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Abstract

Modern hardware contains parallel execution resources that
are well-suited for data-parallelism—vector units—and task
parallelism—multicores. However, most work on parallel
scheduling focuses on one type of hardware or the other. In
this work, we present a scheduling framework that allows
for a unified treatment of task- and data-parallelism. Our key
insight is an abstraction, task blocks, that uniformly handles
data-parallel iterations and task-parallel tasks, allowing them
to be scheduled on vector units or executed independently
as multicores. Our framework allows us to define sched-
ulers that can dynamically select between executing task-
blocks on vector units or multicores. We show that these
schedulers are asymptotically optimal, and deliver the max-
imum amount of parallelism available in computation trees.
To evaluate our schedulers, we develop program transfor-
mations that can convert mixed data- and task-parallel pro-
grams into task block—based programs. Using a prototype
instantiation of our scheduling framework, we show that, on
an 8-core system, we can simultaneously exploit vector and
multicore parallelism to achieve 14x—108x speedup over
sequential baselines.
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1. Introduction

The two most common types of parallelism are data paral-
lelism, arising from simultaneously executing the same op-
eration(s) over different pieces of data, and task parallelism,
arising from executing multiple independent tasks simulta-
neously. Data parallelism is usually expressed through par-
allel loops, while task parallelism is often expressed using
fork-join parallelism constructs.

These types of parallelism are each well-matched to
different types of parallel hardware: data parallelism is
well-suited for vector hardware such as SIMD units. The
paradigm of executing the same computation across multi-
ple pieces of data is exactly what SIMD units were designed
for. While multicore hardware is more flexible (and many
programming models allow mapping data-parallel execution
to multiple cores), the independent execution context pro-
vided by multicores are well-matched to the task parallelism
in languages such as Cilk [4].

Increasingly, however, both kinds of parallel hardware
coexist. Modern machines consist of multicore chips, with
each core containing dedicated vector hardware. As a result,
it is important to be able to write programs that target both
types of hardware in a unified manner.

Unfortunately, when programming data- or task-parallelism,

the two paradigms are often treated separately. While pro-
gramming models such as OpenMP [11] support both data-
and task-parallelism, the coexistence is uneasy, requiring
very different constructs, used in very different contexts. In-
deed, Cilk “supports” data parallelism through constructs
such as cilk_for, which, under the hood, translate data
parallelism to task parallelism [6]. In recent work, Ren et
al. developed transformations that work in the opposite di-
rection [15]: given a task parallel program, they extract data
parallelism for execution on vector units. None of these ap-


http://crossmark.crossref.org/dialog/?doi=10.1145%2F3155284.3018763&domain=pdf&date_stamp=2017-01-26

proaches cleanly support both multicore and vector execu-
tion simultaneously, especially for programs that mix data-
and task-parallelism.

In this paper, we develop a system that unifies the treat-
ment of both types of parallelism and both types of parallel
hardware: we develop general schedulers that let programs
mix data- and task-parallelism and run efficiently on hard-
ware with both multicores and vector units. Importantly, our
schedulers allow exploiting data- and task-parallelism at all
levels of granularity: task parallel work can be decomposed
into data-parallel work for execution on vector units, and
data-parallel work can be forked into separate tasks for load
balancing purposes through work-stealing. This grain-free
treatment of parallelism allows our system to effectively and
dynamically map complex programs to complex hardware,
rather than “baking in” a particular execution strategy.

The key insight behind our work is a unifying abstraction
for parallel work, the task block. Task blocks contain multi-
ple independent tasks that can arise from both data parallel
loops and from task parallel fork-join constructs. We develop
a general scheduling framework that allows task blocks to
be used as a unit of scheduling for both data parallelism
(essentially, by executing a data-parallel for loop over the
task block) or task parallelism (by allowing task blocks to
be stolen and executed independently). Importantly, each of
these execution modes produce new task blocks that make
independent scheduling decisions, allowing for the free mix-
ing of data- and task-parallel execution.

To evaluate our schedulers, we present a simple language
that allows programmers to express task parallelism nested
within data parallelism. We then extend Ren et al.’s transfor-
mations [15] to generate task block—based programs from
algorithms written in our language. Programs written in
our specification language (or in general-purpose languages
restricted to use analogous constructs) and run using our
scheduling framework can simultaneously exploit data- and
task-parallelism (rather than one or the other) on both vector
and multicore hardware.

In this paper, we make several contributions:

1. We develop a general scheduling framework based on
task blocks for SIMD and multicore execution of compu-
tation trees. Using this scheduling framework, we make
three advances: (i) we show that Ren et al.’s approach
to executing task-parallel programs on vector hardware
is a special case of our framework; (ii)) we use our
framework to develop a new class of scheduling poli-
cies, restart that expose more data parallelism; (iii) we
provide mechanisms to support Cilk-style work-stealing
between cores, unifying execution on data-parallel and
task-parallel hardware.

2. We provide theoretical bounds on the parallelism ex-
posed by our various scheduling policies. We show that
our new scheduling policies can expose more parallelism
than Ren et al.’s original policies, and are asymptotically
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optimal (though in practice, scheduling overheads may
dominate). This represents the first theoretical analysis
of vector execution of mixed task- and data-parallel pro-
grams.

3. We evaluate on eleven benchmarks, including all the
benchmarks from Ren et al., as well as new benchmarks
that exhibit more general structures (e.g., nesting task-
and data-parallelism).

We implement a proof-of-concept instantiation of our
scheduling framework. Overall, on an 8-core machine,
our system is able to deliver combined SIMD/multicore
speedups of 14x—-108 x over sequential baselines.

2. Background

We now provide some background on previous work on
vectorizing task parallel programs and how task parallel
programs are scheduled using work stealing.

2.1 Vectorizing Task Parallel Programs

Vectorization of programs has typically focused on vector-
izing simple, dense data parallel loops [10]. It is not imme-
diately apparent that SIMD, which is naturally data paral-
lel, can be applied to recursive task-parallel programs. Such
programs can be thought of as a computation tree, where a
task’s children are the tasks that it spawned and the leaves
are the base-case tasks.! Any effective vectorization of these
programs must satisfy two constraints:

1. All of the tasks being executed in a vectorized manner
must be (substantially) identical. This criterion is natu-
rally satisfied because the tasks arise from the same re-
cursive code.

2. Data accesses in the tasks must be well structured. Vector
load and store operations access contiguous regions of
memory. If a SIMD instruction operates on data that is
not contiguous in memory, it must be implemented with
slow scatter and gather operations.

To understand why this second restriction is problematic,
consider trying to vectorize the standard Cilk-style execution
model, with each SIMD lane representing a different worker.
Because the workers execute independent computation sub-
trees, their program stacks grow and shrink at different rates,
leading to non-contiguous accesses to local variables, and
consequently inefficient vectorization.

SIMD-friendly execution: Ren et al. developed an execu-
tion strategy that satisfies both constraints for efficient vec-
torization [15]. The key insight of their strategy was to per-
form a more disciplined execution of the computation, with
the restriction that all tasks executed in a SIMD operation be
at the same recursion depth—this allows the stacks of these
tasks to be aligned and interleaved so that local variables can
be accessed using vector loads and stores.

! This formulation does not work once we have computations with syncs.
However, those programs can also be represented using a tree; albeit a more
complex and dynamic one.



