A low cost workload generation approach through the
cloud for capacity planning in Service-Oriented Systems

Carlos H. G. Ferreira
ICMC/USP
S&o Carlos, Brazil
chgferreira@usp.br

Julio C. Estrella,
Luiz H. Nunes,
Luis H. V. Nakamura,
Rafael M. Libardi

Bruno G. Batista
IMC/UNIFEI
Itajuba, Brazil
brunoguazzelli@unifei.edu.br

ICMC/USP
Sao Carlos, Brazil
{jcezar, Ihnunes,
nakamura,
mira}@icmc.usp.br

Maycon L. Peixoto
UFBA
Salvador, Brazil
maycon.leone@ufba.br

ABSTRACT

This paper presents a cloud approach for low cost capac-
ity planning evaluations. To perform these evaluations we
have to specify and measure the workload on the target sys-
tem to discover issues and make the necessary adjustments.
However, due to high costs, these evaluations are usually
done using simulations, which does not consider stochastic
effects. We propose to use a tool named PEESOS, a generic
and flexible approach to apply real workloads and measure
used resources on these real systems. As a proof of concept,
our case study use a real ticket sales service to evaluate the
influence of scalability in the resource provisioning to show
how PEESOS can lower the cost of such real evaluations.
The results show the efficiency and savings that we can ob-
tain using PEESOS for large-scale capacity planning evalu-
ations before the real services are deployed. This approach
can avoid several problems that real services faces when they
launch.

Keywords

Capacity Planning; Workload Generation; Service-Oriented
Systems.

1. INTRODUCTION

Capacity planning can lead organisations to understand
how performance issues happen and ensure that a system
will meet the expected performance [3]. The process of de-
termining the production capacity, using the current perfor-
mance system as a baseline, is the focus of capacity planning
[2].

Planning the capacity of a system is not a trivial task
and requires that a series of steps be followed. Firstly, un-
derstand the target environment and their main functional
and non-functional requirements. As the main goals are
identified, a workload must be characterised to measure the
system performance under a specific condition. The perfor-
mance evaluation should consider a set of metrics that repre-
sents the system purpose. Finally, based on the performance

Dionisio M. Leite
UFMS
Ponta Pord, Brazil
dionisio.mlf@gmail.com

Stephan Reiff-Marganiec
University of Leicester,
Leicester - UK
srmi3@le.ac.uk

evaluation, an analytical model that accurately predicts the
system performance must be developed and applied to pre-
dict and optimise the system performance [3, 10].

Nowadays, several tools provide a set of methods to per-
form capacity planning in Service-Oriented Systems (SOS).
However, these tools use local environments to perform the
workload or analytical models to reproduce the system char-
acteristics, which cannot be the same as found in a real
scenario [21]. In this way, our methodology will use the
Planning and Execution of Experiments in Service Oriented
Systems (PEESOS) ! tool [12] to perform the verification
and validation of the capacity planning with a low cost.

As stated by Nunes et al. [12], the main functionality of
PEESOS is facilitate the process of conducting functional
testing and capacity planning in service-oriented systems.
This paper address the workload generation to perform an
efficient capacity planning experiment, using PEESOS tool.
This step aims to understand how each service request im-
pacts on the allocated resources. Differently of the mech-
anisms presented in the literature, we propose a financial
low cost approach using a cloud environment to generate a
real workload on SOS. The use of cloud resources enables to
allocate resources geographically distributed using the ‘pay-
as-you-go’ model, which allows analysing the performance
of a target system in different scenarios such as presented
by Morgan and Humer (2013) [11] and Jones (2014) [8].

We intend to use the PEESOS tool to consolidate the
service implantation in cloud environments, paying for the
exact resources that will be used, as in the 'pay-as-you-go’
business model, saving money and operational resources. In
this way, the main contribution of this paper is a generic and
flexible approach, which demands low financial resources to
generate workloads in capacity planning experiments. Ex-
ploring the main characteristics of a cloud, different types of
workload can be applied in several kinds of SOS. This results
in a system behaviour closer to real scenarios and enables to
establish more accurate analytical and performance models.
To validate our proposal, experiments were carried out by

"http://peesos.wsarch.lasdpc.icme.usp.br

PEESOS, which show how the tool can be used to assist
in the capacity planning with a low cost. By means of the
results, it was possible to identify the real limits of a ser-
vice, and how the allocated resources impacted the system
performance.

