

Cloud Computing Service Discovery

Framework for IaaS and PaaS Models

Farzad Firozbakht

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Systems Science

University of Ottawa

Ottawa, Ontario, Canada

November 2016

© Farzad Firozbakht, Ottawa, Canada, 2016

 ii

In The Name Of GOD

 iii

Abstract

Cloud service discovery is a new challenge which requires a dedicated framework in or-

der to approach it. Over the past few years, several methods and frameworks have been

developed for cloud service discovery but they are mostly designed for all cloud compu-

ting models in general which are not optimal. The three cloud computing models are In-

frastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service

(SaaS), each computing model has its own set of resources. Having one single discovery

framework for all three is not very efficient and the implementation of such a framework

is complex with lots of overhead.

The existing frameworks for cloud service discovery are mostly semantic-based and there

are a few syntax-based frameworks that are using the filter by Attribute method as their

solution. This research proposes a cloud service discovery framework focusing on IaaS

and PaaS cloud computing models. Our framework is using a syntax-based query engine

at its core and uses Extensible Markup Language (XML) for storing cloud service infor-

mation. We eventually test the framework from the user point of view with IaaS and PaaS

cloud services from real cloud service providers.

Such a framework could be a good solution for IaaS and PaaS since it is accurate enough

for service discovery and easy to update.

 iv

Acknowledgment

I would like to thank my supervisor, Dr. Bijan Raahemi for his supervision and guidance

which motivated me throughout the time that I spent on this research. I also like to thank

my good friend Waeal Obidallah, for his friendship, support, and supervision of this

work.

I dedicate this thesis to my family who believed in me and supported me throughout my

entire life.

 v

Table of Contents

Abstract ... iii

Acknowledgment .. iv

Table of Contents .. v

List of Figures .. vii

List of Tables .. viii

List of Acronyms .. ix

Chapter 1. Introduction ... 1

1.1. Motivation ... 1

1.2. Thesis Objectives and Research Questions... 2

1.3. Methodology ... 3
1.3.1 Design Science Research methodology for Information Systems 3
1.3.2 Research Method and Steps ... 4

1.4. Thesis Contributions ... 4

1.5. Thesis Outline ... 5

Chapter 2. Background and Literature Review .. 7

2.1. Background Study ... 7
2.1.1 Web Service Discovery ... 7
2.1.2 Cloud Computing Definition ... 8
2.1.3 Introduction to Cloud Architecture .. 8
2.1.4 Cloud Service Models.. 9
2.1.5 Taxonomy of Cloud Services .. 11

2.2. Related Work (Literature Survey) ... 12
2.2.1 Semantic-based Discovery Framework ... 12
2.2.2 Semantic-based Cloud Service Discovery framework using query Processing Agent

(QPA) 15
2.2.3 Similarity Measurement... 17
2.2.4 Search-Based cloud Service Discovery ... 18
2.2.5 Algorithms for IaaS and PaaS Service Discovery ... 20
2.2.6 Concept-based Querying ... 22
2.2.7 Context-aware and syntactic matching methods ... 23
2.2.8 Syntax-Based query using XML and Ajax .. 23
2.2.9 Filter by Attribute .. 24

 vi

Chapter 3. The Proposed Cloud Service Discovery Framework 28

3.1. IaaS and PaaS Service Discovery ... 28

3.2. Behavioral Design of IaaS and PaaS Cloud Service Discovery Framework ... 29

3.3. Structural Design of IaaS and PaaS Cloud Service Discovery framework 31
3.3.1 Data Flow .. 32
3.3.2 End System .. 32
3.3.3 Query Engine ... 32
3.3.4 XML Files (Information Storage) .. 33
3.3.5 Relational Database ... 33
3.3.6 Cloud Client and Cloud Service Providers .. 33

Chapter 4. Implementation and Experiments ... 35

4.1. Work Flow Diagram of IaaS and PaaS Cloud Service Discovery Framework 35

4.2. Implementation Method .. 40

4.3. Generating Output .. 41
4.3.1 Query Engine Testing .. 41
4.3.2 Experimenting from the user point of view ... 43

4.4. Comparison ... 46
4.4.1 Semantic-based method ... 46
4.4.2 Filter by Attribute method ... 47

4.5. Summary of the Comparison ... 48

Chapter 5. Conclusions .. 49

5.1. A Summary of the Research .. 49

5.2. Contributions of the thesis .. 49

5.3. Publication .. 50

5.4. Limitations and Future Works .. 50

Appendix A: Source Code .. 51

References .. 57

 vii

List of Figures

Figure 1 DSR methodology in IS discipline [5, 2] .. 3
Figure 2 Simplified Cloud Infrastructure [15] ... 9
Figure 3 Cloud Computing Models [16] ... 10

Figure 4 AWS Cloud Infrastructure and Cloud Services [17] 11
Figure 5 Cloud Services Taxonomy [18] .. 12
Figure 6 Architecture of Semantic Computing [22] .. 13

Figure 7 Architecture of SSE [20] ... 14
Figure 8 sample Semantic-based cloud service discovery system [24] 15
Figure 9 Cloud Service Discovery framework using QPA [25] 16

Figure 10 Specificity cost property: implies that Sim(C,D) > Sim(A,B) [26] 18
Figure 11 Architecture of Cloud Service Crawler Engine [28] 19

Figure 12 PaaS Ontology for operating systems [30] ... 21
Figure 13 Technical coverage of semantic computing [22] .. 22
Figure 14 The architecture of an Ajax search engine [39]. ... 24

Figure 15 Sample XML used for Filter by Attribute ... 25
Figure 16 An example of Filter by Attribute method [40] .. 26
Figure 17 IaaS and PaaS core features [41] ... 29

Figure 18 Behavioral Diagram of IaaS and PaaS Service Discovery Framework 30
Figure 19 Structural Design of IaaS and PaaS Cloud Service Discovery

framework ... 31
Figure 20 Cloud service models and their main access tools [42] 34

Figure 21 IaaS and PaaS Cloud Service Discovery Workflow Diagram 36
Figure 22 Transition from XML Data to DOM Tree .. 37

Figure 23 Using AJAX without DOM API [43] ... 38
Figure 24 Using AJAX with DOM API [44] .. 39
Figure 25 Similarity far from an exact match ... 41
Figure 26 Similarity close to match the query from the user .. 41
Figure 27 Input getting an exact match from the query engine 42

Figure 28 Input with no suggestions from the query engine ... 42
Figure 29 Using keyword “Data” as our generic query .. 43
Figure 30 Using keyword “CPU” as our generic query .. 44

Figure 32 is an example of searching for a specific service, accurate query results

for accurate suggestions. ... 44
Figure 31 Searching for an actual IaaS cloud resource ... 44
Figure 32 Searching for a specific service Provider, Example 1 45

Figure 33 Searching for a specific provider, Example 2 ... 45

 viii

List of Tables

Table 1 Comparison Summary…………………………………………………………48

 ix

List of Acronyms

 Acronym Definition
 PaaS Platform as a Service

 IaaS Infrastructure as a Service

 SaaS Software as a Service

 DSRM Design science research methodology

 IS Information System

 UDDI Universal Description, Discovery, and Integration

 WSDL Web Service Definition Language

 OWL Web Ontology Language

 SOAP Simple Object Access Protocol

 REST Representational State Transfer

 AWS Amazon Web Services

 EC Elastic Computing

 SQDL Service Query Description Language

 SCDL Service Capability Description Language

 SNL Structured Natural Language

 SSE Semantic Search Engine

 QPA Query Processing Agent

 CSCE Cloud Service Crawler Engine

 WADL Web Application Description Language

 XML Extensible Markup Language

 DTD Document Type Definition

 API Application Programming Interface

 AJAX Asynchronous JavaScript and XML

 DOM Document Object Model

 XSD XML Schema Definition

 WAMP Windows, Apache, MySQL, and PHP

Introduction 1

Chapter 1. Introduction

Cloud service is a set of applications that are delivered as hardware and software to a re-

mote user; it also enables virtualization, distributed storage, distributed databases, and

monitoring systems. In the cloud architecture every software application or hardware be-

comes a service or part of a service and to add a new service to the cloud some adjust-

ments are need to be done in order to make the new service compatible with the architec-

ture. Several protocols are used in order to provide these services to the user depending

on the type of the service. The straight forward way is to have ontology for all three cate-

gories of services however; in the existing methods ontology is used for semantics which

works best with SaaS since the number of services grow much faster than PaaS and IaaS

over time and there are more dependencies between the services in SaaS. This thesis con-

tributes a Syntax-based cloud service discovery framework which is optimized for IaaS

and PaaS.

This chapter presents research motivation, objectives, and methodology.

