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Abstract
Inventing targeted proof search strategies for specific prob-
lem sets is a difficult task. State-of-the-art automated theo-
rem provers (ATPs) such as E allow a large number of user-
specified proof search strategies described in a rich domain
specific language. Several machine learning methods that in-
vent strategies automatically for ATPs were proposed previ-
ously. One of them is the Blind Strategymaker (BliStr), a
system for automated invention of ATP strategies.

In this paper we introduce BliStrTune – a hierarchical ex-
tension of BliStr. BliStrTune allows exploring much larger
space of E strategies by interleaving search for high-level pa-
rameters with their fine-tuning. We use BliStrTune to invent
new strategies based also on new clause weight functions
targeted at problems from large ITP libraries. We show that
the new strategies significantly improve E’s performance in
solving problems from the Mizar Mathematical Library.

Keywords Automated Theorem Proving, Machine Learn-
ing, Proof Search Heuristics, Clause Weight Functions

1. Introduction: ATP Strategy Invention
State-of-the-art automated theorem provers (ATPs) such as
E (Schulz 2002, 2013) and Vampire (Kovács and Voronkov
2013) achieve their performance by using sophisticated
proof search strategies and their combinations. Constructing
good ATP search strategies is a hard task that is potentially
very rewarding. Until recently, there has been, however, little
research in this direction in the ATP community.

With the arrival of large ATP problem sets and bench-
marks extracted from the libraries of today’s interactive the-
orem prover (ITP) systems (Blanchette et al. 2016a,b; Gau-
thier and Kaliszyk 2015; Kaliszyk and Urban 2014, 2015),
automated generation of targeted ATP strategies became
an attractive topic. It seems unlikely that manual (“theory-
driven”) construction of targeted strategies can scale to large
numbers of ATP problems spanning many different areas
of mathematics and computer science. Starting with Blind
Strategymaker (BliStr) (Urban 2015) that was used to invent
E’s strategies for MaLARea (Urban et al. 2008; Kaliszyk
et al. 2015b) on the 2012 Mizar@Turing competition prob-

lems (Sutcliffe 2013), several systems have been recently
developed to invent targeted ATP strategies (Schäfer and
Schulz 2015; Kühlwein and Urban 2015). The underlying
methods used so far include genetic algorithms and iterated
local search, as popularized by the ParamILS (Hutter et al.
2009) system.

A particular problem of the methods based on iterated lo-
cal search is that their performance degrades as the number
of possible strategy parameters gets high. This is the case for
E, where a domain specific language allows construction of
astronomic numbers of strategies. This gets worse as more
and more sophisticated templates for strategies are added to
E, such as our recent family of conjecture-oriented weight
functions implementing various notions of term-based sim-
ilarity (Jakubův and Urban 2016). The pragmatic solution
used in the original BliStr consisted of re-using manually
pre-designed high-level strategy components, rather than al-
lowing the system to explore the space of all possible strate-
gies. This is obviously unsatisfactory.

In this work we introduce BliStrTune – a hierarchical ex-
tension of BliStr. BliStrTune allows exploring much larger
space of E strategies by factoring the search into invention
of good high-level strategy components and their low-level
fine-tuning. The high-level and low-level inventions commu-
nicate to each other their best solutions, iteratively improv-
ing all parts of the strategy space. Together with our new
conjecture-oriented weight functions, the hierarchical inven-
tion produces so far the strongest schedule of strategies on
the small (bushy) versions of the Mizar@Turing problems.
The improvement over Vampire 4.0 on the training set is
nearly 10%, while the improvement on the testing (competi-
tion) set is over 5%.

The rest of the paper is organized as follows. Section 2
introduces the notion of proof search strategies, focusing on
resolution/superposition ATPs and E prover. We also sum-
marize our recent conjecture-oriented strategies that mo-
tivated the work on BliStrTune. Section 3 describes the
ideas behind the original Blind Strategymaker based on
the ParamILS system (see Section 3.1 for more details on
ParamILS). Section 4 introduces the hierarchical invention
algorithm and its implementation. The system is evaluated
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in several ways in Section 5, showing significant improve-
ments over the original BliStr and producing significantly
improved ATP strategies.

2. Proof Search Strategies
In this section we briefly describe the proof search of
saturation-based automated theorem provers (ATPs). Sec-
tion 2.1 describes the proof search control possibilities of
E prover (Schulz 2002, 2013). Section 2.2 describes our
previous development of similarity based clause selection
strategies (Jakubův and Urban 2016) which we make use of
and evaluate here.

