
My Home is My Post-Office: Evaluation of a decentralized email
architecture

on Internet-of-Things low-end device
Gregory Tsipenyuk

gregory.tsipenyuk@cl.cam.ac.uk
University of Cambridge Computer Laboratory
William Gates Building, 15 JJ Thompson Avenue

Cambridge, United Kingdom CB3 0FD

Jon Crowcroft
jon.crowcroft@cl.cam.ac.uk

University of Cambridge Computer Laboratory
William Gates Building, 15 JJ Thompson Avenue

Cambridge CB3 0FD, United Kingdom

ABSTRACT
Users predominantly access their email via mobile devices. This
presents a two-fold challenge to the email applications. First, email’s
update from multiple devices has to be eventually reconciled with
the server. Prioritization of updates is difficult and maybe undesir-
able. Solving this problem requires a data store with the complete
history of email changes. Second, legacy email protocols don’t
provide an optimal email synchronization and access in mobile
environment. In this paper we are proposing to take advantage
of the Internet of Things (IoT) phenomena. In IoT environment a
user may have multiple interconnected in-home low-end devices
with publicly accessible address. In this architecture we move the
email application from the central service into user’s in-home and
mobile devices, store complete email history on each device, and
replace legacy IMAP and SMTP protocols with a synchronization
protocol found in Distributed Version Control Systems(DVCS). This
addresses the email reconciliation issue, optimizes the bandwidth
usage, and intrinsically puts the user in control of her data. We
analyze a number of stores and synchronization implementations
and compare them with the open source Dovecot email server.

CCS CONCEPTS
• Information systems→ Email;

KEYWORDS
Internet-of-things, eventual consistency, revision control, decen-
tralization, email

ACM Reference format:
Gregory Tsipenyuk and Jon Crowcroft. 2017. My Home is My Post-Office:
Evaluation of a decentralized email architecture on Internet-of-Things low-
end device . In Proceedings of Second International conference on Internet
of Things, Data and Cloud Computing, Cambridge, United Kingdom, March
22–23, 2017 (ICC ’17), 9 pages.
https://doi.org/http://dx.doi.org/10.1145/3018896.3018918

ICC ’17, March 22–23, 2017, Cambridge, United Kingdom
© 2017 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record to appear in Proceedings of Second
International conference on Internet of Things, Data and Cloud Computing, March 22–23,
2017 , https://doi.org/http://dx.doi.org/10.1145/3018896.3018918.

1 INTRODUCTION
Email is ranked as one of the top internet activities [7] [23]. It is
presently provided by centralized services running in the cloud.
The centralized architecture is required for the following reasons:

• To access email by clients located behind middle-boxes with
no globally accessible address. The central service allows a
client to connect to the server via the domain name, which
is resolved by Dynamic Name System (DNS) to public IP
address.

• The sender and the recipient usually are not on-line at the
same time. The store-and-forward property enables the sender
to send the email to the central server where it is later re-
trieved by the recipient.

• The central service provides high availability via redundancy
and replication.

• The central service backs up email archives.

While the email is free, there are associated intangible costs to users
in terms of privacy, where the email provider data-mines user’s
email, and the user’s account vulnerability to hacking [20] [22].

According to Edwards W.K., et.al. in Bayou, electronic mail is
often considered to be the ’classical’ asynchronous collaborative ap-
plication [12]. This type of network shared-data system according
to Brewer’s CAP theorem is characterized by high availability and
tolerance to network partitions with eventually consistent data-
base [8]. These properties are inherent in delay tolerant email’s
store-and-forward architecture. Generally, an email client, main-
tains the cache of messages. The cache is synchronized with the
server by legacy IMAP [11] and to some extent SMTP [19] protocols.
The client uses IMAP protocol to validate the cache via combination
of mailbox’s statistics and unique keys. Changes made to the same
mailbox by multiple clients can result in communication overhead
to identify divergence point and may still cause the complete mail-
box synchronization. A number of protocol extensions, for instance
MODSEQ [24] and IDLE [21], have been defined to improve the
communication efficiency, especially in resource-limited mobile
devices.

Schmandt and Marti pointed out in 2005 that mobile email usage
is growing fast with increasingly heterogeneousmulti-device access
to the email [31]. In fact, the mobile email access overtook the
desktop in 20111. This transition to mobile computing along with
the email overload may have affected user’s email behaviour. In [10]

1https://www.campaignmonitor.com/dev-resources/will-it-work/email-clients/

ar
X

iv
:1

70
9.

00
41

2v
1

 [
cs

.D
C

]
 1

 S
ep

 2
01

7

https://doi.org/http://dx.doi.org/10.1145/3018896.3018918
https://doi.org/http://dx.doi.org/10.1145/3018896.3018918

ICC ’17, March 22–23, 2017, Cambridge, United Kingdom Gregory Tsipenyuk and Jon Crowcroft

it is shown that 89.5% of the email delete actions are delete-without-
read. I.e. users delete the email without even opening, let alone
reading it. Authors suggest that this phenomena could be explained
by increased number of machine-generated email, which accounts
for 90% of non-spam Web email [14]. It is also possible that users
are checking their email on mobile devices while busy with other
activities and have less patience to read the entire message, deleting
it based on cues such as the message’s subject or preview.

We therefore see several issues due to the email access from
multiple intermittently connected devices. First, multiple email
changes are reconciled, with the most recent update overwriting
the previous ones. This maybe undesirable or simply not what a
user wants. Second, a user may unintentionally delete an important
message or file the message to the wrong or obscure folder. Finally,
the legacy IMAP protocol is not bandwidth efficient. To address
these issues it is not sufficient to have the latest email state. As
Brewer notes “The state is less useful than the history, from which
the system can deducewhich operations actually violated invariants
and what results were externalized, including the responses sent
to the user” and “The best way to track the history of operations
on both sides is to use version vectors, which capture the causal
dependencies among operations” [9]. The replica of the history can
be maintained with DVCS like synchronization protocol designed
for the bandwidth optimization via efficient divergence point search
and content de-duplication.

