Formal design and verification of self-adaptive systems with
decentralized control

PAOLO ARCAINI, Charles University, Faculty of Mathematics and Physics, Czech Republic
ELVINIA RICCOBENE, Universita degli Studi di Milano, Italy
PATRIZIA SCANDURRA, Universita degli Studi di Bergamo, Italy

Feedback control loops that monitor and adapt managed parts of a software system are considered crucial for
realizing self-adaptation in software systems. The MAPE-K (Monitor-Analyze-Plan-Execute over a shared
Knowledge) autonomic control loop is the most influential reference control model for self-adaptive systems.
The design of complex distributed self-adaptive systems having decentralized adaptation control by multiple
interacting MAPE components is among the major challenges. In particular, formal methods for designing
and assuring the functional correctness of the decentralized adaptation logic are highly demanded.

This article presents a framework for formal modeling and analysing self-adaptive systems. We contribute
with a formalism, called self-adaptive Abstract State Machines, that exploits the concept of multi-agent
Abstract State Machines to specify distributed and decentralized adaptation control in terms of MAPE-K
control loops, also possible instances of MAPE patterns. We support validation and verification techniques
for discovering unexpected interfering MAPE-K loops, and for assuring correctness of MAPE components
interaction when performing adaptation.

CCS Concepts: *General and reference — Validation; Verification,; ®* Software and its engineering —
System modeling languages;

Additional Key Words and Phrases: Self-adaptation, MAPE-K loop, MAPE pattern, Abstract State Ma-
chines, formal modeling and analysis, functional requirements assurance

ACM Reference Format:

Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra, 2017. Formal design and verification of self-
adaptive systems with decentralized control. ACM Trans. Autonom. Adapt. Syst. 0, 0, Article 0 (0), 35

pages.
DOI: ?7??

1. INTRODUCTION

Self-Adaptation (SA) [Cheng et al. 2009; de Lemos et al. 2013; Kephart and Chess
2003] is an effective approach to deal with the increasing complexity, uncertainty and
dynamicity of modern software systems. These typically operate in dynamic environ-
ments and deal with highly changing operational conditions: components can appear
and disappear, may become temporarily or permanently unavailable, may change their
behaviour, etc. A self-adaptive system is able to adapt autonomously to internal dy-
namics and changing conditions in the environment in order to achieve particular
quality goals and to ensure the required functionality.

The research reported in this paper has been partly supported by the Charles University research funds
PRVOUK.

Author’s addresses: P. Arcaini, Faculty of Mathematics and Physics, Charles University, Czech Republic; E.
Riccobene, Dipartimento di Informatica, Universita degli Studi di Milano, Italy; and P. Scandurra, Dipar-
timento di Ingegneria Gestionale dell'Informazione e della Produzione, Universita degli Studi di Bergamo,
Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

© 0 ACM. 1556-4665/0/-ARTO0 $15.00

DOI: ?7?7?

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:2 P. Arcaini et al.

Feedback control loops that monitor and adapt managed parts of a software system
when needed have been identified as crucial elements in realizing self-adaptation of
software systems. The MAPE-K (Monitor-Analyze-Plan-Execute over a shared Knowl-
edge) control loop is the most influential reference control model for autonomic and
self-adaptive software systems [Kephart and Chess 2003; Brun et al. 2009].

Complex, large, heterogeneous systems may have several adaptation concerns, i.e.,
system properties for which adaptation is applied (e.g., optimize performance, handle
errors, protect against threats, etc.). A single autonomic loop may not be sufficient for
managing all of them. Multiple MAPE-K loops have to be considered and different
components may be required to perform the MAPE computations [Weyns et al. 2013].
These components operate in a distributed setting and communicate directly or in-
directly by sharing information through a knowledge repository. MAPE computations
may be decentralized through the multiple loops and, therefore, have to be coordinated
with one another to avoid conflicting situations.

Facing such a complexity is among the major challenges in the field of self-
adaptation, and rigorous methods to design and reason on distributed self-adaptive
systems are highly requested. In particular, there is a demand for formally founded
design models that cover both structural and behavioural aspects of self-adaptation,
and for approaches to validate and verify behavioural properties and guarantee func-
tional correctness of the adaptation logic. However, although the increasing attention
in formal methods for SA, the number of studies remains low, and mainly related to
runtime verification [Weyns et al. 2012].

In this article, we present a conceptual and methodological framework for model-
ing and verification of distributed self-adaptive systems with decentralized control.
We here define a formalism, called self-adaptive Abstract State Machines, that exploits
the concept of multi-agent Abstract State Machines (ASMs) [Borger and Stéark 2003] to
specify decentralized adaptation control by using MAPE-K loops. A self-adaptive ASM
consists of a set of running agents divided into managing ones to control and perform
the adaptation logic, and managed ones to perform the functional logic. We formal-
ize a MAPE-K control loop in terms of actions of distributed managing agents that
communicate directly, or indirectly by means of knowledge information represented
by mathematical functions. Then, we face the problem of giving operational seman-
tics to MAPE patterns, i.e., patterns identified as recurring structures of interacting
MAPE components [Weyns et al. 2013]. To this purpose, we extend our MAPE-K con-
trol loop definition in order to model decentralization not only at loop level among the
four MAPE computations, but also at computation level among the components inter-
acting to perform the single computation of the loop. Therefore, we are able to express
the architecture and the behaviour of self-adaptive systems where control decisions are
coordinated among different components, regardless of how those control components
are physically distributed.

We support formal techniques for validating and verifying ASM models of self-
adaptive systems. For validation, we show how to simulate adaptation scenarios and
get feedback, at the early stages of the system design, of correct functionality of spec-
ified MAPE-K loops. For verification, we describe different approaches, mainly based
on static analysis and model checking. In particular, we present a verification tech-
nique, based on the proof of meta-properties, useful to discover unwanted interfer-
ences between MAPE-K loops. We also provide properties to guarantee correctness of
the MAPE components interaction when performing adaptation.

The proposed framework is primarily tailored to the formalization and analysis of
functional aspects of adaptation behaviours in order to provide guarantees of cor-
rectness of the adaptation [Iftikhar and Weyns 2014]. We do not consider modeling
uncertainty, timing aspects, and quality properties. Specifically, we contribute with

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:3

the following key aspects: (i) definition of a practical (i.e., not requiring particular
skills in formal methods), flexible (i.e., adaptable at any desired abstraction/refinement
level), executable (i.e., endowed with a simulating virtual machine), well-founded @i.e.,
based on mathematical definitions) formalism for rigorous modeling; (ii) formaliza-
tion of adaptation logic in terms of MAPE-K control loops modeled by agents’ actions;
(iii) decentralized model of computation for control loops; (iv) modular and incremental
design process due to separation of concerns (e.g., managing/managed systems, adap-
tation/functional logics, centralized/decentralized adaptation control); (v) semantics of
interaction patterns of MAPE computations; (vi) verification approaches for checking
conflicting computations, pattern instantiations, and adaptation requirements satis-
faction. These aspects, as discussed in Sect. 8.1, are advantages over previous works
that do not cover all these features or cover them only partially.

The definition of self-adaptive ASMs and some techniques to analyse these mod-
els were already presented in [Arcaini et al. 2015]. With respect to the preliminary
results presented in that work, the current contribution (1) extends and improves
the formal approach to specify the behaviour of a self-adaptive system in terms of
decentralized multiple MAPE-K control loops; (2) provides computational semantics
to MAPE components (and loops) interaction, and therefore to the notation used to
express (instances of) MAPE patterns; (3) presents verification strategies to assure
correctness of MAPE components interaction as required by the adaptation logics.

The choice of the ASMs as formal specification method is based on different consider-
ations: (a) ASMs support the concept of distributed computation which is fundamental
for modeling systems where control is decentralized among multiple distributed com-
ponents. (b) Although the ASM method comes with a rigorous foundation, the practi-
tioner needs no special training to use it since it can be understood correctly as pseudo-
code or Virtual Machines working over abstract data structures. (¢) ASM models are
executable specifications, therefore suitable for high-level model validation, and they
are supported by a set of tools for model verification. (d) ASM modeling is based on
refinement that permits to choose the desired level of abstraction when starting to
model, and to introduce details along a chain of refined models (each proved to be a
correct refinement of the model at the previous level) till, possibly, to code level; this
helps keeping complexity of the system under control. (¢) ASMs permit modeling by
specification composition; this is useful to guarantee separation of concerns, in general
indispensable for modeling large and complex systems, and in particular for modeling
self-adaptive systems.

The article is organized as follows. Sect. 2 provides some background on the ASM
formal method with special emphasis on the multi-agent computational model that we
exploit for the specification of distributed self-adaptive systems. Sect. 3 describes the
reference model we adopt for realizing SA and presents the ASM-based formalization
of a MAPE-K control loop for an adaptation concern; application of our approach is
shown on a case study chosen simple to this purpose. Sect. 4 presents MAPE patterns
and the extension of our framework to formalize a MAPE-K control loop where MAPE
computations are distributed among multiple components interacting in accordance to
a specific schema of communication given as MAPE pattern instance. In Sect. 5, we
present scenarios as a validation technique to reproduce and inspect the execution of
MAPE-K loops. Sect. 6 presents verification techniques to check that a system model
is of a certain quality (e.g., to identify early knowledge inconsistent updates due to
interfering MAPE-K loops) and reflects a desired MAPE pattern. The section also in-
troduces static and dynamic properties to guarantee correct interaction of MAPE com-
ponents when performing a control loop. Sect. 7 presents related work w.r.t. a number
of desired features required to formal methods for modeling and analyzing distributed

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:4 P. Arcaini et al.

self-adaptive systems. Sect. 8 discusses some advantages and disadvantages of our
approach. Sect. 9 concludes the paper and outlines future directions.

2. BACKGROUND ON THE ABSTRACT STATE MACHINES

We here recall the fundamental concepts of the Abstract State Machine formal-
ism [Borger and Stark 2003], useful to understand our formalization approach.

(Basic) ASMs are transition systems that can be viewed as a powerful extension of
Finite State Machines, where unstructured control states are replaced by multi-sorted
first-order structures, and state transitions are expressed in terms of rules.

An ASM state S represents an instantaneous system configuration. It is mathemati-
cally represented by an algebra with domains of objects and functions defined on them.
A pair (f, (v1,...,v,)) of a function name f, which is fixed by the signature, and a list
of dynamic parameter values v; of whatever type, is called location, and it represents
the abstract ASM concept of basic object container (or memory unit). Location updates
represent the basic units of state change and they are given as assignments, each of
the form loc := v, where loc is a location and v its new value.

ASM transition rules describe the system configuration changes, i.e., how function
interpretations are modified from one state to the next one. The basic form of a transi-
tion rule is the guarded update: “if Condition then Updates”, where Updates is a set of
function updates of the form f(¢1,...,t,) := ¢ which are simultaneously executed when
Condition is true; f is an arbitrary n-ary function and ¢4, ..., t,,t are first-order terms.
Besides the guarded rule, there is a finite set of rule constructors to model simultane-
ous parallel actions (par), non-determinism (choose), unrestricted synchronous paral-
lelism (forall), domain extension (extend). Due to their parallel execution, we require
updates to be consistent, i.e., no pair of updates can simultaneously update the same
location to different values.

Functions remaining unchanged during the computation are static. Those updated
by agent actions are dynamic, and distinguished in monitored (read by the machine
and modified by the environment) and controlled (read and written by the machine).

A computation of an ASM is a finite or infinite sequence Sy, Sy, ..., S,,... of states
of the machine, where S; is an initial state and each S,,,; is obtained from S, by
simultaneously firing all the transition rules which are enabled in S,,. We denote by
machine step the state change from a state .S; to the next state .S;, ;.

The (unique) main rule represents the starting point of the computation. An ASM
can have more than one initial state. It is also possible to specify state invariants.