Many state-of-the-art ATPs are based on the given clause
algorithm introduced by Otter (McCune 1989, 1990, 1994).
The input problem T ∪ {¬C} is translated into a refutation-
ally equivalent set of clauses. Then the search for a contra-
diction, represented by the empty clause, is performed main-
taining two sets: the set P of processed clauses and the set
U of unprocessed clauses. Initially, all the input clauses are
unprocessed. The algorithm repeatedly selects a given clause
g from U and generates all possible inferences using g and
the processed clauses from P . Then, g is moved to P , and
U is extended with the newly produced clauses. This pro-
cess continues until a resource limit is reached, or the empty
clause is inferred, or P becomes saturated, that is, nothing
new can be inferred.

2.1 Proof Search Strategies in E Prover
E (Schulz 2002, 2013) is a state-of-the-art theorem prover
which we use as a basis for implementation. The selection
of a given clause in E is implemented by a combination of
priority and weight functions. A priority function assigns
an integer to a clause and is used to pre-order clauses for
weight evaluation. A weight function takes additional spe-
cific arguments and assigns to each clause a real number
called weight. A clause evaluation function (CEF) is spec-
ified by a priority function, weight function, and its argu-
ments. Each CEF selects the clause with the smallest pair
(priority,weight) for inferences. Each CEF is specified us-
ing the syntax

WeightFunction(PriorityFunction,...)

with a variable number of comma separated arguments of the
weight function. E allows a user to select an expert heuristic
on a command line in the format

(n1*CEF1,...,nk*CEFk)

where integer ni indicates how often the corresponding
CEFi should be used to select the given clause. E addition-
ally supports an auto-schedule mode where several expert
heuristics are tried, each for a selected time period. The
heuristics and time periods are automatically chosen based
on input problem properties.

One of the well-performing weight functions in E, which
we also use as a reference for evaluation of our weight func-
tions, is the conjecture symbol weight. This weight func-
tion counts symbol occurrences with different weights based
on their appearance in the conjecture as follows. Different
weights δf, δc, δp, and δv are assigned to function, con-
stant, and predicate symbols, and to variables. The weight
of a symbol which appears in the conjecture is multiplied
by γconj, typically γconj < 1 to prefer clauses with conjec-
ture symbols. To compute a term weight, the given symbol
weights are summed for all symbol occurrences. This evalu-
ation is extended to equations and to clauses.

Apart from clause selection, E prover introduces other
parameters which influence the choice of the inference rules,
term orderings, literal selection, etc. The selected values of
the parameters which control the proof search are called a
protocol. Because protocol is a crucial notion in this paper,
we provide a simple example for reader’s convenience.

EXAMPLE 1. Let us consider the following simplified E pro-
tocol written in E prover command line syntax as follows.

-tKBO6 -WSelectComplexG

-H’(13*Refinedweight(PreferGoals,1,2,2,3,2),

2*Clauseweight(ByCreationDate,-2,-1,0.5))’

This protocol selects term ordering KBO6, literal selection
function SelectComplexG, and two CEFs. The first CEF
has frequency 13, weight function Refinedweight, prior-
ity function PreferGoals, and weight function arguments
“1,2,2,3,2”. An exact meaning of specific protocol pa-
rameters can be found in E manual (Schulz 2013).

2.2 Similarity Based Clause Selection Strategies
Many of the best-performing weight functions in E are based
on a similarity of a clause with the conjecture, for exam-
ple, the conjecture symbol weight from the previous section.
A natural question arises whether or not it makes sense to
extend the symbol-based similarity to more complex term-
based similarities. Previously we proposed (Jakubův and Ur-
ban 2016), implemented, and evaluated several weight func-
tions which utilize conjecture similarity in different ways.
Typically they extend the symbol-based similarity by sim-
ilarity on terms. Using finer formula features improves the
high-level premise selection task (Kaliszyk et al. 2015a),
which motivated us on steering also the internal selection in
E. The following sections summarizes the new weight func-
tions which we further evaluate later in Section 5.1 and Sec-
tion 5.3.

2.2.1 Conjecture Subterm Weight (Term)
The first of our weight functions is similar to the standard
conjecture symbol weight, counting instead of symbols the
number of subterms a term shares with the conjecture. The
clause weight function Term takes five specific arguments
γconj, δf, δc, δp and δv. The weight of a term equals weight δf

for functional terms, δc for constants, δp for predicates, and



δv for variables, possibly multiplied by γconj when t appears
in the conjecture. To compute a clause weight, terms weights
are summed for all subterms from a clause.