Recent phenomena of the Internet of Things (IoT) will see the
number of interconnected devices grow to 24 billion by 2020 [15].
A device could be a home router or an electricity monitor. While a
resource limited, some of these devices, like Raspberry Pi2, are com-
parable in the hardware configuration to an average smartphone.
We see the IoT environment as an opportunity to decentralize the
email.

The contribution of this paper is four-fold. First, we are propos-
ing a high level decentralized email architecture where the email
history is stored on a cluster of user’s owned devices. The his-
tory addresses possible inconsistencies and user’s error due to the
email access from multiple devices. Moving the data to user’s de-
vices intrinsically solves the privacy issue. The cluster provides
availability, redundancy, and backup. Email replicas on devices
are maintained via efficient DVCS like synchronization protocol.
Second, we present a detailed evaluation of the email architecture
on Raspberry Pi computer. Third, the evaluation shows that the
approach is both feasible and affordable. Fourth, distributed archi-
tecture evolves out of 1) taking a modern view of what an email
architecture requirements are, including eventual consistency for
synchronization, and modern approaches (i.e. CAP) to consistency;
2) the advent of IoT, solving the reachability and ubiquity problem
of availability of peer-to-peer (P2P).

The rest of the paper is organized as follows. Section 2 reviews
the related work. Section 3 provides high level architecture of the
proposed email system. Section 4 describes the evaluation design.
Section 5 presents evaluation data. Finally, section 6 concludes.

2https://www.raspberrypi.org

2 RELATEDWORK
Earlier email research has been focusing on achieving high avail-
ability and reliability via replication of the delivery path as in
Grapevine [6], distributed file system as in Andrew Message Sys-
tem [29] and Porcupine [30], and clustering like in NinjaEmail [33]
and Porcupine.

The Bayou system [12] has a different approach with an empha-
sis on a replicated weakly-consistent storage system. Bayou also
introduces “Timewarp”, a toolkit, which provides the versioning
functionality.

The turning point in the email research correlates with introduc-
tion and success of P2P file sharing systems like Napster3, Gnutella4,
and BitTorrent5. In P2P, participating peers contribute their re-
sources to solve some common task. P2P is characterized by high
degree of decentralization, self-organization, organic growth, re-
silience to faults and attacks, and abundance and diversity of re-
sources [28].

While there are implementation nuances, generally, a P2P email
architecture relies on Distributed Hash Table (DHT)6 to replicate
the content between peers. For instance in [18], system nodes (super
nodes) in DHT provide persistence of messages in transit from the
sender to the receiver. The storage is not durable and messages are
deleted after reading.

ePost [26] has a durable DHT storage and in addition uses DHT
as the multicast notification system. ePost maintains user’s view,
i.e. mailboxes, as the history of changes in an immutable log with
periodic snapshots for fast traversal.

[17] is a spam-avert, pull-based system with the initial storage
burden placed on the sender’s trusted group of peers and receiver
using DHT notifications to retrieve the email or delete it without
downloading.

DMS [13] uses peer’s resource self-evaluation for classification
into hierarchy of nodes, each maintaining and replicating the data
according to its function.

Similarly, HMail [25] builds a hierarchy of overlays, with one
group of peers having higher uptime and bandwidth, and another
group having higher processing power and storage. HMail also
takes into consideration peer’s geographical location.

[34] is a hybrid P2P where depending on the environment and
capabilities super nodes have functionality of the centralized server,
delegate tasks to regular nodes, or maintain inbox and outbox with
references to message’s location. The replication hash algorithm
evaluates peer’s on-line habits, workload, and trust relationship to
select optimal nodes.

In Decentralized Electronic Mail (DEM) [5] user’s mailbox is a
mobile object replicated over participating nodes via a middleware
rather than DHT. The attachment is the mobile object too, conse-
quently only one, albeit replicated, unique copy of the attachment
is maintained. Mail items travel directly from the sender to the
receiver achieving O(1) communication cost.

Apache Wave (originally Google Wave)7 is an ambitious archi-
tecture merging instant messaging, email, wikis, and social network

3https://en.wikipedia.org/wiki/Napster
4https://en.wikipedia.org/wiki/Gnutella
5https://en.wikipedia.org/wiki/BitTorrent
6https://en.wikipedia.org/wiki/Distributed_hash_table
7https://en.wikipedia.org/wiki/Google_Wave_Federation_Protocol

My Home is My Post-Office: Evaluation of a decentralized email architecture
on Internet-of-Things low-end device ICC ’17, March 22–23, 2017, Cambridge, United Kingdom

Router

PC
Alice’s

Smartphone

Laptop

Tablet

Paul’s
Smartphone

AB

AB

A

P

P

P

P AB

P

Energy Monitor

Paul’s
devices

Alice’s and
Bob’s devices

Bob’s
Smartphone

B

Figure 1: High level email architecture on in-home IoT de-
vices.

under the web-based computing platform. Apache Wave messages
(waves) along with their history are perpetually stored on a central
server. Waves support concurrent modification and low-latency
update and are shared with collaborators. GoogleWave was not suc-
cessful, with the failure attributed to overly complicated interface
yet without any apparent benefit over existing solutions8.

While P2P architecture has attractive properties outlined above,
it requires a complex adaptive infrastructure. There are successful
P2P applications like BitTorrent or Bitcoin9, but to-date P2P found
no traction in the email outside of academia interest.