Multi-agent ASMs. To support modeling of distributed systems, the notion of basic-
ASMs, which formalizes simultaneous parallel actions of a single agent, has been ex-
tended to the notion of multi-agent ASMs where multiple agents act and interact in a
synchronous or asynchronous manner. A multi-agent ASM is defined as the couple

M = {{(a,ASM(a))|a € Agents}, main)

The first element is a set of pairs where a is an agent of the dynamic finite set Agents,
and ASM(a) is a machine specifying the agent’s behaviour (for example, in Fig. 1, the
behaviour of agent as is specified by ASM(a3) = B). Different agents can have the
same behaviour and, therefore, the same associated machine. In this case, a special
(reserved name) 0-ary function self on Agents, interpreted by each agent a as itself, is
used to denote the agents which are executing the underlying “same” but differently
instantiated ASM. Each agent a has a “local” view, View(a, S), of the global state S, and
it consists of the set of locations controlled by the agent a (i.e., locations updated by
the machine ASM(a)). Agents can have shared view of a portion of a state by means of
shared functions, which are used to model communication among parties. Shared func-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:5

View(as, S) a, ASM (as)
ASM A
\ ASM C
ASM(az) a;

=E
) ASM(as)
Global state S View(as,)

Fig. 1: Multi-agent ASM

tions are dynamic functions that can be updated by the rules of two different agents
and can be read by both. Typically a protocol is needed to guarantee consistency of
shared function updates.

The second element in M is the main rule that is used to schedule the agents’ execu-
tion. If all the agents are executed in parallel, the ASM is said synchronous. Instead, if
at each step the main rule selects only a subset of agents to run, the ASM is a particu-
lar case of multi-agent asynchronous ASMs defined in [Borger and Stéark 2003]. A run
of a multi-agent ASM is obtained by the repeated execution of the main rule that com-
putes the new global state: if the ASM is synchronous, all the agents contribute to the
new state (by executing their machine ASM (a)), otherwise, if the ASM is asynchronous,
the new state is obtained by the contribution of a subset of agents.

Tools. The framework ASMETA! [Arcaini et al. 2011] provides a set of tools support-
ing the ASM formal method for model editing, validation and verification. The tools are
strongly integrated in order to permit reusing information about models during sev-
eral activities. All the specifications of this work were developed using the Asmetal
syntax, and validated and verified using the tools provided by the framework.

The framework supports the multi-agent ASM computational model. When specify-
ing a multi-agent ASM M in Asmetal, the signatures (i.e., definitions of domains and
functions) of the composing (basic) ASMs are merged together as signature of M, and
a predefined dynamic function program on Agents is used in the main rule of M to
associate an agent a with the main rule of its ASM(a). The function program can be
used at runtime to dynamically associate or change behaviour to agents.

3. A FORMAL FRAMEWORK FOR MODELING SELF-ADAPTATION

Here we present a formal framework, based on the ASM formalism and the ASMETA
framework, to model self-adaptive systems in terms of MAPE-K feedback loops for SA.
We first recall the typical architecture model of a self-adaptive system with MAPE-K
loops, and then we formalize it in terms of ASMs.

3.1. Reference Model for Self-Adaptation

We rely on the reference model for autonomic control loop initially proposed by
IBM [Kephart and Chess 2003; Huebscher and McCann 2008] and later shared by
many others (as in FORMS [Weyns et al. 2010al). It is shown in Fig. 2. It basically
consists of two-layers: a managed subsystem layer that comprises the application logic,
and a managing subsystem layer, on top of it, comprising the adaptation logic.

The managing subsystem is conceived as a set of interacting feedback loops, one per
each self-adaptation aspect (also called concern or goal). In a feedback loop, the manag-
ing system monitors (by reading sensor data) the environment and the managed sub-
system, and adapts the latter when necessary. Therefore, systems are endowed with a

Thttp://asmeta.sourceforge.net/

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:6 P. Arcaini et al.

Self-Adaptive Software System_—
—>|Managing Subsystem| IKIE

-
sensor data adapt

sensor|
data

|Managed Subsystem|

Tsensor data 4 Laffect

Environment
Non-controllable software, hardware, network, physical context

Fig. 2: Reference model for self-adaptive software systems

self-adaptive layer to support self-* properties (self-healing that allows the system to
detect failures and recover autonomously, self-optimizing when operating conditions
change, self-reconfiguration when a goal changes, etc. [Huebscher and McCann 2008])
with the intent to improve their quality of service and autonomicity.

A common approach to realize a feedback loop is by means of a MAPE-K (Monitor-
Analyze-Plan-Execute over a Knowledge base) loop: A component Knowledge (K) main-
tains data of the managed system and environment, adaptation goals, and other rele-
vant states that are shared by the MAPE components. A component Monitor (M) gath-
ers data from the managed system and the environment through probes (or sensors),
and saves data in the Knowledge (monitoring). A component Analyze (A) performs
data analysis to check whether an adaptation is required (analyzing). If so, it triggers
a component Plan (P) that composes a workflow of adaptation actions necessary to
achieve the system’s goals (planning). These actions are then carried out by a compo-
nent Execution (E) through effectors (or actuators) of the managed system (execution).

Other layers can be added to the system where higher-level managing subsystems
manage underlying subsystems, which can be managing systems themselves. This
managing multi-layers architecture leads to the concept of interacting MAPE-K con-
trol loops and their recurring organization structures; they are analyzed in Sect. 4.

3.2. Self-adaptive ASMs

To model the reference model for SA (see Fig. 2) and the operation of MAPE-K control
loops, we need to capture all relevant concepts in terms of ASM modeling elements.
Since self-adaptive systems have distributed setting, we use the notion of multi-agent
ASM, where multiple agents interact in a synchronous or asynchronous way. The com-
putational model of our framework for SA is based on the following definition:

Definition 3.1 (Self-adaptive ASM). A self-adaptive ASM is a multi-agent ASM
M = {{(a, ASM(a))|a € Agents)}, main) where the set Agents is the disjoint union of
the set MgA of managing agents and the set MdA of managed agents.

Managing agents encapsulate the logic of self-adaptation, while managed agents
encapsulate the system’s functional logic. All together these agents comprise the logic
of a distributed ASM that models the overall functionality of a self-adaptive system
able to monitor the environment and itself and to self-adapt accordingly.

A self-adaptive system may expose certain adaptation concerns adj,, ..., adj,,. Note
that with adj, we intend a type of adaptation concern, which can have more instantia-
tions at runtime (this commonly happens in adaptive systems, since they are usually
composed of different components of the same nature). According to Fig. 2, for each
(type of) concern adj, a MAPE-K loop must be defined.

In the following, we show how (i) a self-adaptive ASM models the structure of the
MAPE-K control loop, (ii) the concepts of sensors and actuators are captured in the
ASM model, and MAPE computations are implemented in terms of ASM rules, (iii) a

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:7

MAPE-K control loop establishes an (direct or indirect) interaction relation among the
MAPE components and is executed in a centralized or decentralized way, and (iv) a
self-adaptive ASM executes by means of the cooperation and coordination of different
(managing and managed) agents. In this section, we consider basic MAPE-K loops,
i.e., loops composed of only four computations?. More complex loops, in which the same
computations can be distributed among different agents, will be treated in Sect. 4 when
MAPE interaction patterns are considered.

Modeling MAPE-K loop structure. In ASMs, computations are naturally expressed
in terms of transition rules, since rules are able to represent decisions (by rule guards)
and actions (by update rules). Therefore, for each (type of) adaptation concern adj, the
self-adaptive ASM models the computations of a MAPE-K control loop MAPE — K (adj)
by means of a set of ASM transition rules:

L — apn aA ap ap
Raaj = {TZ\/Ladj’ TA,adj7rP,adj’rE,adj} 1)

where ay;, a4, ap, and ag are the (types of) managing agents that are involved in the
adaptation concern adj.
7% 4q; (Where X stands for M, A, P or E) is the ASM rule modeling the computation

X of MAPFE — K(adj), performed by the agent (type) ax. Note that the same agent
(type) may be involved in different computational parts of the same control loop (i.e.,
aum, a4, ap, and ap are not necessarily distinct). We also like to remark that, depending
on the level of abstraction chosen to model a control loop, a rule r?{fadj may specify

together two subsequent MAPE computations as a unique activity. A suitable model
refinement may expose the separation of the two computations.

We annotate (as comments /) rules involved in a loop MAPE — K (adj) with labels
QM _adj (for monitoring), @QA_adj (for analyzing), QP_adj (for planning), and QF _adj
(for execution); in case a rule models two consecutive computations X and Y (with
X e {M,A,P}and Y € {A, P, E}), we use the annotation @XY _adj. From a specifica-
tion point of view, these labels help understanding how the MAPE computations are
distributed among managing agents; for verification purposes, they help to automati-
cally extract from the model specific information (see Sect. 6.2 for more details).

Rules in the set R4 as in (1) reason over the knowledge K (adj), that is naturally
modeled by means of functions, since in ASMs system memory is represented in terms
of functions. K (adj) corresponds to that part of the signature of the self-adaptive ASM
used to represent the managed subsystem and the environment, and other information
for the enactment and coordination of MAPE — K (adj) computations.

Rules in R,q; are not independent of each other, but a specific execution order exists
that is expressed by the following interaction relation:

adj
—> C Radj X Radj

where rx a—djmy means that rx produces some information in K (adj) that is used (i.e.,
read) by ry. This binary relation reflects the fact that in a MAPE-K control loop a
monitoring computation interacts with an analyze computation, which, in turn, inter-
acts with a planning computation, which interacts with an execution computation. In
case of a not complete loop, some computations can be skipped, but the order is kept.
Therefore, on the set R,4; in (1), it yields:

di
ﬂ) = {(r%}fadj’ r%ﬁadj)’ (TZ?adj’ T?{)adj)’ (T(}—’Ijadﬁ TaE?adj)}

2Note that we here use the term computation to denote the activity performed by the MAPE components.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:8 P. Arcaini et al.

In conclusion, MAPE — K (adyj) is completely defined by a set of transition rules, their
interaction relation, and the knowledge as follows:

MAPE — K (adj) = (Raas, “%, K (adj)) (2)

MAPE-K rules implementation. The notion of environment is directly supported in
the ASM theory by means of ASM monitored functions, i.e., locations read by the ma-
chine and modified by the environment (by means of an oracle). The four rules compos-
ing the MAPE-K loop exploit the environment, as well as the knowledge, as follows:
— rjr models context-aware monitoring, i.e., perceiving the state of the environment,
and self-aware monitoring, i.e., perceiving the state of the managed (and, if neces-
sary, of the managing itself) subsystem. Probes (or sensors) from the environment
for context-aware monitoring are modeled as ASM monitored functions or derived
functions defined in terms of monitored functions; probes from the managed sys-
tem for self-aware monitoring are represented by shared functions updated by the
managed agent and only read by the managing agent.

— r4 checks if adaptation is necessary and so if an adaptation plan has to be triggered.

— rp creates or selects a procedure to enact a necessary adaptation in the managed
system. It can be a single action or a complex workflow.

— rg carries out the adaptation actions on the managed system as decided by the
planning, by using actuators.

Actuators (or effectors) are specified in terms of actions (ASM rules) of managed

agents that update own controlled locations according to the adaptation plan de-

cided by managing agents. Actuators are indirectly triggered by execution compu-

tations (performed by managing agents) by updating locations shared with the man-

aged system. The following atomic actions are supported as adaptation operators:

— change locations shared between the managed agent and the managing agent
to (indirectly) trigger the execution of the actuators;

— stop/start managed agents by setting their program to, respectively, the skip-rule
and a given rule r;

— dynamically instantiate a new managed agent to introduce a new concurrent
behaviour by an extend-rule over the domain MdA of managed agents;

— dynamically change the behaviour of a managed agent a by updating program(a)
to a new rule r.

Note that, in case of multi managing-layers, these adaptation actions can be exe-

cuted in a reflective manner to adapt the managing layer itself.

Computation models of MAPE-k loops. The control loop formalization as in (2) stat-
ically identifies the (types of) agents involved in the loop execution, models their roles
in the adaptation, and their interaction relation. Therefore, it specifies what pieces of
agent’s behaviour are involved in a MAPE-K loop, but not how the loop is executed
and, in particular, how a MAPE computation interacts with the subsequent one. There
are two schemes of execution, decentralized and centralized.

In the decentralized scheme, the four rules in MAPE — K(adj) are executed in dif-
ferent run steps by different agents, which interact with each other indirectly through
the knowledge K (adj). More precisely, if rx ,q; is in interaction relation with 7y _,4;

(i.e., 7x_qdj a’—d@ryfadj), when agent ax executes rule rx _,4;, it can update some locations
of K (adj) that agent ay can read when it executes rule ry _qq;.