1 void foo(int x)
TaskBlock next

2 if (isBase(x)) 2

3 baseCase() 3 foreach (Task t: tb)

4 else 4 if (isBase(t.x))

5 11 = inductiveWork1(x) 5 baseCase()

6 spawn foo(I1) 6 else

7 12 = inductiveWork2(x) 7 11 = inductiveWork1(t.x)

8 spawn foo(I2) 8 next.add(new Task(I1))
9

10
11 bfs_foo(next)

(a) Simple recursive code. spawn creates (b) Blocked Breadth-first version of code in Figure 1(a).

new tasks.

1 void bfs_foo(TaskBlock tb)

12 = inductiveWork2(t.x)
next.add(new Task(I2))

1 void blocked_foo(TaskBlock tb)
TaskBlock left, right
foreach (Task t : tb)
if (isBase(t.x))
baseCase()
else
11 = inductiveWork1 (t.x)
left.add(new Task(I1))
12 = inductiveWork2(t.x)
0 right.add(new Task(I2))
11 blocked_foo(left)
12 blocked_foo(right)

(c) Blocked depth-first execution.

© ® 9 U B W N

Figure 1: Pseudocode demonstrating vectorization transformations.

Ren et al.’s approach targets programs written using a
Cilk-like language (or programs in other languages that ad-
here to similar restrictions). The programs they target consist
of a single, k-ary recursive method:

f(pl,...

This method evaluates a boolean expression to decide whether
to execute a base case (sp, which can perform reductions to
compute the eventual program result) or to execute an induc-
tive case (s;), which can spawn additional tasks by invoking
the recursive method again. As in Cilk, these spawned meth-
ods are assumed to be independent of the remainder of the
work in the spawning method, and hence can be executed in
parallel. Ren et al.’s transformations target single recursive
methods; Section 5 describes how we extend the language to
handle data-parallel programs with task-parallel iterations.

Figure 1(a) shows a simple recursive program that we
use to explain Ren et al.’s execution strategy?. The steps of
execution are as follows:

, D) if e, then s, else s;

1. As shown in Figure 1(b), the computation is initially
executed in a breadth-first, level-by-level manner where
tasks at the same level are grouped into a fask block. Cru-
cially, by executing block by block, the code structure
is a dense loop over the block allowing one to use stan-
dard vectorization techniques [10]. If a task spawns a new
task, the newly-spawned task is placed into the next task
block representing the next level of tasks. Once the task
block finishes, execution moves on to the next block.

. While breadth-first execution satisfies the two constraints
outlined above, it suffers from excessive space usage. A
TaskBlock contains all the tasks at a level in the computa-
tion tree; therefore, its size can be 2(n) where where n is
the number of tasks. To control this space explosion, Ren
et al. switch to depth-first execution once a TaskBlock
reaches a sufficient size: each task in the task block sim-
ply executes to completion by calling the original recur-
sive function. This limits space usage, as each of these

2 Reductions, computations, etc., are hidden in the baseCase and inductive-
‘Work methods. Here, we use Java-like pseudocode, rather than the original
specification language.
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tasks will only use O(d) space to execute (where d is the
depth of the tree).

To recover vectorizability, Ren et al. apply point block-
ing [7], yielding the code in Figure 1(c). This strategy
proceeds by (recursively) first executing each task’s left
subtask in a blocked manner and then each task’s right
subtask. Note that the code still operates over a dense
block of tasks and all the tasks in any TaskBlock are at
the same level, facilitating vectorization.

Because not all tasks have identical subtrees, as execution
proceeds, some threads will “die out” and the TaskBlock
will become empty. If there are fewer than @) tasks in a
TaskBlock (@ is the number of lanes in the vector unit), it is
impossible to effectively use the SIMD execution resources.
To tackle this problem, Ren et al. proposed re-expansion:
if a TaskBlock has fewer than @) tasks, they can switch
back to breadth-first execution, generating more work and
making the next-level block larger. Re-expansion is the key
to effective vectorization. In Section 3, we show that re-
expansion is a specific instance of a class of scheduling
policies that our general scheduling framework supports.

2.2 Work-Stealing Scheduler Operation

Work-stealing schedulers are known to be efficient both
theoretically and empirically for scheduling task parallel
programs [1, 3]. In a work-stealing scheduler, each worker
maintains a work deque, which contains ready tasks. When a
task executing on worker p creates two children, the worker
places its right child on its deque and executes its left child.
When a worker p finishes executing its current task, it pops a
task from the bottom of its own deque. If p’s deque is empty,
then p becomes a thief. It picks a victim uniformly at random
from the other workers, and steals work from the top of the
victim’s deque. If the victim’s deque is empty, then p simply
performs another random steal attempt.

3. General Schedulers for Vector and
Multicore Execution
This section presents our general scheduler framework for

efficient vectorized execution. We first describe three mech-
anisms that can be combined in various ways to produce dif-



ferent classes of schedulers. We next show that re-expansion
is an instantiation of this framework. We then describe a new,
more flexible, scheduler policy, restart. Finally, we explain
how the framework can be extended to support multicore ex-
ecution for both re-expansion and restart-based schedulers.
Our schedulers are general, and apply to any type of compu-
tation tree.

Notation: We assume P cores and () SIMD lanes per
core. We assume that the recursive method has two recursive
spawns; the framework readily generalizes to more spawns.

3.1 Scheduler Mechanisms

We first describe mechanisms for a “sequential” scheduler—
a scheduler that supports vectorized execution on a single
core. The unit of scheduling of the scheduler is fask blocks
(TaskBlock) which contain some number of tasks—nodes
in the computation tree—that can be executed in a SIMD
manner: if a TaskBlock has ¢ tasks in it, the scheduler can
use ) lanes to execute the t tasks in [¢/Q] SIMD steps.
The scheduler has a deque, with multiple levels. Each level
represents a particular level of the computation tree.

The deque starts with a single TaskBlock at the top level
that contains a single task: the task generated by calling
the recursive method for the first time. At any time, when
scheduling a block b for execution, the scheduler can take
one of three actions:

Breadth-first expansion (BFE): Block b is executed in a
SIMD manner. Any new tasks that are generated (spawned)
are placed in a block b, which is scheduled next. Note that
b’ can contain up to twice as many tasks as b. If b’ is empry
(has no tasks), another block is chosen for scheduling from
the deque according to the scheduling policy.

Depth-first execution (DFE): Block b is executed in a
SIMD manner. For each task that is executed, all new tasks
generated by the first spawn call are placed in block b’, and
all new tasks generated by the second spawn call are placed
in block b”. Note that b’ and b contain at most as many
tasks as b. If not empty, block b is pushed onto the deque,
and block b’ is scheduled next. If b’ is empty, then another
block is chosen for scheduling from the deque according to
the scheduling policy.

Restart: The scheduler pushes block b onto the deque (with-
out executing it). If there is already a block on the deque at
the same level (e.g., if b is the sibling of a block that was
pushed onto the deque), then b is merged with the block at
that level. Some block is chosen from the deque for schedul-
ing next, according to the scheduling policy.

Note the distinction between “scheduling” a block, which
means choosing an action to take with the block, and “exe-
cuting” a block, which means running the tasks in the block
using SIMD. For brevity, we say e.g., a block is “executed
using DFE” to mean that the block was scheduled, a DFE
action was chosen, and then the block was executed.
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Various schedulers can be created by combining these
mechanisms in various ways, and changing the policies that
dictate which mechanism is used at each scheduling step.