1.1. Motivation

There are many IT infrastructures that are providing services on the Internet, however,

the difference between a cloud and a traditional IT infrastructure is the way that these

services are provided. In the cloud, all the services are provided over a cloud manage-

ment interface layer. In this architecture, it is important to assign the user to the right ser-

vices based on the queries. There are many ways to assign these services and some algo-

rithms have been developed, however, the service allocation is different based on the

types of services that are provided in a cloud system. In the case of SaaS, the same meth-

ods that are applied in web service discovery can also be applied. For IaaS and PaaS the

method changes since the range of the services that are being provided are much more

limited and they take more advantage of the cloud architecture [1].

Introduction 2

The purpose of this research is to provide an optimized framework for IaaS and PaaS

which has the least overhead and the most accuracy in cloud service discovery based on

the user query and resource allocation.

1.2. Thesis Objectives and Research Questions

The objective of this thesis is to develop a service discovery framework specialized in

discovering the resources for IaaS and PaaS in the cloud. We are looking for an optimal

way to discover these services and give suggestions to the user based on the queries. It is

important for us to have a framework that has enough accuracy in cloud service discovery

for IaaS and PaaS models while being easy to update the services over time. The current-

ly used mechanisms in cloud service discovery are too complex for IaaS and PaaS and

have a lot of overhead since they are designed for all three computing models. This re-

search is targeting towards a framework that can take benefit from a better discovery so-

lution for IaaS and PaaS cloud computing models.

In this context, this thesis investigates the following research questions:

RQ1: Could the proposed framework be a better solution than the existing

ones and having the potential to be a replacement?

RQ2: What type of query engine can be used for finding IaaS and PaaS re-

sources so that the framework can be accurate but less complex than the exist-

ing cloud service discovery frameworks?

To answer these questions, we take the implementation technology for each component

of the framework seriously while developing the actual framework component so that we

can build a prototype and run some tests. For our testing, we use scenarios that are close

to reality as our proof of concept.

Introduction 3

1.3. Methodology

1.3.1 Design Science Research methodology for Information Systems

The Design Science Research methodology for Information Systems “creates and evalu-

ates IT artifacts intended to solve identified organizational problems [2].” In this

methodology, it is important to consider the relationship between the nature of the arti-

fact, objective and problem as something separate from the contribution of the DSR study

[3]. The development of an artifact within a DSR research should be a search process that

draws from existing theories to come up with a solution [2]. The output of this methodol-

ogy is in the form of a framework which serves as a support to perform a specific task

[4]. Figure 1 is a diagram based on [2].

Figure 1 DSR methodology in IS discipline [5, 2]

This method is in six phases, the first phase defines the problem in order to justify the

value of the proposed solution. The second phase defines the objectives for a solution.

These objectives could be a replacement for an existing solution or something that adds

to it. The third phase identifies the artifact, its architecture and how it functions. The

fourth phase demonstrate the artifact in different scenarios to see if it actually solves one

or more instances of the problem. The fifth phase focuses on how well the artifact con-

tributes to solving the problem. This can be done by testing the proposed artifact and

Introduction 4

comparing with some existing solutions introduced in phase two. The sixth phase is for

summarizing the results and publishing the contribution [2, 4].

1.3.2 Research Method and Steps

With the help of DSR methodology in IS, we are performing our research activities in six

phases, the details of these phases are as follows:

 Phase1 is where we do the literature survey and go through the fundamentals

of the cloud computing and cloud service discovery system, in this phase we

introduce the available techniques for finding cloud computing resources and

point out the area in cloud service discovery that can be improved.

 Phase2 introduces the components of our proposed framework and what they

can achieve.

 Phase3 goes through the technologies that are needed to develop the frame-

work considering the existing challenges from the server-side of a service dis-

covery framework.

 Phase4 is where we model our prototype and implement the query engine

based on syntax. We also store real world data for our evaluation and build a

virtual server on our local device in order to run the server-side code.

 Phase5 focuses on building scenarios that are close to reality for testing pur-

poses. We run a bunch of tests and check our results to see if the framework is

working properly and it is accurate enough otherwise, we make some im-

provement to the code running on the client-side which forces us to go back to

phase two. Eventually, we do a comparison and evaluate our framework.

 Phase6 is the summarization and publishing the resulted knowledge in confer-

ences.

1.4. Thesis Contributions

In this research, we introduce a framework which is based on IaaS and PaaS cloud com-

puting models and a syntax-based query engine which is implemented in order to give

Introduction 5

user either the exact match or a similar result, based on the inputs. This method will be

prototyped and demonstrated to see if the framework is working properly. There are

many syntax-based functions that can be used for the query engine but we will use and

modify the one that can take advantage of every component of the proposed framework

properly.

1.5. Thesis Outline

The structure of the thesis is as follows:

 Chapter 2 presents the literature review that is related to research questions.

First, the fundamentals of web service discovery are being studied and then

the algorithms that are used for service discovery are introduced. Since the

cloud architecture is derived from Grid computing architecture, the similari-

ties and differences between them will be discussed. After that, we move on to

cloud architecture, similarities between discovering web services and cloud

services and discussing which methods in web service discovery can also be

applied to cloud services.

 Chapter 3 introduces the proposed framework and the relationship between its

components, it also explains the query engine, its dependencies and how it

takes advantage of the proposed framework. Assumptions and requirements

for the framework are also presented in this chapter.

 Chapter 4 focuses on the implementation of the query engine on the proposed

framework, the tools, and standards that were used to make this implementa-

tion possible and building the prototype. In this chapter, we also compare our

solution to an existing method and point out the pros and cons of each solution

in different scenarios.

 Chapter 5 (conclusion) is the final chapter of the thesis which explains the

contribution of the thesis and the results of the comparisons and experimenta-

tions of different methods in cloud service discovery for IaaS and PaaS. We

Introduction 6

also go through a brief discussion about the research limitations and future

works.

Background and Literature Review 7

Chapter 2. Background and Literature Review

This chapter introduces the cloud service discovery concepts, methods, and algorithms

that have been previously implemented and are related to this research. First, we start this

chapter with a brief introduction to web services and the methods that are used for web

service discovery and then we go through fundamentals of cloud and methods for cloud

service discovery.

2.1. Background Study

2.1.1 Web Service Discovery

Every service that requires machine-to-machine interaction over a network is considered

as a web service [6]. Policies help to deliver these services, based on W3C a policy is a

constraint on the behavior of agents or people or organizations [7]. The agent in this con-

text is a piece of software or hardware that sends and receives messages and the services

are the resources that are provided by the service providers.

Currently, there is no general method for web service discovery but there are some that

are widely used based on the type of service that is being provided. The three major

methods that are used in web service discovery are as follows:

 The semantic-based method which requires web services to have associated

semantic descriptions. Using ontology is a common approach towards seman-

tic based discovery method [8].

 The syntax-based method which relies on the user query. These queries are

organized into terms and operators [9].

 The hybrid method which is a combination of both semantic and syntax based

with or without ontology. This method is widely used in search engines since

the generated results are based on web crawling algorithms [10].

Background and Literature Review 8

2.1.2 Cloud Computing Definition

There are several definitions of cloud computing, the briefest definition according to Ref-

erence [11] is as follows:

“Cloud computing refers to both the applications delivered as services over the Internet

and the hardware and systems software in the data centers that provide those services.”

With help of cloud computing, resources can be delivered to users in a manner similar to

traditional utilities [12]. There are three types of computing models, Software as a Ser-

vice (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) [11, 13].

The range of services for SaaS is much broader than IaaS and PaaS, for that reason, IaaS

and PaaS are considered together [11].

2.1.3 Introduction to Cloud Architecture

The idea of cloud computing comes from Grid which was originally designed for heavy

computational tasks within organizations and was not available as a service. Cloud archi-

tecture has an elasticity which means it can be scaled up on demand, however, Grid was

built with many resources up front.

The core of the cloud architecture is the database, network and hardware resources. In

order to make the available services accessible to the user, virtualization is required, ma-

jor benefits of virtualization are energy efficiency and improved resource utilization [14].

The cloud architecture provides a centralized computing service over a network [15].

PaaS delivers a prebuild application or development platform to the client; it scales up

with respect to its infrastructure. IaaS provides infrastructures to the client such as virtual

machines, storage, networks, firewalls and load balancers [11]. For IaaS virtualization is

not necessary since upscale and downscaling it does not depend on it but for PaaS and

SaaS virtualization is required since it provides elasticity and organizations can quickly

upscale and downscale their resources. Simplified cloud architecture is shown in Figure

2.

Background and Literature Review 9

Figure 2 Simplified Cloud Infrastructure [15]

As it is shown in Figure 2 there are two layers in typical cloud architectures: the first lay-

er is the service layer which contains the Data, Network, Servers and virtualization on top

of all of that in order to achieve scalability. The virtualization is managed by the internal

system administrators and by default it does not provide the abstraction layer that enables

cloud services. The abstraction layer as it is shown in Figure 2 is the layer on top, this

layer is essential in any cloud architecture since it hides the complexity of the infrastruc-

ture and provides users to manage their cloud service lifecycle, as well as providing the

interface so that users can have access to the services [15].

