
HAL Id: hal-01416531
https://inria.hal.science/hal-01416531

Submitted on 14 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contention in Structured Concurrency: Provably
Efficient Dynamic Non-Zero Indicators for Nested

Parallelism
Umut A Acar, Naama Ben-David, Mike Rainey

To cite this version:
Umut A Acar, Naama Ben-David, Mike Rainey. Contention in Structured Concurrency: Prov-
ably Efficient Dynamic Non-Zero Indicators for Nested Parallelism. 22nd ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, Feb 2017, Austin, United States.
�10.1145/3018743.3018762�. �hal-01416531�

https://inria.hal.science/hal-01416531
https://hal.archives-ouvertes.fr


Contention in Structured Concurrency: Provably Efficient
Dynamic Non-Zero Indicators for Nested Parallelism

Umut A. Acar*† Naama Ben-David* Mike Rainey†
*Carnegie Mellon University, USA †Inria, France

umut@cs.cmu.edu, nbendavi@cs.cmu.edu, mike.rainey@inria.fr

Abstract
Over the past two decades, many concurrent data structures
have been designed and implemented. Nearly all such work
analyzes concurrent data structures empirically, omitting
asymptotic bounds on their efficiency, partly because of the
complexity of the analysis needed, and partly because of
the difficulty of obtaining relevant asymptotic bounds: when
the analysis takes into account important practical factors,
such as contention, it is difficult or even impossible to prove
desirable bounds.

In this paper, we show that considering structured con-
currency or relaxed concurrency models can enable estab-
lishing strong bounds, also for contention. To this end, we
first present a dynamic relaxed counter data structure that
indicates the non-zero status of the counter. Our data struc-
ture extends a recently proposed data structure, called SNZI,
allowing our structure to grow dynamically in response to the
increasing degree of concurrency in the system.

Using the dynamic SNZI data structure, we then present a
concurrent data structure for series-parallel directed acyclic
graphs (sp-dags), a key data structure widely used in the
implementation of modern parallel programming languages.
The key component of sp-dags is an in-counter data struc-
ture that is an instance of our dynamic SNZI. We analyze
the efficiency of our concurrent sp-dags and in-counter data
structures under nested-parallel computing paradigm. This
paradigm offers a structured model for concurrency. Under
this model, we prove that our data structures require amor-
tized O(1) shared memory steps, including contention. We
present an implementation and an experimental evaluation
that suggests that the sp-dags data structure is practical and
can perform well in practice.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PPoPP ’17, Feb. 04–08, 2017, Austin, Texas, USA..
Copyright is held by the owner/author(s).
ACM 978-1-4503-4493-7/17/02.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3018743.3018762

1. Introduction
Non-blocking data structures are commonly used in practi-
cal concurrent systems because such data structures allow
multiple processes to access the structure concurrently while
guaranteeing that the whole system will make progress. As
discussed by the survey of Moir and Shavit [38], many non-
blocking data structures have been designed and implemented
for various problems, such as shared counters [22, 42], non-
zero indicator counters [14], stacks [45], queues [37], doubly
ended queues [7], and binary search trees [9, 13].

The theoretical efficiency of non-blocking data structures,
however, has received relatively little attention. One reason
for this lack of attention is that in a non-blocking data struc-
ture, some processes may get stuck, leading to seemingly
infinite execution times. Another reason is that the common
shared-memory models, under which concurrent data struc-
tures are analyzed, usually do not account for an important
practical concern: the effects of memory contention. These
effects can be significant especially as the degree of concur-
rency increases [12, 38, 43].

We are interested in the design and analysis of provably
efficient non-blocking data structures in realistic models of
concurrency that account for the cost of contention. This goal
represents a major challenge, because contention often factors
into the running time as a linear additive factor (e.g., [13,
16, 18, 39]). A series of papers have also established linear-
time lower bounds [16, 27, 30] when contention is taken
into account by using models that allow only one process
to access a memory object [5, 11, 12]. For example, Fich,
Hendler, and Shavit [16] show that, when accounting for
contention, a number of concurrent data structures, including
counters, stacks, and queues, require Ω(n) time, where n is
the number of processes/threads in the system, a.k.a., the
degree of concurrency.

In this paper, we show that a relaxation of the general con-
currency model can unlock the design and analysis of prov-
ably efficient concurrent data structures, accounting also for
contention. As a relaxation, we consider a structured concur-
rent programming paradigm, nested parallelism, where con-
currency is created under the control of programming primi-
tives, such as fork-join and async-finish. Nested parallelism



is broadly available in a number of modern programming lan-
guages and language extensions, such as OpenMP, Cilk [19],
Fork/Join Java [34], Habanero Java [28], TPL [35], TBB [29],
X10 [10], parallel ML [17], and parallel Haskell [32]. In these
systems, nested-parallel programs can be expressed by using
a primitives such as fork–join (a.k.a., spawn–sync), and async–
finish. When executed, a nested parallel program can create
many threads, leading to a high degree of concurrency, but in
a structured fashion: threads may be created by other threads
via a async (or fork) operation and can also terminate and
synchronize at known join (or finish) points. The fork–join
primitives allow only two threads to synchronize at a join. In
contrast, with async–finish primitives, any number of threads
can terminate and synchronize at a single finish point. This
structured nature of thread creation, termination, and synchro-
nization is the key difference between nested parallelism and
general concurrency.

Our starting point is prior work on relaxed concurrent
counters, also called indicators, that indicate whether a
counter is positive or not. Indicators contrast with exact
counters as, for example, those considered by Herlihy, Shavit,
and Waarts [27]. In prior work, Ellen et al. [14] present the
SNZI (read “snazzy”), short for Scalable Non-Zero Indicator,
data structure, prove it to be linearizable, and evaluate it
empirically. They do not, however, provide any analytical
upper bounds. Indeed, SNZI data structure could experience
contention as multiple operations climb up the SNZI tree.
In this paper, we present an extension to the SNZI data
structure to allow it to grow dynamically at run time, perhaps
in response to increasing degree of concurrency and thus
increasing potential for contention (Section 2).

We then consider an application of our dynamic SNZI
data structure to nested parallel computations, specifically for
representing series-parallel directed acyclic graphs or sp-dags
with unbounded in-degree vertices, which arise for example
with parallel loops and async–finish primitives. Variants of
dag data structures are used broadly in the implementation
of modern parallel programming systems [10, 17, 19, 28, 29,
32, 34, 35]. These languages and systems typically represent
the computation as a dag where each vertex corresponds
to a fine-grained thread and schedule the vertices of the
dag over the processors to minimize completion time. For
efficiency reasons, it is important for the dag data structure
to be non-blocking and low-contention, because a nested
parallel program can create a dynamically varying set of fine-
grained threads, consisting of anywhere from several threads
to millions or more, depending on the input size.

The crux of the sp-dags problem is determining when a
vertex in the dag becomes ready, i.e., all of its dependencies
have been executed. Such readiness detection requires a
concurrent dependency counter, which we call in-counter,
that counts the number of incoming dependencies for each
thread. When a dependency between a thread u and v is
created, the in-counter of v is incremented; when u terminates

its in-counter is decremented; when its in-counter reaches
zero,vertex v becomes ready and can be executed. We show
that in-counters can be implemented efficiently by using our
dynamic SNZI data structure (Section 3). We prove that
by managing carefully the growth of our dynamic SNZI
data structure, we can guarantee that all operations require
amortized O(1) time, including also contention (Section 4).

Finally, we present an implementation and perform an ex-
perimental evaluation in comparison to prior work (Section 5).
Our results offer empirical evidence for the practicality of our
proposed techniques, showing that our approach can perform
well in practice.

Placed in the context of previously proven lower bounds
for non-blocking data structures, the key to our result is
the structured concurrency model that we consider. Our
contributions are as follows.

• Dynamic SNZI: an extension to the original SNZI data
structure that allows it to grow varying numbers of threads.
• Non-blocking low-contention sp-dags: a non-blocking

data structure for series-parallel dags that can be used
to represent nested-parallel computations provably effi-
ciently and with low contention.
• Analysis: proofs that our series-parallel dag data struc-

ture experiences low contention under a nested parallel
programming model.
• Evaluation: implementation and empirical evaluation that

shows that our data structure is practical and that it can
perform well in practice.

Due to space restrictions, we present some proof details
and more experiments in the full version of the paper, which
is available as a technical report [1].

1.1 Model

We consider a standard model of asynchronous shared mem-
ory where threads can communicate through taking atomic
read-modify-write steps such as read, write and compare-
and-swap (CAS). Threads can use these primitives to imple-
ment high-level operations. We define the contention experi-
enced by an operation as the maximum number of non-trivial,
shared memory steps that concurrently access the same mem-
ory location over all executions. A non-trivial step is one that
might change the value of the memory location to which it is
applied, and a non-trivial operation is an operation that takes
at least one non-trivial step.

Our definition of contention is similar to stalls as defined
by Fich et al. in [16]. Their definition, inspired by Dwork et
al.’s work on contention models [12], considers a model in
which each non-trivial memory step on a memory location
must operate in isolation, and the rest of the operations stall.

For our bounds, we consider computations that are struc-
tured in a nested-parallel fashion, where threads execute in-
dependently in parallel or serially and synchronize at their



termination points. A series-parallel computation starts with
a single root thread and constructs, as it executes, a series-
parallel directed acyclic graph (sp-dag) of vertices where
each vertex represents a thread of control, and edges repre-
sent dependencies between threads.

2. Dynamic SNZI
Concurrent counters are an important data structure used
in many algorithms but can be challenging to implement
efficiently when accounting for contention, as shown by
the linear (in the degree of concurrency) lower bound of
Fich et al [16]. Observing that the full strength of a counter
is unnecessary in many applications, Ellen et al proposed
non-zero indicators as relaxed counters that allow querying
not the exact value of the counter but its sign or non-zero
status [14]. Their non-zero indicator data structure, called
SNZI, achieves low-contention by using a tree of SNZI nodes,
each of which can be used to increment or decrement the
counter. Determining the non-zero status of the counter only
requires accessing the root of the tree. The tree is updated by
increment and decrement operations. These operations are
filtered on the way up to the root so that few updates reach
the root.