3.2 Re-expansion

Ren et al.’s re-expansion policy is, in fact, in the class of
scheduling policies that can be described using our schedul-
ing framework. Re-expansion only uses the BFE and DFE
actions. In the context of the pseudocode of Figure 1, breadth
first expansion is akin to executing the code in Figure 1(b)—
a single new TaskBlock is generated—while depth-first exe-
cution is akin to executing the code in Figure 1(c)—two new
TaskBlocks are generated.

Re-expansion schedulers have two thresholds,tdfe3 and
tose*. A re-expansion scheduler executes its first block in
BFE mode. As long as the next block has fewer than 74,
tasks, the scheduler keeps performing BFE actions. If the
next block has more than 4. tasks, the scheduler switches
to DFE actions to conserve space. The scheduler then re-
mains in DFE mode until the block has fewer than ¢, ¢ tasks,
at which point it switches back to BFE mode. If the current
block has no work to do, it grabs work from the bottom of
the deque. Intuitively, the scheduler uses BFE actions to gen-
erate parallel work and DFE actions to limit space usage.
However, because BFE actions can only draw from the bot-
tom of the deque, they can only find parallelism “below” the
current block, limiting the effectiveness of re-expansion, as
Section 4 shows.

3.3 Restart

We now define a new class of schedulers that we call restart
schedulers. These schedulers take advantage of the restart
mechanism to be more aggressive in finding more parallel
work, which can lead to better parallelism with smaller block
sizes, as Section 4 shows.

The basic pattern of a restart scheduler is as follows: the
scheduler starts in BFE mode, and switches to DFE mode
when the ¢4, threshold is hit, just as in a re-expansion sched-
uler. However, once in DFE mode, the scheduler behaves
differently. If the current block, b, has fewer than t,cstqrt
tasks on it, the scheduler takes a restart action. b is merged
with any other blocks at the current level, and the sched-
uler looks for more work to be done. Unlike re-expansion
schedulers, which would be constrained to begin executing
the bottom block on the deque, a re-start scheduler scans up
from the bottom of the deque. As the scheduler works its way
up through the deque, it merges (concatenates) all blocks at
a given level together (there might be more than one block
at a given level due to multiple restart or DFE actions that
leave blocks on the deque). After merging, if a block has at
least t,.stqrt tasks on it, the scheduler begins execution of
that block in DFE mode. If the restart scheduler reaches the

3 Trigger to switch to depth-first execution

4 Trigger to switch to breadth-first expansion



top of the deque without finding ¢,stqt WOrK, it executes
the top block in BFE mode. Intuitively, if a particular part
of the computation tree runs out of work, the restart sched-
uler will look higher up in the tree and try to merge work
from different portions of the tree that is at the same level to
generate a larger block of work.

A restart scheduler maintains two invariants: (i) at each
level above the currently executing block, there may be up
to two blocks on the deque—one left over from a restart (that
must have fewer than ¢, tasks), and the other left over
from a DFE (that may have more than ¢,..s:,+ tasks, but does
not have to); (ii) at each level below the currently executing
block, there is at most one block on the deque, and that block
must have fewer than ¢, tasks.

3.4 Creating Parallel Schedulers

Both schedulers described above are sequential; though
TaskBlocks can be used for vector-parallel execution, the
schedulers are for single-core execution; there is just one
deque of TaskBlocks. We now extend the scheduling frame-
work to support multicore execution by adding support for
multiple workers (cores), each with their own deque, and
adding one more action that a scheduler can take:

Steal: The scheduler places block b onto the deque with-
out executing it (b might be empty). The thread then steals a

TaskBlock from another worker’s deque. The stolen TaskBlock

is added to the worker’s deque at the appropriate level and,
if necessary, merged with any block already on the worker’s
deque. The choice of which deque to steal from, which block
on the deque to steal, and which block to schedule next, is a
matter of scheduler policy.

Using this new action, we can extend re-expansion and
restart schedulers to support multicore execution:

Re-expansion: A worker never attempts to steal until its
deque is empty (i.e.. it is completely out of work). It then
steals the fop TaskBlock from random worker’s deque, adds
it to its deque, and executes that block as usual; that is, with
DFE if it has more than ¢; s, nodes and with BFE otherwise.
Note that only right blocks generated during DFE are placed
on deques and are available for stealing.

Restart: Stealing in restart schedulers is more complicated.
In the sequential scheduler, a worker that is unable to create
a block with at least t,¢s¢q-¢ tasks in its deque executes the
top block in its deque with a BFE action. In the parallel
scheduler, that worker would instead perform a steal action.
Note that at the time it performs the steal, the worker has an
invariant that all of the blocks in its deque have fewer than
trestart tasks (because it was unable to restart from its own
deque). During the steal, the current worker (thief) chooses
a random worker (victim) and looks at the fop of that deque
(note that the victim could be the thief itself).

The top of the victims deque contains one or two blocks.
If one of them has at least ¢,¢s:q.¢ tasks, the thief steals it,
adds it to its deque, and executes it with a DFE action. If
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the block has fewer than t,.s:q,+ tasks, the thief steals it,
adds it to its deque, and executes a constant number of BFE
actions starting from that block (to generate more work). If
this generates a block with at least ¢,¢s.4,¢ tasks, the thief
switches to DFE. Otherwise, it tries a restart action and, if
that fails, steals again.

3.5 Setting the Thresholds

In producing various schedulers, there are three thresholds of
importance: tgse, tpfe, and trestqre. The first threshold, tgre
places an upper bound on the block size: a TaskBlock has
at most 2t4y. tasks. The latter two thresholds dictate when
a scheduler looks for more work: if a TaskBlock is below
one of the thresholds, the scheduler performs some action to
find more work— re-expansion schedulers switch to BFE,
restart schedulers perform a restart. These thresholds are less
constrained and should be set between () and ¢ye.

4. Theoretical Analysis

This section analyzes the performance of various scheduling
strategies described above, namely: a) The basic strategy that
performs BFE and then switches to DFE; b) re-expansion
strategy; and c) restart strategy. We prove asymptotically
tight upper and lower bounds on the SIMD running time
T for computation trees with n unit time tasks. (Utilization
bounds are implied by these bounds.) We first analyze the
three sequential strategies on a core with ) SIMD lanes.
These results indicate that restart can provide linear speedup
as long as the block size (t4f.) is larger than Q). On the
other hand, the basic strategy and re-expansion both require
large block sizes to guarantee linear speedup; however, re-
expansion requires significantly smaller block sizes. We then
also analyze the parallel performance of restart where we
have P cores each with ) SIMD lanes and show that restart
is asymptotically optimal for these programs. Our theoretical
results hold for any computation tree where the elements of a
task block are vectorizable, and hence our restart schedulers
can guarantee asymptotically optimal speedup regardless of
computation tree structure.

Preliminaries: For the theoretical bounds, we model the
execution of the program as a walk of a computation tree
with n nodes. Each node in the computation tree is a unit
time task and each edge is a dependence between tasks (tasks
of longer length can be modeled as a chain). We also assume
that all nodes at the same level in the tree are similar in that
they can be part of a SIMD block, since, in our computations,
they have the same computation and aligned stacks. We also
assume that each node has at most 2 children.’ Therefore,
the tree’s height h is at least lg n and at most n.

In each step, a core executes between 1 and @ nodes.
The step is a complete step if the core executes () nodes;
otherwise it is incomplete. Recall that in our strategies, the

3 This assumption is for simple exposition; all the results generalize for
larger (but constant) out-degrees.



scheduler operates on TaskBlock of size between 1 and
kQ = tgfe. If the TaskBlock is of size larger than (), then
it may take multiple SIMD steps to execute it. We call the
entire execution of a TaskBlock to encompass a superstep.