In the centralized scheme, rules in R4 are executed by the same managing agent
(i.e., ap, aa, ap, and ag in (1) identify the same agent). Each rule rx_,4; can interact
with the rule ry_,4; (i.e., the rule it is in interaction relation with) either indirectly
(as in the decentralized scheme) or directly. In the direct interaction, rule rx _,q4; calls

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:9

rule ry _,4; and, therefore, the two rules are executed in one step. Consequently, if each
rule of a MAPE-K loop directly calls the rule it is in interaction relation with, all the
computations of the loop are executed in one step.

A mixed scheme of direct and indirect interaction is also possible; for example, mon-
itoring and analysis computations may be executed by a given agent (i.e., ay; = a4)
through a direct interaction and, in a subsequent step (indirect interaction), a (possi-
bly different) agent may execute the planning and execute computations (i.e., ap = ag)
using the direct interaction scheme.

Self-adaptive ASM execution. The execution of a self-adaptive ASM is the syn-
chronous or asynchronous execution of all agents in Agents = MgA u MdA as speci-
fied by the main rule. The predefined dynamic function program on Agents indicates
the (main rule of the) ASM associated with an agent. Programs of managed agents
are any kind of ASMs, while programs of managing agents contain rules annotated
by @X (X=M, A, P, E), since they are responsible for performing MAPE computations.
Note that, since a managing agent a; € MgA may be involved in one or more loops
MAPE — K(adj), h = j1, - - -, jk, its program program(a;) is a suitable coordination, by
means of conventional ASM rule constructors (par, if-then-else, etc.), of rules r/ 4,
modeling the behavioural contribution of the agent to the loops adj; , ..., adj,;, it is
involved in.

3.3. Smart home case study

In order to show the application of self-adaptive ASMs, we consider the smart home

case study proposed in [Song et al. 2013]. In a smart home, different sensors are used

to collect different data (e.g., temperature, humidity, etc.) that are analysed by special

devices that can make some decisions and modify the house components (e.g., appli-

ances, windows, heating system, etc.) accordingly. In this way, the house is smart, as

it is able to automatically adapt to the changing of environment conditions, in order

to improve living qualities and to save resources. We consider the five adaptation con-

cerns reported in [Song et al. 2013]:

(1) Comfortable heating (CH): when it is cold, the heaters should be at sufficient set-
tings for comfort;

(2) Minimize dispersion (MD): do not open window when the heater is on;

(3) Air quality (AQ): do open window when air quality is bad;

(4) Morning water heating (MWH): keep water heater on in the early morning;

(5) Electricity saving (ES): when the electricity is expensive, do not use water heater
and strong heating together.

We propose a self-adaptive ASM? whose instantiation of the reference model is
shown in Fig. 3: there are five managing agents involved in the control loops, three
managed agents, and a different MAPE-K control loop for each adaptation concern?.

Managed agents of type HeaterManaged, WindowManaged, and WaterHeaterManaged
model the normal behaviour of the house, namely of the windows, the heaters, and the
water heater. They usually modify their status when triggered by the MAPE-K loops.

Two kinds of managing agent are responsible for the monitoring and data analy-
sis: an agent of type RoomManaging monitors the temperature and the air quality of a
room, and an agent of type HouseManaging monitors the water heater and the heating
consumption of the whole house.

3All the specifications are available online at http:/fmse.di.unimi.it/sw/TAAS2017.zip
4For simplicity of the presentation, we suppose to have only one room with one window and one heater, but
multiple rooms with multiple windows and heaters can be modeled.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:10 P. Arcaini et al.

Self-Adaptive Smart Home | MAPE-K(CH)
P HouseManaging, RoomManaging, MAPE-K(MD)
HeaterManaging, WindowManaging, WaterHeaterManaging MAPE-K(AQ)

s:n:or 'y — — MAPE-K(MWH)

ata sensor data
(time, (heaterStatus, windowStatus, adapt = MAPE-K(ES)
badAir, waterHeaterStatus)
roomTemp
HeaterManaged, WindowManaged, WaterHeaterManaged

| Environment |

Fig. 3: Self-adaptive smart home

Three other kinds of managing agent are instead responsible for triggering the adap-
tation of the house components to the environment changing conditions. Each agent
of type HeaterManaging can trigger the modification of the heater status; each agent of
type WindowManaging can trigger the opening/closing of a window; each agent of type
WaterHeaterManaging can trigger the turning on/off of the water heater. Such status
modification will become effective upon firing the adapters from the responsible man-
aged agents. Code 1 shows the definitions and the schedule of the agents’ programs.

Adaptation strategies of the smart home system are specified by simple control loops
that have no real plan computations since, resembling event-condition-action (ECA)
rules, adaptation can be executed directly upon the analysis of specific sensor data
combinations. Although the structure of such MAPE-K loops is simple, it is useful and
effective to illustrate clearly the formal framework.

We here show the definitions of the first four loops (see Eq. 2). The fifth loop will be
described in Sect. 4.1, since it requires a more advanced definition of loop (in terms of
MAPE pattern).

MAPE — K(CH) = <R0H, on, K(C’H)> MAPE — K(MD) = <RMD, Mp K(MD)>
MAPE — K(AQ) = <RAQ, A9 K(AQ)> MAPE — K(MWH) = <RMWH, MWH K(MWH)>
where

Rcn = {rcheckRoomTempMAPE_CH, r_adaptHeaterMAPE_CH}

e {(r-checkRoomTempMAPE_CH, r_adaptHeaterMAPE_CH)}
K(CH) = {roomTemp, sgnHeaterVERY_HOT_CH, sgnHeaterFAIRLY_HOT_CH, sgnHeaterOFF_CH}

Rup = {r-checkWindowAndHeaterMAPE_MD, r_adaptWindowMAPE_MD}

MB_ {(r-checkWindowAndHeaterMAPE_MD, r_adaptWindowMAPE_MD)}

K (MD) = {heaterStatus, windowStatus, sgnCloseWindow_MD}

R 4¢ = {rcheckAirQualityMAPE_AQ, r_adaptWindowMAPE_AQ}
29, _ {(r.checkAirQualityMAPE _AQ, r_adaptWindowMAPE_AQ) }
K(AQ) = {badAir, sgnOpenWindow_AQ, sgnCloseWindow_AQ}

Rywn = {r-checkHotWaterMorningMAPE_MWH, r_adaptWaterHeaterMAPE_MWH}

MW _ {(r_checkHotWaterMorningMAPE_MWH, r_adaptWaterHeaterMAPE_MWH) }

K(MWH) = {time, sgnWaterHeaterON_.MWH}

The managing agent RoomManaging is involved in more than one MAPE-K loop since
it executes the monitoring and the analysis of MAPE — K(CH), MAPE — K(MD), and
MAPE — K(AQ). Code 2 shows the agent’s program (i.e., rule r_monitorAndAnalyze-
Room).

For MAPE — K(CH), the agent checks the temperature of the room (by means of rule
r_checkRoomTempMAPE_CH shown in Code 2) and notifies the agent managing the room
heater on how to set the heating. Note that all functions having prefix sgn are used to

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control

asm smartHome

signature:
//managed agents types
domain HeaterManaged subsetof Agent
domain WindowManaged subsetof Agent
domain WaterHeaterManaged subsetof Agent
//managing agents types
domain HouseManaging subsetof Agent
domain RoomManaging subsetof Agent
domain HeaterManaging subsetof Agent
domain WindowManaging subsetof Agent
domain WaterHeaterManaging subsetof Agent
//managed agents
static heaterManaged: HeaterManaged
static windowManaged: WindowManaged
static waterHeaterManaged: WaterHeaterManaged
//managing agents
static houseManaging: HouseManaging
static roomManaging: RoomManaging
static heaterManaging: HeaterManaging
static windowManaging: WindowManaging
static waterHeaterManaging: WaterHeaterManaging

//Knowledge — sensors

monitored badAir: Boolean

monitored roomTemp: Temperature

//Knowledge — signals

controlled sgnHeaterOFF_CH: Boolean
controlled sgnHeaterFAIRLY_HOT_CH: Boolean
//Knowledge — statuses of managed agents
controlled heaterStatus: HeaterStatus

controlled windowStatus: WindowStatus
controlled waterHeaterStatus: WaterHeaterStatus

//shared between managed and managing agents

controlled setWaterHeaterStatus: WaterHeaterStatus

controlled setHeaterStatus: HeaterStatus

controlled setWindowStatus: WindowStatus
definitions:

macro rule r_heater = ...

macro rule r_window = ...

macro rule r_waterHeater = ...

macro rule r_-monitorAndAnalyzeHouse = ...
macro rule r_-monitorAndAnalyzeRoom = ...

macro rule r.adaptHeater = ...
macro rule r_adaptWindow = ...
macro rule r_adaptWaterHeater = ...

main rule r_-Main =
if checkForAdaptation then
par
program(houseManaging)
program(roomManaging)
program(heaterManaging)
program(windowManaging)
program(waterHeaterManaging)

endpar
else
par
program(heaterManaged)
program(windowManaged)
program(waterHeaterManaged)
endpar
endif

default init sO:
//statuses of the managed elements
function heaterStatus = OFF
function windowStatus = OPEN
function waterHeaterStatus = WE_OFF
//signals
function sgnHeaterOFF_CH = false
function sgnHeaterFAIRLY_HOT_CH = false
function sgnOpenWindow_AQ = false
function sgnWaterHeaterON_MWH = false

agent HeaterManaged: r_heater(]

agent WindowManaged: r_window(]

agent WaterHeaterManaged: r_.waterHeater[]

agent HouseManaging: r_-monitorAndAnalyzeHouse][]
agent RoomManaging: r-monitorAndAnalyzeRoom([]
agent HeaterManaging: r_adaptHeater(]

agent WindowManaging: r_adaptWindow[]

agent WaterHeaterManaging: r.adaptWaterHeater([]

Code 1: Smart home case study — Managing agents and knowledge

macro rule r.monitorAndAnalyzeRoom =
par
if monMAPE_CH then
r.checkRoomTempMAPE_CH[] /@MA-MAPE_CH
endif
if monMAPE_MD then

r_checkWindowAndHeaterMAPE_MD][] /@MA_-MAPE_MD

endif
if monMAPE _AQ then
r_checkAirQualityMAPE_AQ([] /@MA_MAPE_AQ
endif
endpar

macro rule r_checkRoomTempMAPE_CH =
if roomTemp < 10 then
sgnHeaterVERY_HOT_CH := true
else
if oomTemp < 18 then
sgnHeaterFAIRLY_HOT_CH := true
else
sgnHeaterOFF_CH := true
endif
endif

Code 2: Smart home case study — Program of agent RoomManaging and rule executing

MA of MAPE — K(CH)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:12 P. Arcaini et al.

macro rule r.adaptHeater = macro rule r.adaptHeaterMAPE_CH =
par par
if execMAPE_CH then if sgnHeaterVERY_HOT_CH then
r_adaptHeaterMAPE_CH[] /@E_-MAPE_CH par
endif setHeaterStatus := VERY_HOT
if execMAPE_ES then sgnHeaterVERY_HOT_CH := false
r_adaptHeaterMAPE_ES[] /@E_MAPE_ES endpar
endif endif
endpar
endpar

Code 3: Smart home case study — Program of agent HeaterManaging and rule executing
E of MAPE — K(CH)

macro rule r_heater =
if isDef(setHeaterStatus) then
par
heaterStatus := setHeaterStatus /actuator
setHeaterStatus := undef
endpar
endif

Code 4: Smart home case study — Program of agent HeaterManaged

manage the communication from the managing agents responsible for monitoring and
analysis and the managing agents responsible for the execution.

For MAPE — K(MD), the agent checks (by means of rule r_checkWindowAndHeater-
MAPE_MD) that the window is closed when the heating system is turned on, and, if this is
not the case, notifies the window managing agent that the window must to be closed.

For MAPE — K(AQ), the agent checks (by means of rule r_checkAirQualityMAPE_AQ)
the air quality and notifies the window managing agent that the window has to be
opened/closed. For explanation purposes, in the example we have made explicit the
condition that guards the execution of each monitoring rule (i.e., monMAPE_X for the
adaptation concern X). However, such conditions can have any form and rules can be
nested at any depth.