2.2.2 Conjecture Frequency Weight (TfIdf)
Term frequency – inverse document frequency, is a numerical
statistic intended to reflect how important a word is to a doc-
ument in a corpus (Leskovec et al. 2014). A term frequency
is the number of occurrences of the term in a given docu-
ment. A document frequency is the number of documents in
a corpus which contain the term. The term frequency is typi-
cally multiplied by the logarithm of the inverse of document
frequency to reduce frequency of terms which appear often.
We define tf(t) as the number of occurrences of t in a con-
jecture. We consider a fixed set of clauses denoted Docs. We
define df(t) as the count of clauses from Docs which contain
t. Out weight function TfIdf takes one specific argument δdoc

to select documents, either (1) ax for the axioms (including
the conjecture) or (2) pro for all the processed clauses. First
we define the value tfidf(t) of term t as follows.

tfidf(t) = tf(t) ∗ log 1 + |Docs|
1 + df(t)

The weight of term t is computed as 1
1+tfidf(t) and extended

to clauses.

2.2.3 Conjecture Term Prefix Weight (Pref)
The previous weight functions rely on an exact match
of a term with a conjecture related term. The following
weight function loosen this restriction and consider also par-
tial matches. We consider terms as symbol sequences. Let
max-pref(t) be the longest prefix t shares with a conjec-
ture term. A term prefix weight (Pref) counts the length of
max-pref(t) using weight arguments δmatch and δmiss. These
are used to define the weight of term t as follows.

δmatch ∗ |max-pref(t)|+ δmiss ∗ (|t| − |max-pref(t)|)

2.2.4 Conjecture Levenshtein Distance Weight (Lev)
A straightforward extension of Pref is to employ the Lev-
enshtein distance (Levenshtein 1966) which measures a dis-
tance of two strings as the minimum number of edit oper-
ations (character insertion, deletion, or change) required to
change one word into the other. Our weight function Lev
defines the weight of term t as the minimal Levenshtein dis-
tance from t to some conjecture term. It takes additional ar-
guments δins, δdel, δch to assign different costs for edit oper-
ations.

2.2.5 Conjecture Tree Distance Weight (Ted)
The Levenshtein distance does not respect a tree structure of
terms. To achieve that, we implement the Tree edit distance
(Zhang and Shasha 1989) which is similar to Levenshtein
but uses tree editing operations (inserting a node into a tree,
deleting a node while reconnecting its child nodes to the
deleted position, and renaming a node label). Our weight

function Ted takes the same arguments as Lev above and
term weight is defined similarly.

2.2.6 Conjecture Structural Distance Weight (Struc)
With Ted, a tree produced by the edit operations does not
need to represent a valid term as the operations can change
number of child nodes. To avoid this we define a simple
structural distance which measures a distance of two terms
by a number of generalization and instantiation operations.
Generalization transforms an arbitrary term to a variable
while instantiation does the reverse. Our weight function
Struc takes additional arguments δmiss, γinst, and γgen as
penalties for variable mismatch and operation costs. The
distance of a variable x to a term t is the cost of instantiating
x by t, computed as ∆Struc(x, t) = γinst ∗ |t|. The distance
of t to x is defined similarly but with γgen. A distance of
non-variable terms t and s which share the top-level symbol
is the sum of distances of the corresponding arguments.
Otherwise, a generic formula ∆Struc(t, x0) + ∆Struc(x0, s)
is used. The term weight is as for Lev but using ∆Struc.

3. Blind Strategymaker (BliStr)
In this section we describe Blind Strategymaker (BliStr) (Ur-
ban 2015) which we further extend in the following section.
BliStr is a system that develops E prover protocols targeted
for a given large set of problems. The main idea is to inter-
leave (i) iterated low-timelimit local search for new proto-
cols on small sets of similar easy problems with (ii) higher-
timelimit evaluation of the new protocols on all problems.
The accumulated results of the global higher-timelimit runs
are used to define and evolve the notion of similar easy prob-
lems, and to control the selection of the next protocol to be
improved.

The main criterion for BliStr is as follows.

CRITERION 1 (Max). Invent a set of E protocols that to-
gether solve as many of the given benchmark problems.