T, denotes the SIMD execution time of the program on a
single core with ) simd lanes; alternatively, we can think of
T, as the number of steps executed by a scheduling strategy.
Some relatively obvious bounds on 75: (1) 75 < n, since
each step executes at least 1 node. (2) Ts > n/Q since each
step executes at most ) nodes. (3) Ts > h, since each step
executes only nodes at a particular level. We will, later, also
analyze the parallel execution where we have P cores each
with @ SIMD lanes. We say T, is the execution time of the
program on these P cores. Again, we have the obvious lower
bounds of T, > n/(QP) and Tsp > h.

We first state some straightforward structural lemmas.

Claim 1. Each superstep has at most one incomplete step.

Claim 2. In the entire computation, the number of complete
steps is at most n/Q since each complete step executes
exactly @ nodes.

Claim 3. The breadth first expansion of a tree (or subtree)
of height h has at most h supersteps, since each superstep
completes an entire level of the tree.

4.1 Sequential Strategies with and without
Re-expansion

For this section, we state the theorems without proof; proofs
will be provided in an extended technical report. The fol-
lowing theorem for the basic strategy, with no re-expansion
and no restarts, implies that it guarantees linear speedup iff
k = (2°9); either the block size must be very large or the
computation tree very shallow.

Theorem 1. For any tree with height h = lgn + ¢, the
running time is ©(min{2°n/kQ + n/Q + 1gn + €,n}).

Now consider the strategy with re-expansion, as de-
scribed in Section 3.2. We assume tqr. = k(@ for some
k,and tyre = k1Q, where 1 < ky < k.

Theorem 2. For any tree with height h = 1gn + €, the
running time is @(min{(% +1)n/Q) +1gn +e,n}).

Comparing Theorems 1 and 2, we see that dependence
on € is linear instead of exponential in the strategy with
re-expansion. Therefore, re-expansion provides speedup for
larger values of € and smaller values of k than the strategy
without re-expansion. In addition, we should make k; =~ k;
that is we switch to BFE as soon as we have enough space
in the block to do so since that decreases the execution time.

4.2 Sequential Execution with Restart

We now prove that the restart strategy, as described in Sec-
tion 3.3, is asymptotically optimal. We set t,cstart = k2@,
where 1 < ko < k. At this point, we start depth first expan-
sion again. We say that a superstep that executes a block of
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size smaller than k2@ is a partial superstep and a block of
size greater than ko () is a full block.
The following lemma is obvious from Claim 3.

Lemma 1. There are at most h partial supersteps during the
computation.

Theorem 3. The running time is ©(n/Q+h) for a computa-
tion tree with n nodes and depth h, which is asymptotically
optimal for any scheduler.

Proof. There are at most n/(k2Q) full supersteps and at
most h partial supersteps; thus, we have at most n/(k2Q)+h
incomplete steps by Claim 1. Adding the bound of n/Q) for
complete steps (by Claim 2), gives us the total bound. This
is asymptotically optimal due to lower bounds mentioned in
the preliminaries section. O

Note that, unlike the previous strategies, the execution
time of the restart strategy does not depend on k or ks;
therefore, we can make the block size as small as () and still
get linear speedup.

4.3 Work-Stealing with Restart

We now bound the running time of the parallel work-stealing
strategy with restart, as described in Section 3.4.

We can first bound the number of partial supersteps by
observing that a partial block is only executed as part of
a breadth first execution, which only occurs either at the
beginning of the computation or after a steal attempt.

Lemma 2. The number of partial supersteps is at most h +
O(S).

For the purposes of this proof, we will assume that a steal
attempt takes 1 unit of time. The proof can be generalized
so that a steal attempt takes c time for any constant c, but
for expository purposes, we stick to the simple assumption.
We can then bound the total completion time in terms of the
number of steal attempts:

Lemma 3. The completion time of the computation is at most
O(n/QP + S/P).

Proof. Each step is either an incomplete step, a complete
step, or a steal attempt. There are a total of O(n/Q) com-
plete steps by Claim 2. Each full superstep has at least ko
complete steps. Combining this fact with Lemma 2, we can
conclude that there are at most O(n/keQ + S) supersteps.
By Claim 1, we can bound the number of incomplete steps
by the same number. Since there are P total processors, we
can add the number of complete steps, the number of incom-
plete steps, and the number of steal attempts and divide by
P to get a bound on the completion time. O

From the above lemma, we can see that the crux of this
proof will depend on bounding the total number of steal
attempts .S. We will bound the number of steal attempts
using an argument very similar to the one used by Arora
et. al [1] (henceforth referred to as ABP). Similar to that



paper, we will define a potential function on blocks which
decreases geometrically with the depth of the block (in ABP,
the potential function is on nodes).

For any block b, we define d(b) as the depth of the block,
which is equal to the depth of all nodes in the block. We de-
fine w(b) = h — d(b). We can now define various potentials:

e The potential of a full ready block is 43*(%), the potential
of a partial ready block is 43*()=1, The potential of a
block that is executing is 43*(®)—1,

e The potential of any processor is the total potential of all
the blocks on its deque added to the potential of the block
it is executing (if any).

¢ The potential of the computation is the sum of the poten-
tial of all processors.

Like the ABP proof, we show that the potential never in-
creases and that a certain number of steal attempts decrease
the potential by a constant factor, allowing us to bound the
number of steal attempts. However, the proof also differs due
to the following reasons: 1) Unlike standard work-stealing,
where there is one node at each depth on the deque, we can
have up to two blocks at each depth, necessitating a change
in the potential function. 2) In standard work-stealing, a
worker only steals when its deque is empty; here it may steal
even if its deque contains partial blocks. 3) In work-stealing,
all the nodes on a processor’s deque have a larger potential
than the one that the worker is executing; this may not be
the case for our scheduler. 4) Each node takes unit time to
execute in the ABP model, while our blocks can take up to k
time steps to finish executing; this changes the bound on the
number of steal attempts.

The following three lemmas prove that the potential never
increases, and that steal attempts reduce potential by a sig-
nificant amount.

Lemma 4. The initial potential is 43" and the final potential
is 0. The potential never increases during the computation.

Proof. Potential changes due to the following reasons:

1. A block starts executing: The potential decreases since an
executing block has a lower potential than a ready block.

2. An executing block with weight w finishes executing:
This block generates at most 2 ready blocks with lower
weight. The potential decreases the least when both
are full blocks. In this case, the change in potential is
43w—2 _ 9% 43(w—1) > 0.

3. Two blocks with weight w merge: If the result of the
merge is a partial block, the potential obviously de-
creases. If the result is a full block, it immediately starts
executing. Therefore, the potential also decreases. O

Lemma 5. (Top Heavy Deques Lemma) The heaviest block
on any processor is either at the top of the processor’s deque
or it is executing. In addition, this heaviest block contains at
least 1/3 of the total potential of the processor:

123

Proof. By construction, the deque is ordered by depth and
the weight decreases as depth increases. Therefore, the heav-
iest node has to be on the top of the deque or executing.