2.1.4 Cloud Service Models

The cloud provides the same technologies as any other IT infrastructure, the difference is

that everything in the cloud is provided as a service. A cloud service model describes

how cloud services are available to the users. There are dependencies between the mod-

els; platforms are operating systems and development environments that are installed on

Background and Literature Review 10

hardware resources which make PaaS dependent on IaaS. Applications that are provided

as a service are dependent on the platforms; this makes SaaS depend on PaaS. The dia-

gram below shows how these three cloud service models interact with each other:

Figure 3 Cloud Computing Models [16]

As it is shown in Figure 3 cloud services in terms of layers are dependent. Services in

SaaS are dependent on their platforms and the platforms are dependent on the hardware

resources that are available.

Amazon is one of the largest cloud service providers; Figure 4 shows the cloud infra-

structure and the available cloud services that are being provided by Amazon Web Ser-

vices (AWS).

Background and Literature Review 11

Figure 4 AWS Cloud Infrastructure and Cloud Services [17]

One of the services in AWS is Amazon EC2 Instances; it allows users to manage virtual

machines that are running operating systems. Amazon Relational Database Service

(RDS) provides users with MySQL and Oracle database services [17]. Amazon S3 is a

fast cloud storage that allows users to store large amounts of data as objects from any-

where using HTTP. There are more services that AWS is providing; all of them have one

thing in common which is the infrastructure, it needs to be compatible with the services

that are being provided. In the case of AWS services are using a single infrastructure

called Amazon Global Physical Infrastructure which is using geographical regions, avail-

ability zones, and edge locations as its parameters to provide the services.

2.1.5 Taxonomy of Cloud Services

As mentioned previously there are three major cloud service models (SaaS, IaaS, and

PaaS). Of course, other service models can be found including the major three however,

that depends on the provider to extend the model if they wish to. The three major models

form the top levels of taxonomy since they are the fundamentals of cloud services. Figure

5 shows the cloud services taxonomy.

Background and Literature Review 12

Figure 5 Cloud Services Taxonomy [18]

Public cloud services, as it is shown in Figure 5, is a set of computing resources provided

by third-party organizations like google or Amazon. There might be other cloud service

taxonomies which are being used only inside organizations but we are not covering them

since the framework provided in this thesis is based on Public cloud services [19].

2.2. Related Work (Literature Survey)

2.2.1 Semantic-based Discovery Framework

Semantic computing is a combination of software engineering, artificial intelligence, da-

tabase and computational linguistics. Unlike traditional computing, semantic computing

is being used to extract or process the content and semantics of passive data and active

processes, search engines that are using this method are very effective with resource-

intensive services [20, 21]. Figure 6 is the general architecture of semantic computing,

which is being used as the fundamental model to develop a service discovery framework

similar to a search engine.

Background and Literature Review 13

Figure 6 Architecture of Semantic Computing [22]

As it is shown in the architecture, the search engine analyzes and converts signals such as

pixels and words (content) to meanings (semantics); it also provides the information re-

sources for Semantic Integration and Semantic Applications [20]. With the help of this

architecture, a semantic service search engine can be developed. It works similar to a

regular search engine however; the focus is on cloud services only. The model provides

the user with an interface in order to search for services, the query is translated into ser-

vice query description language (SQDL) which processes the query and enables it for fur-

ther processes [20]. There is also another language used in this model called service ca-

pability description language (SCDL), which is for describing the capability of each ser-

vice [20]. A matcher is being used in order to do the comparison between the SQDL and

SCDL, then if the user finds the desired service it uses the Service Invoker that gets the

Background and Literature Review 14

final results from the matching of SQDL and SCDL. There is an account management

layer that has control over all steps since it provides access control and charge function

which is responsible for the payment system.

Using semantic computing users are provided with an interface such as a search engine or

a query engine, with the help of SQDL and SCDL users can find their desired services.

One of the simplest forms of semantic computing in a service discovery framework is

Semantic Search Engine (SSE). Figure 7 shows the architecture of SSE.

Figure 7 Architecture of SSE [20]

The SNL user interface provides the user with a query interface. SNL to SQDL Interpret-

er translates SNL to machine processable query language in order to use it for SSE. The

SQDL and SCDL matcher try to find the match between the user query and SCDL which

has descriptions of the available services. If the matcher cannot find a match, it breaks

down the SQDL query to simpler queries and tries to find several services that are close

to the user request [20].

Service invoker invokes the matched service from the user side; this step in SSE is spe-

cifically designed for small services. The account management deals with the payment

system and provides a charge function [23].

Background and Literature Review 15

A search engine or query engine works best in a cloud discovery framework if it is

integrated into a framework. Figure 8 is an example of a semantic-based cloud service

discovery framework.

Figure 8 sample Semantic-based cloud service discovery system [24]

The framework uses brokers in order to allocate the services from the service providers

and with matching and comparison which will be performed by SSE, presents the closest

match to the user query. Every time a request is made; a broker agent is dedicated to that

request in order to allocate the related services from the available service providers.

2.2.2 Semantic-based Cloud Service Discovery framework using query
Processing Agent (QPA)

This service discovery framework consists of a search engine and three different agents,

Query Processing Agent, Filtering Agent and Cloud Service Reasoning Agent CSRA

[25]. Figure 9 shows how the model works.

Background and Literature Review 16

Figure 9 Cloud Service Discovery framework using QPA [25]

This model is more effective than the semantic computing solution since it uses an ontol-

ogy which consists of the taxonomy of different types of cloud services. By applying on-

tology we can get more accurate results based on user queries. As it is shown in the fig-

ure:

 The Query Processing Unit QPA executes the query and generates alternate

results if the number of generated search results is less than what the user re-

quested.

 The filtering agent filters the contents based on the keywords entered by the

user.

 The Reasoning agent is used to determine the similarities between the services

that are available and user requests.

Background and Literature Review 17

There are three methods that are being used by the Reasoning agent (Similarity reason-

ing, Equivalent reasoning, and Numerical reasoning). There is also a rating system which

ranks the results with respect to user queries; the highest rated result is the best service

for the user [25]. Agent-based method unlike the semantic computing method is focused

much more on cloud services discovery than service discovery in general and therefore it

is more optimized if we use a similar approach to develop a service discovery framework

in the cloud.

2.2.3 Similarity Measurement

There is not a unique way for similarity measurement, however; we are looking for the

one that is the most suitable for service discovery for PaaS and IaaS. The similarity is

derived from a vaguely defined notion of how much concepts have in common [26]. The

objective is to derive a function sim(x, y) to measure how much the concepts x and y

share or how close they are [26]. A second approach also exists however it is optional

since it is not implied by the semantic of the ontology, It measures the values of two

functions sim (A, B), sim (C, D) and gives them priority based on their values. This prop-

erty is the Specificity cost property which is defined as follows:

“The intuition for this property is that the similarity between for instance siblings on low

levels in the ontology as “alsatian” and “poodle” should be higher than the similarity

between siblings close to the top as “Physical” and “Abstract”. This idea corresponds to

the notion of information content described in (Resnik, 1998) [26].”

The entire similarity operation falls into the category of query processing. A concept

needs to be compared first and then derive a similarity between every other concept in the

database. Cloud ontology is generative due to the scalable characteristic of the cloud;

therefor the algorithm that is being used for similarities should also have this property in

order to support the cloud infrastructure [26]. The defined ontology is the basis of the

comparison, it is still possible to have a result based on the comparison in the absence of

ontology but we will have to use a more general method which it will not be optimal.

Figure 10 shows the similarity between four objects.

Background and Literature Review 18

Figure 10 Specificity cost property: implies that Sim(C,D) > Sim(A,B) [26]

This method is suitable to compare queries and find similarities rather than finding an

exact match between the query and available resources. Ontology causes more re-

strictions and less expression which are more suited when it comes to comparing queries

and services in a specific category.

This best way for service to have associated semantics is using an ontology, however;

there might be complex relationships between the services (entities). Usually, complex

relationships are based on property sequences of the entities, these relationships are rep-

resented as paths spanning across multiple domains that are also represented by ontology

since it is the only way to measure their similarities and helps to rank the entities. The

ranking of the entities is based on relevance, specificity and the span of relationships [8,

27].

2.2.4 Search-Based cloud Service Discovery

One of the methods to search for cloud data and later providing them as service is crawl-

ing. A crawler analyzes and collects relevant data from the web by parsing links [28].

A sample crawler engine with six layers is shown in Figure 11:

Background and Literature Review 19

Figure 11 Architecture of Cloud Service Crawler Engine [28]

As it is shown in the figure each layer is responsible for a specific task of analyzing the

retrieved data.