To ensure that the invented protocols perform well also on
unknown but related problems a second criterion is consid-
ered.

CRITERION 2 (Gen). The protocols should be reasonably
general.

To simplify employment of the invented protocols, BliStr
tries to achieve also the third criterion.

CRITERION 3 (Size). The set of such protocols should not
be too large.

As defined earlier, E protocols consist of many param-
eters and their values which influence the proof search. A
huge number of weight function arguments within clause
evaluation functions (CEFs, see Section 2.1) makes the
set of meaningful protocol parameters very large for a
straightforward use of iterative local search as done by the
ParamILS (Hutter et al. 2009) system. Since ParamILS oth-



erwise looks like the right tool for the task, a data-driven
(“blind”) approach was applied in the original BliStr to get
a smaller set of meaningful CEFs: the existing E protocols
that were most useful on benchmarks of interest were used
to extract a smaller set (a dozen) of CEFs. Making this CEFs
choice more “blind” is the main contribution of this work
and it is discussed in details in Section 4.

Even after such reduction, the space of the protocol
parameter-value combinations is so large that a random ex-
ploration seems unlikely to find good new protocols. The
guiding idea in BliStr is to use again a data-driven approach.
Problems in a given mathematical field often share a lot
of structure and solution methods. Mathematicians become
better and better by solving the problems, they become ca-
pable of doing larger and larger steps with confidence, and
as a result they can gradually attack problems that were pre-
viously too hard for them. By this analogy, it is plausible to
think that if the solvable problems become much easier for
an ATP system, the system will be able to solve some more
(harder, but related) problems. For this to work, a method
that can improve an ATP on a set of solvable problems is
needed. As already mentioned, the established ParamILS
system can be used for this.

3.1 ParamILS and Its Use in the BliStr Loop
Let A be an algorithm whose parameters come from a con-
figuration space (product of possible values) Θ. A param-
eter configuration is an element θ ∈ Θ, and A(θ) denotes
the algorithm A with the parameter configuration θ. Given
a distribution (set) of problem instances D, the algorithm
configuration problem is to find the parameter configuration
θ ∈ Θ resulting in the best performance of A(θ) on the dis-
tribution D. ParamILS is an a implementation of an iterated
local search (ILS) algorithm for the algorithm configuration
problem. In short, starting with an initial configuration θ0,
ParamILS loops between two steps: (i) perturbing the con-
figuration to escape from a local optimum, and (ii) iterative
improvement of the perturbed configuration. The result of
step (ii) is accepted if it improves the previous best configu-
ration.

To fully determine how to use ParamILS in a particu-
lar case, A, Θ, θ0, D, and a performance metric need to
be instantiated. In our case, A is E run with a low time-
limit tcutoff, Θ is the set of expressible E protocols, and as
a performance metric we use the number of given-clause
loops done by E during solving the problem. If E cannot
solve a problem within the low timelimit, a sufficiently high
value (106) is used. Since it is unlikely that there is one
best E protocol for all of the given benchmark problems, it
would be counterproductive to use all problems as the set
D for ParamILS runs. Instead, BliStr partitions the set of
all solvable problems into subsets on which the particular
protocols perform best. See (Urban 2015) for the technical
details of the BliStr heuristic for choosing the successive θ0
and D. The complete BliStr loop then iteratively co-evolves

the set of protocols, the set of solved problems, the matrix of
the best results, and the set of the protocols eligible for the
ParamILS improvement together with their problem sets.

4. BliStrTune: Hierarchical Invention
BliStr uses a fixed set of CEFs for inventing new protocols.
The arguments of these fixed CEFs (the priority function,
weight function arguments) cannot be modified during the it-
erative protocol improvement done by ParamILS. A straight-
forward way to achieve invention (fine-tuning) of CEF argu-
ments would be to extend the ParamILS configuration space
Θ. This, however, makes the configuration space grow from
ca. 107 to 10120 of possible combinations. Preliminary ex-
periments revealed that with a configuration space of this
size ParamILS does not produce satisfactory results in a rea-
sonable time.

In this section we describe our new extension of BliStr –
BliStrTune – where the invention of good high-level protocol
parameters (Section 4.1) is interleaved with the invention of
good CEF arguments (Section 4.2). The basic idea behind
BliStrTune is iterated hierarchical invention: The large space
of the optimized parameters is naturally factored into two
(in general several) layers, and at any time only one layer
is subjected to invention, while the other layer(s) remain
fixed. The results then propagate between the layers, and
the layer-tuning and propagation are iterated. BliStrTune is
experimentally evaluated in Section 5.