3 HIGH LEVEL EMAIL ARCHITECTURE
Our architecture is based on the previous research where the email
history persistence is one of the features, most notably Google
Wave and to some extent Bayou and ePost, and the research into
the email decentralization via P2P network. The main inspiration
for our research is owned to IoT phenomena where a user may have
at her disposal multiple interconnected devices. We are particularly
interested in devices that generally are powered on for extended
period of time and plugged into AC power supply, for instance
a Network Router or Electricity Monitor. User’s devices create a
trusted group of peers with shareable resources to provide avail-
ability, redundancy, back up, and intrinsically privacy. We assume
that at least one device has a globally accessible address and other
peers can connect to this device.

Figure 1 shows the high level architecture’s example. We con-
sider two peer groups. First group consists of Paul’s devices and the
second group of Alice’s and Bob’s devices. Each group has at least
one globally accessible device, Energy Monitor in the first group,
and Router in the second group. Each device maintains complete
history of the email and synchronizes its replica with the master
replica on the globally accessible device. Each personal device only

8http://arstechnica.com/information-technology/2010/08/google-wave-why-we-
didnt-use-it/
9http://s.kwma.kr/pdf/Bitcoin/bitcoin.pdf

maintains the replica of its owner, for instance Alice’s smartphone
only keeps Alice’s email. Globally accessible devices and other de-
vices shared within the group maintain email of all group members.
For instance, Router and PC maintain both Alice’s and Bob’s email.
Alice and Bob are socially connected to Paul and actively exchange
emails with each other. Their Globally accessible devices maintain
replica of both of their email archives providing higher availability,
redundancy, backup, and efficient disk usage. For instance, Paul
can access his email via his smartphone from either one of the
globally accessible devices (solid yellow connector). When at home,
Paul can access his email by directly connecting to his device via
WiFi (dashed yellow connector). Sharing resources between socially
connected group of peers like family members or close friends re-
duces the network and disk energy cost due to the attachment’s
de-duplication. We analyzed attachment’s statistics in the Enron
email corpus data10 consisting of 130 user accounts with the total
size of unique messages equal to 19.9GB. Attachments in average
contribute 67.79%, with duplicate attachments contributing 12.16%
to each user’s account. Duplicate attachments between all user
accounts take up 18.19% of the space. We also analyzed 20 email
accounts from friends and family totaling 50.48GB. The statistics is
on the same order of magnitude: 75.13%, 10.96%, 25.98%. If all our
family members keep their email on the same devices then there is
about 25% saving on the disk space, network bandwidth, network,
and disk IO energy between all members. As we’ll show later in the
paper, there is a linear dependency between the network and disk
IO energy and the size of the archive. Clearly, there are some fam-
ily members that share more attachments than the others. Social
network analysis can be used to discover the best match between
the family members to optimize the cost of device sharing. This is
a subject for future research.

4 EVALUATION DESIGN
We run our evaluation on the latest release 3 of Raspberry Pi. Rasp-
berry Pi is a credit card-size single board computer developed in
the UK with the intent to promote the teaching of basic computer
science. We have chosen Raspberry Pi for the following reasons,
which make it an attractive platform for developing IoT applica-
tions to both a community of enthusiasts and large companies like
Microsoft and IBM11.

• Small form factor
• Capable hardware platform with 64-bit quad-core ARMv8
1.2GHz CPU, 1 GB RAM,micro SD-card up to 128 GB, 802.11n
Wireless LAN, Bluetooth, Ethernet port, 4 USB ports, Full
HDMI port, 40 GPIO pins, Micro USB power supply

• Powerful Linux development environment with officially
supported Raspbian Jessie OS, based on Debian Jessie OS

• Large support community with over five million devices sold
since its first release in 2012

• Affordable $35 price tag

10https://www.nuix.com/edrm-enron-data-set/enron
11https://www.raspberrypi.org/blog/tag/internet-of-
things/,http://www.informationweek.com/software/enterprise-
applications/10-raspberry-pi-projects-for-learning-iot/d/d-id/1320757,
https://developer.microsoft.com/en-us/windows/iot, http://www.ibm.com/internet-
of-things/ecosystem/devices/raspberry-pi/

ICC ’17, March 22–23, 2017, Cambridge, United Kingdom Gregory Tsipenyuk and Jon Crowcroft

Authors in [16] evaluate Raspberry Pi as an affordable, light-
weight, and energy-efficient private email infrastructure. Authors
conclude that Raspberry Pi is an adequate platform for individual
or small and medium enterprises with up to 4000 email load per
day. This analysis encouraged us to go on with the evaluation of
Raspberry Pi as the hardware platform in the email architecture
supporting revisions, data replication and efficient synchronization.

Figure 2: Evaluation workflow.

Figure 2 shows evaluation’s workflow. We evaluate five email
back-end store types. First is Dovecot version 2.2.2412, open source
high performing IMAP server, which we use as the base system in
our evaluation. We use Maildir13 as the email data structure. Second
is Git14, a DVCS system with emphasis on performance, non-linear
workflow, and efficient synchronization. Revision maintenance and
synchronization in Git is done via Merkle15 hash tree. Third is
GitGc, this is Git with garbage collection run after each appended
250th message. Fourth is Sqlite library database, which is the most
widely deployed database, supporting iOS, Android, and embedded
applications. We maintain revisions in Sqlite via audit tables. Sqlite
maintains the database in a single file. Finally, we have a naive VCS
implementation (NVCS), with revisions maintained via single log
file constructed as Merkle tree blockchain. We used logical Maildir
structure in Git, GitGc, Sqlite, and NVCS. To model store types,
we implemented in C++ a TCP/IP server with support for IMAP’s
APPEND and FETCH commands. We compressed messages on disk
and used fdatasync to force all modified in-core data to be written
to disk.