 Cloud Service Provider Layer consists of cloud providers who are broad-

casting their services; these are accessible from search engines.

 Cloud service Ontology Layer maintains the cloud service ontology, this on-

tology contains the relationships between the entities that help the crawler en-

gine to discover and validate the available services.

Background and Literature Review 20

 Cloud Service Seeds Collection Layer contains the URL of cloud services as

well as WSDL and WADL documents.

 Cloud Services Filtration Layer filters the seeds collected from the seed col-

lector; it uses some of the concepts in the ontology as keywords to collect da-

ta.

 Cloud Services Data Extraction Layer extracts the cloud service for active

and valid services and later stores them in cloud service database for later

analysis.

 Cloud Service Ontology provides the crawler engine with Meta information

and describes the relationships and semantics of cloud services.

2.2.5 Algorithms for IaaS and PaaS Service Discovery

There are many algorithms that can allocate services available on the web, however, a

few of them are suitable to be used in cloud architecture since the resources are scalable

and change dynamically. One of the major issues in cloud computing is effective discov-

ery and allocation of the resources.

As mentioned before ontology is one of the ways for semantic-based discovery frame-

works. It is a set of concepts and the relation between these concepts which provides us

with Metadata especially in the area of semantic web; it also specifies the communica-

tions between the broker agents and resources. Basically, ontology makes it easy to look

for semantic relations since each service might be composed of several other services in

the cloud [29]. The concepts can be either equivalent or inclusive. A similarity function is

necessary to determine the relation between the user query and the available resource that

is going to be broadcasted by the brokers. In a cloud architecture, ontologies are hierar-

chical and for that reason, the similarity function always takes two values Sim(x , y) [30,

31]. The similarity function is defined as sim(x, y) = ρ [|α(x) ∩ α(y)| / |α(x)|] + (1 −

ρ)[|α(x) ∩ α(y)|/|α(y)|] where ρ determines the degree of influence of generalization, it

also allows to tailor the similarity function, and can thereby comply with the generaliza-

tion property [30]. α(x) is the set of nodes reachable by x and α(y) is the set of nodes

reachable by y , α(x) ∩ α(y) is the reachable nodes shared by x and y which indicates

what is common between x and y.

Background and Literature Review 21

In case of PaaS if we want to apply the similarity function first we have to define ontolo-

gy for the available platforms, since most of the platforms have at least one similarity we

can define a hierarchical ontology and form a semantic similarity matrix SIM(n × n)

where each row and column represents the semantic description of resources and each

element represents the degree of semantic similarity based on predefined concepts of do-

main ontology between every pair of resources, the resource with the most similarity has

the value of “1” and if the value is between “1” and “0” the resource value closer to “1”

will be selected as the final result for the user query [30].

Since the service is in the cloud architecture, it is important to make sure that the algo-

rithm can perform in a dynamic environment. Figure 12 shows how a similarity function

can be used in case of PaaS.

Figure 12 PaaS Ontology for operating systems [30]

Each of the circles in the ontology is treated as nodes and the arrows represent the rela-

tionship between the nodes. The nodes Windows, UNIX and Sunsparc are all operating

systems so they are connected to the node operating system. Linux, IRIX and AIX are

sharing a kernel that is similar to UNIX and for that reason, they are connected to the

node UNIX. Based on these relations we can create the similarity matrix and apply it to

our similarity function. Using Ontology for similarity based functions has its disad-

vantages such as time-consuming development and having enough accuracy to have good

performance [32].

Background and Literature Review 22

2.2.6 Concept-based Querying

For service discovery on the web, ontology is one of the solutions to define major con-

cepts. Later we use these concepts to describe the semantics of different objects; this is a

typical approach in almost every service discovery algorithm.

This method like the previous algorithm is semantic-based however, it utilizes knowledge

from a domain-specific ontology to obtain better answers on a semantical level and as a

result, it gives us a better solution since concepts are the only thing that is being consid-

ered for comparison rather than actual words [31]. The ontology is being used to define

and relate the concept and a concept language is used in order to express the semantics of

queries and objects in the information base [31, 22, 33]. We also use algebra for integra-

tion, formalization, representation and reasoning with the semantics of natural language

and ontologies [31]. Figure 14 represents the technical coverage of semantic computing.

Figure 13 Technical coverage of semantic computing [22]

Another major issue in implementing ontology is the communication between different

entities, not all entities can be related to each other and we cannot create the ontology that

Background and Literature Review 23

contains all the entities and the relationships between them, instead we have multiple on-

tologies that are separate.

The mapping between ontologies is a possible solution since it is scalable and can be au-

tomated since cloud service change over time and need to be updated [22]. This solution

also allows us to have more accurate query results since mapping has the advantage of

creating relationships between ontologies from different cloud service models and also

provides ranking between available services [27].

2.2.7 Context-aware and syntactic matching methods

A search or query engine uses an algorithm that monitors the information and recom-

mends the user with the best result based on the query [34]. Cloud services providers use

their own service description which makes it hard to search for services due to non-

uniform and non-standardized naming conventions, this approach makes it difficult for

users to find the right service that they are looking for [35]. Syntactic matching is a

straight forward solution that avoids some complexity simply by having good perfor-

mance in most scenarios and being straightforward to develop. XML is used to store data,

the user query is taken as a string and it is being compared with the XML file using hash

table [36, 37]. The result is either an exact match or suggestions that are similar to the

query.

2.2.8 Syntax-Based query using XML and Ajax

XML is a widely used standard for data representation that can be used as a data

modeling language or a document markup language. It permits tagged text, element nest-

ing and element references, these features of XML allow us to process queries [38]. With

the help of XML, we can create paths and make the query processing easier.

Asynchronous JavaScript and XML (Ajax) is a well-known client-side scripting language

that can help us with querying. It allows us to search through the data without having to

refresh the web page by running client code in the browser. Since Ajax is using JavaS-

cript, it reacts to user events like click, keywords, mouseover, etc. Another advantage of

Ajax is its capability to access XML data which makes a syntax-based query possible and

Background and Literature Review 24

allows the user to select the appropriate result [39]. The figure below shows how an Ajax

search works.

Figure 14 The architecture of an Ajax search engine [39].

As it is shown in Figure 15, we need the Ajax model to start the indexing. This is possible

with the use of Document Object Model (DOM), it helps the query processing by build-

ing a tree from the XML which each node is considered an object. The index contains the

information about the documents which happens to be the keywords. In this architecture,

the user enters a keyword and gets the results which could be either and exact match or

something similar according to the keywords entered [39].

In the case of having multiple XML files we need to build multiple DOM trees in order to

perform multiple indexing, the rest is same as having only one XML file. This is still pos-

sible with one Ajax website in order to search through the data and show the results.

2.2.9 Filter by Attribute

This method is syntax-based however; it is not a query engine. Filter by attribute uses

XML to eliminate the unrelated tags and select the ones that remain. The XML that is

being used in this method needs to have attributes for every tag. Figure 15 shows a sam-

ple XML that can be used for this method.

Background and Literature Review 25

Figure 15 Sample XML used for Filter by Attribute

As it is shown in this figure every tag has its own attribute which later on will be used for

elimination to find the exact match. Although this method is not as accurate as a syntax-

based search, it is widely used as a syntax-based solution for cloud service discovery. Fil-

ter by Attribute method is unable to suggest similar results and leaves users with no other

option if the exact match does not exist. The figure below is an example of using the Fil-

ter by Attribute method.

Background and Literature Review 26

Figure 16 An example of Filter by Attribute method [40]

Background and Literature Review 27

As it is shown in figure 16 with Filter by Attribute the user cannot enter a query, the only

option is to check the attributes that are available and the system will filter the available

list based on the selected options and leaves the rest. This method is absolutely inefficient

since it forces the user with whatever that is available and has no suggestions system.

The Proposed Cloud Service Discovery Framework 28

Chapter 3. The Proposed Cloud Service
Discovery Framework

In this chapter, we propose a framework for cloud service discovery with a focus on PaaS

and IaaS cloud computing models. First, we begin with introducing the behavioral model

of the framework which explains the way our discovery framework functions, then we

introduce the proposed framework and explain all of its components and how they inter-

act with each other and in the next chapter, we go through the implementation and test-

ing.

3.1. IaaS and PaaS Service Discovery

Before designing any frameworks the first thing we need to focus on is the result or the

output of the framework, then we add the components that are necessary to generate the

output and avoid overheads for the optimal performance. In the case of IaaS and PaaS

cloud computing models, the behaviors of the services provided by these models were

studied first to see what are the features that IaaS and PaaS offer and what components

are actually needed to classify and discover these services.