4.1 Global Parameter Invention
The ParamILS runs used in the BliStrTune’s global-tuning
phase are essentially the same as in the case of BliStr, with
the following minor exceptions. BliStr uses a fixed con-
figuration space Θ for all ParamILS runs. This is possible
because a small set (currently 12) of CEFs is hard coded
in Blistr’s Θ. BliStrTune uses in the global-tuning phase a
parametrized configuration space ΘC where C is a collec-
tion of CEFs that can be different for each ParamILS run.
This collection can be arbitrary but we use only the 50 best
performing CEFs in order to limit the configuration space
size for the global-tuning phase. The notion of “best per-
forming CEFs” develops in time and it is discussed in de-
tails in Section 4.3. Furthermore, BliStrTune introduces ad-
ditional argument ccef to limit the maximum number of CEFs
which can occur in a single protocol (ccef = 12 for the case
of BliStr).

BliStrTune’s global-tuning usage of ParamILS is other-
wise the same as in BliStr, that is, given ΘC , the initial con-
figuration θ0 ∈ ΘC , and problemsD, the result of the global
tuning is a configuration θ1 ∈ ΘC which has the best found
performance on D. This configuration θ1 then serves as an
input for the next fine-tuning phase.



EXAMPLE 2. Let us consider the E protocol from Exam-
ple 1. In the global-tuning phase we instruct ParamILS to
modify top level arguments, that is, term ordering (“-t”),
literal selection (“-W”), CEF frequencies (“13*” and “2*”),
and also the whole CEF blocks and their count. We do not,
however, allow ParamILS to change CEF arguments (pri-
ority functions and weight function arguments). The whole
CEF must be changed to another CEF from collection C.

4.2 Invention of the CEF Arguments
Given the result of the global-tuning phase θ1 ∈ ΘC a new
configuration space for the fine-tuning phase Θθ1 is con-
structed by (1) fixing the parameter values from θ1 and by
(2) an introduction of new parameters that allow to change
the values of the arguments of the CEFs used in θ1. In or-
der to do that, we need to describe the space of the possible
values of the CEF arguments.

The CEF arguments (see Section 2.1) consist of the prior-
ity function and the weight function specific arguments. Be-
cause of the different number and semantics of the weight
function arguments, we do not allow to change the CEF’s
weight functions during the fine-tuning. They are fixed to
the values provided in θ1. For each weight function argu-
ment, we know its type (such as the symbol weight, oper-
ation cost, weight multiplier, etc.). For each type we have
pre-designed the set of reasonable values. For the original E
weight functions, we extract the reasonable values from the
auto-schedule mode of E. For our new weight functions, we
use our preliminary experiments (Jakubův and Urban 2016)
enhanced with our intuition.

Given the configuration space Θθ1 , a configuration θ1 ∈
ΘC can be easily converted to an equivalent configuration
θ′1 ∈ Θθ1 by setting the parameter values to those CEFs
arguments that were previously fixed in θ1 and C. Then
we can run ParamILS with the configuration space Θθ1 , the
initial configuration θ′1, and with the same problem set D
as in the global-tuning phase. The result is a configuration
θ′2 ∈ Θθ1 providing the best found performance on D.

The global invention (global tuning) and the local inven-
tion (fine-tuning) phases can be iterated. To do that, we need
to transform the result of the fine-tuning θ′2 ∈ Θθ1 to an
equivalent initial configuration θ2 ∈ ΘC for the next global-
tuning phase. In order to do that, the CEFs invented by θ′2
must be present in the CEFs collection C. If this is not the
case, we simply extendC with the new CEFs. In practice, we
now use two iterations of this process (that is, two phases of
global-tuning and two phases of fine-tuning) which was ex-
perimentally evaluated to provide good results.

EXAMPLE 3. Recall the protocol from Example 1 and Ex-
ample 2. In the fine-tuning phase we would fix all the top
level arguments modified in global-tuning phase (“-t”, and
so on, as described in Example 2) and we would instruct
ParamILS to change individual CEF arguments. That is, the
values

PreferGoals,1,2,2,3,2

ByCreationDate,-2,-1,0.5

might be changed to different values while the rest of the
protocol stays untouched.