The SNZI data structure is flexible. Each SNZI node
interacts with its parent and its children, and will retain its
correctness regardless of how many children it has. Thus, a
SNZI tree can have any shape but it can be difficult to know
the optimal shape of the tree a priori. In this section, we
present a simple extension to SNZI that allows the tree to be
grown dynamically, and show that our extension preserves
correctness. In Section 3, we demonstrate how to use dynamic
SNZI in a specific application—namely, to keep track of
dependencies in an sp-dag efficiently.

Figure 1 illustrates the interface for the SNZI data structure
and pseudo-code for the SNZI node struct snzi_node, the
basic building block of the data structure from [14]. A SNZI
node contains a counter c, a version number v, an array of
children (two in our example), and a parent. The value at the
counter indicates the surplus of arrivals with respect to the
departures. The arrive and depart operations increment and
decrement the value of the counter at the specified SNZI node
a respectively, and query, which must be called at the root of
the tree, indicates whether the number of arrive operations
in the whole tree is greater than number of depart operations
since creation of the tree.

To ensure efficiency and low contention, the SNZI imple-
mentation carefully controls the propagation of an arrival or
departure at a node up the tree. The basic idea is to propagate
a change to a node’s parent only if the surplus at that node
flips from zero to positive or vice versa. More specifically,
an arrive at node a is called on a’s parent if and only if a
had surplus 0 at the beginning of the operation. Similarly, a
depart at a node a is recursively called on a’s parent if and

1 type snzi_node =
2 struct {
3 (∗ counter ∗)
4 c : N ∪ { 1

2 }; initially 0
5 (∗ version number ∗)
6 v : N; initially 0
7 children : array of 2 snzi nodes; initially [null, null]
8 parent : snzi_node
9 }

10

11 void fun snzi_arrive (snzi_node a) = ...
12 void fun snzi_depart (snzi_node a) = ...
13 bool fun snzi_query (snzi_node a) = ...

Figure 1: Partial pseudocode for the SNZI data structure; full
description can be found in original SNZI paper [14].

only if a’s surplus became 0 due to this depart. We say that
node a has surplus due to its child if there was an arrive

operation on a that started in a’s child’s subtree.
The correctness and linearizability of the SNZI data struc-

ture as proven relies on two important invariants [14]: (1) a
node has surplus due to its child if and only if its child has sur-
plus, and (2) surplus due to a child is never negative. Together,
these properties guarantee that the root has surplus if and only
if there have been more arrive than depart operations on
the tree.

The SNZI data structure does not specify the shape of the
tree that should be used, instead allowing the application to
determine its structure. For example, if the counter is being
used by p threads concurrently, then we may use a perfectly
balanced tree with p nodes, each of which is assigned to
a thread to perform its arrive and depart operations. This
approach, however, only supports a static SNZI tree, i.e.,
unchanging over time. While a static SNZI tree may be
sufficient for some computations, where a small numbers
of coarse-grained threads are created, it is not sufficient
for nested parallel computations, where the number of fine-
grained threads vary dynamically over a wide range from just
a few to very large numbers, such as millions or even billions,
depending on the input size. The problem is that, with a fixed-
sized tree, it is impossible to ensure low contention when the
number of threads increase because many threads would have
to share the same SNZI node. Conversely, it is impossible
to ensure efficiency when the number of threads is small,
because there may be many more nodes than necessary.

To support re-sizing the tree dynamically, we extend the
SNZI data structure with a simple operation called grow,
whose code is shown in Figure 2. The operation takes a
SNZI node as argument, determines whether to extend the
node (if the node has no children), and returns the (possibly
newly created) children of the node. If the node already has
children, pointers to them are returned, but they are left
unchanged. If the node does not have children, then they
are locally allocated, and then the process tries to atomically



1 (snzi_node, snzi_node)
2 fun grow (a: snzi_node, p: probability) =
3 heads ← flip(p) (∗ flip a p−biased coin. ∗)
4 if heads then
5 le f t ← new snzi_node(0)
6 right ← new snzi_node(0)
7 CAS(a.children, null, [le f t, right])
8 children ← a.children
9 if children = null then

10 return (a, a)
11 return children

Figure 2: Pseudo-code for the probabilistic SNZI grow.

link them to the tree. They are initialized with surplus 0 so
that their addition to the tree does not affect the surplus of
their parent. The grow operation also takes a probability p,
which dictates how likely it is to create new children for the
node. The operation only attempts to create new children if
the node does not already have children and it flipped heads in
a coin toss with probability p for heads. The idea is that this
probabilistic growing allows an application to control the rate
at which a SNZI tree grows without changing the protocol
for some of the threads using it. Such probabilistic growing is
useful when one wants a balance between low contention and
frequent memory allocation. The right probability threshold
to use, however, may depend not only on the application, but
also on the system.

If node a does not have any children at the end of a grow

operation, we have the operation return two pointers to a itself.
This return value is convenient for the in-counter application
that we present in the rest of the paper. Other applications
using dynamic SNZI may return anything else in that case.

The grow operation may be called at any time on any SNZI
node. To keep the flexible structure of the SNZI data structure,
we do not specify when to use the grow operation on the tree,
instead leaving it to the application to specify how to do so.
For example, in Section 3.3, we show how to use the grow

operation to implement a low-contention dependency counter
for dags. It is easy to see that the operation does not break
the linearizability of the SNZI structure; it is completely
independent from the count, version number, and parent
fields of nodes already in the tree, which are the only fields
that affect the correctness and linearizability.

We note a key property of the grow operation. We would
like to ensure that, given a probability p, when grow is called
on a childless node, only 1/p such calls will return no children
in expectation, regardless of the timing of the calls. That is,
even if all calls to grow are concurrent, we want only 1/p of
them to return no children. This property is ensured by having
the coin flip happen before reading the value of the children
array to be returned. This guarantees that any adversary that
does not know the result of local coin flips cannot cause more
than 1/p calls to return no children in expectation.

Dynamically shrinking the SNZI tree is more difficult,
because we need to be sure that no operation could access a
deallocated node. In general, one may easily and safely delete
a SNZI node from the tree if the following two conditions
hold: (1) its surplus is 0, and (2) no thread other than the one
deleting the node can reach it. The second condition is much
trickier to ensure. In Section 4 we show how to deallocate
nodes in our dependency counter data structure.

3. Series-Parallel Dags
A nested-parallel program can be represented as a series-
parallel dag, or an sp-dag, of threads, where vertices are
pieces of computation, and edges represent dependencies
between them. In fact, to execute such a program, modern
programming languages construct an sp-dag and schedule it
on parallel hardware. We present a provably low-contention
sp-dag data structure that can be used to execute nested-
parallel programs. After defining sp-dags, we present in
Section 3.1 a data structure for sp-dags by assuming an
in-counter data structure that enables keeping track of the
dependencies of a dag vertex (thread). We then present our
data structure for in-counters in Section 3.3.

A serial-parallel dag, or an sp-dag for short, is a directed-
acyclic graph (dag) that has a unique source vertex, which
has indegree 0, and a unique terminal vertex, which has
out-degree 0 and that can be defined iteratively. In the base
case, an sp-dag consists of a source vertex u, a terminal
vertex v, and the edge (u, v). In the iterative case, an sp-
dag G = (V, E) with source s and terminal t is defined by
serial or parallel composition of two disjoint sp-dags G1 and
G2, where G1 = (V1, E1) with source s1 and terminal t1 and
G2 = (V2, E2) with source s2 and terminal t2, and V1∩V2 = ∅:

• serial composition: s = s1, t = t2, V = V1 ∪ V2,
E = E1 ∪ E2 ∪ (t1, s2).
• parallel composition: s, t < (V1∪V2), V = V1∪V2∪{s, t},

and E = E1 ∪ E2 ∪ {(s, s1), (s, s2), (t1, t), (t2, t)}.

For any vertex v in an sp-dag, there is a path from s to t
that passes through v. We thus define the finish vertex of v as
the vertex u which is the closest proper descendant of v such
that every path from v to the terminal t passes through u.

3.1 The sp-dag data structure

Figure 3 shows our data structure for sp-dags. We represent
an sp-dag as a graph G consisting of a set of vertices V and a
set of edges E. The data structure assigns to each vertex of
the dag an in-counter data structure, which counts the number
of (unsatisfied) dependencies of the vertex. As the code for
a dag vertex executes, it may dynamically insert and delete
dependencies by using several handles. These handles can
be thought of, in the abstract, as in-counters, but they are
implemented as pointers to specific parts of an in-counter
data structure.



More precisely, a vertex consists of

• a query handle (query), an increment handle (inc), and a
decrement handle (dec),
• a flag first_dec indicating whether the first or the second

decrement handle should be used,
• a flag dead indicating whether vertex has been executed,
• the finish vertex fin of the vertex, and
• a body, which is a piece of code that will be run when the

scheduler executes the vertex.

The sp-dag uses an in-counter data structure Incounter,
whose implementation is described in the Section 3.3. The
in-counter data structure supplies the following operations:

• make: takes an integer n, creates an in-counter with n as
the initial count and returns a handle to the in-counter;
• increment: takes a vertex v, increments its in-counter, and

returns two decrement and two increment handles;
• decrement: takes a vertex v and decrements its in-counter;
• is_zero: takes a vertex v and returns true iff that in-

counter of v is zero.

Inspired by recent work on formulating a calculus for
expressing a broad range of parallel computations [3], our
dag data structure provides several operations to construct
and schedule dags dynamically at run time. The operation
new_vertex creates a vertex. It takes as arguments a finish
vertex u, an increment handle i, a decrement handle d, and
a number n indicating the number of dependencies it starts
with. It allocates a fresh vertex, sets its dead and first_dec

flags to false, and sets the body for the vertex to be a dummy
placeholder. It then creates an in-counter and a handle to it.
The operation returns the new vertex along with the handle
to its in-counter. The handle becomes the query handle. The
operation make creates an sp-dag consisting of a root u and
its finish vertex z and returns the root u. As can be seen in
the function make, the increment and decrement handles of a
vertex v always belong to the in-counter of v’s finish vertex.