For each store type our evaluation assesses three email actions:
append, fetch, and synchronize. Each action is tested five times for
an archive with 250, 500, 750, 1000, 2000, 3000, 4000, 5000, and 6000
number of messages and archive’s size 41.18, 54.18, 64.85, 122.65,
256.4, 442.8, 574.27, 604.05, and 831.74MB respectively. Each archive
is randomly generated from the Enron corpus email dataset. We use
Mac OS X MacBook Air 1.7GHz, 8GB RAM, and 512 SSD to append
and fetch email messages and as the remote repository for synchro-
nization with the local Raspberry Pi repository. Synchronization is
tested by first appending unique 100 messages to already created
12http://www.dovecot.org
13https://cr.yp.to/proto/maildir.html
14https://git-scm.com
15https://en.wikipedia.org/wiki/Merkle_tree

archives and then synching the archives to the original archives.
Raspberry Pi is connected to Mac via Netgear 10.100M FS608 switch.
For each test we collect energy, latency, bandwidth, user’s cpu, and
used memory. The energy and latency are tracked with Monsoon
Power Monitor FTA22D. CPU and memory are tracked with top16
Linux utility. We pick the overall maximum user’s CPU. To get the
memory we calculate the difference between the lowest and the
highest memory used during the execution, where thememory used
is calculated as (mem-free-buffers-cached). The bandwidth is calcu-
lated from tcpdump output by adding up payload packet’s length.
Error bars on each plot show 95% confidence intervals, which are
illegible in some cases because of low variance in measurements.
Large dots on all plots represent average values and small-dotted
lines represent trend line, which are always moving averages for
CPU and memory.

5 EVALUATION
5.1 Appending Messages

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000

Av
er
ag
ee
	e
ne
rg
y,
	K
uA

h

Email	archive	size,	MB

Dovecot Git Sqlite NVCS GitGc

Figure 3: Append messages, average energy.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900

Av
er
ag
e	
la
te
nc
y,
	s
ec

Email	archive	size,	MB

Dovecot Git Sqlite NVCS GitGc

Figure 4: Append messages, average latency.

We first analyze results of appending a set of messages via IMAP
APPEND command. Figures 3, 4, 5, 6 show the energy, latency, CPU,
16http://man7.org/linux/man-pages/man1/top.1.html

My Home is My Post-Office: Evaluation of a decentralized email architecture
on Internet-of-Things low-end device ICC ’17, March 22–23, 2017, Cambridge, United Kingdom

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900

Av
er
ag
e	
CP
U,
	%

Email	archive	size,	MB

Dovecot Git Sqlite NVCS GitGc

Figure 5: Append messages, average user CPU.

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700 800 900

Av
er
ag
e	
m
em

or
y	
us
ed
,	%

Email	archive	size,	MB

Dovecot Git Sqlite NVCS GitGc

Figure 6: Append messages, average user memory.

and memory depending on the appended archive size. Energy and
latency ranking best to worst is NVCS, Dovecot, Sqlite, Git, and
GitGc. Intuitively we expected NVCS, Dovecot, and Sqlite perform
similarly, and it is confirmed by the plots. Indeed, they all have in
common three computational tasks: network read, compression,
and disk write plus some overhead. Where the overhead varies
between the stores and can be explained by NVCS’s SHA1 compu-
tation and log file creation, Dovecot’s user account management,
and Sqlite database’s management, with NVCS having the lowest
overhead.

Git and GitGc have the same tasks but significantly higher en-
ergy and latency overhead, which is explained by Git maintaining
revisions via snapshots, with rough disk space cost O(N 2). Indeed,
the energy and latency trend line for Git and GitGc is O(N 2) while
other stores trend line is O(N). GitGc has even higher overhead
than GitGc for two reasons. First, the garbage collection runs delta
compression to pack loose files into one single file. This process
is CPU and memory demanding, which is confirmed by CPU and
memory usage on Figure 5, 6. Second, the cost of disk IO is the
same as in GitGc plus the overhead of creating the pack file. GitGc
compression is very efficient with the resulting pack file having
fairly small disk overhead, but there is a significant temporary disk
overhead because the new pack is written to the temporary file first

and then deleted after the new pack is completed. Unlikely from
GitGc, other stores are not CPU bound, with CPU almost constant
around 25%. Memory usage has a slight upward trend but is well
below 6%. The bandwidth usage is the same for all stores. Indeed,
the same batch of messages is uploaded to the servers regardless of
the store type.

5.2 Fetching Messages

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700 800 900

Av
er
ag
e	
en
er
gy
,	K
uA

h
Email	archive	size,	MB

Dovecot Git Sqlite NVCS

Figure 7: Fetch messages, average energy.

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900

Av
er
ag
e	
la
te
nc
y,
	s
ec

Email	archive	size,	MB

Dovecot Git Sqlite NVCS

Figure 8: Fetch messages, average latency.

Figures 7, 8, 9, 10 show the energy, latency, CPU, and memory
depending on the appended archive size. We used IMAP FETCH
command to fetch all messages. We see less variation in energy and
latency between the stores even for Git (we don’t show GitGc plots
because they are practically identical to Git). Indeed, all stores have
essentially the same process to fetch the messages: 1) read index
file; 2) get the message location; 3) read the message; 4) decompress
the message; 5) write the message to the network. While there are
some variations in CPU and memory, none of the stores is either
CPU or memory bound with the CPU usage under 20% and the
memory usage under 2%. Bandwidth usage is the same in all cases
since once the message is red from the disk and uncompressed, it
produces the same size regardless of the store type.