The paper is organised as follows: Section 2 presents a
literature review of existing approaches to perform capacity
planning in service-oriented systems. Section 3 describes the
basic background related to this paper. Section 4 describes
the methodology and experimental design, as well as the
results analysis. Finally, the conclusions and directions for
future work are presented in Section 5.

2. RELATED WORK

Several approaches were proposed for service-oriented sys-
tems testing and evaluation, and to ensure their efficiency
and compliance with the Service Level Agreements (SLAs)
and Quality of Service (QoS) requirements. In this sec-
tion, we present some approaches for service-oriented sys-
tems available in the literature.

According to Vigele et al. [19], the challenge in evaluating
Web Services is the fact that services belong from different
parties. To study the workload that these services receive,
it is necessary to quantify the amount of requests per hour.
This allows the extraction of test case scenarios to perform
a system evaluation. Using this study as a base, the authors
developed a mechanism to generate automatic workload for
these services and supporting the capacity planning design.

Lopes et al. [9] propose a model to guide the infrastruc-
ture capacity planning of cloud services. This model helps
to calculate how many instances are needed to run a Web
server workload. A set of information about the workload,
application, reservation and on-demand markets are used
as input in this model. The problem with this solution is
the difficulty in obtaining information about the workload
to extract precise parameters. In addition, the analytical
model does not consider the dynamic changes presented in
the Internet.

Barna et al. [4] also presents an analytical solution based
on Queueing Network Model to set the test workload pa-
rameters in the system. The charge level is set automati-
cally using the Kalman Filter that receives monitoring in-
put parameters. Furthermore, the authors do not present
the system in an intuitive way to perform this activity.

Sousa et al. [16] highlight the importance to ensure the
quality of service in financial applications. They use the
capacity planning in Electronic Funds Transfer (EFT) sys-
tems. They used a set of machines hosted in Amazon EC2
to perform the experiments. The available machines were
divided into two different groups. The first group hosted
the EFT system, while the second group performed the re-
quests to the target system. They considered the response
time and the resource utilisation as response variable, ap-
plying different levels of workload and EC2 machines. The
results showed the use of capacity planning helped to esti-
mate the quality of service provided by the application.

The authors in [15] proposed a framework called ASTO-
RIA to automate and simplify the evaluation of performance
and scalability of RIAs (Rich Internet Applications). This
framework uses scripts that automate the generation of tests.
This solution allows allocating a larger number of distributed
clients from virtual machines and reduces costs for conduct-
ing the assessments.

Batista et al. [5] carried out a performance evaluation of
a module for resource management in a cloud environment
that includes handling available resources during execution
time and ensuring the quality of service defined in the service
level agreement. An analysis was conducted of different re-
source configurations to define which dimension of resource
scaling has a real influence on client requests. The results
were used to model and implement a simulated cloud system,
in which the allocated resource can be changed on-the-fly,
with a corresponding change in price. However, the pro-
posed module has not been validated with workloads in a
real scenario. Thus, our approach enables validate other ap-
proaches, trying to ensure the system performance for both
clients and providers.

Oberle and Szabo [14] propose an architecture with a focus
on TaaS (Test as a Service). The prototype allows specifying
the test scenario composed by the service that will be tested
and the distributed nodes that will be used. A study was
performed using a Web Service developed with the Jersey
framework. Al-Ghuwairi et. al. [1] present a test technique
to evaluate the quality of a TaaS approach. The authors ar-
gue that the cloud test requires enough amounts of resources
to ensure the service performance. Nevertheless, the authors
do not care about the performance of the physical resources
of the TaaS provider. In this case, our approach can be used
to ensure the total capacity planning in TaaS providers. In
the same context, Minzhi et al. [20] proposed a platform for
distributed load testing in cloud Web Services.