In order to develop a framework that works properly with PaaS and IaaS, we have to un-

derstand how IaaS and PaaS work and what the features that each computing model pro-

vides are. For IaaS the types of services are usually hosting, it is not just limited to stor-

age since the service also hosts user processes on its computing resources. IaaS is fully

scalable and it is available to users on demand. PaaS provides tools for software devel-

opment that are necessary for writing applications, this cloud computing model reduces

the complexity of development which can lead to efficiency since it already has the nec-

essary infrastructure built-in. Some services for PaaS model are locked into a certain plat-

form but most of the recent available services are available lock-in free since it gives the

developer more control over the development environment for maintenance and en-

hancement of the application.

The Proposed Cloud Service Discovery Framework 29

Figure 17 is an abstraction of these core features of IaaS and PaaS cloud computing mod-

els.

Figure 17 IaaS and PaaS core features [41]

3.2. Behavioral Design of IaaS and PaaS Cloud Service
Discovery Framework

For a discovery framework, the first thing that counts is the user query. This framework

is functioning with on a syntax-based query engine, when the query is entered in the

textbox the engine immediately starts to process each letter as they are being entered and

then gives the user a number of suggestions until it finds the exact match for the user que-

ry. The query engine searches from the available service information which is stored in

the database. Figure 18 shows the behavioral diagram of our proposed framework for

IaaS and PaaS.

The Proposed Cloud Service Discovery Framework 30

Figure 18 Behavioral Diagram of IaaS and PaaS Service Discovery Framework

As it is shown in Figure 18 the user enters the query in the interface which is connected

to the query engine, then the engine sets the query as the input and searches through the

Service Information to find the best match. In our proposed framework the query engine

should interact directly with the Service Information in order to give live suggestions as

the user enters the query, all the data stored in the Service Information are in XML for-

mat for ease of access.

The Proposed Cloud Service Discovery Framework 31

3.3. Structural Design of IaaS and PaaS Cloud Service
Discovery framework

The structural design of the framework represents all the components and how they inter-

act with each other, the framework was designed with the assumption that the Cloud Cli-

ent is separate from the end user since not all existing end user devices can take ad-

vantage of every IaaS and PaaS cloud services, however all existing devices are capable

enough for discovering these services. Figure 19 shows the structural design of our Cloud

Service Discovery framework.

Figure 19 Structural Design of IaaS and PaaS Cloud Service Discovery framework

In this framework, the focus is one discovering IaaS and PaaS cloud services using a syn-

tax-based method. Designing components in a general way might work but it will per-

form poorly because of the overhead in the system and the implementation, for that rea-

The Proposed Cloud Service Discovery Framework 32

son every component in this framework is designed to take advantage of a syntax-based

method in order to get the best performance.

3.3.1 Data Flow

As it is shown in Figure 19 every arrow has a different color which represents the data

flow in the system, the black arrow represents the query flow which starts with the user

entering the query in the system and finishes with the query engine response. Blue arrows

represent the flow of service information from the providers to our framework, the ser-

vice information first needs to be stored in our relational database and then from there it

goes to the XML servers so that our query engine can have access to the information. We

select XML for data representation because of its tree structure, by incorporating nested

nodes we can easily represent metadata. The red arrow represents the connection between

the user and the cloud services which has to be done through a cloud client.

3.3.2 End System

The end system in this framework is actually the device which is used to discover the

available IaaS and PaaS cloud services. In some cases, this device could also be used as a

platform for the actual cloud service which is offered by the cloud service provider how-

ever in this framework we make an assumption based on a general approach. Almost eve-

ry existing device can be used as a platform for cloud service discovery but not all of

them are suitable as a platform for using IaaS and PaaS cloud services.

3.3.3 Query Engine

In this framework, we are using a syntax-based query engine. For IaaS and PaaS cloud

computing models a syntax-based search will work perfectly since the services in these

models are independent of each other, IaaS provides hardware resources which work sep-

arate from each other and PaaS provides software development tools which also work

independently from each other.

A semantic-based search will also work but it will not change the search result in the cas-

es of IaaS and PaaS cloud computing models, it only adds more complexity and reduces

The Proposed Cloud Service Discovery Framework 33

the performance of the query engine. A syntax-based query engine is implemented to get

the best performance for our IaaS and PaaS cloud service discovery framework.

3.3.4 XML Files (Information Storage)

XML is a markup language that is used for documentation; it is both machine-readable

and human-readable, it is also one of the best ways to store information since it provides

syntax to declaring the structure of documents and syntax for document markup.

XML provides a friendly environment for programmers because of its computing stand-

ards; the syntax contains a set of rules which makes it easy for any future changes in the

stored information. The structure of XML is in layers, it is suitable for storing service in-

formation since cloud services have different attributes. In the cases of IaaS and PaaS

cloud computing models, XML is the best way to store the information and also the cloud

service architecture standard is defined in XML. This helps the query engine to have

complete access to the available information in order to search them based on the user

query.

3.3.5 Relational Database

Using a relational database in our framework is the best approach. As it is shown in our

framework, we are using a relational database to store the cloud service information that

we are getting directly from the providers. Using a relational database helps us to distin-

guish the services properly; this characteristic of the relational database is extremely use-

ful since for IaaS and PaaS models there are usually some cases that a number of provid-

ers are offering same infrastructures like the Processor or the RAM. With the use of a re-

lational database we can have classified information about the services and as a result, the

XML Data is more precise.

3.3.6 Cloud Client and Cloud Service Providers

In order to use any software over the internet, a client application is needed. In the case of

regular internet services since these applications are not demanding compared to cloud

services, a web browser is good enough for interacting with different internet applica-

tions. Services offered by IaaS and PaaS cloud service providers usually require virtual-

The Proposed Cloud Service Discovery Framework 34

ization, for IaaS majority of services are hardware resources like storage or Processors

and for PaaS, the resources are software development tools which could be in form of an

API or a specific development environment. These services require a cloud client since

the type of services that are offered are more demanding than regular web services and a

web browser is not suitable. Figure 21 shows the classification of cloud services with re-

spect to their access tools.

Figure 20 Cloud service models and their main access tools [42]

As it is shown in figure 21 only SaaS cloud computing model is using web browsers as

its client application to access the services, for IaaS and PaaS models a web browser is

simply not capable of delivering these service to the user and they need their own client

applications for service delivery.

Implementation and Experiments 35

Chapter 4. Implementation and Experiments

In this chapter, we explain how the framework is implemented and what tools were used

for the implementation. Our focus here is to go through the method of implementation,

the assumptions that were made for this implementation and what scenarios were consid-

ered for evaluation. Finally based on our results we point out the advantages of our

framework over other methods for service discovery of IaaS and PaaS cloud computing

models.

4.1. Work Flow Diagram of IaaS and PaaS Cloud Service
Discovery Framework

In this section we present the implementation method of the framework, it is important to

use every component of the framework properly and avoid any overheads in order to get

optimal performance. Figure 22 shows the Workflow of our cloud service discovery

framework.

Implementation and Experiments 36

Figure 21 IaaS and PaaS Cloud Service Discovery Workflow Diagram

As it is shown in figure 22 since our concern is just with the discovery of the cloud ser-

vices, the web browser is good enough for any platform. We use AJAX to implement the

syntax-based query engine. The advantage of using AJAX is its ability to communicate

with a remote server such as sending a request and getting the response without any inter-

ference with the current state of the page and using DOM API for dynamic display and

interaction with data. DOM is an API which helps to parse an XML document in order to

Implementation and Experiments 37

be treated as a tree structure with multiple nodes where each node is an object represent-

ing a data in our XML file. Figure 23 shows the relation between XML data and DOM

tree.

Figure 22 Transition from XML Data to DOM Tree

AJAX can work with and without incorporating DOM. If we do not incorporate DOM,

the user query is treated as a JavaScript call and goes to the server for requesting data.

The server searches through the XML document and tries to find the match or something

similar to the user query and then after applying AJAX routines it updates the HTML

page on the user side. Figure 24 shows how the user request goes from the HTML page

on the user side, through AJAX functions and reaches the server without incorporating

DOM API.

Implementation and Experiments 38

Figure 23 Using AJAX without DOM API [43]

In the case of applying DOM API, the type of the request changes and the XML data is

being treated as a DOM tree with objects as our XML data. In this scenario, the user que-

ry is treated as XMLHttpRequest which helps to establish a connection between the server

and the user before sending the request. In order to communicate properly with the

server, we need to use a server-side scripting language such as PHP. Since all the infor-

mation is on the server side and we want to access the XML data from the XML server,

DOM API needs to be included in the PHP code. Figure 25 shows how AJAX works if

we use DOM API and PHP to have access to XML data.

Implementation and Experiments 39

Figure 24 Using AJAX with DOM API [44]

As it is shown in figure 25 the form of request and response is completely different from

the first scenario where DOM API is not applied. For our IaaS and PaaS cloud service

discovery framework we are applying DOM API and PHP scripting language which is

shown in figure 19.