ICC ’17, March 22–23, 2017, Cambridge, United Kingdom Gregory Tsipenyuk and Jon Crowcroft

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800 900

Av
er
ag
e	
CP
U,
	%

Email	archive	size,	MB

Dovecot Git Sqlite NVCS

Figure 9: Fetch messages, average user CPU.

-0.5

0

0.5

1

1.5

2

0 100 200 300 400 500 600 700 800 900

Av
er
ag
e	
m
em

or
y	
us
ed
,	%

Email	archive	size,	MB

Dovecot Git Sqlite NVCS

Figure 10: Fetch messages, average user memory.

5.3 Archive Synchronization

-2

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800 900

Av
er
ag
e	
en
er
gy
,K
uA

h

Email	archive	size,	MB

Dovecot Git Sqlite GitGc Git-rsync

Figure 11: Sync archives, average energy.

Figures 11, 12, 13, 14 show the energy, latency, CPU, and memory
depending on the appended archive size. We used Dovecot’s dsync
utility, rsync utility for Sqlite and Git-rsync, and Git’s(and GitGc)
fetch to synchronize local to remote archives. Git-rsync highlights
the difference between rsync for single file (Sqlite) versus multiple

-20

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700 800 900

Av
er
ag
e	
la
te
nc
y,
	s
ec

Email	archive	size,	MB

Dovecot Git Sqlite GitGc Git-rsync

Figure 12: Sync archives, average latency.

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000

Av
er
ag
e	
CP
U,
	%

Email	archive	size,	MB

Dovecot Git Sqlite GitGc Git-rsync

Figure 13: Sync archives, average user CPU.

-0.5

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700 800 900

Av
er
ag
e	
m
em

or
y,
	%

Email	archive	size,	MB

Dovecot Git Sqlite GitGc Git-rsync

Figure 14: Sync Archives, average user memory.

files (Git) synchronization and the difference between rsync and
Git synchronization algorithm. Rsync performs the worst in all
measurements, with multiple files (Git-rsync) being worse than
single file (Sqlite) synchronization. In case of Git-rsync, rsync has
to scan multiple files (N 2) to find updated or new files to transfer.
This results in high volume of the control information exchanged
between the local and remote servers as can be seen from the

My Home is My Post-Office: Evaluation of a decentralized email architecture
on Internet-of-Things low-end device ICC ’17, March 22–23, 2017, Cambridge, United Kingdom

bandwidth usage shown on Figure 15. In case of Sqlite, rsync scans
for file chunks, which changed between the local and remote file,
and transfers only changed chunks. Rsync can guess location of
the change based on the file size to reduce the volume of control
information. Rsync creates a new copy of the file, moving it into
place when the transfer is complete. This is a default behavior over
the in-place update. The former is clearly preferred as in the latter
case an update failure will leave the entire email archive unusable.
We also used rsync to synchronize Dovecot archives, which have
O(N) files. In this case rsync performed better than Dovecot’s dsync
utility but worse than GitGc. We don’t show Dovecot rsync plots
to reduce the figure’s clutter. GitGc performs the best. The reason
for this is most likely due to the efficient scan of divergence point
in the Merkle hash tree in the single indexed pack file rather than
scanning multiple files. Git and Dovecot have practically the same
performance. The best trend line match for energy and latency in
all stores is second order polynomial. It is a slightly better match
over the linear trend line. For instance, R2 for GitGc is 0.981 for the
polynomial versus 0.951 for the linear trend line. Since the network
and disk write have the O(N) cost, we assume that scanning for
the convergence point adds a small O(N 2) cost. Neither of stores
is CPU or memory bound with the CPU usage under 25% and the
memory usage under 2%.

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700 800 900

Av
er
ag
e	
ba
nd
w
id
th
,	M

B

Email	archive	size,	MB

Figure 15: Average bandwidth usage in Git-rsync.

Table 1: Performance summary based on Energy and La-
tency (1-best, 5-worst)

Store Type/Email Action Append Fetch Synchronize
Dovecot 2 4 3
Git 4 3 2
GitGc 5 - 1
Git-rsync - - 5
NVCS 1 1 -
Sqlite 3 2 4

5.4 Energy cost evaluation
Driven by the social media and video streaming demand, the on-
line universe carries enormous amount of data that needs to be

stored somewhere, i.e. ubiquitous data centers. Cisco forecast [2]
estimates that by 2020 global data center’s IP traffic will reach 15.3
zettabytes (ZB) and the data stored will reach 915 exabytes (EB). It
is interesting that the amount of data stored on devices will be five
times higher than the amount stored in data centers at 5.3ZB. The
amount of energy consumed by data centers will triple in the next
decade. It presently constitutes 3% of the global energy usage and
contributes 2% to the green house gas emissions, Bawden [4]. To
put things in prospective, 416.2 terawatt hours of electricity that
the data centers used in 2015 is significantly higher than the UK
total consumption of 300 terawatt hours, and the carbon footprint
is on the same level as the airline industry. To control the carbon
footprint, companies increase their use of the renewable energy,
for instance in 2016 Microsoft announced largest wind purchase to
date [3]. Google used machine learning AI to cut its data centers
energy use by 15%, Vaughan [32]. To reduce the cooling cost, which
contribute 40% to the overall energy cost, Facebook opened some
data centers in Sweden, 70 miles from Arctic Circle, Bawden [4].
Considering that data centers have significant impact on the energy
demand, it is reasonable to ask a question of how does the proposed
decentralized architecture compare to the centralized data center
in terms of the energy cost.

Companies owning data centers generally do not release their
detailed energy costs. But as part of the green initiative, in 2011
Google published a white paper outlining the email energy cost
comparison of the cloud data center versus local server [1]. Google
estimates that their per user email annual energy usage is less than
2.2kWh.