Tchana et al. [18] emphasise that, despite the cloud com-
puting provide the resources needed for testing workloads,
the challenge is in allocating, deploying and managing these
resources efficiently. Based on the CLIF framework, the au-
thors proposed a self-scalable BaaS (Benchmark as a Ser-
vice) solution for generating different workloads.

Tabib et. al [17] discuss the challenges of integrating e-
commerces with the Cloud using different types of services
offered by the Cloud. The result of this integration is a final
service integrated with various other cloud services. Thus,
it is important to consider the performance, capacity and
reliability of e-commerce due to the use of external services.
Our approach draws attention to these problems and can be
used for capacity planning in order to determine the perfor-
mance of the final e-commerce or check the performance of
each service involved.

Some of the related work depends greatly of efficient work-
load tests for capacity planning. Our approach is based
on these requirements, and can be differentiated from the
mentioned papers on the following points: it does not re-
quire analytical modelling for experimentation and neither
abstraction of the target system; it is independent of spe-
cific protocols and of the technologies target systems; it has
an interface that assists in the planning and execution of
reproducible experiments; it allows knowing the costs and
the necessary resources for the experimentation, and it is
applicable in various types of Web systems. The next Sec-
tion presents the background necessary to understand the
remainder of the paper.

3. BACKGROUND

The motivating example for our evaluation is a service-
oriented architecture prototype named WSARCH (Web Ser-

vice Architecture) ? [6] and a tool for planning and execution
of experiments named PEESOS [12].

3.1 PEESOS

PEESOS [12] is a tool based on the DCA-Services ar-
chitecture [13] to design and execute capacity planning in
service-oriented systems environments. PEESOS helps the
user to conduct a full factorial experiment [7] using a tem-
plate with a set of default entries. It also provides a real
workload testbed environment, where collaborative clients
perform the requests to the target system. Figure 1 shows
the PEESOS workflow, which can be summarised as:

1. User plans experiment;

2. PEESOS transfers the services to the target environ-
ment;

w

. The target environment deploys the service and sends
acknowledgement to PEESOS;

4. PEESOS transfers the client application to the collab-
orative environment and starts the experiment;

5. The PEESOS clients performs a set of requests to the
target system. The set of requests are performed ac-
cording to a previously chosen workload distribution;

=2}

. The target environment sends the request response to
the clients;

7. As soon as the programmed set of requests are per-
formed, an acknowledgement is returned to PEESOS.

PEESOS

— User Setup

Ly PEESOS—Target i
Environment

...... » PEESOS — Collaborative
Clients

-

Figure 1: PEESOS Workflow [12]

Zhttp://wsarch.lasdpc.icmc.usp.br

3.2 WSARCH

The WSARCH is a service-oriented architecture (SOA)
prototype to provide web services with Quality of Service
(QoS). WSARCH is composed of the traditional compo-
nents of a SOA: the broker, the providers and the Univer-
sal Description, Discovery and Integration (UDDI) repos-
itory. Moreover, it has an additional component named
logserver responsible for ensuring the web services QoS. Fig-
ure 2 shows how WSARCH works. The sequence of steps
performed by it can be summarised as [6]:

QoS
‘ Information

Services

Ganglia
Broker

= Update QoS info (2s)
~4— - Log-Interaction
~a----4 Broker - UDDI

= —p Log Info QoS (1s)
~a— - Broker - Provider
-4 -4 Client - Broker

Service
Consumer

L~ WSARCH >

Connecting Applications

Figure 2: Web Service Architecture - WSARCH [6]

1) The client application requests a service with QoS at-
tributes to the Broker; 2) The Broker requests the service
address from to the UDDI repository; 3) The UDDI repos-
itory looks for the requested service and returns the avail-
able providers, which have the desired service and their QoS.
4) Then, the Broker chooses the most suitable provider ac-
cording to the requested QoS attributes 5) As soon as the
provider is selected a request to the desired service is per-
formed. 6) The provider executes the required service and
returns the result to the Broker. 7) Finally, the Broker re-
turns the service response to the client application.