Let x be the heaviest block (if there are two, we pick one
arbitrarily). The potential of this block is at least ®(z) =
43w=1 (if it is executing or partial); otherwise it is higher. If
there is another node at the same depth, its potential is also
43w=1 gince it must be a partial block. Other than this, there
may be 2 blocks each with all weights lower than w; one full
and one partial. Therefore, the total potential of the processor
IS(I)(p) g 2 % 43w71 + ZZ);ll (43(?4*1) + 43(9*1)*1) <
3 x 43%~1 = 3®(x) Thus, the heaviest block has at least
a third of the potential. O

Lemma 6. Between time t and time t', if there are at least
kP steal attempts, then Pr{®; — &, > 1/24®,} > 1/4

Proof. We divide the potential of the computation into two
parts. ®(D;) is the potential of the workers where the heav-
iest block is on the deque and ®(A;) is the potential of the
workers where the heaviest block is executing at time ¢.

First, let us consider a processor p whose potential is
in ®(A;) and let us say that the currently executing block
is . From Lemma 5, we know that ®(z) = 43w(@)~-1 >
1/3®(p). For kP steal attempts to occur, at least k time
steps must have passed (since each steal attempt takes 1 time
step). Therefore, by time step t’, = has finished executing. In
the worst case, it enables two full blocks with a cumulative
potential of 2 x 43(w(@)~=1) = 1/8%(x). Therefore, the
potential of p reduces by at least 7/8 x 1/3 = 7/24.

Now consider the processors whose potential is in ®(D;),
and say p is one of these processors. If p is a victim of a
steal attempt this time interval, then the heaviest block x
will be stolen and assigned. From Lemma 5, we know that
®(x) > 1/3®(p). Once x is assigned, its potential drops by
a factor of 1/4. Therefore, the potential that used to be on p
has reduced by a factor of 1/12.

We use Lemma 7 (Balls into Bins) from ABP to conclude
that with probability 1/4, after P steal attempts, the ®(D;)
reduces by at least a factor of 1/24. O

Lemma 7. The expected number of steal attempts is O(kPh).
In addition, the number of steal attempts is O(kPh +
Plg(1/€)) with probability at least (1 — €).

Proof. The initial potential is 4" and the final potential is
0. From Lemma 6, we conclude that after O(kP) steal at-
tempts, the potential decreases by a constant factor in ex-
pectation. Therefore, the expected number of steal attempts
is O(kPh). The high-probability bound can be derived by
applying Chernoff Bounds. O

The final theorem is obvious from Lemmas 3 and 7.

Theorem 4. The running time is O(n/QP +kh) in expecta-
tion and O(n/QP + kh +1g(1/¢€)) with probability at least

(1 —e).



Corollary 1. Since n/QP and h are lower bounds on the
completion time, restart mechanism provides an asymptoti-
cally optimal completion time.

4.4 Space Bounds and Discussion

Since each worker can have at most 2 blocks at each depth
level in its deque, we get the following bound for space for
both restart and re-expansion.

Lemma 8. The total space used is hkQP.

We can now compare the different strategies in terms
of the performance they provide. First, let us consider the
strategies on a single processor. The above theorems hold
for all values of h = lgn + . However, different strategies
require different block sizes in order to provide speedup.
Here we look at the implications of various block size values
on speedup provided by the various strategies. Since the
restart strategy always provides optimal speedup, we only
compare the strategies with and without re-expansion. In
addition, as we mentioned earlier, for the restart strategy, it
is not advantageous to make k; large; so for the following
discussion, we make k1 ~ k.

1. If k > 2"~187 all schemes give an asymptotically opti-
mal parallelization.

2. If k < 2"1e™ but k > 2h~187 /() then we see very little
speedup without re-expansion. With re-expansion, we get
optimal speedup if £ > 1g (@ (a reasonable assumption
since k is already so large).

3. For smaller k, where & > h — lgn, we get no speedup
without re-expansion, but continue to get speedup with
re-expansion as long as k > 1g Q.

4. For smaller k, re-expansion provides some speedup until
k reaches (h—lgn)/Q. After that, it provides no speedup.

Therefore, while the basic strategy requires very large block
sizes to provide speedup, re-expansion can provide speedup
with moderate block sizes, which nevertheless increase with
the height of the tree.

We also implement parallelism using both restart and re-
expansion. However, we only prove the bounds for the restart
strategy in this section, since that is the more complicated
bound. We can use a similar technique to prove the following
bound on re-expansion: O((ngkw +1)n/PQ)+ kh)
(assuming we make k; as large as we can). However, while
with restart, we can set £ = 1 to get asymptotically opti-
mal speedup, this is not possible for re-expansion. As we
can see from the bounds, there is a trade-off between mul-
ticore parallelism and SIMD parallelism. Larger k£ reduces
the first term, and increases the second term — thereby in-
creasing SIMD parallelism at the cost of reducing multicore
parallelism. Smaller £ does the opposite. As for space, for a
given k, both strategies have the same bound. However, since
restart can provide linear speedup at smaller block sizes, it
may use less space for the same performance.
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1 void c_f(Node p, Node r, float d)
2 X=root.cX — p.cX

3/ similarly y and zx/

4 dr=X*xX+y*xy+z%xz

s ifdr >=d || (r.isLeaf && p!=r)
6 //update p using reduction

7 else

8 for (Node c: r.children)

9 if ¢ |= null //task ||

10 spawn c_f(p, c, d/4)

> void comp_f_all(ps, root)
s foreach (Node p: ps) /data ||
14 c_f(p, root, d)

Figure 2: Barnes-Hut, with data and task parallelism

5. Extended language specification

To evaluate our scheduling framework, we can simply tar-
get the same type of recursive, task-parallel programs that
Ren et al.’s approach targets. However, we also want to val-
idate our schedulers for more general computation trees. To
do so, we extend Ren et al.’s specification language to target
a broader class of applications: those that combine data- and
task-parallelism by nesting task-parallel function calls inside
data-parallel loops. We then extend Ren et al.’s transforma-
tion so that programs written in this extended specification
language generate the TaskBlocks required by our schedul-
ing framework.

5.1 Mixed data- and task-parallel programs

Ren et al.’s model captures classical programs such as those
for solving n-queens or min-max problems. However, many
interesting task-parallel programs have a different pattern.
In particular, in many domains, the application performs
task-parallel work for each item in a set of data; this is
often expressed as a data-parallel loop with each iteration
consisting of task-parallel work.

For instance, consider the Barnes-Hut simulation algo-
rithm (Figure 2) [2]. In it, a series of bodies in space (typi-
cally, stars in a galaxy) are placed into an octree. Each body
then traverses the octree to compute the gravitational forces
exerted by each of the other bodies. At its heart, Barnes-Hut
consists of a data-parallel loop: “for each body in a set of
bodies, compute the force.” However, the force computation
can be parallelized using task parallelism by visiting sub-
trees of the octree in parallel [16]. Many other benchmarks
follow this general pattern [8, 14].

Prior work on vectorizing such applications, including
Barnes-Hut [8] and decision-tree traversal [14], have fo-
cused on the data-parallel portion of the computation and do
not exploit the task parallelism. Moreover, these attempts
have relied on special-purpose transformations targeted
specifically at data-parallel traversal applications, rather than
general data-parallel applications with embedded task paral-
lelism.



5.2 Extending the language

Ren et al.’s work, and hence their language specifica-
tion, does not admit task-parallelism nested within data-
parallelism: it targets single recursive calls. We can extend
the specification language to admit two types of programs:
a single recursive method, as before, or a data-parallel loop
enclosing a recursive method; this simple extension to the
language allows us to express programs such as Barnes-Hut.

foreach (d : data)f(d, p1,...,px) if e, then s, else s;

Note that the non-recursive functions from Ren et al.’s
language specification—such as baseCase and isBase
from Figure 1—can include data-parallel loops. This means
that our modified language supports programs that nest data-
parallelism inside task-parallelism inside data-parallelism.