In our implementation DOM API has to be included since the nature of any discovery

framework on the web is to get the user query through the user interface as the input in

the framework, sending that request through appropriate routines in order to give it access

to the data on the server side and after searching for a match or similarity in the stored

data, returning the response from the server back to the user.

Implementation and Experiments 40

 The implementation that we are showing in our workflow diagram is suitable for our

cloud service discovery framework since it is taking advantage of all the components in

our framework. DOM and AJAX in this framework both need HTML 5 capable browsers

to function properly, however, this is not a concern since every browser since 2015 runs

on HTML 5 and we implemented the framework with this assumption that all users are at

least using a one-year-old web browser.

4.2. Implementation Method

For our implementation, we used WAMP server, a software stack consisting of Apache

web server, OpenSSL for SSL support, MySQL database and PHP programming lan-

guage. As it is shown in figure 19 the relational database is getting the relevant data from

cloud service providers and our XML files are generated from the data in our relational

database. There are several ways to generate the XML file from the data in the database,

however; we are going to explain the process that is the most common. Data is stored in

tables in the database; we have to first establish criteria for our table, then database rela-

tionships and constraints are converted into W3C XML schema constraints. XML schema

uses XML Schema Definition (XSD) to describe the structure of an XML document;

since XSD uses XML syntax any XML editor can be used to parse schema files, this

helps us to easily generate the XML document from our schema.

After we set up the WAMP server and store our XML files we begin implementing the

query engine. The engine uses Ajax functions, we want the script to work with all major

browsers so we have to use if (window.XMLHttpRequest) statement, this helps us to run

the code on Chrome, IE7, IE6, Firefox, Opera and Safari web browsers. We also have to

include our PHPDOM code in order to have access to XML files. In the PHPDOM code,

we use the DOM function and load the available XML files to scan the XML content and

give suggestions to users based on the query or generate a message in case that a match is

not found in the XML files.

Implementation and Experiments 41

4.3. Generating Output

4.3.1 Query Engine Testing

For this demonstration we used (http://azure.microsoft.com) in our XML file as the IaaS

and PaaS cloud service provider which means if users select any of the services, they will

be directed to Microsoft Azure webpage. We generated four different outputs that resem-

ble real scenarios, figures 26 and 27 show how the query engine responds when there are

similarities between the query and available data in our database.

Figure 25 Similarity far from an exact match

Figure 26 Similarity close to match the query from the user

In both figures 26 and 27 our syntax-based query engine is giving the user similar results

based on the input, the search is syntax-based which means every time the user enters a

letter the engine searches through the entire XML data based on the input string and tries

to find the closest match based on that string. As it is shown in figure 23 our suggestions

are very general because we have only entered one character, in these scenarios the sug-

Implementation and Experiments 42

gestions are almost any available string with that character in it which is not accurate.

The scenario in figure 26 is just to test if the engine works in the worst case, a real user

never enters a query with just one character.

 Figure 27 uses the same concept as figure 26 however since the input is more accurate,

the suggestion that we are getting is also more relative and shows the user more accurate

results than figure 26. As our input string gets more accurate, the suggestions get closer

to the input string until they get to the exact match otherwise suggestions stay with the

closest result. Figure 28 shows the scenario where the input has an exact match in the

query results.

Figure 27 Input getting an exact match from the query engine

As it is shown in figure 28 there is only one suggestion, this output is generated because

the input string is precise enough for the query engine to find the exact match in our

XML files. The figure below shows another scenario where the query engine cannot give

any suggestions to the user.

Figure 28 Input with no suggestions from the query engine

As it is shown in figure 29 there are no suggestions for our input, this is because the que-

ry engine could not find any similarity between the input string and the available data in

our XML files.

Implementation and Experiments 43

4.3.2 Experimenting from the user point of view

For this experimentation, we used a different XML file which has IaaS and PaaS data

from real providers. Figures below represent how the query engine responds if we use

real cloud service information in our XML file.

Experiment-1: Generic Query

When the user enters a specific keyword the query engine searches through the XML file.

The DOM API assists the search to perform better by transforming the XML into a tree

with objects as nodes. Since the matching function searches through the files letter by

letter, it is not important if the keyword is in the middle or the beginning of the phrase.

As it is shown in figure 30 the keyword “Data” is in the middle and we can get all the

services with that keyword regardless of its position. Figure 31 shows the same example

with a different keyword just to point out the accuracy of the matching function.

Figure 29 Using keyword “Data” as our generic query

Experiment-2: Searching for Available CPU’s From All Providers

 If the user is looking for all CPU’s offered by all service providers available in the data-

base, they can submit a query as shown in Figure-31.

Implementation and Experiments 44

Figure 30 Using keyword “CPU” as our generic query

Experiment-3: Searching for a Specific Resource

Figure 32 is an example of searching for a specific service, accurate query results for

accurate suggestions.

Figure 31 Searching for an actual IaaS cloud resource

Experiment-4: Searching for a Specific Service Provider

Figures 33 and 34 are examples of searching for a specific cloud service provider. As it is

shown when the user enters the name of the provider, every available cloud service from

that provider shows up in the suggestions.

Implementation and Experiments 45

Figure 32 Searching for a specific service Provider, Example 1

Figure 33 Searching for a specific provider, Example 2

Implementation and Experiments 46

4.4. Comparison

We comparing our framework with Semantic-based and Filter by Attribute method since

these two methods are currently being used as cloud service discovery solutions by sev-

eral companies.

4.4.1 Semantic-based method

In this section we compare our framework based on the implementation of a semantic

based discovery framework in general, we are not going to select a specific semantic-

based framework since all semantic based discovery frameworks have a number of core

characteristics that does not change with different implementations. Both a syntax-based

framework and a semantic-based framework have advantages and disadvantages in dif-

ferent situations, the comparison between these two approaches towards cloud service

discovery are as follows:

 Syntax-based frameworks have better runtime than semantic-based

frameworks, however; semantic based frameworks are more precise in the

case of resource-intensive services.

 In the case of IaaS and PaaS cloud computing models regardless of a number

of resources, a syntax-based framework is better since there are no relations

between the services and a semantic-based framework does not help much

other than making the search more complex.

 Syntax-based frameworks are not very efficient when it comes to SaaS cloud

computing model, software services have a lot of dependencies and the way to

model them is to have ontology tree. Semantic-based frameworks work best

with SaaS models and are much more accurate than syntax-based frameworks

in this category.

 Both discovery methods have their own benefit but for our proposed frame-

work which focuses on IaaS and PaaS cloud computing models, a semantic-

based method would just add overhead and makes the search slower due to its

complex algorithms, syntax-based method is the optimal solution for IaaS and

Implementation and Experiments 47

PaaS models based on the current technology and available services in the in-

dustry.

 There are semantic-based implementations in references [1] and [45] that are

applied for IaaS and PaaS. These implementations use an ontology to model

the available services and they clearly point out the complexity since there are

a limited number of IaaS and PaaS resources. Using ontology for a limited

number of resources does not enhance the accuracy of the search.

4.4.2 Filter by Attribute method

This method is syntax-based however it does not take user query; it only allows users to

eliminate unrelated services by selecting the attributes that are available from the system.

The specifications of this method are as follows:

 It is the simplest and the most inaccurate discovery method available.

 This method is a widely used syntax-based service discovery solution, howev-

er; it is just a filter, not a query engine.

 Compared to a syntax-based query engine this method is not effective for any

cloud computing model.

Implementation and Experiments 48

4.5. Summary of the Comparison

This section summarizes the comparison in section 4.3. The table below shows this com-

parison.

Discovery Method Accuracy (IaaS,

PaaS)

Complexity Discovery Method

 Filter by

Attribute

There is no query

processing in this

method, the user is

provided with a

number of options

to choose from

based on the filters

that are available

This method has no

complexity since

there is no pro-

cessing in the back-

ground.

Attribute-based

XML and JavaS-

cript

Semantic-based It has high accuracy

but requires lots of

processing and it is

best suited for re-

source intensive

models.

This method uses

reasoning algo-

rithms and ontology,

as a result it has

high complexity

Semantic Algorithm

and Ontology[26, 1]

 Syntax-based

(Proposed)

The accuracy is

good enough for

IaaS and PaaS com-

pared to other meth-

ods [1].

It is using a syntax

search with the help

of DOM API. The

complexity of the

search depends on

the structure of the

DOM tree.

XML and using

Ajax with PHP

Table 1 Comparison Summary

Conclusions 49

Chapter 5. Conclusions

5.1. A Summary of the Research

Cloud computing is one of the fastest growing computing platforms available recently,

these platforms are available as services and they use the internet as a medium to provide

these services. Currently, there are no major frameworks that can be used for cloud IaaS

and PaaS service discovery, the ones that are available only show the services for a spe-

cific provider and those frameworks do not operate across the internet identifying other

available IaaS and PaaS cloud services.