The Log Server component is a database, which store
the quality attributes values during the WSARCH compo-
nents transactions. In addition, the QoS attribute offered
by providers are updated every second. The QoS attribute
values are collected using the Ganglia monitor deployed in
WSARCH and transmitted from one module to another un-
der Broker management. WSARCH has a standard selector
named Default Selector, which works directly in the Broker.
This selector takes QoS values as parameter for provider
selection and prevents them being overloaded. The service
providers update these QoS values periodically. In this case,
the default algorithm (Round Robin) was used for select
providers.

4. PERFORMANCE EVALUATION

To validate our approach, a set of experiments will be
conducted. The experiments are related to a ticket sales
application hosted in the cloud, and the experimental design
is based in the methodology presented by Jain [7]. Following,
we need to define the system needs and after the validation
of our approach.

4.1 Definition of system capacities

The capacity planning of a system demands a set of inputs,
such as workload levels and resources utilisation, the cloud-
based workload need to be the more realistic and scalable
as possible. On the other hand, the challenge is to obtain
a similar characterisation for both expected workload and
performed workload.

In this sense, our study case is motivated by a ticket sale
application hosted in the WSARCH architecture, as showed
in Figure 3.

Provider

w5
g-=l.,
% Broker @ s e-tickets
Client 2 @ wan B

Real
Machine

Virtual
Machines

Log Server

5 o

PEESOS Clients WSARCH

=2l 3

Figure 3: Request flow of the ticket sale application.

At first, as show In Figure 3, the set of clients perform
several requests to the ticket sale application hosted in the
WSARCH architecture. The WSARCH architecture pro-
cesses the requests and returns the response to the client.

In our experiment planning, we wanted to check the be-
haviour of the system under different conditions. In this
sense, we used 25 and 100 clients, where each client has
performed five requests to the ticket sale application. Ta-
ble 1 shows the WSARCH provider hardware and software
settings.

Table 1: Ticket Sale Provider Configuration

Provider Configuration
Processor 1 vCPU
Memory 1 GB
Hard Disk 50 GB
Operation | 10 Ubuntu Server 14.04.1 64 bits LTS
System
Application Apache Axis2 1.6 with Tomcat 8.0

Our workload uses an exponential distribution because it
is able to perform a series of requests to the ticket sale server
in a short time-period as happens in big concerts in the real
world. Equation 1 represent the exponential distribution
formula used to characterise our workload, where x = 5.000
[12].

F@A) = Ae M para z > 0, (1a)
0 para z < 0. (1b)
The Equation 2 represents the requests acceptance rate

(6). The total of requests is given by o, the number of
clients by x and the requests per clients is ¢.

o
6—(’i*¢)*100 (2)

Table 2 shows the percentage of requests accepted by the
provider. It is observed that with 25 clients, the service
provider has an requests acceptance rate by 100%. On the
other hand, with 100 clients, the requests acceptance rate
drops to only 71%. This demonstrates that our application
needs to be adjusted because initial capacity is insufficient
for demand imposed. For this, we will continue to investigate
the initial capacity of the resources involved.

Table 2: Requests acceptance rate

Scalability | Clients | Acceptance Rate
Horizontal 25 100%
100 100%
. 25 100%
Vertical 100 T00%

The Figure 4 shows the boxplot graph of the response
time in milliseconds for the service provider . The outliers
reflect the system warm-up period of Java Virtual Machine
(JVM). The service processing time reflects the number of
requests handled in parallel. It is possible to observe that
both clients 25 and 100 clients, the response time is less than
1ms. However, the system is overloaded as more clients
perform requests in a short period and then increases the
service processing time.

5

|
- ﬁ
: —_—

25 Clients

w

ProcessTime (ms)
~

100 Clients

Figure 4: Boxspot processing time

It is important to identify how and why this occurs. The
next results demonstrate the use of provider resources, where
CPU utilisation, Memory utilisation, and disk usage rates
are presented. Figure 5(a) shows the resources utilisation
rate for 25 clients. It is possible to observe that the CPU
utilisation rate initiates with a consumption that varies around
10%. Then, this rate is stabilised, and stays switching be-
tween 1% and 5%. When the CPU rate decreases, the mem-
ory utilisation rate increases around 65% to 73%. Finally,
the utilisation rate of the disc that shows little variation
during the experiment and remains at approximately 20%
utilisation.