5.3 Extending the transformation

In these programs, Ren et al.’s transformation framework
treats each iteration of the outer data parallel loop as a single
task-parallel program and hence execute the data-parallel
outer loop sequentially. Therefore, only task-parallelism is
exploited, not data-parallelism (the opposite problem of that
faced by prior work [8, 14]).

To exploit both data- and task-parallelism, we can readily
extend the transformation described in Section 2.1. Note that
the transformed program in Figure 1(b) operates on a block
of tasks. The initial call to this code consists of a TaskBlock
with a single task in it, representing the initial call to the
recursive method. When transforming data parallel enclos-
ing task parallel code, we can iterate over the data parallel
work to construct multiple tasks, one for each iteration of
the data-parallel loop. These tasks can then be placed into a
TaskBlock, which is passed to the initial breadth-first, task-
parallel code. If the initial TaskBlock is too big (i.e., if the
data-parallel loop has too many iterations), strip mining can
be used to create smaller TaskBlocks that are then sequen-
tially passed to the vectorized, task-parallel code.

If there are data-parallel loops within the non-recursive
functions of the task-parallel body (i.e., if a single task has a
nested data-parallel loop), the iterations of the data-parallel
loops are placed into a TaskBlock generated from the en-
closing task. Because these data-parallel loops do not have
any further nesting, no further transformations are necessary
to handle this additional level of parallelism.

6. Implementation

In this section, we present our Cilk implementation—using
spawn and sync—of the re-expansion and restart strategies
to schedule recursive task-parallel programs.

Vectorization: We do not discuss the specifics SIMDization
in this paper. At a high level, the data parallel loops over
task blocks can be vectorized using the same techniques as
in Ren et al.’s work [15], such as AoS fo SoA transformation,
together auto-vectorization and SIMD intrinsics when the
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auto-vectorizer fails, and the process of adding new tasks
to blocks can be vectorized using Streaming Compaction.

Re-expansion: Figure 3(a) shows the parallel, blocked
re-expansion version of the example in Figure 1(a). If re-
expansion is triggered, the left and right TaskBlock are
merged together. Otherwise, they are executed indepen-
dently. This code demonstrates that re-expansion can be
naturally expressed as a Cilk program by marking recur-
sive function calls (blocked_foo_reexp)in lines 13, 15,
and 16 as concurrent using the spawn keyword. Other as-
pects of TaskBlock management, such as the stack of task
blocks, are handled by the default Cilk runtime.

Restart: Figure 3(b) shows the parallel blocked re-start ex-
ecution for the same example according to the strategy ex-
plained in Section 3.4. This figure illustrates an ideal im-
plementation. Each thread maintains a deque of TaskBlock
and RestartBlock (tbs and rbs in the figure), with at most
one task block and restart block per level in the computa-
tion tree. Until termination, each thread steals a TaskBlock
or RestartBlock (lines2—4), places it in a TaskBlock at the
corresponding level in its local deque, and processes it recur-
sively until no level has a non-empty TaskBlock. At the end
of this working phase, a worker’s local deque only consists
of restart blocks. For conciseness, we do not show the BFE
step on a steal as explained in Section 3.3. While efficient,
this strategy does not naturally map to Cilk-like program-
ming models. A particular challenge of the strategy in Fig-
ure 3(b) is that both the continuation of the TaskBlock being
executed and the RestartBlock are pushed to the deque and
made available for stealing. Rather than modifying the im-
plementation of the spawn-sync constructs in Cilk, we use a
simpler strategy that does not guarantee the same space or
time bounds, but nevertheless provides good performance.

Simplified restart: The implementation of our simplified
restart strategy is illustrated in Figure 3(c). Rather than main-
tain the restart blocks in the deque, they are maintained in an
explicitly managed RestartBlock stack. The restart stack is
implemented as a RestartBlock linked-list consisting of an
array of tasks at the current level and a pointer pointing to
RestartBlock at the next level. The blocked recursive func-
tion (blocked_foo_restart) takes a TaskBlock stack
and a RestartBlock stack as input and returns a RestartBlock
stack. If the total number of tasks in the TaskBlock and
RestartBlock is less than the restart threshold, the tasks in
the TaskBlock are moved into the RestartBlock, which is
returned. Otherwise, we fill up the TaskBlock with tasks
from the RestartBlock and spawn the TaskBlock for the next
level. This spawn only exposes the task block’s continuation—
not the restart stack—for stealing by other worker threads.
The returned RestartBlock stacks from all spawned in-
stances of next level are merged into one RestartBlock stack
(merge (rleft, rright)), which is then returned.
The merge function is also implemented as a blocked func-



1 /xtbs/rbs: task/restart block stack =/

1 RestartBlock blocked_foo_restart(TaskBlock tb,

1 void blocked_foo_reexp(TaskBlock t) 2 While (not done) RestartBlock rb)

2 TaskBlock left, right 3 to=steal(); Ivl = tb.Ivl; tbs[Iv]] = tb 2 if (tb.size + rb.size < t_restart)

3 foreach (Task t: tb) 4 blocked _foo_restart(lvl) 3 /+move tasks from tb into rbx/

4 if (isBase(t.x)) 5 void blocked_foo_restart(int Ivl) 4 return rb

5 baseCase() 6  if (tbs[lvl].size + rbs[Ivl].size < t_restart) s /«fill to with tasks from ros/

6 else 7 /x empty tasks in tbs[Ivl] into rbs[IvI]+/ s  TaskBlock left, right

7 11 = inductiveWork1 (t.x) 8 return 7 foreach (Thread t : tb)

8 left.add(new Task(I1)) o /+fill tbs[lvl] with tasks from rbsflvi]«/ 8 /«xFigure 5(a) lines 4—10/

0 I2 = inductiveWork2(t.x) 10 TaskBlock left, right o RestartBlock rleft, rright

10 right.add(new Task(12)) n  foreach (Task t : tb) 10 rleft= spawn blocked_foo_restart(left, rb.next)
11 if (/xdo re—expansion:/) 12 if (isBase(t.x)) baseCase() 11 rright = spawn blocked_foo_restart(right, NIL)
1 left.merge(right) 13 else left.add(new Task(inductiveWork1(t.x))) |, sync

13 spawn blocked_foo_reexp(left) 14 ths[lvi+1] = left; blocked foo_restart(lvl+1) 13 rb.next = spawn merge(rleft, rright)

14 else /xdepth—first executions/ 15 foreach (Taskt : tb) 4 sync

5 spawn blocked_foo_reexp(left) 16 if (not isBase(t.x)) 15 returnrb

16 spawn blocked_foo_reexp(right) 17 right.add(new Task(inductiveWork2(t.x)))

18 tbs[lvl+1] = right; blocked_foo_restart(lvi+1)

(a) Re-expansion

(b) Ideal restart

(c) Simplified restart

Figure 3: Pseudocode demonstrating blocked, parallel, vectorized execution with different scheduling strategies

tion that recursively merges the input restart stacks, and in-
vokes blocked_foo_restart if the number of tasks at a
level exceeds the restart threshold.