4.3 Maintaining Collections of CEFs
The global-tuning phase of BliStrTune requires the collec-
tion C of CEFs as an input. It is desirable that this collection
C is limited in size (currently we use max. 50 CEFs) and
that it contains the best performing CEFs.

Initially, for each weight functionw defined in E, we have
extracted the CEF most often used in the E auto-schedule
mode. We have added a CEF for each of our new weight
functions. This gave us the initial collection of 21 CEFs.
Then we use a global database (shared by different BliStr-
Tune runs) in which we store all CEFs together with the us-
age counter which states how often each CEF was used in a
protocol invented by BliStrTune. Recall that in one BliStr-
Tune iteration, ParamILS is ran four times (two phases of
global-tuning and two phases of fine-tuning). Whenever a
CEF is contained in a protocol invented by any BliStrTune
iteration (after the four ParamILS runs), we increase the CEF
usage counter, perhaps adding a new CEF to the database
when used for the first time.

To select the 50 best performing CEFs we start with
C = ∅. We extract all the weight functions W used in the
global CEF database. This set W stays constant because the
database already contains all possible weight functions from
the very beginning. For each w ∈ W , we compute the list
Cw of all CEFs from the database which use w and sort it by
the usage counter. Then we iterate over W and for each w
we move the most often used CEF from Cw to C. We repeat
this until C has the desirable size (or we are out CEFs). This
ensures that C contains at least one CEF for each weight
function.

5. Experimental Evaluation
This section provides an experimental evaluation1of BliStr-
Tune system. In Section 5.1 we compare our improved
BliStrTune with the original BliStr, and we use BliStrTune
to evaluate the value added by the new weight functions. In
Section 5.2 we evaluate the BliStrTune runs with different
parameters. In Section 5.3 we discuss and compare several
methods to construct a protocol scheduler that tries several
protocols to solve a problem. Section 5.4 then compares the
best protocol scheduler with state-of-the-art ATPs, namely,
with E 1.9 using its auto-schedule mode and with Vampire
4.0.

For the evaluation we use problems from the Mizar@Turing
division of the CASC 2012 (Turing100) competition men-
tioned in Section 1. These problems come from the MPTP

1 All the experiments were run on 2x16 cores Intel(R) Xeon(R) CPU E5-
2698 v3 @ 2.30GHz with 128 GB memory. One prover run was however
limited to 1 GB memory limit.
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Figure 1. Value added by parameter fine-tuning and by new
weight functions (Section 5.1).

translation (Urban 2004, 2006; Alama et al. 2014) of the
Mizar Mathematical Library (Grabowski et al. 2010). The
problems are divided into 1000 training and 400 testing
problems. The training problems were published before the
competition, while the testing problems were used in the
competition. This fits our evaluation setting: we can use
BliStrTune to invent targeted protocols for the training prob-
lems and then evaluate them on the testing problems.

5.1 Hierarchical Invention and Weight Functions
To evaluate the hierarchical invention we ran BliStr and
BliStrTune with equivalent arguments. Furthermore, we ran
two instances of BliStrTune to evaluate the performance
added by the new weight functions from Section 2.2. The
first instance was allowed to use only the original E 1.9
weight functions, while the second additionally used our
new weight functions.

BliStr and BliStrTune used the same input arguments.
The first argument is the set of the training problems. We use
the 1000 training problems from the Mizar@Turing compe-
tition in all experiments. Other arguments are:

Timprove the time limit (seconds) for one ParamILS run,

tcutoff the time limit for E prover runs within ParamILS,

teval the time limit for the protocol evaluation in BliStr/Tune.

In BliStrTune, ParamILS is run four times in each iteration,
hence we set Timprove = 100 in BliStrTune and Timprove =
400 in BliStr. 2 We set tcutoff = 1 and teval = 5 and addition-
ally, in the case of BliStrTune, ccef = 6.

The results are shown in Figure 1. In each iteration (x-
axis, logarithmic scale) we count the total number of the
training problems solved (y-axis) by all the protocols in-
vented so far, provided each protocol is given the time

2 So that the times used to improve a protocol are equal.

limit teval. This metric gives us relatively good idea of the
BliStr/Tune progress.

The original BliStr solved 673 problems, BliStrTune
without the new weights solved 702 problems, while BliStr-
Tune with the new weights solved 711 problems. From this
and from the figure we can see that the greatest improvement
is thanks to the hierarchical parameter invention. However,
the new weight functions still provide 9 more solved prob-
lems which is a useful additional improvement.