All the MAPE-K loops are executed following a decentralized schema in which the
monitoring and analyzing are executed by an agent in the same rule, and the exe-
cution is performed by another agent. Let us consider MAPE — K(CH). As seen be-
fore, the RoomManaging agent is responsible for the monitoring and analyzing compu-
tation of this loop. The execution computation is done by an agent of type Heater-
Managing that reads the signals sgnHeaterVERY_HOT_CH, sgnHeaterFAIRLY HOT_CH, sgn-
HeaterOFF_CH (sent by the RoomManaging agent), and sgnHeaterFAIRLY HOT_ES (sent by
the HouseManaging agent), and modifies the status of the heater accordingly. The pro-
gram of the agent and the rule of the execution computation of MAPE — K(CH) are
shown in Code 3.

The adaptation is carried out when the managed agents, triggered by the execution
computations of managing agents, adapt their statuses through the actuators. For ex-
ample, Code 4 shows the program of managed agent HeaterManaged that modifies its
status whenever notified (i.e., when setHeaterStatus is defined) by managing agents
RoomManaging or HouseManaging. Note that all functions having prefix set are used to
manage the communication from managing to managed agents.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:13

Pattern * * Key for patterns and instances
Ftt—————————
v |
‘ M P \ | (Y Abstract group of MAPE components
| | (-) Group itself can be subject of adaptation
\—n —_
L J Concrete group of MAPE components
Instance Group itself can be subject of adaptation

Managed subsystem (application logic)

]
v
'Il‘ >L‘ >m 7 B D MAPE component
]
e

J
] Inter-component interaction

[| \ —» Intra-component interaction
> > ‘ n > > ﬂ > E ‘ ———0 Managing-managed subsystem interaction
; s g

Fig. 4: Information sharing: pattern and concrete instance of the pattern.

UEOEGEE

4. INTERACTING MAPE COMPONENTS AND PATTERNS

In Sect. 3.2, we have modeled each computation M, A, P, and E by means of a single
rule executed by a given agent. However, computations M, A, P, and E may be made by
multiple components, i.e., they may be decentralized throughout interacting groups of
MAPE components. To make the interactions of control loops explicit and expose how
these interactions are handled, in [Weyns et al. 2013] recurring structures of interact-
ing MAPE components, defined as MAPE patterns, are presented through a graphical
notation. A MAPE pattern describes the abstract groups of MAPE components, the
type of interactions between MAPE components and between groups, and the interac-
tions with the managed subsystem. A pattern instance describes the concrete structure
of the pattern for one particular configuration.

As an example, Fig. 4 shows the pattern information sharing, an instance of this
pattern, and the graphical notation adopted in [Weyns et al. 2013]. The annotated
cardinalities of the interactions between the groups of MAPE components determine
the allowed occurrences of the different groups in the pattern.

In terms of notation, there are different types of interactions:

— Managed-managing subsystem interactions are those between M components and
the managed subsystem for monitoring purposes, and between E components and
the managed subsystem for performing adaptations.

— Inter-component interactions are those between MAPE components of different
types. In a typical MAPE-K loop, M interacts with A, A with P, and P with E, but
more complex interaction loops are possible [Vromant et al. 2011].

— Intra-component interactions are those between MAPE components of the same
type, e.g., interactions between M components in the pattern information sharing.

The formalization in Sect. 3.2 already captures managed-managing interactions by
ASM rules of type), and r, and provides a way to model (inter/intra, direct/indirect)
components interaction. Our goal here is to provide an operational semantics (in terms
of ASMs) to MAPE patterns defined in [Weyns et al. 2013]. In order to reflect the fact
that each MAPE computation can be performed by a set of rules (and no more by only
one rule), in (1) we extend the set R,4; of transition rules as follows:

o an, aa, ap, ag, anm,, aa, ap, ap,

Rag; = {TJVh,adj’rAl,adj’ TPy adj> "B _adj> 0 T Myp-adj? T An-adjs T Po_adj> T By _adj } 3)
. aXl ax, . . .

where different rules ry ', ry ", contribute (through intra-component interac-

tion) to a given computation X (with X € {M, A, P, E}).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:14 P. Arcaini et al.

o] [121)
L 5 5
| — I |
[|

Fig. 5: Smart home case study — Pattern with multiple £ components

The interaction relation <% on Rq; reflects a coordination model® among MAPE
computations established at design time when the MAPE-K control loop is designed as
interacting groups of MAPE components, possibly by instantiating a MAPE pattern.

dj i) . ..)
Therefore, 5, 2y pox 4; iff there exists an interaction (inter or intra) from the

MAPE component X to the MAPE component Y in the coordination model. Here the
interaction relation both expresses inter- and intra-component interaction: an interac-
tion relation between rules r§* . and r{” . models an intra-component interaction if
X and Y are of the same type, or an inter-component interaction otherwise.

As final remark, we observe that our formalization is also able to specify MAPE-K
control loops resulting from composition of a number of MAPE-K (sub-)loops (in this
case, a group of MAPE components performs a control loop). Indeed, if an adaptation
concern adj is composed of sub-concerns adj; (i = 1,...,h) whose control (sub-)loops

are MAPE — K(adj;) = <Radjiya—djz>, K(adji)>, then in (2) it yields:

h
— Ragj = Ui:l Radj,;

L U? 1 i)} plus all those (inter/intra) interactions among MAPE computations

of different control (sub-)loops established to compose the sub-loops
— K(adj) = Ui, K (adj;)

An example of formalization of composed MAPE-K control loop is given in Sect. 4.1
for the flexibility concern of the traffic monitoring case study.

4.1. Application Examples

Smart Home. The loop ES of the smart home case study (related to electricity saving)
is a simple example of a pattern where two rules perform the execution computation
(as shown in Fig. 5). The loop is defined as follows:

MAPE — K(ES) = (Ry, 2>, K(ES))

where

Rpgs = {rcheckElectrMAPE_ES, r_adaptHeaterMAPE_ES, r_adaptWaterHeaterMAPE_ES}

S, {(r_checkElectrMAPE_ES, r_adaptHeaterMAPE_ES), (r_checkElectrMAPE_ES, r_adaptWaterHeaterMAPE_ES)}

K(ES) = {time, heaterStatus, waterHeaterStatus, sgnHeaterFAIRLY_HOT_ES, sgnWaterHeaterOFF_ES}

The monitor and analysis components are modeled by the rule r_checkElectrMAPE_ES
of HouseManaging that checks whether both strong heating and water heater are used
together. If this is the case, the rule indirectly interacts with either rule r_adapt-
HeaterMAPE ES of HeaterManaging that reduces the speed of the heater, or rule r_adapt-
WaterHeaterMAPE_ES of WaterHeaterManaging that turns the water heater off. Require-
ments in [Song et al. 2013] do not specify which action should be taken when adapta-
tion is needed; therefore, at this level of abstraction, we nondeterministically choose
one of the two actions. In further refinement steps, a more detailed planning policy
could be added for deciding which adaptation action to apply.

5According to the classification of coordination models given in [Papadopoulos and Arbab 1998], we here
intend a data-driven approach where communication is done through the knowledge as shared dataspace.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:15

Traffic Monitoring. The specification of interacting groups of MAPE components has
been mainly experimented in modeling a traffic monitoring application [Iftikhar and
Weyns 2012], where a number of intelligent cameras are located along a road to detect
traffic jams and collaborate in case of congestion to assist, for example, traffic light
controllers or driver assistance systems. Traffic jams can span the viewing range of
multiple cameras and can dynamically grow and dissolve. Cameras are endowed with
a data processing unit and a communication unit to interact with each other. They
have to collaborate by aggregating their monitored data in case of traffic congestion
because each camera has a limited viewing range. In order to avoid the bottleneck of a
centralized control center, the task of the cameras has to be performed in a decentral-
ized way. To this purpose, multiple cameras collaborate in organizations when a traffic
jam spans their viewing range. Cameras enter or leave the organization whenever the
traffic jam enters or leaves their viewing range.

We already used this case study in [Arcaini et al. 2015] where we kept the same
adaptation functional requirements and system reference model as in [Iftikhar and
Weyns 2012]. Here we use a fragment of such a specification to show a concrete exam-
ple of composed control loops that realize the MAPE pattern information sharing.

The managed system of the reference model for SA are the cameras, each endowed
with mechanisms to detect traffic jams and inform clients; the managing system con-
sists, for each camera, of two components: the organization middleware and the self-
healing subsystems. Organization middlewares collaborate to manage an organiza-
tion that spans multiple cameras when congestion is detected; a master/slave control
model is used for synchronization issues. For each camera, the self-healing subsys-
tem detects failures of other cameras (silent nodes) by using a Heartbeat interaction
pattern. Therefore, the case study exposes two main adaptation concerns:

— Flexibility: two or more cameras start an organization in case of traffic congestion.

For each organization, one camera is elected as master, while the others are slaves.

A camera leaves the organization when it does not observe congestion anymore.

— Robustness: a camera fails and becomes unresponsive without sending data, either
in case of an external camera becoming silent (external failure), and in case of in-
ternal failure of a camera.

Through interactions among peer M components of the cameras, the overall system
realizes the architectural MAPE pattern information sharing for the flexibility con-
cern and the robustness concern due to external failures. For the flexibility concern,
monitor components, i.e, M computations executed by the organization middleware
managing systems (one per each camera), interact for restructuring master/slave or-
ganizations in case of congestion. For the robustness concern due to external failures, a
monitor computation executed by the self-healing managing system (one per each cam-
era) gathers the required data locally from the managed camera, but it also requires
coordination with monitor computations executed by other self-healing subsystems to
gather the status of other cameras and, eventually, recover from a silent node failure.

Due to the complexity of the case study, we have to reason in terms of camera’s roles,
sub-concerns, and sub-loops. Let us consider, for example, the flexibility concern. The
role of a camera at a given time can be master of a single member organization, master
of an organization with slaves, or slave in an organization. Camera’s role determines
the behaviour of the camera’s organization middleware that assumes the same role.
For example, in the role of master of a single member organization (the default role of

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:16

P. Arcaini et al.

macro rule r-masterBehaviour($c in Camera) =
par
r_detectCongestion[$c] /@M-MAPE_CD
r_analyzeCongestion[$c]
endpar

macro rule r_detectCongestion($c in Camera) =
if not(stopCam($c)) and cong($c) and
not congested(self) then
par
congested(self) := true
r_send_s_offer_message[$c]
endpar
endif

macro rule r_analyzeCongestion($c in Camera) =
par
r_analyzeCongestionTMS[$c] /@MA_MAPE_TMS
r_analyzeCongestionTS[$c] /@MA-MAPE_TS
endpar

macro rule r_analyzeCongestionTMS($c in Camera) =
if congested(self) and m_offer($c) then
r_turnMasterWithSlaves[$c] /@PE_-MAPE_TMS
endif

macro r_analyzeCongestionTS($c in Camera) =
if congested(self) and not(m_offer($c)) and s_offer($c) then
r_joinOrganization[$c] /@PE-MAPE_TS

endif

Code 5: Rule r_masterBehaviour

a camera), we can consider three flexibility sub-concerns capturing the phases of the

master-slave election protocol®:

(1) Congestion detection (CD): start negotiations with the next alive camera when con-
gestion is detected for the first time;

(2) Turning master with slaves (TMS): become master with slaves when the next alive
camera accepts to become slave in a congested situation;

(3) Turning slave (TS): join the organization of the requester camera as slave when
receiving the request to become slave in a congested situation.

Code 5 shows the rule r masterBehaviour executed by the organization controller
(the ASM managing agent representing the camera’s organization middleware) of a
camera in the role of master. Details on the macro sub-rules not reported here can be
found in the ASM specification available on line. For each sub-concern, we define a
MAPE-K sub-loop as follows (see Eq. 2):

MAPE — K(CD) = <RCD, D, K(CD)>
MAPE ~ K(T8) = { Rrs, ™, K(T8))

MAPE — K(TMS) = <RTM57 LMS,K(TMS)>

where

CD,

Rep = {rmp =rdetectCongestion} — =@ K (CD) = {congested,s_offer}

Rrus = {rmarys = r-analyzeCongestionTMS, rpg,,,o = r-turnMasterWithSlaves}

TMS

— ={(rMapygr TPEpys)Y K (TMS) = {congested,m_offerstate,slaves,newSlave }

Rrs = {rmapg = r-analyzeCongestionTS, rpg,,g = rjoinOrganization}

TS,

—> ={(rmaqg, rPE;g)} K (TS) = {congested,s offer,newSlave,state,change_master,getMaster }

The first sub-loop MAPE — K(CD) is a monitor computation. It starts negotiations
when congestion is detected for the first time (the monitored predicate cong is true and
the controlled predicate congested is false): the organization controller sends a request
to join its organization as slave (the knowledge location s_offer) to the organization
controller of the next alive camera (if any) in the direction of the traffic.