Figure 5(b) shows the resource utilisation rates with 100
clients. In this scenario, the CPU utilisation rate starts

100

80 -

60

Rate (%)
Rate (%)

40

20+ Sampnn.

0-
1 23 46 6 92 115 138 161 184 207 230
Execution Time (s)

(a) 25 Clients

100+

80 -

60 -

40

20 -

Resource
—e— CPU
—=— Memory
—e— Disk

w% ot
g
81 162 243 324 405 486 567 648 729 810

Execution Time (s)

(b) 100 Clients

Figure 5: Resources utilisation

close to 100% and decreases during the experiment. On the
other hand, the memory utilisation ratio increases, reaching
a maximum of 100%. The disk has a greater variation when
the experiment started, however, it stabilises over the time.

Whereas application must to meet all clients, the results
show a negative impact on service. This first evaluation is
part of capacity planning. The next step is to carry out the
necessary adjustments and evaluate the application, repeat-
ing this activity until the goal is reached. Thus, losses are
avoided fulfilling the required expectations.

4.2 Experiment Design

According to the performance problem previously intro-
duced, we consider two scale approaches to attend the re-
quests: the horizontal and vertical scaling. We also plan our
experiments according to the factors and levels of Table 3.

Table 3: Design of experiments

Factor Levels
Scalability Vertical | Horizontal
Number of clients 25 100
Request per Client 5
Workload Exponential - 5000

In the vertical scaling, the VM initially receives twice the
processing and memory resources, going from 1 vCPU to 2
vCPUs and from 1GB to 2GB. On the other hand, the hor-
izontal scaling adds a new identical virtual machine (VM).
For this case, the WSARCH broker uses the Round Robin
algorithm to schedule the requests. The response variables
are the same defined in the previous experiment.

4.3 Results

Table 4 shows the rate of accepted requests according to
the adopted scalability approach. In this case, both ap-
proaches were effective, assuring 100% of accepted requests.

The response time of requests in milliseconds of both ap-
proaches can be seen in Figure 6. Regardless of the ap-
proach and the number of clients, the processing times are
very close. In general, the vertical approach presents slightly

Table 4: Requests acceptance rate

Clients Acceptance Rate | Scalability
25 Clients 100% 100%
100 Clients 100% 100%

higher times than the horizontal approach, especially for 100
clients. In this experiment, the outliers were also preserved
to observe the behaviour of all performed requests. Further-
more, is possible to note a reduction in the processing time
comparing to the server without capacity planning.

2,0

Number
of Clients
] 25
u 100
*
1,54
*
*
—
2
g ¥
E
> *
E 10 *
=
2
153
] *
<] *
~ %
¥
0,5 *
i ¥
% ﬁ |
0,0 N X
Approach horizontal vertical

Figure 6: Boxspot processing time for vertical and
horizontal scalability

Figures 7(a) and 7(b) show the resources utilisation rate
according to the number of clients. The CPU utilisation rate
starts with 20% for 25 clients and decrease to 4% during
the experiment execution. On the other hand, the memory
utilisation rate starts with 24% and increase to 35%. The
disk utilisation rate varies initially and stabilises during the
experiment.

Regarding 100 clients, Figure 7(b), the CPU has initially

100

80

60

Rate (%)

40

20

100

80

60

Rate (%)

40

\
ks PO . o S SRRt aaa s as e a s s ad
S ARAES .
4 8 12 16 20 24 28 32 36
Execution Time (s)

(a) 25 Clients

20
*
o,

Resource
——e— CPU
—=a— Memory
—e— Disk

—

\
H%\HH‘N T e e S S e A S g

/\‘\H/\/w‘\,/\—.—.—/ .-
4 8 12 16 20 24 28 32 36 40
Execution Time (s)

(b) 100 Clients

Figure 7: Resources utilisation rate vertical approach

a utilisation rate of 29%, which decreases to 7%. For the
memory, the utilisation rate starts with 30% and increases
to 39%, while the disk varies around 17%. Therefore, the
results with the vertical scaling shows the amount of re-
sources are enough to attend the requests, reflecting on the
accepted requests, i.e., all requests are answered. The next
experiments analyse the providers 1 and 2 with the horizon-
tal scaling approach for 25 and 100 clients.