Frequent restart stack merges may be expensive. To min-
imize this cost, we introduce an optimization to directly
pass the restart stack from one spawn to next if no steal
happened. As shown in Figure 3(c) lines 9-13, in normal
case, each spawn takes as input a distinct input restart stack
and returns a distinct restart stack. These restart stacks are
merged together after the sync. To reduce the cost, we test
whether the a steal immediately preceded the given spawn
statement. If not, the previous spawn’s output restart stack
is provided as the input restart stack to this spawn, and the
merge operation between them is eliminated. In terms of the
pseudo-code, the spawn in the blocked_foo_restart
function (line 11) is replaced by the following:

1 if NO_LINTERVENING_STEAL:

2 rright = spawn blocked_foo_restart(right, rb.next)

3 else:

4 rright = spawn blocked_foo_restart(right, NULL)

Limitations of simplified restart: As shown in Figure 3(c),
the simplified restart strategy can be directly translated into
a Cilk program. While simpler to implement than the restart
strategy formulated in Section 4.3, this simplified strategy
suffers from significant limitations. These arise from the fact
that the RestartBlock stack returned by the function is not
available for further processing until all work preceding the
immediately enclosing sync scope complete. We briefly dis-
cuss these limitations, but do not present concrete proofs due
to space limitations. First, passing restart stacks through the
return path can lead to an important source of concurrency
being stashed away, unavailable for execution by idle work-
ers. In the worst case, this can lead to a fully serialized exe-
cution. Second, consider a execution of a TaskBlock at depth
h. At each level 0 through h — 1, a restart stack can be sus-
pended, requiring a total space of h%t,csiar¢ Space, which
is worse than the space overhead for the ideal restart strat-
egy. Despite these limitations, we observe in Section 7 that

126

this restart strategy achieves competitive performance for the
benchmarks considered.

7. Experimental Evaluation

We conduct our experiments on an 8-core, 2.6 GHz Intel
E5-2670 CPU with 32 KB L1 cache per core, 20 MB last-
level cache, and 128-bit SSE 4.2 instruction set. The in-
put recursive program, re-expansion (reexp), and restart
(restart) variants are parallelized as Cilk programs and
compiled using MIT Cilk [5]°. All program variants are
compiled using the Intel icc-13.3.163 compiler with —03
optimization. We report the mean of 10 runs. We do not re-
port the negligible standard deviation observed due to space
constraints. We observed little difference in performance be-
tween enabling and disabling compiler vectorization for the
input program, despite some loops getting vectorized. We
use execution times of the sequential runs with compiler
auto-vectorization as the baseline.

Table 1 list the basic features of the benchmarks: prob-
lem input, number of levels in the computation tree, and to-
tal number of tasks. The sequential version of each bench-
mark is obtained by removing the Cilk keywords (spawn and
sync). The execution time for this sequential execution time
(T,) serves as the baseline for all evaluation in this section.
The benchmarks have varying computation tree structures:
knapsack is a perfectly balanced tree with all base case
tasks at the last level. £ib, binomial, parentheses,
Point correlation,and knn (k-nearest neighbor) are
unbalanced binary trees with varying numbers of base case
tasks in the middle levels. All other benchmarks are more
unbalanced with larger fan-outs. ut s is a binomial tree and
much deeper than nqueens, graphcol, minmax, and
Barnes-Hut’.

The benchmarks show various mixing of task parallelism
and data parallelism: knapsack, fib, parentheses,

6 The non-parallelized version of reexp is, effectively, Ren et al.’s vector-
ization strategy [15].

7 A more detailed characterization can be found in [15]



Benchmark Problem #Levels #Tasks Ts(s) Ti(s) Tie Block RBsize Ts/T1 1-worker Ts/T16 16-worker
size TS/le TS/T1T TS/TlﬁI TS/T16T
knapsack long 31 2.15B 9 61 39 212 any 0.14 1.68 1.69 22 24.8 24.6
fib 45 45 3.67B 9 99 6.7 2™ 4096  0.09 1.57 1.58 1.3 229 22.7
parentheses 19 37 4.85B 10 134 88 23 4607  0.08 142 1.40 1.2 20.3 19.4
nqueens 15 16 168M 233 267 167 22 2040 0.89 400  4.08 142 61.6 60.9
graphcol 3(38-64) 39 424M 31 37 24 210 473 0.85 874  8.78 13.0 108 107
uts 30 228 199M 146 152 9.6 2! 2047  0.97 1.58 1.59 15.4 23.0 23.8
binomial  C(36,13) 36 4.62B 8 126 81 283 4096  0.07 1.00 097 1.0 14.9 14.1
minmax 4x4 13 2.42B 19 58 37 21 32767 0.1 1.65 1.57 4.9 20.6 17.1
Barnes-Hut IM 18 3.00B 81 227 53.8 29 511  0.35 1.34 1.48 1.5 16.0 17.5
Point corr. 300K 18 1.77B 132 197 13.1  2'° 256  0.74 1.89 174 11.1 29.9 27.9
knn 100K 15 1.36B 71 105 7.6 29 128  0.65 1.24 1.20 8.9 19.3 18.4
Geo. mean 0.31 1.89 1.87 42 26.7 26.0

Table 1: Benchmark characteristics and performance. T,: sequential execution time; T : single-threaded execution time of the
input Cilk version; Ty,, T1,: single-threaded SIMD execution time of re-expansion and restart versions, respectively; Tyg,
Ti62, T16r: €xecution time of input, re-expansion, or restart versions on 16 workers, respectively. All re-expansion and restart
implementations use 16-wide vector operations, except 8-wide for knapsack,and 4-wide vector operations for uts, Barnes-Hut,
Point correlation, and knn. Block size: Best block size for re-expansion and restart, except 16-worker nqueens (2'1), graphcol
(2%), and minmax (2'° for re-expansion and 2 for restart). RB size: Restart block size used by the restart versions.

scalar reexp restart
Block SOA SIMD Block SOA SIMD
1-worker 0.3 05 06 1.9 05 06 1.9
16-worker 42 64 95 267 82 93 260
Scalability 13.6 11.7 153 142 162 152 139

Table 2: Geometric mean of speedup with respect to Ty
for implementation variants on 1 and 16 workers. scalar:
input Cilk program; Block: Blocked using re-expansion or
restart strategy; SOA: Blocked version transformed to struct-
of-arrays layout to enable vectorization; SIMD: SIMD vec-
torized version of the benchmark in SOA form. Scalability
shows the relative performance of the same implementation
running on 16 workers as compared to 1 worker.

uts, binomial, and minmax only show task parallelism
in the form of recursions; nqueens and graphcol have
nested data parallelism within their outer task parallel recur-
sions; Barnes—Hut has a for-loop outside recursive func-
tion calls, i.e., task parallelism is nested in data parallelism;
and Point corr. and knn are more complex, with three
levels of parallelism, data parallel base cases nested within
task parallel recursion, which is, in turn, nested within data
parallel outer loops.

To improve vectorization potential, we use the smallest
possible data type, without affecting generality, for each
benchmark: knapsack and uts use short and int,
respectively. Barnes—Hut, Point correlation, and
knn use £float. Other benchmarks use char.
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7.1 Speedup from Blocked SIMD Execution

Table 1 shows the effectiveness of various strategies to
exploit task and data parallelism on both single core (1-
worker) and multi-cores (16-worker). Even on one thread,
re-expansion and restart strategies, coupled with SIMD vec-
torization, improve (1.8 x average) over sequential execution
times. Combining compiler vectorization with Cilk paral-
lelization achieves a speedup of 4.2 (average) over sequential
execution. Re-expansion and restart significantly improve
upon this default parallelization, achieving 26 x (average)
speedup over T,. This shows the overall efficacy of the re-
expansion and restart strategies. Re-expansion and restart
strategies exhibit similar performance across all the bench-
marks considered. For restart, we select the optimum
trestart threshold, shown as RB Size in the table.