5.2 Influence of the BliStrTune Input Arguments
In this section we evaluate several BliStrTune runs with
different input arguments. We run all the combinations of
Timprove ∈ {100, 300} and ccef ∈ {6, 10} and tcutoff ∈ {1, 2}.
This gives us 6 different BliStrTune runs. We always set
teval = 5 · tcutoff.

The results are summarized in Table 1. Column iters con-
tains the number of iterations executed by the appropriate
BliStrTune run, proto is the total number of protocols gen-
erated, run time is the total run time of the given BliStrTune
run, best proto is the number of training problems solved by
the best protocol within teval time limit, and solved is the total
number of the training problems solved by all the generated
protocols, provided each protocol is given time limit teval.
We can see that a huge amount protocols were generated.
Only few of them were used for the final evaluation as de-
scribed in Section 5.3. Those used for the final evaluation are
considered “useful” and the column useful states how many
percent of the useful protocols come from the appropriate
BliStrTune run.

We can see that the most useful runs are the basic runs
with smaller Timprove which also have lower run times.
Higher Timprove leads to higher run times but it produces
better protocols in the sense that a smaller number of proto-
cols can solve equal number of problems. From the table we
can see that when tcutoff and ccef are increased, Timprove should
be increased as well to provide ParamILS enough time for
protocol improvement.

5.3 Selecting Best Protocol Scheduler
The 6 runs of BliStrTune described above in Section 5.2
generated more than 900 different protocols. In this section
we try to select the best subset of protocols and construct
a protocol scheduler which sequentially tries several proto-
cols to solve a problem. We only experiment with the sim-
plest schedulers where the time limit for solving a problem
is equally distributed among all the protocols within a sched-
uler. Hence the problem of scheduler construction is reduced
to the selection of the right protocols.

We use three different ways to select scheduler protocols.
Firstly we use a greedy approach as follows. We evaluate
all the protocols on all the training problems with a fixed
time limit t. Then we construct a greedy covering sequence
which starts with the best protocol, and each next protocol
in the sequence is the protocol that adds most solutions to



Timprove tcutoff teval ccef iters protos run time best proto solved useful

100 1 5 6 115 116 1d0h 572 711 28%

100 1 5 10 111 115 1d3h 594 715 14%

300 1 5 6 83 87 1d13h 596 698 4%

300 1 5 10 82 85 1d22h 611 711 11%

100 2 10 6 152 148 1d20h 579 720 27%

100 2 10 10 88 88 1d4h 567 698 1%

300 2 10 6 153 153 3d18h 583 727 19%

300 2 10 10 139 139 3d9h 587 719 15%

Table 1. Evaluation of different BliStrTune training runs on Mizar@Turing problems (Section 5.2).

training testing

scheduler protos solved V+ solved V+

greedy1 33 744 +9.8% 280 +5.2%

greedy2 27 742 +9.6% 279 +4.8%

greedy5 28 734 +8.4% 280 +5.2%

greedy10 22 719 +6.2% 276 +3.8%

SOTAC15 15 663 -2.0% 261 -1.8%

SOTAC30 30 693 +2.3% 266 +0%

SOTAC45 45 698 +3.1% 270 +1.5%

SOTAC60 60 699 +3.2% 270 +1.5%

Σ-SOTAC15 15 692 +2.2% 268 +0.7%

Σ-SOTAC30 30 711 +5.0% 273 +2.6%

Σ-SOTAC45 45 712 +5.1% 276 +3.8%

Σ-SOTAC60 60 707 +4.4% 275 +3.4%

Table 2. BliStrTune schedulers evaluation in 60 seconds on
Mizar@Turing problems (Section 5.3).

the union of problems solved by all previous protocols in the
sequence. The resulting scheduler is denoted greedyt.

Second way to construct a scheduler is using state-of-the-
art contribution (SOTAC) used by CASC. A SOTAC for the
problem is the inverse of the number of protocols that solved
the problem. A protocol SOTAC is the average SOTAC over
the problems it solves. We can sort the protocols by SOTAC
and select first n protocols from this sequence. The resulting
scheduler is denoted SOTACn.

SOTAC of a protocol will be high even if the protocol
solves only one problem which no other protocol can solve.
That is why also the Σ-SOTAC value (Kaliszyk and Urban
2014) is introduced: the sum of problem SOTAC over all the
problems. This gives us schedulers denoted Σ-SOTACn.