Figures 8(a) and 8(b) show the providers utilisation rates
for 25 clients. In the first provider with 25 clients, Figure
8(a), the initial CPU utilisation rate is 15%, which stabilises
in 3% later. On the other hand, the memory has an initial
utilisation rate of 21%, reaching 38.5% during the experi-
ments execution. The disk has a small variation, around
8%.

Considering the provider 2, it has a similar behaviour,
since it is a replica of provider 1 (Figure 8(b)). The WSARCH
scheduler applies the Round Robin police, which is respon-
sible for the same quantity of attended requests.

In general, the consumption of resources is bigger in the
horizontal approach. This is because the vertical approach
has only a provider with more allocated resources.

Figures 8(c) and 8(d) present the providers utilisation rate
for 100 clients. The results are similar in both provider 1
and 2 with 100 clients as with 25 clients. The CPU utilisa-
tion rate initially reaches 40% and decreases varying between
10% and 16%. On the other hand, the memory has an initial
utilisation rate of 30% and reaches 41% during the experi-
ments execution. Finally, the disk utilisation varies around
10%.

Analogous the vertical scalability, horizontal scalability
also ensures the acceptance rate of the resources in 100%.
The indexes show that resource consumption for 100 clients
is higher than for 25 clients. Regarding the vertical scala-
bility, we noticed that the consumption rates are higher as
expected.

4.4 Analysis of Results

As showed in the results of system capacities, the ticket
sale application is not efficient, with high levels of CPU util-
isation and reduction in the acceptance requests rate. Fur-

thermore, the memory usage is correlated with CPU use.
Usually, when the CPU levels decreases, the memory usage
increases. The hard disk usage had a small variation.

Moreover, each experiment has a distinct execution time
due to the requests increase, while the CPU and memory
usage are directly proportional to the number of clients.

The ticket sale application uses multiple computational
resources. The initial request number demands intense CPU
processing, but the competition to access the database blocks
the process until their answers. This behaviour explains the
memory usage in the overload scenarios and justifies the
non-answered requests.

The second set of experiments showed that the processing
time decreases less than we expected. The used approaches
ailm to answer all requests. Besides the processing time, the
application has the database access time to check the ticket
availability and to finish the purchase. This time is not used
in our evaluation due to the system architecture constraints.

Based on the results, the processing time did not decrease
proportionally to resources with the scalability measures so-
lutions, because of the database access time. The database
access time is included in all experiments, regardless of the
amount of allocated resources to the VM, as the database is
located in another storage machine. All requests were an-
swered and the total time to answer them is smaller when
we scale the service horizontally.

PEESOS allows the bottleneck identification stressing the
applications. Furthermore, the standardisation provided ac-
cording to the experiments planning allows the analysis of
different scenarios and applications. In this paper, we used
a maximum of 100 clients to analyse the tickets sale system.

The results show how our approach is efficient to charac-
terise workload for capacity planning of a system. Lastly,
we define the cost to repeat this assessment, using a cloud
provider based on the Amazon EC2 ? prices to allocate these
100 clients. Table 5 presents these costs.

Therefore, the cost to perform this analysis is reduced,
considering that we have to replicate the experiments many
times to ensure the real behaviour of the system.

3http://aws.amazon.com/pt/ec2/pricing/

100

80

60

100

80

60

@ &
g S
SIS S
20 >\ 20
\
o e = oS o .
4 8 12 16 20 24 28 32 36
Execution Time (s)
(a) Provider 1 - 25 Clients
100 100
80 80
—_ 60 60
X X
e S
4 ~

40

40

o teke .