A vertex u and its finish vertex z can be thought as a
computation in which u executes the code specified by its
body and then returns to z. This constraint implies that z
serially depends on u because z can only be executed after
u. As it executes, a vertex u can use the functions chain and
spawn to “nest” another sequential or parallel computation
(respectively) within the current computation.

The chain operation, which corresponds to serial compo-
sition of sp-dags, nests a sequential computation within the
current computation. When a vertex u calls chain, the call
creates two vertices v and w such that w serially depends on v.
Furthermore, v serially depends on u, and z serially depends
on w. After calling chain, u terminates and thus dies. The
initial in-counters of v and w are set to 0 and 1 respectively
(to indicate that v is ready for execution, but w is waiting on

module Incounter = ... (∗ As defined in Figure 5 ∗)
module Dag =
G = (V, E)
type handle = Incounter.handle
struct {
handle query, inc, dec[2];
boolean first_dec, dead;
vertex fin;
(void → void) body;

} vertex;

(vertex, handle)
fun new_vertex (vertex u, handle i, handle d, int n) =

V ← V ∪ {v}, v < V
(v.firstDec, v.dead) ← (false, false)
v.body ← { return }
v.query ← Incounter.make (n)
(v.fin, v.inc, v.dec) ← (u, i, d)
return (v, v.query)

(vertex,vertex)
fun make ()

V ← {v}
E ← ∅

(v.firstDec, v.dead) ← (false, false)
v.body ← { return }
v.query ← Incounter.make (1)
u ← new_vertex (u, v.query, v.query, 0)
return (u, v)

(vertex, vertex)
fun chain (vertex u) =
(w, h) ← new_vertex (u.fin, u.inc, u.dec, 1)
(v, h) ← new_vertex (w, h, [h, h], 0)
E ← E ∪ {(u, v)}
u.dead ← true
return (v,w)

(vertex, vertex)
fun spawn (vertex u) =
(d, i, j) ← Incounter.increment (u.fin)
(v, _) ← new_vertex (u.fin, i, d, 0)
(w, _) ← new_vertex (u.fin, j, d, 0)
E ← E ∪ {(u, v), (u,w)}
u.dead ← true
return (v,w)

void
fun signal (u: vertex) =

Incounter.decrement (u.fin)
E ← E ∪ {(u,u. f in)}

Figure 3: The pseudo-code for our sp-dag data structure.

one other vertex). The edge (u, v) is inserted to the dag to
indicate a satisfied dependency between u and v.

The spawn operation, which corresponds to parallel com-
position of sp-dags, nests a parallel computation with the



current computation. When a vertex u calls spawn, the call
creates two vertices, v and w, which depend serially on u,
but are themselves parallel. The operation increments the
in-counter of u’s finish node, to indicate a serial dependency
between u’s finish vertex and the new vertices v and w. Even
though two new vertices are created, the in-counter is incre-
mented once, because one of the vertices can be thought of
as a continuation of u. The increment operation returns two
new increment handles i and j and a decrement-handle pair
d. The spawn operation then creates the two vertices v and
w using the two increment handles, one for each, and the
decrement-handle pair d as a shared argument. Assigning
each of v and w their own separate increment handles enables
controlling contention at the in-counter of u’s finish node. As
described in Section 3.3, sharing of the decrement handles by
the new vertices (v,w) is critical to the efficiency. As with the
chain operation, spawn must be the last operation performed
by u. It therefore completes by creating the edges from u to v
and w, and marking u dead.

The operation signal indicates the completion of its
argument vertex u by decrementing the in-counter for its
finish vertex v, and inserting the edge (u, v).

In terms of efficiency, apart from calls to Incounter, the
operations of sp-dags involve several simple, constant time,
operations. The asymptotic complexity of the sp-dags is thus
determined by the complexity of the in-counter data structure.

3.2 An Example

Although simple, the sp-dag data structure can be used
to create any nested-parallel computation. As an example,
we consider the classic parallel Fibonacci program, which
computes nth Fibonacci number by recursively and in parallel
computing the (n − 1)th and (n − 2)nd numbers. Figure 4
illustrates the code for this example based on the sp-dag
data structure and a Scheduler module that implements a
standard parallel scheduler, such as work stealing [2, 8].
The function fib_main initializes the system by calling the
function Scheduler.initialize and then creates the root
and the final vertex of the dag. It then sets the body of the
root to run fib, passing the arguments n and result. The
vertices root and f inal are then given to the scheduler to
be executed. The scheduler returns when the computation is
finished, which leads to the return of the result.

The function fib implements the parallel Fibonacci func-
tion. The function start by creating a chain (u, v), passing
this_vertex, which is the variable indicating the currently
executing vertex, as the parent to the root of the chain. The
body of u is set to spawn the two recursive calls and the
body of v is set to compute the final result by summing the
return values of the recursive calls. Note that when spawn-
ing vertices the body of u uses this_vertex as a parent for
the vertices created. Since the body is executed when u is
executed, at the point of execution this_vertex is equal to u.

fib (n: int, dest: int ref) =
if n <= 1 then

dest ← n
else

res1 = alloc ()
res2 = alloc ()
(u, v) ← Dag.chain (this_vertex)
u.body ← lambda (). {

(w1,w2) = Dag.spawn (this_vertex)
w1.body ← lambda ().fib (n − 1, res1)
w2.body ← lambda ().fib (n − 2, res2)
Scheduler.add (w1,w2)

}
v.body ← lambda (). ∗dest ← ∗res1 + ∗res2
Scheduler.add (u, v)

fib_main (n: int) =
int result;
Scheduler.initialize ()
(root, f inal) ← Dag.make ()
root.body ← lambda ().fib (d,&result)
Scheduler.add (root, f inal)
return result

Figure 4: Fibonnacci example. The parallel recursive func-
tion at the top and the main function, where execution starts,
at the bottom.

3.3 Incounters

We present the in-counter: a time and space efficient low-
contention data structure for keeping track of pending de-
pendencies in sp-dags. When a new dependency for vertex
v is created in the dag, its in-counter is incremented. When
a dependency vertex in the dag terminates, v’s in-counter is
decremented.

Our goal is to ensure that the increment and decrement
operations are quick; that is, that they access few memory
locations and encounter little contention. These goals could
seem contradictory at first—if operations access few memory
locations then they would conflict often. Our in-counter
data structure circumvents this issue by ensuring that each
operation accesses few memory locations that are mostly
disjoint from those of others.

The in-counter is fundamentally a dynamic SNZI tree. To
ensure disjointness of memory accesses, the data structure
assigns different handles to different dag vertices. These
handles are pointers to SNZI nodes within the in-counter,
dictating where in the tree an operation should begin. Thus,
if two threads have different handles, their operations will
access different memory locations.

The in-counter data structure ensures the invariant that
only the leaves have a surplus of zero. This allow us to
exploit an important property of SNZI: operations complete
when they visit a node with positive surplus, effectively
stopping propagation of the change up the tree. Specifically,



1 module Incounter =
2 type handle = snzi_node (∗ A handle is a snzi node ∗)
3

4 (∗ Growth probability: architecture specific constant. ∗)
5 p ← . . .

6

7 (∗Make a new counter with surplus n. ∗)
8 handle
9 fun make (n) = snzi_make (n)

10

11 (∗ Auxiliary function: select decrement handle. ∗)
12 handle
13 fun claim_dec (vertex u) =
14 if CAS (u.firstDec, false, true) then u.dec[0]
15 else u.dec[1]
16

17 (∗ Increment u’s target dependency counter. ∗)
18 (handle[2], handle, handle)
19 fun increment (vertex u) =
20 (a, b) ← grow (u.inc, p)
21 (i1,i2) ← (a, b)
22 if u is a left child then d2 ← a
23 else d2 ← b
24 snzi_arrive (d2)
25 d1 ← claim_dec (u)
26 return [[d1,d2],i1,i2]
27

28 (∗ Decrement u’s counter. ∗)
29 void
30 fun decrement (vertex u) =
31 d ← claim_dec (u)
32 snzi_depart (d)
33

34 (∗ Check that u’s counter is zero. ∗)
35 boolean
36 fun is_zero (u) = return snzi_isZero(u.query)

Figure 5: The pseudo-code for the in-counter data structure.

an increment that starts at a leaf completes quickly when it
visits the parent. To maintain this invariant, we have to be
careful about which SNZI nodes are decremented.

Figure 5 shows the pseudo-code for the in-counter data
structure. The in-counter’s interface is similar to the original
SNZI data structure: the operation make creates an instance
of the data structure and returns a handle to it. The operation
increment is meant to be used when a dag vertex spawns.
It takes in a dag vertex, and uses its increment handle to
increment the SNZI node’s surplus. Before doing so, it calls
the grow operation. Intuitively, this growth request notifies the
tree of possible contention in the future and gives it a chance
to grow to accommodate a higher load. The increment

operation returns handles to other nodes in the SNZI tree,
that is, two decrement handles and two increment handles,
indicating where the newly spawned children of the dag
vertex should perform their increment or decrement. The
operation decrement is meant to be used when a dag vertex

signals the end of its computation. It takes in dag vertex,
and uses its decrement handle to decrement the surplus of a
previously incremented node.

Since the increment operation is the only thing that can
cause growth in the SNZI tree, the structure of the tree is
determined by the operations performed on the in-counter
structure. The tree is therefore not necessarily balanced.
However, as we establish in Section 4, the operations’ running
time does not depend on the depth of the tree. In fact, we
show that the operations complete in constant amortized time
and also lead to constant amortized contention.

