI-IO.

3. Atomicity Semantics. File systems can deliver higher performance if they are not required

to guarantee atomicity of accesses. Furthermore, most applications do not perform concurrent

overlapping accesses and, consequently, do not need the stricter atomic mode. We therefore

recommend that the �le system support two modes: an atomic mode and a higher-performance

nonatomic mode. Some �le systems, such as IBM PIOFS and Intel PFS, already support both

modes.

4We thank Takao Hatazaki of HP-Convex for suggesting that we add this useful feature to ROMIO.
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4. File-Attribute Consistency. The �le system must also support consistency of �le attributes,

such as �le size. For example, if two processes open a new (nonexisting) �le, one process writes

100 bytes to the �le, and the other process then calls a function that returns the size of the �le,

the function must return the �le size as 100 bytes. We encountered problems with this feature on

NFS, because NFS caches �le attributes on each process noncoherently. As a result, the second

process read the �le size as zero bytes. We solved this problem by mounting the NFS directory

with the \noac" option (no attribute caching).

5. Interface Supporting Noncontiguous Accesses. Although an MPI-IO implementation can

perform data sieving to access noncontiguous data with high performance, we believe that the

performance can be even better if data sieving is done within the �le system. (Note that when

data sieving is done within the �le system, it is no di�erent from regular caching; the extra data

read/written can remain in the cache and need not be discarded.) For this purpose, the �le system

must provide an interface that supports noncontiguous accesses. A simple interface in which the

user speci�es a list of o�sets and lengths is su�cient. (See Section 3.2 for reasons why POSIX

lio listio is not appropriate.) A simple interface, such as the following, is desired:

int read_list(int mem_list_count, long long *mem_offsets, int *mem_lengths,

int file_list_count, long long *file_offsets, int *file_lengths)

(similarly for write list)

where mem offsets and mem lengths are lists of o�sets and lengths representing noncontiguous

memory locations, mem list count is the number of entries in mem offsets and mem lengths,

file offsets and file lengths are lists of o�sets and lengths representing noncontiguous loca-

tions in the �le, and file list count is the number of entries in file offsets and file lengths.

This interface can be considered as a generalization of Unix readv/writev to allow noncontiguity

in the �le.

In MPI-IO, noncontiguous data access with a single I/O function is allowed only to monotonically

nondecreasing o�sets in the �le; memory o�sets can be in any order. The read list/write list

functions, therefore, need only allow monotonically nondecreasing o�sets in file offsets. This

restriction can simplify the implementation of these functions.

6. Support Files Larger than 2Gbytes. An increasing number of applications need to access

�les larger than 2Gbytes. It is therefore critical that the �le system be able to support large �les.

This means that the �le-system interface and internal data structures must use 64-bit integers to

represent �le o�sets.

7. Byte-Range Locking. The �le system must support a locking facility equivalent to the advisory

record-locking feature (fcntl locks) in Unix and POSIX. ROMIO uses this feature to implement

MPI-IO's atomicity semantics for noncontiguous �le accesses, to implement the optimization data

sieving for write requests, and to implement shared �le pointers.

8. Control over File Striping. Since the best values for �le-striping parameters often depend on

the application's access pattern, we recommend that the �le system use a \good" set of values as

the default and provide a facility for users to vary these parameters on a per-�le basis.

9. Variable Caching/Prefetching Policies. Parallel applications exhibit such a wide variation

in access patterns that any one caching/prefetching policy is unlikely to perform well for all

applications [26]. The �le system must therefore either detect and automatically adapt to chang-

ing access patterns [15, 16] or provide an interface for the user to specify the access pattern or

caching/prefetching policy [2, 21].
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10. File Preallocation. It is easy and inexpensive for a �le system to provide a function to preallocate

disk space for a �le. If such a function is not provided, the MPI-IO function MPI File preallocate

can be implemented only by actually writing data to the �le, which is very expensive.

11. Leave Collective I/O to the MPI-IO Implementation. It is not entirely clear whether

collective I/O is better if performed in the �le system or as a library above the �le system. Both

techniques have been proposed in the literature [5, 13, 24]. Our opinion is that collective I/O is a

fairly complex optimization that, if done within the �le system, could complicate the �le system

considerably. A �le systemmust be able to deliver high performance to multiple simultaneous users

and jobs and, therefore, must be as lightweight as possible. We have demonstrated in ROMIO

that collective I/O can be e�ectively implemented on top of the �le system and can deliver good

performance [32]. We therefore believe that until parallel �le systems mature su�ciently, it is

better to leave collective I/O to the MPI-IO implementation.

12. No shared �le pointers. We believe that the �le system should not be burdened with the

additional load of supporting shared �le pointers. They can be implemented on top of the �le

system, as described in Section 3.8.

13. Nonblocking (Asynchronous) I/O Optional. It is not mandatory for the �le system to

provide nonblocking I/O functions. An MPI-IO implementation can perform nonblocking I/O by

using threads that call the blocking I/O functions. This method, however, requires proper thread

support from the machine and a thread-safe MPI implementation.

We note that the semantics and interface provided by a POSIX �le system are su�cient for imple-

menting MPI-IO correctly (as ROMIO demonstrates), but additional features would help an MPI-IO

implementation achieve higher performance. (ROMIO compensates for the absence of these features by

performing optimizations such as data sieving and collective I/O.) Of the features listed above, those

not supported in POSIX are an interface for noncontiguous accesses, control over �le striping, hints

for caching/prefetching policies, and �le preallocation. High-performance parallel �le access and �le

sizes larger than 2Gbytes are not mandated by POSIX but are considered \implementation-dependent

features."

5 Conclusions

ROMIO demonstrates that it is possible to implement MPI-IO portably on multiple machines and �le

systems and also achieve high performance. The ADIO framework is the key component that makes

this all possible, as it enables us to perform �le-system-speci�c optimizations within a largely portable

implementation.

The discussion in this paper covers numerous �le systems|almost all the �le systems on commer-

cially available machines. An important storage system that we did not discuss (mainly because ROMIO

is not implemented on it) is HPSS [36]. HPSS is di�erent from other �le systems in its goals and de-

sign features; for example, it supports third-party transfer. A group at Lawrence Livermore National

Laboratory has implemented MPI-IO on HPSS, and we refer interested readers to [12] for a discussion

of issues related to implementing MPI-IO on HPSS.

By making MPI-IO available everywhere and also delivering high performance, we expect it will

be widely used and popular among application programmers. We believe it will solve some of the I/O

performance and portability problems currently experienced in parallel applications.
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