Radicati email statistics report [27] estimates that by 2019 the
average number of emails send and received per user per day is
246.5. To estimate the energy cost of the proposed decentralized
architecture, I consider the worst case scenario from the energy
consumption point of view of GitGc back-end implementation with
compression and datasync running on Raspberry Pi 3. The average
energy consumed by appending 250 email messages to the back-end
is 6,631µAh (Figure 3). Fetching 250 email messages consumes in
average 458µAh (Figure 7). GitGc synchronization of 100 messages
consumes in average 234µAh (Figure 11). I estimate the energy con-
sumption for synchronizing 250messages as 234∗2.5 = 585µAh. The
total average energy consumption is 6, 631+ 458+ 585 = 7, 674µAh.
I use Power Usage Effectiveness (PUE)17 of 2.5 (highest estimate)
in my analysis. I assume that there is a redundant backup device
which consumes the same amount of energy. Then the total con-
sumed energy per user per day including the PUE coefficient and
the backup is 7, 674 ∗ 2.5 ∗ 2 = 38, 370µAh. The nominal Raspberry
Pi voltage is 5.1V . Therefore the consumed energy per day inWh is
38, 370µAh ∗ 5.1V = 195, 687µWh or 0.195687Wh. The annual per
user energy consumption is 0.195687∗365 = 71.43Wh, which is sub-
stantially lower than Google’s estimate of 2.2kWh. Note however,
that the annual Raspberry Pi 3 energy consumption, depending on
the load, is 10(idle)−31(100%load)kWh18. Consequently, if a IoT de-
vice is under-utilized then the energy consumption is substantially
higher than the Google’s estimate. One more note is that 2.2kWh
Google’s estimate is 6 years old. Shehabi et al. in [? , pES-2] show US

17https://en.wikipedia.org/wiki/Power_usage_effectiveness
18https://raspberrypi.stackexchange.com/questions/5033/

https://en.wikipedia.org/wiki/Power_usage_effectiveness
https://raspberrypi.stackexchange.com/questions/5033/

ICC ’17, March 22–23, 2017, Cambridge, United Kingdom Gregory Tsipenyuk and Jon Crowcroft

Data Center total electricity use at 2010 energy efficiency level and
current various strategy efficiency level estimates. At 2010 level,
the total energy usage in 2017 is about 150 billion kWh, and with
the best practices it is 40 billion kWh. Even if we roughly estimate 4
fold improvement in efficiency then the Google’s estimate is 550Wh,
which is still 8 times worse than the projected decentralized email
energy usage assuming it is reasonably utilized.

5.5 Evaluation Summary
Table 1 presents stores performance summary based on the en-
ergy and latency evaluation. The evaluation shows that a VCS-like
structured store can resource-wise perform at least as good as the
base Dovecot IMAP server. However, a VCS implementation can be
disk-space and CPU bound when the email messages are committed
to disk. Git’s snapshot implementation of the revision maintenance
has O(N 2) disk space, energy, and latency cost. Git’s Garbage Col-
lection can substantially reduce the disk space overhead at the
expense of more energy, latency, CPU, and temporary disk space
usage.

Access to messages is not affected by the type of the store.
Evaluation of the synchronization protocol shows GitGc has

the best performance resource-wise over Dovecot and rsync. This
can be explained by the efficient Merkle hash tree detection of the
divergence point in the indexed pack file. The evaluation further
shows that the network IO, disk IO, and compression energy usage,
and the latency have a linear bandwidth dependency. The band-
width can be reduced by compressing the data, transmitting the
binary data instead of the base64-encoded data, and de-duplicating
attachments. IMAP extensions RFC 4978 and RFC 3516 support
compression and binary data transmission. IMAP core RFC 3501
FETCH command supports BODYSTRUCTURE extension data (op-
tional) with the message’s body MD5 but doesn’t have the option of
getting the attachment’s MD5. An IMAP extension can be defined
to support MIME parts identification via a hash like MD5 or SHA1.
This will enable clients supporting this extension to choose whether
the attachment needs to be downloaded or not. But IMAP protocol
already has rather complicated heuristic based on the mailbox’s
statistics and metadata to synchronize the client’s cache to the
server’s database. Moreover, supporting version control in IMAP
can further complicate the already extension-crowded protocol.

6 CONCLUSION
We presented a high level decentralized email architecture that
takes advantage of IoT smart-home environment running low-end
computing devices with publicly accessible address. The architec-
ture maintains full email history of changes, which is important in
present day computing environment where multiple devices, like
smartphone, tablet, etc. are accessing and making changes to the
email archive and users are unintentionally deleting or misfiling
an important email due to the email overload. We also presented a
detailed evaluation of latency, CPU, bandwidth, energy, memory,
and disk usage for various email stores with the revision control.
Our evaluation shows that low-end devices like Raspberry Pi are
capable of supporting email architecture with revision-controlled
archives and that this architecture can perform at least as good as
conventional IMAP server. The architecture proposes to replace

legacy IMAP and SMTP protocols with a synchronization protocol,
which relies on Merkle hash tree to identify divergence between
the local and remote archive.

We see emerging IoT technology as a promising platform not
just for the email but for the overall unified messaging architecture
where the data is put back under user’s control. We only touched
just a few aspects of this architecture but we hope it can encourage
more research in this area. Future research can focus on an optimal
structure to maintain email revisions. Details of the synchronization
protocol have to be looked at, for instance how to prioritize MIME
parts download so that mobile or bandwidth-limited devices can
have the email preview without downloading the whole message.
Establishing connection between peers is a big research area with
one thought to use existing email providers as the DNS server. And
last but not least, user’s privacy in IoT environment is a substantial
research subject.