5 10 15 20 25 30 35 40 45 50

Execution Time (s)

(c) Provider 1 - 100 Clients

Resource
—e— CPU
—=a— Memory

—e— Disk
\

H%\MWQMHMH‘\,&OQJW‘—OHO
/\\\W/\/M\

4 8 12 16 20 24 28 32 36 40
Execution Time (s)

(b) Provider 2 - 25 Clients
Resource

——e— CPU
—=a— Memory
—&— Disk

—_

E"ﬁ

A I

W

Execution Time (s)

(d) Provider 2 - 100 Clients

Figure 8: Resources utilisation rate horizontal approach

Table 5: Costs for the experiments

Number of instances | Total Prince
100 Instances $1,30
200 Instances $2,60
300 Instances $3,60
500 Instances $6,50
1000 Instances $13,00

In Table 5, the first value refers the evaluation costs for
our experiment followed by the estimated costs to increase
the client amount. In this way. it is possible modelling and
characterising the resources utilisation for precise estimates.

S. CONCLUSION

Ensure the quality of service-oriented systems is a chal-
lenging activity due of the dynamic and unpredictable envi-
ronment of the distributed systems. Thus, the performance
of recurring problems directly affect clients and providers.
The capacity planning when applied efficiently allows ensur-
ing the quality of service requirements and the efficient use

of resources, at a fair price. In this paper, we applied a low
cost workload generation approach for the capacity planning
evaluation of a ticket sales service on a cloud environment.

The payment model adopted by the cloud encourages the
use of our approach in two aspects. Firstly, we generate and
use real workload through the cloud computing resources
to characterise and manage resources efficiently. Secondly,
the workload generated also must allows the extraction of
the necessary parameters to ensure proper evaluation of the
service. The combination of these two aspects results in an
efficient workload generation that can decrease the costs of
a capacity planning evaluation.

Our results explored the limits of a service, allocating
more resources with vertical and horizontal scalability. We
also demonstrated how the use of PEESOS tool can save
money in these evaluations. Thus, we conclude that the ca-
pacity planning process is an expensive activity and the use
of specialised tools leads to better use of available resources.
In our studies, we used the cloud environment, however, it
is possible to adopt the same methodology to other environ-
ments.

As future work, we will evaluate large-scale services with

a larger amount of clients to evaluate PEESOS performance
and its behaviour when we the number of clients and re-
quests increases. We will also develop a performance model
adjusting parameters in our solution and validate it through
real tests.

Acknowledgment

The authors would like to thank National Council for Scien-
tific and Technological Development (CNPQ, process 139917/2014-
4) and Sao Paulo Research Fundation (FAPESP, processes
11/09524-7, 13/26420-6, 11/12670-5), for the support of this
research.

6.
1]

[10]

[11]

REFERENCES

AL-GHUWAIRI, A.-R., EID, H., ALORAN, M., SALAH,
Z., BAARAH, A. H., AND AL-0QAILY, A. A. A
mutation-based model to rank testing as a service
(taas) providers in cloud computing. In Proceedings of
the International Conference on Internet of Things
and Cloud Computing (New York, NY, USA, 2016),
ICC ’16, ACM, pp. 18:1-18:5.

ALLspaw, J. The Art of Capacity Planning: Scaling
Web Resources. O’Reilly Media, Inc., 2008.

ALMEIDA, V., AND MENASCE, D. Capacity planning
an essential tool for managing web services. IT
Professional 4, 4 (Jul 2002), 33-38.

BarNa, C., Litotu, M., AND GHANBARI, H.
Autonomic load-testing framework. In Proceedings of
the 8th ACM International Conference on Autonomic
Computing (New York, NY, USA, 2011), ICAC ’11,
ACM, pp. 91-100.

BatisTA, B. G., ESTRELLA, J. C., FERREIRA, C.

H. G., LErtE FiLHo, D. M., NAKAMURA, L. H. V.,
REIFF-MARGANIEC, S., SANTANA, M. J., AND
SANTANA, R. H. C. Performance evaluation of
resource management in cloud computing
environments. PloS one 10, 11 (2015), 21.

ESTRELLA, J. C., SANTANA, R. H. C., AND
SANTANA, M. J. WSARCH: An Architecture for Web
Services Provisioning with QoS Support: Performance
Challenges. VDM Verlag Dr. Miiller, 2011.