The evaluation of 12 different schedulers with 60 seconds
time limit on the training problems is provided in Table 2.

training testing
prover solved V+ solved V+

E (BliStrTune) 744 +9.8% 280 +5.2%
Vampire 4.0 677 +0% 266 +0%

E (auto-schedule) 605 -10.6% 231 -13.1%

Table 3. Evaluation of the best BliStrTune scheduler on
testing problems with 60 seconds time limit.

Column protos specifies the count of protocols within the
scheduler. We shall use this evaluation to select the best
scheduler, hence the results on the 400 testing problems are
provided for reference only. Column solved is the number of
problems solved in 60s. Column V+ is a percentage gain/lost
on a state-of-the-art prover Vampire 4.0 which solves 667
of the 1000 training problems and 266 of the 400 testing
problems.

We can see that the best results are achieved by scheduler
greedy1, which also gives the best results on the testing
problems. Generally, it is better to run a bigger number of
protocols with lower individual time limit.

Furthermore, we can use the constructed schedulers to
evaluate the contribution of our new weight functions by
analyzing weight functions used in the schedulers. Table 4
summarizes the usage of different weight functions in the
final schedulers. Our weight functions are referred to by their
names from Section 2.2 while the original weights are called
by their E prover names. Column count states how many
times the corresponding weight function was used in some
scheduler protocol, while column freq sums the frequencies
of occurrences of CEFs which use the given weight function.
We can see that our new weight function Term was the most
often used weight function. Four of our weight functions
were, however, not used very often which we attribute to
their higher time complexity.
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Figure 2. Progress of ATPs on the 400 Mizar@Turing test-
ing problems with 60 seconds time limit.

5.4 Best Protocol Scheduler Evaluation
In this section we evaluate the best protocol scheduler
greedy1 selected in previous Section 5.3 on the testing prob-
lems with 60 seconds time limit. We compare greedy1 with
two state-of-the-art ATPs: (1) with E prover 1.9 in auto-
schedule mode and (2) with Vampire 4.0 in CASC mode.

The results are summarized in Table 3. We can see that
E with scheduler greedy1 invented by BliStrTune outper-
forms Vampire by 5.2% and the improvement from E in
auto-schedule mode is even more significant. Figure 2 pro-
vides a graphical representation of ATP’s progress. For each
second (x-axis, logarithmic scale) we count the number of
problems solved so far (y-axis). We can see that greedy1 was
outperforming Vampire during the whole evaluation.

6. Conclusions and Future Work
In this paper we have described BliStrTune, an extension
of a previously published system BliStr, which can be used
for hierarchical invention of protocols targeted for a given
benchmark problems. The main contribution of BliStrTune
is that it considers a much bigger space of protocols by inter-
leaving the global-tuning phase with argument fine-tuning.
We have evaluated the original BliStr and our BliStrTune on
the same input data and experimentally proved that BliStr-
Tune outperforms BliStr. We have evaluated several ways
of creating protocol schedulers and showed that E 1.9 with
the best protocol scheduler constructed from BliStrTune pro-
tocols targeted for training problems outperforms state-of-
the-art ATP Vampire 4.0 on independent testing problems
by more than 5%.

Furthermore, we have used BliStrTune to evaluate a con-
tribution of our previously designed weight functions in E
prover. We have shown that the new weight functions allow
us to solve more problems and that (at least two of them)
were often used in the best scheduler protocols. Interest-

ingly, more complex structural weights (like Lev, Ted) were
not used very often in the schedulers even though our pre-
vious experiments suggested they might be very useful. We
attribute this to their higher time complexity and we would
like to investigate this in our future research.

Several topics are suggested for future work. We have
shown that new weight functions can enhance E prover per-
formance, hence more weight functions which consider term
structure could be implemented. It seems that it will be better
to design weight functions with lower time complexity, per-
haps even providing approximate results (for example, some
approximation of the Levenshtein distance which could be
computed faster).

Another direction of our future research is to design more
complex protocol schedulers. We have achieved good results
with the simplest protocol schedulers where each protocol is
given an equal amount of time when solving a problem. It
would be interesting to design “smarter” schedulers and to
see how many more problems can be solved.

Further direction of our future research are enhancements
of the BliStr/Tune main loop. We could experiment with
settings of various parameters, or with selection of training
problems, or we could use parameter improvement methods
other than ParamILS (Wang et al. 2016). Finally, we would
like to make our implementation easier to use and to dis-
tribute it as a solid software package.
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