To understand the implementation, it is helpful to consider
the way the sp-dag structure uses the in-counter operations.
The increment operation is called by a dag vertex when the
vertex calls the spawn operation, which uses the vertex’s in-
crement handle to determine the node in the SNZI tree, where
an arrive operation will start. To find the place, the increment

operation first uses a grow operation to check whether the
SNZI node pointed at by the handle has children. Addition-
ally, the operation creates new children if necessary (line 20).
Intuitively, we create new SNZI nodes to reduce contention by
using more space. Thus, if the increment handle has children,
we should make use of them and start our arrive operation
there. This is exactly what the increment operation does (line
24). Note that, in case the grow operation does not return new
children, we simply have the arrive operation start at the
increment handle. The increment operation returns two in-
crement handles and two decrement handles; one of each for
each of the dag vertex’s new children.

The in-counter algorithm makes use of an important SNZI
property: decrements at the top of the tree do not affect any
node below them. Furthermore, if there is a depart operation
at SNZI node a, it cannot cause a to phase change as long
there is surplus anywhere in a’s subtree. These observations
lead to the following intuition: to minimize phase changes
in the SNZI tree, priority should be given to decrementing
nodes closer to the root.

Thus, each dag vertex stores two decrement handles rather
than just one. These two decrement handles are shared with
the vertex’s sibling, and they are ordered: the first handle
always points to a SNZI node that is higher in the tree than
the second. Decrement handle is needed by the decrement

operation (line 31) and the increment operation. Recall that
an increment always returns two decrement handles. One of
these decrement handles always points to the SNZI node on
which the increment operation started its arrive. However,
the other one is inherited from the parent dag vertex (the one
that invoked the increment). To preserve the invariant, the
incrementing vertex needs to claim a decrement handle (line
25). The two decrement handles returned are always ordered
as follows: first, the one inherited from the parent, and, then,
the one pointing at the freshly incremented SNZI node. In
this way, we guarantee that the first decrement handle in any
pair points higher in the tree than its counterpart. When a



decrement handle is needed, the two dag vertices determine
which handle to use through a test-and-set. The first of the two
to make use of a decrement handle will take the first handle,
thus ensuring that higher SNZI nodes are decremented earlier.
We rely on this property to prove our bounds in Lemma 4.6.

Note that, in an increment operation, the decrement han-
dle is claimed only after the arrive has completed. This key
invariant helps to ensure that phase changes rarely occur in
the SNZI tree, thus leading to fast operations.

4. Correctness and Analysis
We first prove that our in-counter data structure is linearizable
and then establish its time and space efficiency. Due to lack
of space, we only present the proof for the case where the
probability used for the grow operation is 1, i.e., the SNZI tree
grows on every increment operation. The proof for different
growth probabilities is similar (and leads to contention that
depends on the probability given) but more intricate, and is
therefore left for the journal version of this paper.

We say that the in-counter is correct if any is_zero opera-
tion at the root of the tree correctly indicates whether there
is a surplus of increment operations over decrement opera-
tions. To prove correctness, we establish a symmetry with
the original SNZI data structure. Note that each increment,
decrement, and is_zero operation calls the corresponding
SNZI operation (i.e., arrive, depart, query respectively)
exactly once. We define the linearization points of each oper-
ation as that of the corresponding SNZI operation.

Since the correctness condition for the in-counter and for
SNZI are the same, we have the following observation.

Observation 1. An execution of the in-counter is linearizable
if the corresponding SNZI execution is linearizable.

At this point, we recall that any SNZI run is linearizable
if there are never more departs than arrives on any node, i.e.,
surplus at any node is never negative [14]. We show that
this invariant indeed holds for any valid execution of the in-
counter data structure, and therefore that any valid execution
is linearizable. We define a valid execution as follows.

Definition 1. An in-counter execution is valid if any handle
passed as argument to the decrement operation was returned
by a prior increment operation. Furthermore, that handle is
passed to at most one decrement operation.

Lemma 4.1. Any valid in-counter execution is linearizable.

Proof. Observe that every increment operation generates one
new decrement handle, and that handle points to the node at
which this increment’s arrive operation was called. Thus,
in valid executions, any depart on the underlying SNZI
data structure (which is always called by the decrement

operation) has a corresponding arrive at an earlier point
in time. Therefore, there are never more departs than arrives
at any SNZI node, and the corresponding SNZI execution is

linearizable. From Observation 1, the in-counter execution is
linearizable as well. �

It is easy to see that any execution of the in-counter that
only accesses the object as prescribed by the sp-dag algorithm
is valid. From this observation, the main theorem follows
immediately.

Theorem 4.2. Any execution of the in-counter through sp-
dag accesses is linearizable.

4.1 Running Time

To prove that the in-counter is efficient, we analyze shared-
memory steps and contention separately: we first show that
every operation takes an amortized constant number of shared
memory steps, and then we show that each shared memory
location experiences constant amortized contention at any
time. In our analysis, we do not consider is_zero, since it
does not do any non-trivial shared memory steps.

For the analysis, consider an execution on an sp-dag,
starting with a dag, consisting of a single root vertex and its
corresponding finish vertex. Further, observe that this finish
vertex has a single SNZI node as the root of its in-counter.
Note that all shared memory steps in the execution are on the
in-counter. We begin by making an important observation.

Lemma 4.3. There exist at most one increment and one
decrement handle pointing to any given SNZI node.

To prove this lemma, note that every increment operation
creates new children for the SNZI node whose handle is used,
and thus does not produce another handle to that node. A
simple induction, starting with the fact that the root node only
has one handle pointing to it, yields the result.

We now want to show that every operation on the in-
counter performs an amortized constant number of shared
memory steps. First, note that the only calls in the in-counter
operations that might result in more than a constant number
of steps are their corresponding SNZI operations. The SNZI
operations do a constant number of shared memory steps
per node they reach, but they can be recursively called up
an arbitrarily long path in the tree, as long as nodes in that
path phase change due to the operation. That is, frequent
phase changing in the SNZI nodes will cause operations
on the data structure to be slower. In fact, we show that on
average, the length of the path traversed by an arrive or
depart operation is constant, when those SNZI operations
are called only through the in-counter operations.

We say that a dag vertex is live if it is not marked dead
and a handle is live if it is owned by a live vertex. We have
the following lemma about live vertices.

Lemma 4.4. If dag vertex v is live, then it has not used
claim_dec to claim a decrement handle.



Keeping track of live vertices in the dag is important in
the analysis, since by Lemma 4.4, these are the vertices that
can use their handles and potentially cause more contention.

To show that operations on SNZI nodes are fast, we begin
by considering executions in which only increment operations
are allowed, and no decrements happen on the in-counter. Our
goal is to show that the in-counter’s SNZI tree is relatively
saturated, so that arrive operations that are called within a
increment only access a constant number of nodes. After we
establish that increment operations are fast when decrements
are not allowed, we bring back the decrement operations and
see that they cannot slow down the increments.

Lemma 4.5. Without any decrement operations, when there
are no increments mid-execution, only leaves of the in-
counter’s SNZI tree can have surplus 0.

Proof. The proof is by induction on the number of increment
operations called on the in-counter. The tree is initialized
with one node with surplus 1. Thus, when there have been 0
increments, no node has surplus 0. Assume that the lemma
holds for in-counters that have had up to k increments on
them. Consider an in-counter that has had k increments, and
consider a new increment operation invoked on node a in the
tree. If a is not a leaf, the grow operation does not create new
children for a, and the tree does not grow. Thus, the lemma
still holds. If a is a leaf, the increment operation creates two
children for a and starts an arrive operation on one of the
children. As a consequence of the SNZI invariant, we know
that the surplus of a increased by 1. After the increment,
regardless of what its surplus was before this operation, a
cannot have surplus 0, and the lemma still holds. �

By Lemma 4.5, we know that, ignoring any effect that
decrements may have, the tree has surplus in all non-leaf
nodes. Recall that an arrive operation that reaches a node
with positive surplus will terminate at that node. Thus, any
arrive operation invoked on this tree will only climb up a
path until it reaches the first node that was not a leaf before
this increment started. That is, since each increment only
expands the tree by at most one level, any arrive operation
will reach at most 3 nodes.

We now bring back the decrement operations. The danger
with decrements is that they could potentially cause non-
leaf nodes to phase change back to 0 surplus, meaning that
an arrive operation in that node’s subtree might have to
traverse a long path up the SNZI tree. Our main lemma
shows that traversal of a long path can never happen; if a
decrement causes a vertex’s surplus to go back to 0, then
no subsequent increment operation will start in that node’s
subtree. We present the proof in the full version.

Lemma 4.6. If an in-counter node a at any point had a
surplus and then phase changed to 0 surplus, then no live
vertices in the dag point anywhere in its subtree.

Note that Lemma 4.5 and Lemma 4.6 immediately give us
the following important property.

Corollary 4.7. No increment operation can invoke more
than 3 arrive operations on the SNZI tree.

Proof. We already saw that by Lemma 4.5, if no decrements
happen, then each increment operation can invoke at most 3
arrive operations.

Now consider decrements as well. Note that if a non-leaf
node has surplus 0 and there is no increment mid-operation at
that node, then it must have previously had surplus (again by
Lemma 4.5). By Lemma 4.6, no new increment operations
can happen on that node’s subtree. Thus, even allowing for
decrement operations, no increment operation can invoke
more than 3 arrives on the SNZI tree. �

To finish the proof, we amortize the number of departs
invoked by decrements against the arrives invoked by
increments. Recall that the number of departs invoked on
a SNZI tree is at most the number of arrives invoked on it.
We get the following theorem:

Theorem 4.8. Any operation performed on the in-counter
itself calls an amortized O(1) operations on the SNZI tree.

We now move on to analyzing the amount of contention a
process experiences when executing an operation on the in-
counter. Note that there have been several models suggested
to account for contention, as discussed in Section 6. In our
contention analysis, we say that an operation contends with a
shared memory step if that step is non-trivial, and it could, in
any execution, be concurrent with the operation at the same
memory location. Our results are valid in any contention
model in which trivial operations do not affect contention (i.e.
such as stalls [16], the CRQW model [21], etc.).