JAIN, R. The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling. Wiley
Professional Computing. Wiley, 1991.

JONES, G. Xbox one fans warned of new xbox live
outages after december online issues, December 2014.
[Online; posted December 7, 2014].

LopPESs, R., BRASILEIRO, F., AND MACIEL, P.
Business-driven capacity planning of a cloud-based it
infrastructure for the execution of web applications. In
Parallel Distributed Processing, Workshops and Phd
Forum (IPDPSW), 2010 IEEE International
Symposium on (April 2010), pp. 1-8.

MENASCE, D., ALMEIDA, V., DowDY, L., AND
Dowbpy, L. Performance by Design: Computer
Capacity Planning by Example. Prentice Hall PTR,
2004.

MORGAN, D., AND HUMER, C. Web traffic, glitches
slow obamacare exchanges launch, October 2013.
[Online; posted October 1,2013].

(12]

(13]

(16]

(17]

(18]

(19]

20]

(21]

Nungs, L., NAKAMURA, L., KUEHNE, B.,

DE OLIVEIRA, E., LIBARDI, R., Apawmi, L.,
ESTRELLA, J., AND REIFF-MARGANIEC, S. Peesos: A
web tool for planning and execution of experiments in
service oriented systems. In Web Services (ICWS),
2014 IEEE International Conference on (June 2014),
pp- 606-613.

Nunes, L. H., FERREIRA, C. H. G., NAKAMURA, L.
H. V., LiBARDI, R. M., DE OLIVEIRA, E. M.,
Kuenng, B. T., Souza, P. S. L., SANTANA, R.

H. C., SANTANA, M. J., ESTRELLA, J. C., AND
REIFF-MARGANIEC, S. Dca-services: A distributed
and collaborative architecture for conducting
experiments in service oriented systems. International
Journal of Services Computing 3 (2015).

OBERLE, T., AND SzABO, C. An architectural
prototype for testware as a service. In Applied
Machine Intelligence and Informatics (SAMI), 2015
IEEE 13th International Symposium on (2015).
SNELLMAN, N.; ASHRAF, A., AND PORRES, I.
Towards automatic performance and scalability
testing of rich internet applications in the cloud. In
Software Engineering and Advanced Applications
(SEAA), 2011 37th EUROMICRO Conference on
(2011), IEEE, pp. 161-169.

Sousa, E., MAcIEL, P., SouzaA, D., MEDEIROS, E.,
Lins, F., AND TAVARES, E. Capacity planning of eft
service hosted on elastic iaas. In Systems, Man, and
Cybernetics (SMC), 2012 IEEE International
Conference on (Oct 2012), pp. 1749-1754.

TALIB, A. M., AND ALOMARY, F. O. Cloud
computing based e-commerce as a service model:
Impacts and recommendations. In Proceedings of the
International Conference on Internet of Things and
Cloud Computing (New York, NY, USA, 2016), ICC
16, ACM, pp. 27:1-27:7.

TcHANA, A., DE PaLMA, N., DILLENSEGER, B., AND
ETCHEVERS, X. A self-scalable load injection service.
Software: Practice and Experience 45, 5 (2015),
613-632.

VOGELE, C., BRUNNERT, A., DANCIU, A., TERTILT,
D., AND KRCMAR, H. Using performance models to
support load testing in a large soa environment. In
Proceedings of the Third International Workshop on
Large Scale Testing (New York, NY, USA, 2014), LT
14, ACM, pp. 5-6.

YaNn, M., Sun, H., WaANG, X., AND Liu, X. Ws-taas:
A testing as a service platform for web service load
testing. In Parallel and Distributed Systems
(ICPADS), 2012 IEEE 18th International Conference
on (Dec 2012), pp. 456—463.

YN, L., ZENG, J., Liu, F., anD L1, B. Ctpv: A cloud
testing platform based on virtualization. In Service
Oriented System Engineering (SOSE), 2018 IEEE 7th
International Symposium on (March 2013),

pp- 425-428.