The second sub-loop MAPE — K(TMS) deals with the second part of the master-
slave election protocol in case of congestion. After inviting the next alive camera to
join the organization as slave (the knowledge location s_offer), the organization con-
troller waits for receiving the signal m_offer back from the invited camera as positive

6To keep the master election policy simple, we assume every camera has a unique ID that is a monotonically
increasing function on the traffic direction and the camera with the lowest ID becomes master. Algorithms to
elect a new master, like Bully [Garcia-Molina 1982] and Ring algorithms, are out of the scope of this article.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:17

(acceptance) answer. When it receives such a signal, it becomes MASTER of the joined
organization by executing the rule r_turnMasterWithSlaves to concretely add the new
slave to its list and change the camera role in “master with slaves”.

The third sub-loop MAPE — K(TS) captures the counterpart behaviour of the
master-slave protocol. In a congested situation, if the organization controller receives
the request to become slave (the knowledge location s_offer), it joins the organization
of the requester camera as slave by directly executing the rule r_joinOrganization
that sends the signal m _offer back to the requester and turns the camera in the role of
slave.

The coordination between the first sub-loop and the other two sub-loops (see the rule
r_masterBehaviour in Code 5) is realized by a par-construct, but a sequential execution
is guaranteed by the rules conditions that are mutually exclusive. Moreover, the third
sub-loop may be executed (see the rule r_analyzeCongestion in Code 5) only if the
triggering condition of the second sub-loop is false (alternate logic) to give priority to
m_offer signals w.r.t. s_offer signals thus avoiding conflicts (detected as inconsistent
updates of the knowledge locations).

The MAPE-K loop of the main concern MAPE — K(FLEX_M) (i.e., the flexibility
concern in the role MASTER) can be therefore defined as follows:

FLEX_M

MAPE — K(FLEX_M) = <RFLEX,M, ,K(FLEX,M)>

where

Rrpex v = Rep U Rrvs U Rrs = {rMep T"MApy gy TPEp g T MApg s TPEpg
FLEX_.M
- = {(TMCD, TMATMS),(TMCD, TMA Ts)a(TMA TS T'MAT]\,{S):(TMATMS: 'f'PETMS)s('f‘MA TS TPETS)}

K(FLEX_M)=K(CD)|J K(TMS) |J K(TS) = {congested,s_offer,m_offer,state,slaves,newSlave,change_master,getMaster }

Note that (according to Eq. 3) the monitor computation of MAPE — K(FLEX_M) is
performed by the rules ras.,, "mApys @a0d 7414, of Rprpx_ar. Rules ras,, and 74,6
are in (intra-component) interaction relation by means of the knowledge location con-
gested; rules 7y, and ry 4,4 are in (intra-component) interaction relation by means of
locations congested and s_offer; rpa,, and raza,,,, are in (intra-component) interaction
relation by means of location m_offer; rpa,,, directly interacts with rule rpg,,,,; and
TMAps directly interacts with rule rpg,.

The monitor components of the instances of the loop MAPE — K(FLEX_M) on dif-
ferent cameras realize the information sharing pattern: the information shared among
the cameras’ organization controllers is represented by the signals s_offer and m _offer
(knowledge locations for interaction of the master/slave election mechanism).

In Sect. 7, a qualitative comparison is made with the work presented in [Iftikhar and
Weyns 2012], where Timed Automata are used to model the same Traffic Monitoring
case study and verify properties. In [Arcaini et al. 2015], a comparison is made with the
same work for the verification of properties related to the application requirements.

5. VALIDATION OF ADAPTATION REQUIREMENTS

Model validation is a model analysis activity and consists in investigating and/or ex-
ecuting a model to ensure that it reflects the user needs and statements about the
application. In the context of modeling SA, besides testing the conformance between
model and requirements, validation is useful to get a preliminary feedback of the cor-
rect operation of a MAPE-K control loop. Guarantee of such correctness can be given
by formal verification of the interaction relation among rules involved in the control
loop, but it requires more effort. Validation is, instead, less demanding than property
verification, and, therefore, applicable since the earlier stages of model development
to detect faults and ambiguities with limited effort.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:18 P. Arcaini et al.

In our work of modeling self-adaptive systems, we have experimented two model
validation approaches, namely simulation and scenario-based validation. Simulation
is performed with the ASM simulator AsmetaS [Gargantini et al. 2008] and scenario-
based validation with the validator AsmetaV [Carioni et al. 2008], both provided by the
ASMETA framework [Arcaini et al. 2011]. During the validation process, the user can
directly simulate an ASM-based specification in an interactive way, or write a scenario
that automatizes the simulation of the model and that checks that the produced out-
puts are as expected (see Sect. 5.1). We can apply these validation techniques several
times during the development process. In this way, we are able to get enough confi-
dence that the model we are developing is correctly modeling MAPE-K control loops as
specified in the adaptation requirements.

In the following section, we present scenario-based validation of the smart home
example (see Sect. 3.3). We refer to [Arcaini et al. 2015] for a description of interactive
simulation and scenario-based validation for the traffic monitoring case study.

5.1. Scenario-based Validation

Scenario-based validation is an advanced way to simulate and inspect ASMs, by spec-
ifying a scenario representing an interaction sequence of actions of an external actor
and activities of the machine as reaction to the actor actions. Scenarios are described
in an algorithmic way using the textual language Avalla [Carioni et al. 2008] that
provides constructs to set the environment (i.e., the values of monitored/shared func-
tions), to check the machine state, to ask for the execution of certain transition rules,
and to force the machine to make one step (or a sequence of steps by step until). The
tool AsmetaV reads scenarios written in Avalla and executes them using the simulator
AsmetaS; during simulation, AsmetaV captures any check violation and, if none occurs,
it finishes with a PASS verdict.

Scenarios are a suitable way to reproduce and inspect the execution of MAPE-K
loops. The first computation of a MAPE-K loop is context/self-aware monitoring, in
which environment and managed system are monitored and, if some conditions hold,
an analyze computation is triggered. Therefore, in order to reproduce a particular
MAPE-K loop, by the set command we give to the system specific environment in-
puts, so that the desired control loop can start. Then, by the command step, we force
a simulation step in which a MAPE computation is possibly executed. After a step of
simulation is executed, we use the check command to verify that the knowledge has
been updated correctly and that the subsequent steps (if any) of the MAPE-K loop
have been triggered correctly w.r.t. the particular pattern instantiated by the loop un-
der consideration. In addition, we can use the command exec to bring the system in a
specific configuration required to trigger monitoring.

Code 6 shows an example of scenario for the smart home case study. The scenario
simulates the situation in which control loops MAPE — K(CH), MAPE — K(MWH),
and MAPE — K(AQ) are executed. At the beginning, the monitoring phase of the loop
related to the adaptation concern CH (comfortable heating) signals that adaptation is
needed when the sensor of room temperature detects 15 degrees: in the first step, a sig-
nal to turn the heater on is sent (i.e., sgnHeaterFAIRLY HOT_CH). Since it is early morn-
ing, also the loop MAPE — K(MWH) (related to hot water in the morning) is activated
and a signal to turn the water heater on is sent (i.e., sgnWaterHeaterON_MWH). After an-
other step, the signals have been received and the heater and the water heater are in-
formed to turn themselves on (i.e., setHeaterStatus=FAIRLY_HOT and setWaterHeater-
Status=WE_ON) by the executors of the two loops. In the next step, the managed systems
heater and water heater adapt accordingly. Afterwards, the loop MAPE — K(AQ) (re-
garding the air quality) is activated: when the sensor of air quality detects bad air, a
signal to open the window is sent (i.e., sgnOpenWindow_AQ). After one step, the signal is

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:19

scenario smartHome1 step
check time=EARLY_MORN and heaterStatus=FAIRLY_HOT
load smartHome.asm and waterHeaterStatus=WE_ON;
set roomTemp := 15; set roomTemp := 20;
set badAir := false; set badAir := true;
set timePassed := false; set timePassed := true;
step step
check time=EARLY_MORN and sgnHeaterFAIRLY_HOT_CH check time=MORN_AFT and sgnOpenWindow_AQ;
and sgnWaterHeaterON_MWH;
step
step check time=MORN_AFT and setWindowStatus=OPEN;
check time=EARLY_MORN and setHeaterStatus=FAIRLY_HOT
and setWaterHeaterStatus=WE_ON; ste|

p
check time=MORN_AFT and windowStatus=OPEN;

Code 6: Smart home — Example of scenario

received and the window is informed to open (i.e., setWindowStatus=0PEN) by the exe-
cute component of the loop. After one step, the managed window adapts accordingly.

6. VERIFICATION

Since validation techniques are not complete (i.e., they partially explore the state space

of the specification), they can not give us fully assurance of the specification correct-

ness. For this reason, on the final specification, we need to apply deeper analyses in

terms of formal verification.
In our formal framework, we support verification approaches that deal with:

(1) system-independent properties (or meta-properties), i.e., properties that any self-
adaptive model should guarantee;

(2) MAPE-K correctness verification properties, i.e., properties to assess the correct
interaction among MAPE computations in achieving an adaptation goal;

(3) requirement verification properties, i.e., properties representing adaptation goals
related to the requirements of the specific system.

All approaches exploit the model checker AsmetaSMV [Arcaini et al. 2010al, a tool of
the ASMETA framework that translates ASM specifications into models of the NuSMV
model checker. The model checker allows the verification of Computation Tree Logic
(CTL) and Linear Temporal Logic (LTL) formulae.

We here mainly consider the first two approaches, since we are principally inter-
ested in completely automatic techniques; however, we also give some small exam-
ples of the third approach. Sect. 6.1 presents the first approach, i.e, model review in
terms of meta-property verification, while Sect. 6.2 describes the second approach, i.e.,
the verification technique to check correctness of MAPE-K control loops by exploiting
the interaction relation. Manual specification of requirement verification properties is
shown in Sect. 6.3.

6.1. Model Review

This approach aims at determining if a model is of sufficient quality to be easy to
develop, maintain, and enhance. This technique permits to identify defects early in
the system development, reducing the cost of fixing them. For this reason, it should be
applied also on preliminary models. The AsmetaVMA tool [Arcaini et al. 2010b] (based on
AsmetaSMV) allows automatic review of ASMs. Typical vulnerabilities and defects that
can be introduced during the modeling activity using ASMs are checked as violations
of suitable meta-properties (MP, defined in [Arcaini et al. 2010b] as CTL formulae).
The violation of a meta-property means that a quality attribute is not guaranteed, and

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:20 P. Arcaini et al.

it may indicate the presence of a real fault (i.e., the ASM is indeed faulty), or only of a

stylistic defect (i.e., the ASM could be written in a better way).

In this work, we define some meta-properties tailored for self-adaptive systems:

— MP,.: knowledge locations are not in conflict. Due to the distributed nature of the
adaptation, MAPE computations (of the same control loop, or of different loops)
might simultaneously update a same knowledge location to two different values.
This definition corresponds to the definition of inconsistent update [Borger and
Stark 2003]. This fact might cause conflicting situations between control loops. In
particular, we have a single-loop inconsistency if the inconsistent updates belong to
the same MAPE-K loop (i.e., they are due to computations of the same control loop),
and a multiple-loop inconsistency if the inconsistent updates belong to two different
MAPE-K loops (i.e., they are due to computations of different control loops).

— MP,: all rules involved in MAPE-K loops are executed. This meta-property only
guarantees that there is no over specification inside a MAPE-K loop formalization.
However, it does not guarantee functional correctness of a MAPE-K loop. This can
be checked by means of other verification techniques presented in Sect. 6.2.

— MP,,: the knowledge is minimal, i.e., it does not contain locations that are unneces-
sary (they are never read nor updated) or that do not assume all the values of their
codomains. Note that a violation of this meta-property may also indicate that the
specification is not complete, i.e., that the designer forgot to read/update a location.