REFERENCES
[1] 2011. Google’s Green Computing: Efficiency at Scale. https:

//static.googleusercontent.com/media/www.google.com/en//green/pdfs/
google-green-computing.pdf. (2011).

[2] 2016. Cisco Global Cloud Index: Forecast and Methodology, 2015âĂŞ2020.
http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/
global-cloud-index-gci/white-paper-c11-738085.pdf. (2016).

[3] 2016. Microsoft announces largest wind energy purchase to date.
https://news.microsoft.com/2016/11/14/microsoft-announces-largest-wind-
energy-purchase-to-date/#So45wxOAtMElu25Y.97. (2016).

[4] Tom Bawden. 2016. Global warming: Data centres to consume three times
as much energy in next decade, experts warn. http://www.independent.co.
uk/environment/global-warming-data-centres-to-consume-three-times-as-
much-energy-in-next-decade-experts-warn-a6830086.html. (2016).

[5] Sivan Bercovici, Yaniv Frishman, Idit Keidar, and Ayellet Tal. 2006. Decentralized
electronic mail. In Proceedings - International Conference on Distributed Computing
Systems. https://doi.org/10.1109/ICDCSW.2006.39

[6] Andrew D. Birrell, Roy Levin, Michael D. Schroeder, and Roger M. Needham.
1982. Grapevine: an exercise in distributed computing. Commun. ACM 25, 4
(1982), 260–274. https://doi.org/10.1145/358468.358487

[7] Brandon Gaille. 2013. Time Spent Online Statistics by Region and Type of Activity.
(2013). http://brandongaille.com/time-spent-online-statistics-by-region-and-
type-activity/

[8] Eric Brewer. 2000. Towards Robust Distributed Systems. In ACM Symp.Principles
of Distributed Computing (PODC 00) (invited talk). ACM, Portlan, Oregon, 7–10.
https://people.eecs.berkeley.edu/

[9] Eric Brewer. 2012. CAP twelve years later: How the "rules" have changed. Com-
puter 45, 2 (2012), 23–29. https://doi.org/10.1109/MC.2012.37

[10] Dotan Di Castro, Zohar Karnin, Liane Lewin-Eytan, and Yoelle Maarek. 2016.
You’ve gotMail, andHere isWhat you Could doWith It! Analyzing and Predicting
Actions on Email Messages. WSDM ’16 Proceedings of the Ninth ACM International
Conference on Web Search and Data Mining (2016), 307–316. https://doi.org/10.
1145/2835776.2835811

[11] M Crispin. 2003. RFC 3501: Internet Message Access Protocol - version 4rev1.
Network Working Group (2003), 1–109.

[12] W K Edwards, E DMynatt, K Petersen, M J Spreitzer, D B Terry, and MMTheimer.
1997. Designing and Implementing Asynchonous Applications with Bayou. User
Interface Softw.\ and Techno.\ (UIST) (1997), 119–128. https://doi.org/10.1145/
263407.263530

[13] Patrik Emanuel, Mircea Vladutiu, and Lucian Prodan. 2011. Distributed Mailing
System. 2011 IEEE 17th International Symposium for Design and Technology in
Electronic Packaging (SIITME) (2011), 349–354.

[14] Mihajlo Grbovic, Guy Halawi, Zohar Karnin, and Yoelle Maarek. 2014. HowMany
Folders Do You Really Need?: Classifying Email into a Handful of Categories.
Proceedings of the 23rd ACM International Conference on Conference on Information
and Knowledge Management (2014), 869–878.

[15] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. 2013. Internet of Things (IoT): A vision, architectural elements, and
future directions. Future Generation Computer Systems 29, 7 (2013), 1645–1660.
https://doi.org/10.1016/j.future.2013.01.010 arXiv:1207.0203

[16] Sufian Hameed, Muhammad Arsal Asif, and Farhan Kamal Khan. 2015. PiMail :
Affordable , Lightweight and Energy-Efficient Private Email Infrastructure. (2015),
296–301.

https://static.googleusercontent.com/media/www.google.com/en//green/pdfs/google-green-computing.pdf
https://static.googleusercontent.com/media/www.google.com/en//green/pdfs/google-green-computing.pdf
https://static.googleusercontent.com/media/www.google.com/en//green/pdfs/google-green-computing.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
https://news.microsoft.com/2016/11/14/microsoft-announces-largest-wind-energy-purchase-to-date/#So45wxOAtMElu25Y.97
https://news.microsoft.com/2016/11/14/microsoft-announces-largest-wind-energy-purchase-to-date/#So45wxOAtMElu25Y.97
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
https://doi.org/10.1109/ICDCSW.2006.39
https://doi.org/10.1145/358468.358487
http://brandongaille.com/time-spent-online-statistics-by-region-and-type-activity/
http://brandongaille.com/time-spent-online-statistics-by-region-and-type-activity/
https://people.eecs.berkeley.edu/
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1145/2835776.2835811
https://doi.org/10.1145/2835776.2835811
https://doi.org/10.1145/263407.263530
https://doi.org/10.1145/263407.263530
https://doi.org/10.1016/j.future.2013.01.010
http://arxiv.org/abs/1207.0203

My Home is My Post-Office: Evaluation of a decentralized email architecture
on Internet-of-Things low-end device ICC ’17, March 22–23, 2017, Cambridge, United Kingdom

[17] Edson Kageyama, Carlos Maziero, and Altair Olivo Santin. 2008. An Experi-
mental Peer-to-Peer E-mail System. 2008 11th IEEE International Conference on
Computational Science and Engineering (jul 2008), 203–208. https://doi.org/10.
1109/CSE.2008.9

[18] J. Kangasharju, K.W. Ross, and D.a. Turner. 2003. Secure and resilient peer-to-peer
e-mail design and implementation. Proceedings Third International Conference on
Peer-to-Peer Computing (P2P2003) (2003), 184–191. https://doi.org/10.1109/PTP.
2003.1231519

[19] J Klensin. 2001. RFC 2821: Simple Mail Transfer Protocol. Network Working
Group April (2001).