The current literature on cloud service discovery frameworks only focuses on cloud ser-

vices in general, not a particular computing model. As a result, the majority of the solu-

tions where semantic-based and did not care about the performance of the discovery

framework. In this research, we develop a cloud service discovery framework that focus-

es on IaaS and PaaS cloud computing models which can perform as good as the previous-

ly introduced cloud service discovery frameworks with lower overhead. We used a syn-

tax-based query engine for query processing and XML to store the data.

After the implementation, we tested the query engine to make sure it functions properly

with the user input and then we tested the framework as a user, for the second test we col-

lected real cloud service information from real cloud service providers to mimic a real

world scenario. At the end, we compared our framework with the existing ones and

pointed out the advantages and disadvantages in different scenarios.

5.2. Contributions of the thesis

In this thesis, we propose a cloud service discovery framework for IaaS and PaaS cloud

computing models. Using this syntax-based cloud service discovery framework, the user

enters the query, the query engine takes that as an input, goes through the XML files that

Conclusions 50

contain the cloud service information, performs a syntax-based search and shows either

the exact match or the available services that are close to what the user requested.

It is much more efficient to use this solution over a semantic-based discovery framework

for IaaS and PaaS cloud computing models. Services that are available for IaaS and PaaS

do not require ontology and for that reason using a semantic-based discovery framework

adds complexity to the framework and reduces system performance. Our framework also

is much more efficient over the Filter by Attribute method since it is able to show similar-

ities in case if an exact match could not be found.

5.3. Publication

F. Firozbakht, W. Obidallah, B. Raahemi, “Cloud Computing Service Discovery Frame-

work for IaaS and PaaS Models “, accepted at The Second International Conference on

Internet of Things, Data and Cloud Computing, University of Cambridge, United King-

dom, August 2016, will be published in ACM library.

5.4. Limitations and Future Works

One of the limitations of this research was during the implementation phase; it was simp-

ly not possible to test the framework with the cloud services that are being provided by

real providers, we could not configure our own database to have access to what cloud

service providers are offering since we did not have their permission to do such a thing

and instead we came up with our own assumptions which mimic a real-world scenario

and proves that the framework works properly. We also could not calculate computation-

al time since we did not have access to other framework in order to compare and deter-

mine which one is faster.

As future work some new components could be used for the payment system, they need

their own dedicated server and security protocols. Another upgrade to the framework

could be adding a web crawler that can automatically get the cloud service information

from the providers and store them in the database, however, for this upgrade permission

from the cloud service providers that are giving us their service information is necessary.

 51

Appendix A: Source Code

JavaScript Code

<html>

<head>

<script>

function showResult(str) {

 if (str.length==0) {

 document.getElementById("PHPDOM").innerHTML="";

 document.getElementById("PHPDOM").style.border="0px";

 return;

 }

 if (window.XMLHttpRequest) {

 xmlhttp=new XMLHttpRequest();

 } else {

 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.onreadystatechange=function() {

 if (xmlhttp.readyState==4 && xmlhttp.status==200) {

 docu-

ment.getElementById("PHPDOM").innerHTML=xmlhttp.responseText;

 document.getElementById("PHPDOM").style.border="1px sol-

id #A5ACB2";

 }

 }

 xmlhttp.open("GET","PHPDOM.php?q="+str,true);

 xmlhttp.send();

}

</script>

</head>

<body>

<form>

<input type="text" size="30" onkeyup="showResult(this.value)">

<div id="PHPDOM"></div>

</form>

</body>

</html>

 52

PHP Code

<?php

$xmlDoc=new DOMDocument();

$xmlDoc->load("services.xml");

$x=$xmlDoc->getElementsByTagName('service');

$q=$_GET["q"];

if (strlen($q)>0) {

 $hint="";

 for($i=0; $i<($x->length); $i++) {

 $y=$x->item($i)->getElementsByTagName('title');

 $z=$x->item($i)->getElementsByTagName('url');

 if ($y->item(0)->nodeType==1) {

 if (stristr($y->item(0)->childNodes->item(0)-

>nodeValue,$q)) {

 if ($hint=="") {

 $hint="<a href='" .

 $z->item(0)->childNodes->item(0)->nodeValue .

 "' target='_blank'>" .

 $y->item(0)->childNodes->item(0)->nodeValue .

"";

 } else {

 $hint=$hint . "
<a href='" .

 $z->item(0)->childNodes->item(0)->nodeValue .

 "' target='_blank'>" .

 $y->item(0)->childNodes->item(0)->nodeValue .

"";

 }

 }

 }

 }

}

if ($hint=="") {

 $response="no suggestion";

} else {

 $response=$hint;

}

echo $response;

?>

 53

XML Document for query engine demonstration

<cloudservices>

<service>

<title>CPU @3.2GHz </title>

<url>http://azure.microsoft.com/en-us/</url>

</service>

<service>

<title>CPU @2.7GHz </title>

<url>http://azure.microsoft.com/en-us/</url>

</service>

<service>

<title>Storage 500GB</title>

<url>http://azure.microsoft.com/en-us/</url>

</service>

<service>

<title>Storage 1TB</title>

<url>http://azure.microsoft.com/en-us/</url>

</service>

<service>

<title>RAM 16GB</title>

<url>http://azure.microsoft.com/en-us/</url>

</service>

<service>

<title>RAM 32GB</title>

<url>http://azure.microsoft.com/en-us/</url>

</service>

<service>

<title>Linux 64bit</title>

<url>http://azure.microsoft.com/en-us/</url>

</service>

<service>

<title>Linux 32bit</title>

<url>http://azure.microsoft.com/en-us/</url>

</service>

<service>

<title>Windows 10 server 64bit</title>

<url>http://azure.microsoft.com/en-us/</url>

</service>

<service>

<title>Windows 10 server 32bit</title>

 54

<url>http://azure.microsoft.com/en-us/</url>

</service>

</cloudservices>

XML for user testing

<cloudservice>

<service>

<title>CPU 2 cores @3.2GHz 6GB RAM ,google</title>

<url>https://cloud.google.com/products/</url>

</service>

<service>

<title>CPU 4 cores @3.5GHz 8GB RAM ,google</title>

<url>https://cloud.google.com/products/</url>

</service>

<service>

<title>CPU 8 cores @2.7GHz 16GB RAM ,google</title>

<url>https://cloud.google.com/products/</url>

</service>

<service>

<title>CPU 8 cores @2.5GHz 8GB RAM ,google</title>

<url>https://cloud.google.com/products/</url>

</service>

<service>

<title>Storage 500GB ,Rackspace</title>

<url>https://www.rackspace.com/</url>

</service>

<service>

<title>Storage 1TB ,Rackspace</title>

<url>https://www.rackspace.com/</url>

</service>

<service>

<title>Linux 64bit VM ,Amazon</title>

<url>https://aws.amazon.com/ec2/</url>

</service>

<service>

<title>Linux 32bit VM ,Amazon</title>

<url>https://aws.amazon.com/ec2/</url>

</service>

 55

<service>

<title>Windows 10 server 64bit VM ,Microsoft</title>

<url>http://azure.microsoft.com/en-us/</url>

</service>

<service>

<title>Windows 10 server 32bit VM ,Microsoft</title>

<url>http://azure.microsoft.com/en-us/</url>

</service>

<service>

<title>Windows Azure SDK ,Microsoft</title>

<url>http://azure.microsoft.com/en-us/</url>

</service>

<service>

<title>NoSQL Database ,HP</title>

<url>http://www8.hp.com/us/en/cloud/helion-overview.html</url>

</service>

<service>

<title>Windows 10 server 64bit VM ,Microsoft</title>

<url>http://azure.microsoft.com/en-us/</url>

</service>

<service>

<title>Amazon Lumberyard Engine ,Amazon</title>

<url>https://aws.amazon.com/lumberyard/</url>

</service>

<service>

<title>virtual machine Import/Export ,Amazon</title>

<url>https://aws.amazon.com/lumberyard/</url>

</service>

<service>

<title>Relational Database ,Oracle</title>

<url>https://cloud.oracle.com/en_US</url>

</service>

<service>

<title>Hybrid Storage ,Oracle</title>

<url>https://cloud.oracle.com/en_US</url>

</service>

<service>

<title>Big Data Preparation ,Oracle</title>

<url>https://cloud.oracle.com/en_US</url>

</service>

<service>

<title>DataBase Backup ,Oracle</title>

 56

<url>https://cloud.oracle.com/en_US</url>

</service>

<service>

<title>Data Visualization ,Oracle</title>

<url>https://cloud.oracle.com/en_US</url>

</service>

<service>

<title>NoSQL DataBase ,Oracle</title>

<url>https://cloud.oracle.com/en_US</url>

</service>

<service>

<title>Android SDK 32bit ,google</title>

<url>https://cloud.google.com/products/</url>

</service>

<service>

<title>Android SDK 64bit ,google</title>

<url>https://cloud.google.com/products/</url>

</service>

<service>

<title>Storage 1TB ,Oracle</title>

<url>https://cloud.oracle.com/en_US</url>

</service>

<service>

<title>Storage 4TB ,Oracle</title>

<url>https://cloud.oracle.com/en_US</url>

</service>

</cloudservice>

 57

References

[1] Kang, J., & Sim, K. M. (2011, October). Towards agents and ontology for cloud

service discovery. In Cyber-Enabled Distributed Computing and Knowledge Dis-

covery (CyberC) IEEE, 2011 International Conference on (pp. 483-490).