6.1.1. Model review of the Smart home case study. As also reported in [Song et al. 2013],
some adaptation goals of the smart home case study are in conflict. These conflicts
can be easily discovered by meta-properties MP,.. The verification of these meta-
properties over the model presented in Sect. 3.3 is as follows:

Location setWindowStatus is updated to values CLOSED and OPEN when are satisfied
simultaneously the conditions:

- (checkForAdaptation & execMAPE_MD & sgnCloseWindow_MD)

- (checkForAdaptation & execMAPE_AQ & sgnOpenWindow_AQ)

The metaproperty violation signals that loops MAPE — K(MD) and MAPE — K(AQ)
are in conflict, as they can simultaneously ask to close and to open the window. In this
case, the loop related to adaptation concern MD (i.e., minimize dispersion) detects
that the window is open and the heater is turned on, and, therefore, asks the agent
managing the window to close it. At the same time, the loop related to adaptation
concern A(detects that the air quality is bad and, therefore, asks the agent managing
the window to open it. Such conflict can be shown to the user who should decide which
adaptation concern is more important, either the reduction of heating dispersion or
the air quality.

As further example of application of model review to SA systems, we refer the reader
to [Arcaini et al. 2015], where we discuss how the specification of the traffic monitoring
case study was improved by applying model review that revealed a single-loop incon-
sistency and some minimality violations.

6.2. MAPE-K correctness Verification

A MAPE-K control loop formalization is given by definition (2). In order to guarantee
that the model correctly specifies the intended operation of a MAPE-K loop, it must be

proved that the specification correctly captures the interaction relation %, on the set
of rules R,4; associated to MAPE — K (adj).
In the following, let us suppose that, for a given adaptation concern adj, rules

adj
TX_adjsTY_adj € Ragj a0d 7x 04 =7y adj-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:21

We can check validity of the above interaction relation in a static and dynamic way.
Note that we assume to be in the case of indirect interaction, since in case of direct
interaction the relation is guaranteed by the structure of nested rules.

Verification of the interaction relation — Static precondition. Statically, we can estab-
lish a necessary condition for yielding interaction between rx ,4; and ry _,4;. Interac-
tion is possible if rule rx_,q4; updates locations of K(adj) that are read in ry _,4;. This
can be checked by the predicate

inter(rx _adj, Y _adj) % &)

where inter(rx .45, 7y _aqj) yields the set of function symbols of the knowledge vocabu-
lary that are updated by rx_.4; and read by 7y _q4;.

Verification of the interaction relation — Dynamic verification. Predicate (4) can be
checked by static analysis on the structure of the ASM model. However, it only pro-
vides a necessary condition for making the interaction effective, i.e., that there is some
information written by rx_,q; that is read by r, ,4;; the property does not guarantee
that the information is written and read in the correct order.

In order to check that the semantics of the interaction is respected, we must be able
to specify properties regarding the execution of the rules. To this purpose, we have to
give some definitions.

Definition 6.1 (Rule firing condition). Given an ASM model M, we define rule firing
condition the function

RFC: Rules(M) — Conditions(M)

where Rules is the set of transition rules of M and Conditions are boolean predicates
over the state of M. RFC associates to each rule the condition that must be satisfied
in order for the rule to be executed.

The technique to statically compute RFC of a rule r of an ASM M is described in [Ar-
caini et al. 2010b]: it builds the conjunction of all conditions that precede » in the
control flow graph of M. Note that any kind of ASM is supported, from single agent to
sync/async multi-agent ASMs. We here give a concrete example on how it is calculated.

Example 6.2 (Smart Home). In Code 2, the RFC of the update rule sgnHeater-
FAIRLY HOT CH := true is checkForAdaptation and monMAPE CH and not(roomTemp <
10) A roomTemp < 18.

Definition 6.3 (Effectiveness). A rule is effective if it produces a non-empty update
set, i.e., if at least one of its update rules fires. Effectiveness of a rule r is defined as
follows:

eff(r) = \/ RFC (ur) 5)
ure UpRules(r)
being UpRules(r) the set of update rules nested in r.

In terms of self-adaptive systems, a rule modeling a computation is effective if it
produces some information that can be later used by other computations.

Definition 6.4 (Established interaction). The execution of a rule r; establishes an
interaction with a rule r if a function contained in inter(ry,r2) is updated. We define
the established interaction as follows:

estInt(ry,re) = \/ RFC(ur) (6)

ure UpRules(ry,inter(ri,ra))

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:22 P. Arcaini et al.

]| [

| =T [

> A —> P E‘
]7

Lre

Fig. 6: Instance of a MAPE pattern

being UpRules(ry, inter(ri,r2)) the set of update rules nested in r; that update func-
tions in inter(rq, r2).

In terms of self-adaptive systems, an interaction is established between two rules
modeling components X and Y if X sends some information to Y.

We now exploit the previous definitions to verify that the interaction relation be-
tween the two rules rx_,q4; and ry_,4; is guaranteed in the model. We have to prove the
following LTL’ property

G(eff (ry_adaj) implies O(estInt(rx _adj, v _adj))) ™

Property (7) assures that whenever rule modeling computation Y is effective, then it

has read information computed in the past by rule modeling the X computation.
However, in case of adaptation control decentralized among multiple components, it

may happen that more rules rx, 44; € Raq5, ¢ = 1,...,n, interact with the same com-

putation 7y _4; (i.e., rx, ad; a—djmyfadj). Consider, for example, the interaction of MAPE
components established by the coordination model in Fig. 6: the two M computations
of the first row both interact with the M computation in the second row.

In this case, property (7) is not adequate to check correctness of the interaction rela-
tion, which depends on the semantics given to the set of interactions from components
X, to component Y. Therefore, if the execution of rule ry_,4; requires the previous fir-
ing of all rules rx, 44;, then, to verify the interaction relation among rules rx, ,4; and
Ty_adj> We have to prove the property:

/\ G(eff (1v_aq;) implies O(estInt(rx, adj, Tv_adj))) (8)
i=1
Otherwise, in case the execution of at least one of the rules rx, qq; is required, we have
to prove the property:

n

\/G (eff (1y_aqj) implies O(estInt(rx, adj, Tv_adj))) ©)
i=1

6.2.1. Verification on the case studies. We here show how the static and the dynamic
verification can be used to check that the MAPE-K control loops of the smart home
and traffic monitoring case studies are implemented correctly.

Smart Home. The smart home case specification has five MAPE-K loops (see
Sects. 3.3 and 4.1); the first four loops have one indirect interaction each, while the
fifth one has two indirect interactions. The static verification that the components of
the five MAPE-K loops can communicate is therefore done with the following six for-
mulas (see Eq. 4):

7G is the Always-LTL operator globally requiring that a property holds on the entire path, and O is the
Past-LTL operator once requiring that something happened in the past.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:23

inter(r.checkRoomTempMAPE_CH, r_adaptHeaterMAPE_CH) =

{sgnHeaterOFF_CH, sgnHeaterFAIRLY_HOT_CH, sgnHeaterVERY_HOT_CH} # &
inter(r.checkWindowAndHeaterMAPE_MD, r_adaptWindowMAPE_MD) = {sgnCloseWindow_-MD} # (&
inter(r_checkAirQualityMAPE_AQ, r_adaptWindowMAPE_AQ) = {sgnOpenWindow_AQ, sgnCloseWindow_AQ} # &
inter(r_checkHotWaterMorningMAPE_MWH, r_adaptWaterHeaterMAPE_MWH) = {sgnWaterHeaterON_.MWH} # ¢J
inter(r_checkElectrMAPE_ES, r_adaptHeaterMAPE_ES) = {sgnHeaterFAIRLY_HOT_ES} # &
inter(r_checkElectrMAPE_ES, r_adaptWaterHeaterMAPE_ES) = {sgnWaterHeaterOFF_ES} # ¢

For the first four MAPE-K loops, the verification is trivial since M rules simply write
signals in the knowledge that are read by the E rules. For the fifth MAPE-K loop
(ES), there are two different E rules (r_adaptHeaterMAPE ES and r_adaptWaterHeater-
MAPE ES) that can be triggered by the M rule r_checkElectrMAPE ES. Indeed, the moni-
toring rule, when detects that the heater is set to the maximum speed and the water
heater is on, can nondeterministically choose either to decrease the speed of the heater
or turn the water heater off.
The dynamic verification of the six indirect interactions is performed using the fol-
lowing six LTL properties (see Eq. 7):
G(((checkForAdaptation and execMAPE_CH and sgnHeaterOFF_CH) or
(checkForAdaptation and execMAPE_CH and sgnHeaterFAIRLY_HOT_CH) or
(checkForAdaptation and execMAPE_CH and sgnHeaterVERY_HOT_CH)) implies
O((checkForAdaptation and monMAPE_CH and roomTemp < 10) or
(checkForAdaptation and monMAPE_CH and not(roomTemp < 10) and roomTemp < 18) or
(checkForAdaptation and monMAPE_CH and not(roomTemp < 10) and not(roomTemp < 18))))
G ((checkForAdaptation and execMAPE_MD and sgnCloseWindow_MD) implies
O(checkForAdaptation and monMAPE_MD and heaterStatus != OFF and windowStatus = OPEN))
G(((checkForAdaptation and execMAPE_AQ and sgnOpenWindow_AQ) or
(checkForAdaptation and execMAPE_AQ and sgnCloseWindow_AQ)) implies
O((checkForAdaptation and monMAPE_AQ and badAir) or (checkForAdaptation and monMAPE_AQ and not(badAir))))
G ((checkForAdaptation and execMAPE_MWH and sgnWaterHeaterON_MWH) implies
O(checkForAdaptation and monMAPE_MWH and time = EARLY_MORN))
G ((checkForAdaptation and execMAPE _ES and sgnHeaterFAIRLY_HOT_ES) implies
O(checkForAdaptation and monMAPE_ES and time = MORN_AFT and heaterStatus = VERY_HOT and
waterHeaterStatus = WE_ON and esAdaptHeater))
G ((checkForAdaptation and execMAPE_ES and sgnWaterHeaterOFF_ES) implies
O(checkForAdaptation and monMAPE_ES and time = MORN_AFT and heaterStatus = VERY_HOT and
waterHeaterStatus = WE_ON and not(esAdaptHeater)))

Traffic Monitoring. The traffic monitoring case study (see Sect. 4.1) contains an ex-
ample of complex MAPE pattern; the MAPE-K loop related to the flexibility concern
implements the information sharing pattern in which three M components share in-

formation. In order to verify the correct implementation of the pattern (i.e., the inter-

. . FLEX_M
actions in * —=""), we only need to prove the indirect interactions between M compo-

nents, as the other interactions (i.e., interactions between M and A, P, and E compo-
nents) are direct and, therefore, their correctness is guaranteed by the model structure.

There are three interactions between the M components: (ras.,, "MArus)s TMeps
TMArs)s (P MAmss TMAms)- Their static verification is as follows:

inter(rMCD, 7'MATMS) = {congested} # &
inter(raqp, TMApg) = {congested, s_offer} # ¥
inter(’r'MATS, T'MATMS) = {m_.offer} # &

In a multi-agent ASM as the traffic monitoring specification, a rule can be executed
by different agents (of the same type); we identify with ag.r an instance of rule r,
i.e., the execution of rule r by agent ag. In the case study, for each camera, there is an
organization controller org; (i = 1,...,n) that executes rules ras.,,, "MA 75> AN 7314 115 -

Dynamic verification can only reason in terms of concrete executions and, therefore,
requires the instantiation of the abstract interactions using instantiated rules®. In the

8This information cannot be automatically derived from the model but must be given by the modeler.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:24 P. Arcaini et al.

case study, for each organization controller org;, the three abstract interactions are in-
stantiated as follow: (org;.r a0, OTEi-"MArus)s (OTEiTMeps OTEit1-7MALg)s (OTit 1.7 MA s>
OTE;.T MAms) NOW, for each organization controller org;, Eq. 7 can be instantiated for
the three interactions as follows.
G ((stateOC(org;) = MASTER and congested(org;) and m_offer(cameraOC(org;))) implies
O(stateOC(org;) = MASTER and not(stopCam(cameraOC(org;))) and cong(cameraOC(org;)) and not(congested(org;))))
G((stateOC(org;+1) = MASTER and congested(org; +1) and not(m_offer(cameraOC(org; +1))) and s_offer(cameraOC(org;+1))) implies
O(stateOC(org;) = MASTER and not(stopCam(cameraOC(org;))) and cong(cameraOC(org;)) and not congested(org;)))

G ((stateOC(org;) = MASTER and congested(org;) and m_offer(cameraOC(org;))) implies
O(stateOC(org;+1) = MASTER and congested(org;+1) and not(m_offer(cameraOC(org; +1))) and s_offer(cameraOC(org; +1))))

Note that the verifications of the first and the third formulas are an instantiation
of Eq. 8: indeed, rule org;.r 4, requires information from both rules org;.rys., and
org;+1.7MA,s (as depicted in Fig. 6).