Our speedup primarily benefits from three sources: first,
the reduction of recursive function calls from pure task par-
allelism to the combination of both task parallelism and data
parallelism; second, the vectorization optimization, and as-
sociated efficient data layout transformations such as AoS to
SoA; and third, good scalability from one worker to multiple
workers. The first effect is important for kernels with little
sequential work. In these kernels, the Cilk recursive schedul-
ing incurs relatively large overheads. Our blocked execu-
tion can efficiently reduce such overhead, because our task
blocks coarsen the granularity of spawned tasks. This is also
why we may get more than SIMD-width times speedup
for some of these benchmarks’ 1-worker version. Table 2
demonstrates the relative speedup of each transformation on
the input benchmark from the input version to the blocked,
layout transformed to struct-of-arrays form so as to enable
SIMD vectorization (SO2), and the final vectorized version.
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Figure 4: SIMD utilization. x-axis: block size; y-axis: %age of tasks that can be vectorized. knn is identical to Point correlation.

For both re-expansion and restart strategies, we see that the
SOA transformation to enable vectorization improve perfor-
mance on top of blocking. However, we observe even greater
improvements from vectorizing this layout-transformed ver-
sion. In general, comparing to the first effect, the second and
third effects are more important. Therefore, in the following
sections, we evaluate the impact the reexp and restart
strategies have on vectorization efficiency and scalability.

7.2 TImpact of Block Size on SIMD Utilization

Increasing the block size can expose more work to be ex-
ecuted by the vector unit, increasing SIMD utilization (the
ratio of complete SIMD steps to total steps during execu-
tion). However, larger block sizes consume more space and
increase cache pressure. A good scheduling strategy should
achieve good SIMD utilization with small block sizes.

Figure 4 shows the SIMD utilization of reexp and
restart at various block sizes (for space reasons, we
present results only for the larger benchmarks). SIMD uti-
lization grows with increasing block size, and, consistent
with the theoretical analysis, at each block size restart
matches or exceeds the SIMD utilization achieved by reexp.
For smaller block sizes, restart performs better than
reexp for all benchmarks except for knapsack, Barnes—
Hut,Point correlation, and knn, where both strate-
gies achieve similar performance improvements. For bench-
marks like graphcol and uts, restart can achieve
> 90% SIMD utilization at block size of 2%, while reexp
requires 27 and 2°. For benchmarks such as nqueens
and minmax, SIMD utilization improves more slowly for
both reexp and restart. However, SIMD utilization for
restart continues to exceed that for reexp for smaller
block sizes. In the case of Barnes-Hut and Point
correlation, both restart and reexp achieve iden-
tical SIMD utilization for all block sizes considered.

7.3 Scalability of Blocked SIMD Execution

The scalability for the best block size is shown in Table 1.
For the best block size, reexp and restart achieve com-
parable speedups for most benchmarks, and the performance
difference is within 5%.

Given the difference in SIMD utilization between re-
expansion and restart at smaller block sizes, we show scala-
bility of of reexp and restart with various numbers of
Cilk workers for a small block size (2°) in Figure 5. For this
small block size, we find that restart performs better if
it can improve the SIMD utilization (such as nqueens,
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Figure 5: Xeon E5 scalability for block size 2°. x-axis:
number of workers; y-axis: speedup relative to 1-worker Cilk
baseline.

graphcol, uts and minmax). Otherwise, it may re-
sult in some slowdown due to the implementation com-
plexity and the cost of manipulating the restart stacks. For
nqueens and minmax, restart can provide a reason-
able speedup whereas reexp still results in some slowdown
relative to the non-SIMD version. For benchmarks such as
Barnes—-Hut, Point correlation, and knn, the rel-
atively poor scalability from 8-worker to 16-worker is due to
the interference between hyper-threaded workers executed
on the same core in the 8-core system.

In summary, both scheduling strategies have their ad-
vantages: reexp is easier to implement and has very low
scheduling overhead, while restart has good theoretical
bounds and can potentially improve the SIMD utilization for
smaller block sizes. With either scheduling method, we can
transform our candidate codes to achieve good speedup.

8. Related Work

In many programming systems, parallelizing recursive pro-
grams involves user identification of concurrent function
invocations coupled with a runtime system that dynam-
ically maps concurrent function invocations to the pro-
cessing cores. Variants of the spawn-sync construct used
in this paper constitute the most common subset of many
such programming systems (Cilk [3, 4], Thread Building
Blocks [13], OpenMP [11], X10 [18], etc.). These program-
ming systems also allow programmers to write programs
that mix task- and data-parallelism, and are not necessarily
tied to SIMD architectures, so they are more general. How-
ever, they focus on mapping that parallelism to multicores,
rather than tackling SIMD; thus, they typically decouple
vectorization considerations from multicore parallelism and



attempt to use SIMD instructions primarily in the base case.
These approaches hence exploit SIMD less thoroughly than
ours, which vectorizes the recursive steps in addition to base
cases, taking advantage of SIMD at all steps of the compu-
tation.

Intel’s ispc [12] is another existing effort closely related
to our work. It targets programs that have task- and data-
parallelism, and also attempts to exploit SIMD units in ad-
dition to multicores. However, its handling of nesting of
task- and data-parallelism differs substantially from ours. In
particular, given a data-parallel for loop, different iterations
are mapped to individual lanes of a SIMD unit. If that for
loop contains nested task-parallelism, that task parallelism
is not exploited: the entire iteration is executed within a sin-
gle SIMD lane, underexploiting parallelism, causing diver-
gent execution, and incurring unnecessary gather and scatter
memory operations among all SIMD lanes.

Optimizations to improve recursion overhead include par-
tial recursive call inlining [17] and transforming the program
to a loop program [9]. Partial inlining indirectly helps vec-
torization by adding more instructions to the inductive work
basic block, but often not enough to keep wide SIMD units
busy.

Similar to our approach, Jo et al. [7] optimized tree traver-
sal algorithms by vectorizing across multiple root-to-leaf
traversals. The nodes of the tree, rather than the call stack,
are used to track execution progress. Also, their work did not
consider multi-core parallelization. Ren et al. [15] presented
the re-expansion strategy to vectorize recursive programs.
However, as discussed in the introduction, they provide no
theoretical analysis of the benefits of their strategy, do not
deal with multicore execution, and do not consider the restart
strategy.

9. Conclusions

We presented a unified approach for executing programs that
exhibit both task- and data-parallelism on systems that con-
tain both vector units and multicores. Rather than “baking
in” execution strategies based on programming models (e.g.,
converting data parallelism to task parallelism in Cilk [6],
or vice versa [15], or choosing to only exploit one type of
parallelism in programs that contain both [8, 14]), our uni-
fied scheduling framework allows programs to execute in the
manner best suited to the current context and hardware: if
there is enough data parallelism at a particular point in an
execution, vector units can be exploited, while if there is too
much load imbalance at another point, data parallelism can
be traded off for task parallelism to allow for work stealing.
This grain free execution strategy allows for the free mixing
and arbitrary exploitation of both types of parallelism and
both types of parallel hardware. By using our framework,
we are able to achieve 14 x—108x speedup (23 x-259x over
1-worker Cilk) across ten benchmarks by exploiting both
SIMD units and multicores on an 8-core system.
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