Theorem 4.9. Any operation executed on the in-counter
experiences O(1) amortized contention.

Proof. We show something stronger: the maximum number
of operations that access a single SNZI node over the course
of an entire dag computation (other than is_zero operations
on the root) is constant.

Consider a node a in the SNZI tree. By Lemma 4.3, only
one increment operation ever starts its arrive at a. That
increment has exactly one corresponding decrement whose
depart starts at a. By the SNZI algorithm, an arrive at a’s
child only propagates up to a if that child’s surplus was 0
before the arrive. By Lemma 4.6, this situation can only
happen once; if a’s child’s surplus returns to 0 after being
higher, the counter will never be incremented again. Thus,
each of a’s children can only ever be responsible for at most
two operations that access a; the initial arrive and the final
depart from that subtree.

In total, we get a maximum of 6 operations that access a
over the course of the computation. Note also that the first



arrive at a node always strictly precedes any other operation
in that node’s subtree. Thus, concurrent arrive operations
are not an issue. Therefore, any operation on the in-counter
can be concurrent with at most 4 other operations per SNZI
node it accesses. By Theorem 4.8, every operation on the
in-counter accesses amortized O(1) nodes. Therefore, any
such operation experiences amortized O(1) contention. �

4.2 Space bounds

Shrinking the tree by removing unnecessary nodes is tricky
because, in its most general form, an ideal solution likely
requires knowing the future of the computation. Knowing
where in the tree to shrink requires knowing which nodes are
not likey to be incremented in the future. For the specific case
of the grow probability of 1, we establish a safety property
that makes it possible to keep the data structure compact by
removing SNZI nodes that correspond to deleted sub-graphs
of the sp-dag. Due to space constraints, we present the details
in the full version [1].

5. Experimental evaluation
We report an empirical comparison between our in-counter al-
gorithm, the simple fetch-and-add counter, and an algorithm
using fixed-size SNZI trees. Our implementation consists of
a small, C++ a library that uses a state-of-the-art, implemen-
tation of a work-stealing scheduler [2]. Overall, our results
show that the simple, fetch-and-add counter performs well
only when there is one core, the fixed-size SNZI trees scale
better, but our in-counter algorithm outperforms the others
when the core count is two or more.

Implementation. Our implementation of core SNZI op-
erations snzi_arrive and snzi_depart follows closely
the algorithm presented in the original SNZI paper, except
for two differences. First, we do not need snzi_query be-
cause readiness detection is performed via the return result of
snzi_depart. This method suffices because only the caller
of snzi_depart can bring the count to zero. Second, our
snzi_depart returns true if the call brought the counter
to zero. To control the grain of contention, we use the prob-
abilistic technique presented in Section 2, with probability
p := 1

25c , where c is the number of cores. The idea of us-
ing c is to try to keep contention the same as the number of

fun fanin_rec(n)
if n >= 2

async fanin_rec(n/2)
async fanin_rec(n/2)

fun fanin(n)
finish {fanin_rec(n)}

Figure 6: Fan-in bench-
mark.

fun indegree2(n)
if n >= 2

finish {
async indegree2(n/2)
async indegree2(n/2)

}

Figure 7: Indegree-2 bench-
mark.

cores increase. We chose the constant factor 25, because it
yields good results, but as our Threshold study, described
below, shows many other constants also yield good results,
e.g., any constant in the range 2.5c ≤ p ≤ 25c yields quali-
tatively the same results. The implementation of the sp-dags
and in-counter data structures (Section 3) build on the SNZI
data structure. The sp-dags interface enables writing nested-
parallel programs, using various constructs, such as fork-join
and async-finish; we use the latter in our experiments.

We compare our in-counter with an atomic, fetch-and-
add counter because the fetch-and-add counter is optimal for
very small numbers of cores. For higher number of cores,
we designed a different, SNZI-based algorithm that uses
a fixed-depth SNZI tree. This algorithm gives us another
point of comparison, by offering a data structure that uses
the existing state of the art more directly. The fixed-depth
SNZI algorithm allocates for each finish block a SNZI tree
of 2d+1 − 1 nodes, for a given depth d. To maintain the
critical SNZI invariant that the surplus of a SNZI node never
becomes negative, the fixed-depth SNZI algorithm ensures
that every snzi_depart call targets the same SNZI node that
was targeted by a matching snzi_arrive call. To determine
which SNZI node to be targeted by a snzi_arrive call, we
map DAG vertices to SNZI nodes using a hash function to
ensure that operations are spread evenly across the SNZI tree.

Experimental setup. We compiled the code using GCC
-O2 -march=native (version 5.2). Our machine has four
Intel E7-4870 chips and 1Tb of RAM and runs Ubuntu Linux
kernel v3.13.0-66-generic. Each chip has ten cores (40 total)
and shares a 30Mb L3 cache. Each core runs at 2.4Ghz and
has 256Kb of L2 cache and 32Kb of L1 cache. The machine
has a non-uniform memory architecture (NUMA), whereby
RAM is partitioned into four banks. Pages are, by default in
our Linux distribution, allocated to banks according to the
first-touch policy, which assigns a freshly allocated page
to the bank of the processor that first accesses the page.
An alternative policy assigns pages to banks in a round-
robin fashion. We determined that, for the purposes of our
experiments, the choice of NUMA policy has no significant
impact on our main results. The experiment we performed to
back this claim is described in more detail in the full paper [1].
For all other experiments, we used the round-robin policy.

Benchmarks:fanin and indegree2. To study scalability,
we use the two small benchmarks shown in Figures 6 and 7.
The fanin benchmark performs n async calls, all of which
synchronize at a single finish block, making the finish block
a potential source of contention. The fanin benchmark im-
plements a common pattern, such as a parallel-for, where
a number of independent computations are forked to exe-
cute in parallel and synchronize at termination. Our second
benchmark, indegree2 implements the same pattern as in
fanin but by using binary fork join. This program yields a
computation dag in which each finish vertex has indegree 2.



0 10 20 30 40

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06

Number of cores

N
um

be
r 

of
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d 

pe
r 

co
re

●

●

Fetch & Add
SNZI depth=1
SNZI depth=2
SNZI depth=3
SNZI depth=4
SNZI depth=5
SNZI depth=6
SNZI depth=7
SNZI depth=8
SNZI depth=9
in−counter

●

●

●

●

●
●

●
● ● ●

●
● ●

●

●

●

● ● ●
●

● ●
●

● ●

●

Figure 8: Fanin benchmark with n = 8
million, & varying number of processors.
Higher is better.

0e+00 1e+08 2e+08 3e+08 4e+08 5e+08

0.
0e

+
00

1.
0e

+
06

2.
0e

+
06

3.
0e

+
06

n

N
um

be
r 

of
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d 

pe
r 

co
re

●

in−counter, nb. cores 1
in−counter, nb. cores 10
in−counter, nb. cores 20
in−counter, nb. cores 30
in−counter, nb. cores 40

●

●

●
● ● ●

●

Figure 9: Fanin benchmark, varying the
number of operations n.
Higher is better.

0 10 20 30 40

5.
0e

+
05

1.
0e

+
06

1.
5e

+
06

2.
0e

+
06

2.
5e

+
06

Number of cores

N
um

be
r 

of
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d 

pe
r 

co
re

●

Fetch & Add
SNZI depth=2
SNZI depth=4
in−counter

●

●
● ●

●

Figure 10: Indegree-2 benchmark, using
number of operations n = 8 million.
Higher is better.

Scalability study. Figure 8 shows the scalability of the
fanin benchmark using different counter data structures.
With one core, the Fetch & Add counter performs best
because there is no contention, but with more, Fetch & Add
gives worst performance for all core counts (this pattern
is occluded by the other curves). For more than one core,
our in-counter performs the best. The fixed-depth SNZI
algorithm scales poorly when depth is small, doing best at
the tree depth of 8, where there are enough nodes to deal with
contention among 40 cores. Increasing the depth further does
not improve the performance, however.

Size-invariance study. Theorem 4.9 shows that the amor-
tized contention of our in-counter is constant. We test this
result empirically by measuring the running time of the fanin
benchmark for different input parameters n. As shown in Fig-
ure 9, for all input sizes considered and for all core counts,
the throughput is within a factor 2 of the single-core (no-
contention) Fetch & Add counter. The throughput suffers a
bit for the smaller values of n because, at these values, there
is not enough useful parallelism to feed the available cores.

Low-indegree study. Our next experiment examines the
overhead imposed by the in-counter by using the indegree2

benchmark shown in Figure 7. The results, illustrated in
Figure 10, show that our in-counter data structure is within
a factor 2 of the best performer, the fetch-and-add counter.
For SNZI, we only considered small-depths, since larger
ones took too long to run. With the fixed-depth SNZI, the
benchmark creates many finish blocks and thus many SNZI
trees, becoming inefficient for large trees.

Threshold study. In Section 2, we presented a technique to
control the grain of contention by expanding the SNZI tree
dynamically. Here, we report, using the fanin benchmark,
the results of varying the range of probabilities p = 1

threshold
for different settings of threshold. As shown in Figure 11,

10 50 10
0

50
0

10
00

50
00

10
00

0

50
00

0

10
00

00
0

in−counter

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

2.5e+06

N
um

be
r 

of
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d 

pe
r 

co
re

Figure 11: Threshold experiment. Each bar represents a
different setting for p = 1

threshold . All runs were performed
using 40 cores. Higher is better.

essentially any threshold between 50 and 1000 works well.
We separately checked that on our test machine using a
constant threshold such as 100 or 1000 yields good results
when using any number of cores. On a machine, perhaps with
many more cores, the best setting might be different or might
also depend on the number of cores used.

6. Related Work
Upper bounds for several non-blocking data structures, ac-
counting also for contention, have been proven for several
tree- and list-based search structures [13, 18, 39]. In these
upper bounds, contention factors in as a linear additive term,
which is consistent with established lower bounds for many
problems in the general concurrency model [15, 16, 27, 30].
In contrast, for relaxed counters, we show that contention for
series-parallel programs can be upper bounded by a constant.