6.3. Requirement verification properties

This approach regards properties related to the application requirements, such as in-
variants, general properties on the controlled part of the system, adaptation goals ex-
pressed as reachable and liveness conditions, that can be verified as classical temporal
properties. An extensive example of this approach can be found in [Arcaini et al. 2015],
where a number of CTL properties were proved to guarantee correctness and reliabil-
ity of the traffic monitoring case study (similarly to what done in [Iftikhar and Weyns
2012]). Other examples of ASM model checking exist in literature [Arcaini et al. 2016].
We here show some representative properties for the smart home case study.

6.3.1. Requirement verification properties of the Smart home case study. Liveness properties
specify that the system can eventually reach desired states. In our case study, we check
that the heater, the window, and the water heater can always modify their statuses to
all their possible values.

(forall $s in HeaterStatus with ag(ef(heaterStatus = $s)))

(forall $s in WindowStatus with ag(ef(windowStatus = $s)))
(forall $s in WaterHeaterStatus with ag(ef(waterHeaterStatus = $s)))

Reachability properties permit to check that particular configurations of the system
can be reached. For example, we can check that there exists a state in which the win-
dow is open and the heater is turned on.

ef(windowStatus = OPEN and heaterStatus != OFF)

Note that this state triggers the execution of MAPE — K(MD) that tries to minimize
the heating dispersion. Indeed, MAPE-K correctness verification (see Sect. 6.2) checks
that a MAPE-K loop is executed correctly, not that it can be executed. Therefore, if
we are interested in knowing whether some particular adaptations are eventually per-
formed, we have to specify suitable reachability properties.

Safety properties specify that the system remains in safe states. However, self-
adaptive systems allow the system to reach unsafe states (those that may trigger the
adaptation); from an unsafe state, a suitable MAPE-K loop could be designed to bring
the system back to a safe state. For this case study, we do not specify particular safety
properties, since states we consider unsafe are those that trigger the five adaptations
previously described. Of course, also in a self-adaptive systems there could be (partic-
ularly unsafe) situations that should never occur, and their absence should be checked
by means of appropriate safety properties.

6.4. Scalability

All the experiments have been executed on a Linux PC with an Intel(R) Core(TM)
17-5600U CPU (2.60GHz), and 8 GB of RAM. Table I shows the size (in terms of num-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:25

of cameras size Model review MAPE-K correctness verification
(# of BDD nodes) # of properties time (s) # of properties time (s)

4 64326 10816 9493 9 9

5 96563 38875 TIMEOUT 12 29

6 95353 111672 TIMEOUT 15 51

7 217590 N/A N/A 18 133

8 389777 N/A N/A 21 250

9 526650 N/A N/A 24 994

10 12172189 N/A N/A 27 1161

Table I: Traffic monitoring case study — Experimental results

ber of BDD nodes® of the NuSMV translation of the ASM model) of the specification
of the traffic monitoring case study for an increasing number of cameras. Moreover,
it also shows, for the model review and MAPE-K verification techniques, the number
of properties that must be checked and the execution time. As expected, the execu-
tion time grows with the number of cameras. However, while for MAPE-K verification
we are able to verify also the setting with 10 cameras in less than 20 minutes, the
model review technique timeouts (we set a timeout of 3 hours) already with 5 cam-
eras'?. For both techniques, the addition of a camera makes the state space larger.
However, in the MAPE-K verification each added camera requires to check only three
additional properties: therefore, the additional computational burden is still feasible.
For the model review, instead, each additional camera requires to check roughly the
triple of the properties, and this is the reason why the technique does not scale; for
example, for the case with 4 cameras the model review produces 10816 properties, and
for the case with 5 cameras the number of properties grows to 38875. As future work,
we plan to devise abstraction techniques for model review in order to be able to handle
big specifications.

7. COMPARISON WITH THE STATE OF THE ART

SA has been widely studied in the software architecture community [Allen et al. 1998].
Various mechanisms and frameworks for handling adaptation have been proposed,
such as: SA with aspect-orientation, Dynamic Reconfiguration, Model-Driven Devel-
opment frameworks for SA, and frameworks for self-optimization (including the adap-
tation cost itself) [Cheng et al. 2009; de Lemos et al. 2013; Kephart and Chess 2003;
Morin et al. 2009; Cardellini et al. 2012; Mirandola et al. 2014a]. However, as shown
in [Weyns et al. 2012], little attention has been given in the past to formal modeling
and analysis of self-adaptive systems. In particular, as revealed in the Dagstuhl sem-
inar on Software Engineering for Self-Adaptive Systems: Assurances [de Lemos et al.
2014], one emerging key challenge is requirements assurance that consists in provid-
ing evidence that a self-adaptive system satisfies its functional and non-functional
requirements during operation.

Here we review the main approaches that use formal methods for the design and
analysis of SA. More precisely, we identify generally agreed key features that a formal
approach should have for modeling and analyzing distributed self-adaptive systems,
and we use them as criteria for comparing our work with existing ones, also in relation

9The model has been executed using the NuSMV option dynamic that executes a dynamic reordering of the
variables and, in this way, usually permits to reduce the number of BDD nodes.

10For more than 6 cameras, we are not even able to produce all the properties to check and, therefore, to
perform the verification.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:26 P. Arcaini et al.

with some open issues in the field. Then, we provide a clear position about the scope
and applicability of our approach w.r.t. these desired features!!.

7.1. Support for effective modeling and analysis techniques

We here review approaches for modeling, validating, and verifying functional require-
ments of self-adaptive systems, since these are our primary aim.

Automata-based or transition-based computational models have been advocated for
adaptation, such as the S[B] systems [Merelli et al. 2012] and Synchronous Adap-
tive Systems (SAS) of MARS [Adler et al. 2007]. They share a multi-level view of SA.
They rely on a multi-layered model reminiscent of hierarchical state machines and
automata. In the simple case of two layers, the lower behavioural level describes the
actual dynamic behaviour of the system and the upper structural level accounts for the
dynamically changing environmental constraints imposed on the lower system. Petri
Nets extensions also exist for dealing with adaptation. The work in [Zhang and Cheng
2006], for example, combines Petri Nets modeling with LTL for property checking, in-
cluding correctness of adaptations and robustness properties of adaptive programs.

In the area of concurrency, classical Process Algebras (CCS, CSP, ACP) have been
tailored, such as in [Bartels and Kleine 2011], to the modeling of self-adaptive sys-
tems as a subclass of reactive systems. The approach SOTA [Abeywickrama and Zam-
bonelli 2012] supports an early, goal-level, model checking analysis for adaptive sys-
tems. However, they adopt a very complex model checking process involving several
formalisms: the i* framework is used for modeling static aspects, an operational SOTA
language is defined and used to describe the dynamic aspects and dependencies among
components, and process calculus Finite State Processes (FSP) and asynchronous first-
order linear-time temporal logic (FLTL) code of the model checker Labeled Transition
System Analyzer (LTSA) are then provided to formally define the goal or utility for
verification purposes. In addition to specific temporal properties specified for a partic-
ular model, the framework can also check general properties that any model should
assure (e.g., absence of deadlock). In [Djoudi et al. 2014], a formal model for context-
aware adaptive systems is proposed by establishing a three-layered separation among
system components, context entities, and management components. Relationships be-
tween layers are dynamically established via the generation of strategies by the man-
agement layer. Maude is adopted as a semantic framework for the proposed model, and
Maude reflection and meta-programming capabilities are exploited to enrich it with
context-awareness concepts. Formal analysis is done using the Maude model checker.
[Giidemann et al. 2007] presents a case study of an adaptive production automation
cell modeled in Lustre — a typed synchronous dataflow language with a discrete time
model — using the SCADE Suite and the verification of functional properties.

We also considered approaches relying on state- and machine- based formalisms
similar to ASMs such as the B method, Alloy and Z. The authors in [Lanoix et al.
2011] present an approach to the formal specification and verification of dynamic re-
configurations of component-based systems using the B method for the specification
of component architectures and FTPL — a logic based on architectural constraints and
on event properties, translatable into LTL — to express temporal properties over re-
configuration sequences to be model-checked. [Georgiadis et al. 2002] uses architec-
tural constraints specified in Alloy for the specification, design and implementation of
self-adaptive architectures for distributed systems. [Magee and Maibaum 2006] out-
lines an approach for modeling and analyzing fault tolerance and self-adaptive mech-
anisms in distributed systems. The authors use a modal action logic formalism, aug-
mented with deontic operators, to describe normal and abnormal behaviour.

11Please note that certain criteria may be cross-cutting and overlapping to some degree.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:27

All the formalization approaches mentioned above do not support the explicit mod-
eling of feedback loops for SA and their properties. The actual feedback control loops
are hidden or abstracted. In our approach, instead, we clearly explore MAPE-K feed-
back loops as a means to identify and enact adaptation, so elevating them to first-class
entities in the ASM formal specification of a self-adaptive system. Moreover, most of
these formal approaches to SA assume a centralized point of control.

The authors in [Bruni et al. 2013] present an essential model of Adaptable Transition
Systems. The same authors propose in [Bruni et al. 2015] a conceptual framework for
adaptation centered on the role of control data and its realization in a reflective logical
language like Maude by using the Reflective Russian Dolls model. They exploit the
statistical model checker PVeStA and present robot swarms equipped with obstacle-
avoidance self-assembly strategies as case study. The proposed computational model
for SA is, however, built around hierarchical structures of managing layers. To really
capture the distributed nature of self-adaptive systems, more coordination patterns of
managing components/agents need to be employed [Weyns et al. 2013].

According to a decentralized feedback loop-based approach, a general goal-oriented
modeling framework [Abeywickrama et al. 2013], called SOTA (State Of The Affairs)
and tool-supported by SimSOTA (an Eclipse plug-in), is being developed to support
modeling, simulation and validation of self-adaptive systems. Similarly to our ap-
proach, SOTA aims at supporting the development of self-adaptive systems by allowing
to validate correctness of decentralized feedback loop models. However, unlike our for-
mal approach, SOTA adopts a semi-formal notation, namely UML activity diagrams,
as primary notation to model the behaviour of feedback loops.

In [Iftikhar and Weyns 2012], Timed Automata are used to model the Traffic Mon-
itoring case study and verify properties. A network of Timed Automata allows spec-
ifying the behaviour of MAPE components that synchronize through clock variables
and interact via channels. The Uppaal model checker is used to verify flexibility and
robustness properties expressed in timed computation tree logic (TCTL) — a computa-
tional tree logic extended with clock variables. The same case study is specified using
the Z method in [Weyns et al. 2010a], and is revised in [Vromant et al. 2011] as ex-
ample of multiple sub-loops within a single control loop and interacting control loops.
In [Gil de la Iglesia and Weyns 2013] the same formal approach is used to realize
the self-adaptive layer of a Mobile-Learning Application and TCTL is used to specify
and verify four groups of properties: functional correctness, GPS service adaptation,
self-healing, and MAPE-K loops interference. Recently, [Gil De La Iglesia and Weyns
2015] introduces formal model templates of the behaviours of MAPE-based feedback
loops in terms of networks of Timed Automata, and property specification templates
that support verification of the correctness of the adaptation behaviours by Uppaal.
The primary focus of this template-based approach is on the design and verification
of a “specific family” of self-adaptive systems, namely a target domain of distributed
applications in which self-adaptation is used for managing resources for robustness
and openness requirements via adding and removing resources from the system. These
works are (as far as we know) the main efforts in presenting a formal approach to spec-
ify and verify behavioural properties of decentralized self-adaptive systems through
MAPE-K feedback loops, and this is why we mainly inspired to them.