[2] Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design

science research methodology for information systems research. Journal of man-

agement information systems, 24(3), 45-77.

[3] Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science

research for maximum impact. MIS quarterly, 37(2), 337-355.

[4] Vaishnavi, V., & Kuechler, W. (2004). Design research in information systems.

[5] http://www.anlaufmanagement.rwth-aachen.de, July 2016

[6] http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211, July 2016

[7] http://www.w3.org/TR/2004/NOTE-ws-arch-20040211, July 2016

[8] Paliwal, A. V., Adam, N. R., Xiong, H., & Bornhovd, C. (2006, December). Web

service discovery via semantic association ranking and hyperclique pattern dis-

covery. In Proceedings of the 2006 IEEE/WIC/ACM International Conference on

Web Intelligence, IEEE Computer Society, (pp. 649-652).

[9] http://www-eio.upc.edu/lceio/manuals/cplex-11/html/globalfiles, July 2016

[10] Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., & Petrelli, D. (2008,

June). Hybrid search: Effectively combining keywords and semantic searches. In

European Semantic Web Conference, Springer Berlin Heidelberg, (pp. 554-568).

[11] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,

G., Patterson, D., Rabkin, A., Stoica, I. and Zaharia, M., 2010. A view of cloud

computing. Communications of the ACM, 53(4), pp.50-58.

[12] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. and Brandic, I., 2009. Cloud

computing and emerging IT platforms: Vision, hype, and reality for delivering

computing as the 5th utility. Future Generation computer systems, 25(6), pp.599-

616.

[13] Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., & Ghalsasi, A. (2011). Cloud

computing—The business perspective. Decision support systems, 51(1), 176-189.

[14] Yu, R., Yang, X., Huang, J., Duan, Q., Ma, Y., & Tanaka, Y. (2012, September).

QoS-aware service selection in virtualization-based Cloud computing. In Network

Operations and Management Symposium (APNOMS), 2012 14th Asia-Pacific

IEEE, (pp. 1-8).

http://www.anlaufmanagement.rwth-aachen.de/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211

 58

[15] Gorelik, E. (2013). Cloud computing models (Doctoral dissertation, Massachu-

setts Institute of Technology).

[16] http://en.wikipedia.org/wiki/cloud computing, July 2016

[17] Jinesh Varia, Architecting for the Cloud: Best Practices, Amazon Web Services,

January 2010

[18] Tsai, W. T., Sun, X., & Balasooriya, J. (2010, April). Service-oriented cloud

computing architecture. In Information Technology: New Generations (ITNG),

2010 Seventh International Conference on (pp. 684-689). IEEE.

[19] Hoefer, C. N., & Karagiannis, G. (2010, December). Taxonomy of cloud compu-

ting services. In 2010 IEEE Globecom Workshops (pp. 1345-1350). IEEE.

[20] Sheu, P. C. Y., Wang, S., Wang, Q., Hao, K., & Paul, R. (2009, September). Se-

mantic computing, cloud computing, and semantic search engine. In Semantic

Computing, 2009. ICSC'09. IEEE International Conference on (pp. 654-657).

[21] Elgazzar, K., Hassanein, H. S., & Martin, P. (2014). Daas: Cloud-based mobile

web service discovery. Pervasive and Mobile Computing, (Vol. 13, pp. 67-84)

[22] Sheu, Yu, Ramamoorthy, Joshi, and Zadeh,(2007), Editorial Preface, International

Journal of Semantic Computing, (Vol. 1.1, pp. 1-9)

[23] Ross, J. W., & Westerman, G. (2004). Preparing for utility computing: The role of

IT architecture and relationship management. IBM systems journal, (Vol. 43.1,

pp. 5-19)

[24] Kang, J., & Sim, K. M. (2011, October). Towards agents and ontology for cloud

service discovery. In Cyber-Enabled Distributed Computing and Knowledge Dis-

covery (CyberC) IEEE, 2011 International Conference on (pp. 483-490).

[25] Han, T., & Sim, K. M. (2010, March). An ontology-enhanced cloud service dis-

covery system. In Proceedings of the International MultiConference of Engineers

and Computer Scientists (Vol. 1, pp. 17-19)

[26] Andreasen, T., Bulskov, H., & Knappe, R. (2003, November). From ontology

over similarity to query evaluation. In 2nd International Conference on Ontolo-

gies, Databases, and Applications of Semantics for Large Scale Information Sys-

tems (ODBASE), Catania, Sicily, Italy

[27] Aleman-Meza, B., Halaschek-Weiner, C., Arpinar, I. B., Ramakrishnan, C., &

Sheth, A. P. (2005). Ranking complex relationships on the semantic web. IEEE

Internet computing, (Vol. 9.3, pp. 37-44)

[28] Noor, T. H., Sheng, Q. Z., Alfazi, A., Ngu, A. H., & Law, J. (2013, June). CSCE:

a crawler engine for cloud services discovery on the world wide web. In Web

Services (ICWS), 2013 IEEE 20th International Conference on (pp. 443-450).

[29] Joshi, K. P., Yesha, Y., Ozok, A. A., Yesha, Y., Lahane, A., Kalva, H., ... &

Furht, B. (2010). User-centric smart services in the cloud. In The smart internet ,

Springer Berlin Heidelberg, (pp. 234-249).

 59

[30] Han, L., & Berry, D. (2008). Semantic-supported and agent-based decentralized

grid resource discovery. Future Generation Computer Systems, (Vol. 24.8, pp.

806-812)

[31] Rasmus Knappe and Henrik Bulskov and Troels Andreasen,(2008), Department

of Computer Science, Roskilde University, “ On Similarity Measures for Con-

cept-based Querying ”, Roskilde, Denmark

[32] Giunchiglia, F., Gomez-Perez, A., Pease, A., Stuckenschmidt, H., Sure, Y., &

Willmott, S. (2003, May). Ontologies and Distributed Systems. In Proceedings of

the IJCAI-03 Workshop, CEUR Workshop Proceedings (Vol. 71)

[33] Troels Andreasen and Henrik Bulskov and Rasmus Knappe,(2007), Department

of Computer Science, Roskilde University, Roskilde, Denmark

[34] Sim, K. M., & Wong, P. T. (2004). Toward agency and ontology for web-based

information retrieval. IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), (Vol. 34.3, pp. 257-269)

[35] Li, S., & Chen, H. P. (2014, August). A Context-Aware Framework for SaaS Ser-

vice Dynamic Discovery in Clouds. In International Conference on Algorithms

and Architectures for Parallel Processing, Springer International Publishing, (pp.

671-684).

[36] Makhzan, M. A., & Lin, K. J. (2006, June). Solutions to a complete web service

discovery and composition. In The 8th IEEE International Conference on E-

Commerce Technology and The 3rd IEEE International Conference on Enterprise

Computing, E-Commerce, and E-Services (CEC/EEE'06) (pp. 73-73).

[37] Oh, S. C., Kil, H., Lee, D., & Kumara, S. R. (2006, June). Algorithms for Web

Services Discovery and Composition Based on Syntactic and Semantic Service

Descriptions. In CEC/EEE (p. 66)

[38] McHugh, J., & Widom, J. (1999). Query optimization for XML.

[39] Duda, C., Frey, G., Kossmann, D., Matter, R., & Zhou, C. (2009, March). Ajax

crawl: Making ajax applications searchable. In 2009 IEEE 25th International Con-

ference on Data Engineering, IEEE, (pp. 78-89).

[40] http://www.intelcloudfinder.com/cloud-provider-search, July 2016

[41] http://www.pbxl.co.jp/en/saas-paas-iaas/, July 2016

[42] http://1.bp.blogspot.com, July 2016

[43] http://loadstorm.com, July 2016

[44] http://www.xul.fr, July 2016

[45] Han, T., & Sim, K. M. (2010, March). An ontology-enhanced cloud service dis-

covery system. In Proceedings of the International MultiConference of Engineers

and Computer Scientists (Vol. 1, pp. 17-19)

http://www.intelcloudfinder.com/cloud-provider-search
http://www.pbxl.co.jp/en/saas-paas-iaas/
http://www.xul.fr/