Complexity models for analyzing contention and tech-
niques for designing algorithms for reducing contention has
also been important subject of study [12, 20, 21, 31, 36]
Contention has also been identified as an important practical



performance issue in multiprocessor systems. Techniques that
reduce contention by detecting and introducing wait periods
or using tokens to be passed between threads proved to be
essential for reducing detrimental effects of contention [4, 6].
Managing contention in software-transactional memory may
require contention managers that schedule transactions care-
fully to minimize aborted transactions [23, 26, 40, 41].

In this paper, we consider non-blocking, or lock-free al-
gorithms. Since our upper bounds are quite good, O(1), our
algorithms guarantee that each operation completes quickly
in our relaxed concurrency model. Wait-free data structures
can guarantee similar properties in the general concurrency
model [24, 25]. Such data structures were traditionally con-
sidered to be impractical, though recent results show that they
may be also be practical [33, 44].

7. Conclusion
The design and analysis of provably efficient concurrent and
specifically non-blocking data structures has been a challeng-
ing problem. One reason is the complexity of the concurrency
models. Another reason is the difficulty of accounting for
important practical concerns, such as contention, that can
significantly impact performance. In this paper, we show
that it is possible to design provably efficient data structures
under a slightly more restrictive but still important concur-
rency model: nested-parallel computations. Our results take
advantage of certain structural invariants in nested parallel
computations, specifically those that concern the creation, ter-
mination, and synchronization of threads. Interesting future
research directions include the design and analysis of other
concurrent data structures for the nested-parallel concurrency
model and consideration of more general, but still restricted,
models of concurrency, such as those based on futures.

Acknowledgments
This research is partially supported by the a fellowship
from Natural Sciences and Engineering Research Council
of Canada (NSERC), and grants from National Science
Foundation (CCF-1320563 and CCF-1408940) and European
Research Council (grant ERC-2012-StG-308246). We are
grateful to Doug Lea for his feedback on the paper.

References
[1] Umut A. Acar, Naama Ben-David, and Mike Rainey. Con-

tention in structured concurrency: Provably efficient dynamic
nonzero indicators for nested parallel computation. Technical
Report CMU-CS-16-133, Department of Computer Science,
Carnegie Mellon University, 2016.

[2] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Schedul-
ing parallel programs by work stealing with private deques. In
PPoPP ’13, 2013.

[3] Umut A. Acar, Arthur Charguéraud, Mike Rainey, and Filip
Sieczkowski. Dag-calculus: A calculus for parallel computa-

tion. In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, pages
18–32, 2016.

[4] A. Agarwal and M. Cherian. Adaptive backoff synchronization
techniques. In Proceedings of the 16th Annual International
Symposium on Computer Architecture, ISCA ’89, pages 396–
406, 1989.

[5] James H. Anderson and Yong-Jik Kim. An improved lower
bound for the time complexity of mutual exclusion. Distrib.
Comput., 15(4):221–253, December 2002.

[6] T. E. Anderson. The performance of spin lock alternatives for
shared-memory multiprocessors. IEEE Trans. Parallel Distrib.
Syst., 1(1):6–16, January 1990.

[7] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton.
Thread scheduling for multiprogrammed multiprocessors. In
Proceedings of the tenth annual ACM symposium on Parallel
algorithms and architectures, SPAA ’98, pages 119–129. ACM
Press, 1998.

[8] Robert D. Blumofe and Charles E. Leiserson. Scheduling
multithreaded computations by work stealing. J. ACM, 46:720–
748, September 1999.

[9] Trevor Brown, Faith Ellen, and Eric Ruppert. A general
technique for non-blocking trees. In Proceedings of the 19th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’14, pages 329–342, 2014.

[10] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christo-
pher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von
Praun, and Vivek Sarkar. X10: an object-oriented approach
to non-uniform cluster computing. In Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, OOPSLA
’05, pages 519–538. ACM, 2005.

[11] Robert Cypher. The communication requirements of mutual
exclusion. In Proceedings of the Seventh Annual ACM Sym-
posium on Parallel Algorithms and Architectures, SPAA ’95,
pages 147–156, 1995.

[12] Cynthia Dwork, Maurice Herlihy, and Orli Waarts. Contention
in shared memory algorithms. Journal of the ACM (JACM),
44(6):779–805, 1997.

[13] Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Rup-
pert. The amortized complexity of non-blocking binary search
trees. In Proceedings of the 2014 ACM Symposium on Prin-
ciples of Distributed Computing, PODC ’14, pages 332–340,
2014.

[14] Faith Ellen, Yossi Lev, Victor Luchangco, and Mark Moir. Snzi:
Scalable nonzero indicators. In Proceedings of the Twenty-
sixth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’07, pages 13–22, 2007.

[15] Faith Fich and Eric Ruppert. Hundreds of impossibility results
for distributed computing. Distrib. Comput., 16(2-3):121–163,
September 2003.

[16] Faith Ellen Fich, Danny Hendler, and Nir Shavit. Linear lower
bounds on real-world implementations of concurrent objects.
In Foundations of Computer Science, 2005. FOCS 2005. 46th
Annual IEEE Symposium on, pages 165–173. IEEE, 2005.



[17] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw.
Implicitly threaded parallelism in Manticore. Journal of
Functional Programming, 20(5-6):1–40, 2011.

[18] Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists
and skip lists. In Proceedings of the Twenty-third Annual ACM
Symposium on Principles of Distributed Computing, PODC
’04, pages 50–59, 2004.

[19] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The
implementation of the Cilk-5 multithreaded language. In PLDI,
pages 212–223, 1998.

[20] Phillip B Gibbons, Yossi Matias, and Vijaya Ramachandran.
Efficient low-contention parallel algorithms. In Proceedings of
the sixth annual ACM symposium on Parallel algorithms and
architectures, pages 236–247. ACM, 1994.

[21] Phillip B Gibbons, Yossi Matias, Vijaya Ramachandran, et al.
The queue-read queue-write pram model: Accounting for
contention in parallel algorithms. SIAM Journal on Computing,
pages 638–648, 1997.

[22] James R. Goodman, Mary K. Vernon, and Philip J. Woest. Effi-
cient synchronization primitives for large-scale cache-coherent
multiprocessors. In Proceedings of the Third International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS III, pages 64–75,
1989.

[23] Tim Harris and Keir Fraser. Language support for lightweight
transactions. In Proceedings of the 18th Annual ACM SIG-
PLAN Conference on Object-oriented Programing, Systems,
Languages, and Applications, OOPSLA ’03, pages 388–402,
2003.

[24] Maurice Herlihy. Wait-free synchronization. ACM Trans.
Program. Lang. Syst., 13:124–149, January 1991.

[25] Maurice Herlihy. A methodology for implementing highly
concurrent data objects. ACM Trans. Program. Lang. Syst.,
15(5):745–770, November 1993.

[26] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N
Scherer III. Software transactional memory for dynamic-sized
data structures. In Proceedings of the twenty-second annual
symposium on Principles of distributed computing, pages 92–
101. ACM, 2003.

[27] Maurice Herlihy, Nir Shavit, and Orli Waarts. Linearizable
counting networks. Distributed Computing, 9(4):193–203,
1996.

[28] Shams Mahmood Imam and Vivek Sarkay. Habanero-java li-
brary: a java 8 framework for multicore programming. In 2014
International Conference on Principles and Practices of Pro-
gramming on the Java Platform Virtual Machines, Languages
and Tools, PPPJ ’14, Cracow, Poland, September 23-26, 2014,
pages 75–86, 2014.

[29] Intel. Intel threading building blocks. 2011. https://www.
threadingbuildingblocks.org/.

[30] Prasad Jayanti, King Tan, and Sam Toueg. Time and space
lower bounds for nonblocking implementations. SIAM Journal
on Computing, 30(2):438–456, 2000.

[31] Richard M Karp and Yanjun Zhang. Randomized parallel
algorithms for backtrack search and branch-and-bound compu-
tation. Journal of the ACM (JACM), 40(3):765–789, 1993.

[32] Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchin-
skiy, Simon Peyton Jones, and Ben Lippmeier. Regular, shape-
polymorphic, parallel arrays in haskell. In Proceedings of the
15th ACM SIGPLAN international conference on Functional
programming, ICFP ’10, pages 261–272, 2010.

[33] Alex Kogan and Erez Petrank. A methodology for creating
fast wait-free data structures. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’12, pages 141–150, 2012.

[34] Doug Lea. A java fork/join framework. In Proceedings of
the ACM 2000 conference on Java Grande, JAVA ’00, pages
36–43, 2000.

[35] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The
design of a task parallel library. In Proceedings of the 24th
ACM SIGPLAN conference on Object oriented programming
systems languages and applications, OOPSLA ’09, pages 227–
242, 2009.

[36] Pangfeng Liu, William Aiello, and Sandeep Bhatt. An atomic
model for message-passing. In Proceedings of the fifth annual
ACM symposium on Parallel algorithms and architectures,
pages 154–163. ACM, 1993.

[37] Maged M. Michael and Michael L. Scott. Nonblocking
algorithms and preemption-safe locking on multiprogrammed
shared memory multiprocessors. J. Parallel Distrib. Comput.,
51(1):1–26, May 1998.

[38] Mark Moir and Nir Shavit. Concurrent data structures. Hand-
book of Data Structures and Applications, pages 47–14, 2007.

[39] Rotem Oshman and Nir Shavit. The skiptrie: Low-depth
concurrent search without rebalancing. In Proceedings of the
2013 ACM Symposium on Principles of Distributed Computing,
PODC ’13, pages 23–32, 2013.

[40] William N. Scherer, III and Michael L. Scott. Advanced
contention management for dynamic software transactional
memory. In Proceedings of the Twenty-fourth Annual ACM
Symposium on Principles of Distributed Computing, PODC
’05, pages 240–248, 2005.