[20] Joshoua Kopstein. 2013. The Mission to Decentralize the Internet. (2013). http://
www.newyorker.com/tech/elements/the-mission-to-decentralize-the-internet

[21] B Leiba. 1997. RFC 2177: IMAP4 IDLE command. Network Working Group (1997),
1–4. https://tools.ietf.org/html/rfc2177

[22] Mary Madden. 2014. Public Perception of Privacy and Security in the Post-
Snowden Era. (2014). http://www.pewinternet.org/2014/11/12/public-privacy-
perceptions/

[23] Matt McGee. 2013. Email Is Top Activity On Smartphones, Ahead Of Web
Browsing & Facebook. (2013). http://marketingland.com/smartphone-activities-
study-email-web-facebook-37954

[24] A Melnikov, D Cridland, and C Wilson. 2008. RFC 5162: IMAP4 Extensions
for Quick Mailbox Resynchronization. Network Working Group (2008), 1–24.
https://tools.ietf.org/html/rfc5162

[25] Patrik Emanuel Mezo, Mircea Vladutiu, and Lucian Prodan. 2012. HMail: A
Hybrid Mailing System Based on the Collaboration between Traditional and
Peer-to-Peer Mailing Architectures. In 2012 7th IEEE International Symposium
on Applied Computational Intelligence and Informatics (SACI). IEEE, Timisoara,
Romania, 255–260. https://doi.org/10.1109/SACI.2012.6250012

[26] Alan Mislove, Ansley Post, Charles Reis, Paul Willmann, Peter Druschel, Dan S
Wallach, Xavier Bonnaire, Pierre Sens, Jean-michel Busca, and Luciana Arantes-
bezerra. 2006. POST : A Secure , Resilient , Cooperative Messaging System.
EuroSys ’06: Proceedings of the 1st ACM SIGOPS/EuroSys Conference on Computer
Systems (2006).

[27] Sara Radicati. 2015. Email Statistics Report, 2015-2019. http:
//www.radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-
2015-2019-Executive-Summary.pdf. (2015).

[28] B Y Rodrigo Rodrigues and Peter Druschel. 1999. Peer-to-Peer Systems. (1999).
[29] J. Rosenberg, C. F. Everhart, and N. S. Borenstein. 1987. An overview of the

Andrew message system. ACM SIGCOMM Computer Communication Review 17,
5 (1987), 99–108. https://doi.org/10.1145/55483.55494

[30] Yasushi Saito, Eric Hoffman, Brian Bershad, Henry Levy, D. Becker, and B. Folliot.
1998. The porcupine scalable mail server. Proceedings of the 8th ACM SIGOPS
European workshop on Support for composing distributed applications M (1998), 52.
https://doi.org/10.1145/319195.319203

[31] Chris Schmandt and Stefan Marti. 2005. Active Messenger : E-Mail Filtering and
Delivery in a Heterogeneous Network. Human-Computer Interaction 20 (2005),
163–194.

[32] Adam Vaughan. 2016. Google uses AI to cut data centre energy use by
15%. https://www.theguardian.com/environment/2016/jul/20/google-ai-cut-
data-centre-energy-use-15-per-cent. (2016).

[33] J.R. von Behren, S. Czerwinski, A.D. Joseph, E.a. Brewer, and J. Kubiatowicz. 2000.
NinjaMail: the design of a high-performance clustered, distributed e-mail system.
Proceedings 2000. International Workshop on Parallel Processing (2000), 151–158.
https://doi.org/10.1109/ICPPW.2000.869099

[34] Yue Zhao, Shuigeng Zhou, and Aoying Zhou. 2004. E-Mail Services on Hybrid
P2P Networks A Framework for E-Mail Services. 60373019 (2004), 610–617.
https://doi.org/10.1007/978-3-540-30208-7_82

https://doi.org/10.1109/CSE.2008.9
https://doi.org/10.1109/CSE.2008.9
https://doi.org/10.1109/PTP.2003.1231519
https://doi.org/10.1109/PTP.2003.1231519
http://www.newyorker.com/tech/elements/the-mission-to-decentralize-the-internet
http://www.newyorker.com/tech/elements/the-mission-to-decentralize-the-internet
https://tools.ietf.org/html/rfc2177
http://www.pewinternet.org/2014/11/12/public-privacy-perceptions/
http://www.pewinternet.org/2014/11/12/public-privacy-perceptions/
http://marketingland.com/smartphone-activities-study-email-web-facebook-37954
http://marketingland.com/smartphone-activities-study-email-web-facebook-37954
https://tools.ietf.org/html/rfc5162
https://doi.org/10.1109/SACI.2012.6250012
http://www.radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf
https://doi.org/10.1145/55483.55494
https://doi.org/10.1145/319195.319203
https://www.theguardian.com/environment/2016/jul/20/google-ai-cut-data-centre-energy-use-15-per-cent
https://www.theguardian.com/environment/2016/jul/20/google-ai-cut-data-centre-energy-use-15-per-cent
https://doi.org/10.1109/ICPPW.2000.869099
https://doi.org/10.1007/978-3-540-30208-7_82

	Abstract
	1 Introduction
	2 Related Work
	3 High level email architecture
	4 Evaluation design
	5 Evaluation
	5.1 Appending Messages
	5.2 Fetching Messages
	5.3 Archive Synchronization
	5.4 Energy cost evaluation
	5.5 Evaluation Summary

	6 Conclusion
	References