[41] Nir Shavit and Dan Touitou. Software transactional memory.
In Proceedings of the Fourteenth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’95, pages
204–213, 1995.

[42] Nir Shavit and Asaph Zemach. Combining funnels. J. Parallel
Distrib. Comput., 60(11):1355–1387, November 2000.

[43] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, and
Phillip B. Gibbons. Reducing contention through priority
updates. In Proceedings of the Twenty-fifth Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures, SPAA
’13, pages 152–163, 2013.

[44] Shahar Timnat and Erez Petrank. A practical wait-free sim-
ulation for lock-free data structures. In Proceedings of the
19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’14, pages 357–368, 2014.

[45] R Kent Treiber. Systems programming: Coping with paral-
lelism. Technical report, International Business Machines
Incorporated, Thomas J. Watson Research Center, 1986.

https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/


A. Running Time
Lemma A.1. If an in-counter node a at any point had a
surplus and then phase changed to 0 surplus, then no live
vertices in the dag point to a or its subtree.

Proof. We prove this by induction on the size of a’s subtree.
Assume that node a in the in-counter has a surplus at time t,
and consider the decrement operation that caused a’s surplus
to become 0.

If a has no children, we only need to consider the handles
that point directly at a, since it has no subtree. Note that
it must be the case that a was incremented by an arrive

operation that started there, in a increment operation that had
an increment handle to a’s parent. During that operation, a
decrement handle to a was created, and placed as the second
of the pair of decrement handles returned. If a was now
decremented, both dag vertices that shared these decrement
handles must have claimed them, and thus, by Lemma 4.4,
neither of them is now live. In particular, this means that the
dag vertex that owned the increment handle to a is dead. So,
no live dag vertex has a handle to a.

Assume that the lemma holds for nodes with subtrees of
size at most k. Now consider a SNZI node a which has a
subtree of size k + 1. Consider the decrement operation that
caused a’s surplus to change to 0. There are two possible
cases: either (1) this decrement’s first depart is at a, or (2) it
started at one of a’s descendants.

Case 1. This decrement started at a. Note that a has
children, but neither of them has a surplus at the time this
decrement operation starts, since otherwise, a would have a
surplus due to its children, and would not phase change. Note
that for a to have children, an increment operation must have
started at a and used touch to create a’s children. This same
increment then arrived at one of a’s children. So at least
one of a’s children must have had surplus at some point, and
now neither of them do. By the induction hypothesis, if both
of them had surplus at some point, then no live dag handles
point anywhere in a’s childrens’ subtrees now. Furthermore,
since by Lemma 4.3 only one increment handle and one
decrement handle are ever created for a, no handle in the dag
points anywhere in a’s subtree (including a itself).

If only one of a’s children ever had surplus, by the
induction hypothesis, that child now has no handles pointing
to it or its subtree. Furthermore, for that child’s surplus to
become 0, both of the dag vertices that were created in the
spawn operation that created a’s children must have used their
decrement handles. Note that this includes the only dag vertex
that had an increment handle to a’s other child. Thus, neither
of a’s children have any live handles pointing to them, and
since a’s handles have been used, no live handles now point
to anywhere in a’s subtree.

Case 2. The decrement that caused a’s phase change
started in a’s subtree, but not at a itself. Let ar denote a’s right

child and al denote its left child. Without loss of generality,
assume that the decrement started in ar’s subtree.

First note that ar must have had surplus before this decre-
ment started, since no node can have a negative surplus. We
also know that after this decrement, ar has a surplus of 0,
since it must have phase changed in order for a depart to
reach a. Thus, by the induction hypothesis, no live handles
point to ar.

We now only have to consider al to see whether there are
still live handles pointing to that subtree. We know that al

does not have surplus, since otherwise a would not phase
change due to this decrement. Assume by contradiction that
there is a live handle pointing to al. Then by the induction
hypothesis, al has never had a surplus, and there is a live
increment handle to it. Note that, by the algorithm, the
dag vertex that has the increment handle to al must have
a decrement handle pointing to ar. By Lemma 4.4, this
decrement pointer has never been used, thus contradicting
our earlier conclusion that ar has 0 surplus. �

B. Space bounds
We show that our in-counter data structure is compact by
establishing a safety property that makes it possible to remove
SNZI nodes that correspond to deleted sub-graphs of the sp-
dag. Due to “space” constraints, we present the details in the
appendix.

We would like to show that our in-counter data structure
does not take much more space than the dag computation
uses on its own. To do so, we will show when it is safe to
delete SNZI nodes in relation to the state of the dag vertices
that have handles to them. First, however, we note that even
without the dynamic shrinking of the SNZI tree, there are
never more nodes in the in-counter than the total number of
dag vertices created in an execution. This is because whenever
a dag vertex spawns to create two more children, the SNZI
tree also grows by two nodes.

However, we can do better than that by deleting SNZI
nodes that will never be used again. For this, we begin with
the following lemma:

Lemma B.1. Any node whose surplus was positive and then
returned to 0 may be deleted safely from the SNZI tree.

This lemma is a direct consequence of Lemma 4.6. Any
node whose surplus goes back to 0 has no live handles
pointing to it, and is thus safe for deletion.

Using this knowledge, we can shrink the SNZI tree as
the computation progresses. To be able to express the next
theorem, we need to define when a vertex u in the dag has
finished. This is a recursive definition:

• Base Case. If u has no children, then it is finished when
it signals the end of its computation.



• Iterative Case. If u has children, then is is finished when
both of its children have finished.

We note the following important lemma which relates
finished vertices to the state of the execution in an sp-dag that
uses in-counters.

Lemma B.2. If a vertex u has finished, then the decrement
handle that it claimed has been used.

Proof. We prove this by induction on the number of descen-
dants u has. If u doesn’t have any descendants, then we know
it had to use its claimed decrement handle before it finished,
since by definition, it finishes when it signals, and to signal,
it needs to call the decrement operation on the in-counter.

Assume the lemma holds for any dag vertex u with up to k
descendants. Let u be a dag vertex with k + 1 descendants. By
the induction hypothesis, both of its children have used their
claimed decrement handles. Note that of those two handles,
one was claimed by u and passed down to its children. Thus,
u’s decrement handle has been used. �

Now, we can relate finished vertices to deallocation.

Theorem B.3. Consider a dag vertex u and its increment
handle, pointing to SNZI node a. If u has finished, then any
node in a’s subtree, excluding a itself, can be safely deleted
from the SNZI tree.

Proof. We prove this by induction on the size of a’s subtree.
If a doesn’t have children, then we are done - no nodes are
deleted when u finishes.

Assume that if u is finished, and has an increment handle
to SNZI node a, which has a subtree of size at most k, then
a’s entire subtree, excluding a itself, can be deleted. Let u be
a finished vertex whose increment handle points to a node a
with a subtree of size k + 1.

Note that by definition, if u is finished, then both of its
children are finished as well. Note that, by the algorithm, u’s
children’s increment handles must point to a’s children in
the SNZI tree. Thus, by the induction hypothesis, a’s entire
subtree, excluding itself and its children, can be deleted safely.
In particular, it means that neither of a’s children have surplus
due to their children. Note that only one of a’s two children
had an arrive operation start on it (this was done by u’s
increment operation, which created a’s children). Thus, if
neither of them has surplus due to their children, at most one
of them has surplus. Note that the decrement handle to that
child was owned by one of u’s children. By Lemma B.2, since
both of u’s children have finished, they have both used their
decrement handles. Thus, a’s child has been decremented, and
now has surplus 0. Furthermore, even if a’s other child never
had surplus, the dag vertex that owned its increment handle
has used its decrement handle, so a’s other child can never
grow. Thus, both of a’s children can be safely deleted. �

0 10 20 30 40

1e
+

06
5e

+
06

2e
+

07
5e

+
07

Number of cores

N
um

be
r 

of
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d 

pe
r 

co
re

●

SNZI depth=1
SNZI depth=2
SNZI depth=3
SNZI depth=4
SNZI depth=5
Fetch & Add

●

●

●
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 12: Reproduction of the original SNZI experiment
that is presented by Figure 10 of the original SNZI paper [14].

C. Supplementary experiments
C.1 SNZI reproduction study

For our experiments, we implemented the SNZI algorithm
for the increment and decrement operations as described
in the original SNZI paper [14]. To gain confidence in this
implementation and check that it performs as expected, we
first performed a reproduction study. The reproduction study
reproduces the results shown in Figure 10 of the original
SNZI paper [14], but uses our own implementation and our
40-core test machine, which is slightly smaller than the
machine used in the original paper, and also has quite a
different architecture. Ours is a 4 node, 10 core Intel x86
machine, whereas the machine from the original paper is a
24-node, dual core Sun Sparc.

The plot in Figure 12 shows the results. We see that the
best setting for the SNZI tree height is 4, whereas in the
original SNZI study, on the authors’ 48-core test machine, the
best setting is 5. This difference is consistent with the different
processor counts of the machines. Our fetch-and-add scales
significantly better than theirs, which can be attributed to the
difference between the more tightly coupled nature of our
machine (4 nodes versus 24 nodes). Our best setting achieves
almost the same throughput as the original: approximately
1000 operations per millisecond (note that the Figure reports
throughput in seconds). Furthermore, the trends for varying
numbers of cores/processors are similar. For example, in both
studies the worst performer after just four cores is the single-
cell, fetch-and-add algorithm and that, on 40/48 cores, the
best performing setting of SNZI outperforms the single-cell,
fetch-and-add algorithm by at least an order of magnitude.

C.2 Disabling NUMA

To determine whether NUMA has a significant effect on the
performance of the counter structures, we ran the experiment
shown in Figure 8, but this time with NUMA disabled. The
result of this experiment shown in Figure 13. What this



0 10 20 30 40

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06

proc

N
um

be
r 

of
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d 

pe
r 

co
re

●

●

Fetch & Add
SNZI depth=1
SNZI depth=2
SNZI depth=3
SNZI depth=4
SNZI depth=5
SNZI depth=6
SNZI depth=7
SNZI depth=8
SNZI depth=9
in−counter

●

●

●

●

●
●

●
● ● ●

●
● ●

●

●

●

● ● ●

●
●

●
●

●
● ●

Figure 13: Same experiment as shown in Figure 8, except
with NUMA first-touch policy used instead of round-robin
interleaving.

experiment demonstrates is that the NUMA configuration
has no significant effect on performance.

C.3 Granularity study.

The benchmarks we considered so far were written so that,
when they run, they perform no useful work: all they do is
spawn and synchronize DAG vertices. We chose this because
it simulates a highly concurrent environment, where the
number of processors can be larger than what is available
to us today, making it possible to determine the effects of
contention at larger scale. In the study presented in this
section, we simulated a wider range of workloads on modern
machines by controlling the granularity of our benchmark
program. In particular, to set up this experiment, we modified
our benchmark program in Figure 6 so that the program
performs some dummy work each time it makes a leaf-level
call to fanin. Figure 14 shows the results of this experiment
on the correspondingly modified fanin program. Looking at
the horizontal axis, note that each unit of dummy work takes
approximately one nanosecond on our test machine. Here, we
see that the Fetch & Add cell is much slower until the amount
of dummy work per task reaches 100 microsecondsa. We
confirmed that at higher amounts of per-task dummy work,
all algorithms perform essentially the same;

On a machine such as ours, a 100 microseconds is a rel-
atively large granularity, with the desired granularity usu-
ally ranging between 10-50microseconds. Note that at 10mi-
croseconds, there is a noticable gap between Fetch & Add
counter, and relaxed counters such as ours and SNZI. This
result suggests that the choice of counter algorithm used by a
fork-join system has a substantial impact, even on a tightly
coupled machine with just 40 cores.

It is not too hard to see that, as the number of cores
on multicore machines increase, the impact of the counter
algorithm is only going to increase. The reason is twofold.
First, as the number of cores increases, so does the impact of
contention. Second, the usefulness of having even a small (i.e.,

1 100 10000

5
10

15

Nanoseconds of dummy work per task (approximate)

S
pe

ed
up

 o
f i

n−
co

un
te

r 
vs

. F
et

ch
 &

 A
dd

 c
el

l ●

Fetch & Add
SNZI depth=9
in−counter

● ●

●

●

●
●

Figure 14: Fanin benchmark with n = 8 million, & varying
per-task dummy work. Higher is better.

10-50 microsecond) task-grain size is not likely to change
much as machines with larger core counts become available,
because grain size is selected to amortize the cost of task
creation, which, for all practical purposes, is tightly aligned
with memory access times and is largely independent of the
number of processors.

To understand the impact of more contention on perfor-
mance, we performed several additional experiments. The
results are shown in Figures 15a through 15e. Each of these
plots shows the speedup of the benchmark with varying the
number of cores. For the baseline measurement, we use Fetch
& Add on one core. The trends show that, as the number of
cores increase, so does the impact of the counter algorithm.
Furthermore, as the workload increases, the difference be-
tween the algorithms diminishes, but even for such a large
amount of per-task dummy work as 10 microseconds, the
difference is still noticeable.



1 2 5 10 20

0
2

4
6

8
10

12

Number of cores

S
pe

ed
up

 o
f i

n−
co

un
te

r 
vs

. F
et

ch
 &

 A
dd

 c
el

l (
@

 1
 c

or
e)

●

Fetch & Add
SNZI depth=9
in−counter

●

●

●

●

●

●

●

●
●

●

●

(a) 1 nanosecond of dummy work per task

1 2 5 10 20

0
2

4
6

8
10

12

Number of cores

S
pe

ed
up

 o
f i

n−
co

un
te

r 
vs

. F
et

ch
 &

 A
dd

 c
el

l (
@

 1
 c

or
e)

●

Fetch & Add
SNZI depth=9
in−counter

●

●

●

●

●

●

●

●

●

●

●

(b) 10 nanoseconds of dummy work per task

1 2 5 10 20

0
2

4
6

8
10

12
14

Number of cores

S
pe

ed
up

 o
f i

n−
co

un
te

r 
vs

. F
et

ch
 &

 A
dd

 c
el

l (
@

 1
 c

or
e)

●

Fetch & Add
SNZI depth=9
in−counter

●

●

●

●

●

●

●

●

●

●

●

(c) 100 nanoseconds of dummy work per task

1 2 5 10 20

0
5

10
15

20

Number of cores

S
pe

ed
up

 o
f i

n−
co

un
te

r 
vs

. F
et

ch
 &

 A
dd

 c
el

l (
@

 1
 c

or
e)

●

Fetch & Add
SNZI depth=9
in−counter

●

●

●

●

●

●

●

●

●

●

●

(d) 1000 nanoseconds of dummy work per task

1 2 5 10 20

0
5

10
15

20
25

30

Number of cores

S
pe

ed
up

 o
f i

n−
co

un
te

r 
vs

. F
et

ch
 &

 A
dd

 c
el

l (
@

 1
 c

or
e)

●

Fetch & Add
SNZI depth=9
in−counter

●

●

●

●

●

●

●

●

●

●

●

(e) 10000 nanoseconds of dummy work per task

Figure 15: Fanin benchmark with n = 8 million, & varying number of cores. Higher is better.

D. Artifact description
D.1 Abstract

This artifact contains a script that, when run, repeats the exper-
iments reported in our PPoPP’17 paper titled Provably Effi-



cient Low Contention Non-Blocking Data Structures for
Parallel Computation. The script repeats all experiments
reported in the paper, that is, those shown in Figures 8, 9,
and 10, and most that appear in the appendix, excluding our
reproduction of the SNZI experiment (Figure 12) and our
NUMA study (Figure 13). The result of the script are plots
(and raw execution times). Each plot has a counterpart in the
paper and should represent the same experimental setup. To
repeat our experiments, obtain the necessary machine and
software dependencies, run the script go.sh, and check the
output. The default setting for the maximum number of pro-
cessors to be used is 40, but this setting can be customized as
described below.

D.2 Description

D.2.1 Check-list (artifact meta information)
• Program: C++ code
• Compilation: gcc-6.1+

• Binary: x86_64 executable
• Run-time environment: Ubuntu 14.0+

• Hardware: Any multicore x86_64 machine. We recommend
at least 40 cores.
• Output: pdf plots in the same format as presented in the

paper and raw results files showing among other data the
wall-clock running times.
• Experiment workflow: Create a new folder; in that folder,

run the supplied script go.sh; find results in new folder
named Results.
• Experiment customization: To deal with noise, our bench-

mark scripts are configured so that each run is repeated
multiple times. The default number of times is 30, and ev-
ery value reported in the plots represents the average of
the runs. With this configuration, on our test machine, the
time to complete the experiments in the paper is about six
hours. The time including supplementary benchmarks is
about eleven hours. If you prefer to change this setting, in
the script go.sh, change the nb_runs variable to the de-
sired number. The maximum number of cores to be used
by the experiment can be set by passing to the benchmark-
ing script the argument -max_proc p, where p represents
the desired number of processors.
• Publicly available?: Yes, all source code is hosted by github.

The github addresses may be found in the go.sh script.

D.2.2 How delivered

The go.sh script can be found at the following url: http:
//gallium.inria.fr/~rainey/go.sh. Our benchmark
software is hosted with code on github.

D.2.3 Hardware dependencies

Our benchmarks are configured to run on x86_64 machines.

D.2.4 Software dependencies
• Ocaml 4.0+

• hwloc (any recent version)
• gperftools (any recent version; used to provide tcmalloc,

scalable memory allocator)
• R (any recent version; used to generate plots)

D.3 Installation

First, create a new folder in which to run the experiments.
Then, put in that folder an executable copy of run script
go.sh.

D.4 Experiment workflow

Run the script go.sh. After it completes, a folder named
Results should appear. This folder contains the results of
the experiment.

D.5 Evaluation and expected result

The Results folder should contain three pdf and three text
files. The plots in the files plots_proc.pdf, plots_size.pdf,
and plots_indegree2.pdf correspond to the plots shown
in Figures 8, 9, and 10. The results files store the experimen-
tal data in an ad hoc text file format. The format is human
readable. For example, in the following snippet, the key-value
pairs that appear before the “�” denote input and what follows
output. In this run, we are, for example, using a single core,
threshold set to 40000, and n to 16777216. The running
time reported by the benchmark is 4.235 seconds.

==========
machine rainey-Precision-T1700
prog ./counters.virtual
bench fanin
algo dyn
proc 1
threshold 40000
n 16777216
---
timeout 400
exectime 4.235
nb_promotions 0
nb_steals 0
nb_stacklet_allocations 0
nb_incounter_nodes 415
killed 0
==========
...

D.6 Experiment customization

It is possible to run some of the supplementary experiments
that we report in the appendix. To run these experiments,
run the same command as before, but with an argument:
go.sh appendix. The result will be the same plots as
before in the same directory, plus some new ones. The
first is the threshold experiment in Section 5. The plot

http://gallium.inria.fr/~rainey/go.sh
http://gallium.inria.fr/~rainey/go.sh


named plots_threshold.pdf represents the same exper-
iment as the plot in Figure 11. The second set of plots
come from the granularity study in Section C.3. The file
named plots_workload_fanin.pdf represents the same
experiment as the plot in Figure 14. Finally, the file named
plots_workload_fanin_speedup*.pdf represents the
same experiments as are shown in the plots in Figures 15a -
15e.


	Introduction
	Model

	Dynamic SNZI
	Series-Parallel Dags
	The sp-dag data structure
	An Example
	Incounters

	Correctness and Analysis
	Running Time
	Space bounds

	Experimental evaluation
	Related Work
	Conclusion
	Running Time
	Space bounds
	Supplementary experiments
	SNZI reproduction study
	Disabling NUMA
	Granularity study.

	Artifact description
	Abstract
	Description
	Check-list (artifact meta information)
	How delivered
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected result
	Experiment customization