From a formal specification point of view, however, we find formalisms as Timed Au-
tomata and Z less flexible and intuitive than ASMs: they have rigid notations, and
require specific skill to develop and understand models that are often not very con-
cise. Differently, ASMs allow a direct and natural formalization of computing concepts
through programming practice and mathematical standards. Therefore, practitioners
can work with ASMs without any further explanation, viewing them as “pseudocode
over abstract data” which comes with a well defined semantics. Moreover, refinement

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:28 P. Arcaini et al.

and model composition allow the application of the method to the specification of large-
scale self-adaptive systems. In addition, flexibility and abstractness of our framework
allow us to model adaptation strategies and coordination schemes of control loops, and
to discover and analyze conflicts that may arise when MAPE-K sub-loops deal with
sub-concerns of the main adaptation concern.

Regarding the modeling style, our framework does not impose any restriction on the
kind of models that can be written. A modeler must only annotate rules involved in
a MAPE-k loop with appropriate annotations, that are then used by the verification
framework to check the loop correctness. Other approaches, instead, provide more re-
strictive ways of specifying MAPE components in terms of templates [Gil De La Iglesia
and Weyns 2015].

Regarding property verification, our rigorous specifications permit requirements
verification by model checking but we do not support time constraints. For example,
for the Traffic Monitoring case study, we have been able to prove in [Arcaini et al.
2015] the same properties as in [Iftikhar and Weyns 2012] since time is not involved.
However, we contribute with additional validation and verification strategies to check
the model against MAPE components interactions and control loop interferences. In
addition, by exploiting the concept of “interaction relation”, we provide a formal ASM
semantics to a graphical notation used to express instances of MAPE patterns.

7.2. Support for feedback control loops and decentralized SA

Feedback loops are cornerstones of self-adaptive systems. On the one hand, assurances
improve the realization of feedback loops in self-adaptive systems; on the other hand,
feedback loops contribute to provide assurances about the controlled system since, for
example, they facilitate the identification of the core phenomena to control and the
realization of composable analysis tasks that can be applied incrementally along the
adaptation loop [de Lemos et al. 2014]. Therefore, feedback loops should be modeled
and analyzed explicitly like in our formal framework. In some previous formalization
approaches (see Sect. 7.1), instead, feedback loops are hidden or abstracted. Another
important feature, that our framework supports, is the capability to specify decentral-
ized adaptation control in terms of feedback loops. In real distributed self-adaptive sys-
tems the control is completely decentralized, that is there is no central authority and
the system’s organization itself may fluctuate dynamically as a result of self-adaptive
units that join and leave the system.

Other contributions exist that explicitly model MAPE-k feedback loops. To name a
few [Bruni et al. 2015; Weyns et al. 2013; Abeywickrama et al. 2013; Vromant et al.
2011; Gil De La Iglesia and Weyns 2015].

7.3. Support for design patterns

Support for design patterns is a systematic engineering approach for applying the prin-
ciples of software architecture to the organization of self-adaptive systems. The work
in [Weyns et al. 2013] presents architectural design patterns of interacting MAPE com-
ponents. Such patterns specify components interaction from a structural viewpoint.
Our framework supports the modeling of general behavioural patterns of interactive
MAPE-K feedback loops as those identified in [Weyns et al. 2013], and provides com-
putational semantics to the graphical notation used to specify pattern instances. The
framework also supports verification strategy useful to guarantee that certain inter-
action patterns among components are actually captured in the system model.

7.4. Support for modeling and analyzing timed adaptation

Specification and verification of self-adaptive systems are very difficult to carry out
when involving time constraints. The functional correctness of the system and of its

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:29

adaptation logic depends, in fact, also on the time associated with events. Most of the
existing techniques are not effective when dealing with real-time constraints, because
quantitative temporal aspects are not taken into account. Some existing formal meth-
ods (such as Timed Automata and Petri Nets) have been extended for the modeling
of time and timed adaptation (see [Musliner 2000; Zeller and Prehofer 2012; Prehofer
and Zeller 2012; Iftikhar and Weyns 2014; Camilli et al. 2015], to name a few). They
mainly employ model-checking techniques for verifying time constraints. The need for
adaptation models targeted for real-time systems that treat the duration and overhead
of adaptation as first class entities is, however, still challenging.

Our ASM-based framework does not provide any notion of time and, therefore, timed
adaptation is not allowed.

7.5. Support at runtime

Some approaches use formal methods at design time, others at runtime or a com-
bination of both [Calinescu and Kikuchi 2011]. Revising existing runtime verifica-
tion techniques or developing new ones from analysis techniques that work mainly
at design time (e.g., model checking) is still challenging. The survey in [Calinescu
and Kikuchi 2011] and the Dagstuhl seminar [de Lemos et al. 2014] describe chal-
lenges and existing approaches to employ formal methods at runtime, i.e., to achieve
runtime adaptation using mathematically-based techniques from the area of formal
methods. Among these, the approach ActivFORMS (Active FORmal Models for Self-
adaptation) [Iftikhar and Weyns 2014] is a preliminary result. Its aim is to guarantee
that the adaptation goals verified offline (i.e., at design time) are guaranteed also at
runtime. It adopts an integrated formal model of a MAPE-K loop (i.e., models of the
knowledge and the adaptation components) that is directly executed by a virtual ma-
chine at runtime and can be dynamically changed with changing goals.

In[Calinescu et al. 2015], a runtime quantitative verification (RQV) approach, called
DECIDE, is proposed to develop decentralized self-adaptive distributed systems that
continue to meet their QoS requirements after failures and environment changes.
DECIDE is applicable to systems that exhibit stochastic behaviour, and involves
continuous-time Markov chains (CTMCs), which are used to describe the behaviour of
the system’s components formally, and the temporal logic continuous stochastic logic
(CSL), which is used to express the properties of CTMCs.

Currently, we do not deal with runtime concerns. Our research focuses on provid-
ing requirements assurance for self-adaptive systems during system design. As future
work, we plan to integrate our ASM-based framework with runtime monitoring tech-
niques that the ASM formalism already supports [Arcaini et al. 2012].

7.6. Support for uncertainty

Due to unpredictable changes, for example in the environment, a self-adaptive system
may have no control over new unexpected processes that influence the environment
and the system’s organization itself that (especially in a decentralized setting) may
fluctuate dynamically. In spite of recent advances on the adoption of formal methods
for dealing with uncertainty [Esfahani et al. 2011; Esfahani and Malek 2013; Perez-
Palacin and Mirandola 2014], managing uncertainty in self-adaptive systems is still an
impervious engineering problem. Artificial self-organizing systems have shown to be
particularly robust to dynamic operating conditions [Weyns et al. 2010b]. Formal ap-
proaches based on stochastic behaviours for making decisions under probability theory
are also promising, but they are known to be computationally expensive for execution,
which makes them unsuitable for use at runtime, where often decisions have to be
made very fast [Esfahani and Malek 2013].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:30 P. Arcaini et al.

Dealing with uncertainty is not supported. Although definitions of probabilistic
ASMs have been proposed [Beierle and Kern-Isberner 2003], they are not mature
enough to be applied to SA.

7.7. Support for advanced self-adaptive systems

Al mechanisms and biological metaphors are increasingly gaining considera-
tion [Satoh 2012; Fernandez-Marquez et al. 2013] as ways for realizing more degrees of
autonomicity and, therefore, more reliable self-adaptive systems. Modeling and anal-
ysis techniques for these advanced autonomic systems are missing, although agent
technologies have been identified as a key enabler for their engineering.

The ASM framework already supports a general notion of “agent” for capturing dis-
tributed computation. We intend in the future to extend such a notion taking inspi-
ration from Al and biological systems. In particular, we foresee in the capacity of an
ASM agent to change (adapt) its own program at runtime a basic building block for
realizing more complex autonomicity and different types of policies (action, goal and
utility policies) in autonomic computing [Kephart and Walsh 2004].

8. EVALUATION OF THE APPROACH

Self-adaptive systems are generally difficult to specify, validate, and verify due to their
high complexity and dynamic nature. Particularly, when involving decentralized adap-
tation, the system adaptive behaviour is the result of the collaborative behaviour of
multiple managing agents and components responsible for enabling adaptation.

In this section, we evaluate our formalism in terms of advantages offered for model-
ing SA and of its shortcomings.

8.1. Advantages

Modeling self-adaptation features was possible thanks to the multi-agent computa-
tional model available in ASMs to specify distributed computation and coordination
among agents. Other characteristics of the ASMs, as model compositionality, rules
combination by means of powerful rule constructors, mechanisms for agents’ interac-
tion (shared functions), helped us to specify agents’ coordination and communication,
also in presence of decentralized control among multiple MAPE components and in
presence of interacting sub-loops.

We achieve clear separation of concerns: (i) between adaptation logic and func-
tional logic since we model managing and managed components as separated agents;
(ii)) among MAPE computations that are modeled by separated transition rules;
(ii1)) among different adaptation concerns that are specified by distinguished sets of
rules and interaction relations; (iv) between decentralized and centralized loop’s con-
trol; between direct and indirect components interaction. This separation of concerns
helps the designer to focus on one adaptation activity at a time, and, for each adapta-
tion aspect, separate the adapting parts from the adapted ones. This helps in keeping
the system complexity under control, and also facilities reasoning about components
behaviour due to model conciseness.

The availability of a set of tools for model analysis helped us in different activities:
— Validate adaptation requirements. By executing the specification or constructing

scenarios, reproducing precise system configurations, we get feedback of the opera-
tion of the MAPE-K control loops.

— Determine conflicting MAPE-K loops. By checking for inconsistent knowledge up-
dates, we can discover conflicts between simultaneous executions of different adap-
tive behaviours. However, a deeper model analysis, by means of the proof of suitable
meta-properties, can reveal single/multiple-loop inconsistencies inside the agents’

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:31

programs. Such conflicting situations often require to reason about priorities of
adaptation concerns, which can be established by scheduling the agents’ operations.

— Check for MAPE-K correctness. The formalism is able to express semantics of the
MAPE components interaction by means of the interaction relation. We support a
verification strategy, based on static and dynamic analysis, useful to assess correct-
ness of the components interaction.

— Check for conformance to MAPE pattern. The interaction relation also allows to
express the operational semantics of MAPE patterns; therefore, the strategy for
checking MAPE correctness is also used for checking the execution of instances of
MAPE patterns.

— Assert the system correctness. Model checking can be used to verify properties, ex-
pressed as temporal logic formulae, related to the requirements of the application.

In this work, we have only considered the specification of self-adaptive systems and
not their implementation that, however, could be linked to the high level model by
exploiting the refinement mechanism of the ASMs. Model refinement is one of the
constituents of the ASM method: it allows to build a system in an incremental way,
through a chain of refined models till a level where the specification can be easily
mapped to the final implementation. At each refinement step, a refined model must be
proved to be a correct refinement [Borger and Stiark 2003] of an abstract one, namely it
must be guaranteed that each run of the refined machine can be matched with a run
of the abstract machine (using a given conformance relation between states). A tool
exists for checking refinement correctness [Arcaini et al. 2016] in an automatic way.
In the chain of refined models, the implementation is usually seen as the last step of
refinement; it could be obtained by automatic translation of the ASM, or it could be
developed independently. In the latter case, the conformance of the implementation
w.r.t. the specification must be checked. We can check the conformance in two ways; at
development time using model-based testing [Arcaini et al. 2014], or at runtime using
runtime monitoring [Arcaini et al. 2012].

8.2. Shortcomings

The approach has some shortcomings. Some have already been discussed in Sect. 7
w.r.t. the state of the art. We here review the main ones.

Some limits of the approach are due to ASMs, adopted as underlying formal method
of our framework. For example, dealing with uncertainty and time adaptation is not
supported by our framework as ASMs do not have any notion of stochastic behaviours
and of time. Considering these aspects would require a theoretical extension of ASMs
themselves. Moreover, ASMs are not appropriate for handling non-functional require-
ments (quality properties). ASMs are suitable for describing behaviour of systems and,
therefore, the primary goal of our framework is the modeling and analysis of func-
tional requirements of adaptive systems, and providing a formal operation semantics
to MAPE patterns. In many frameworks for SA existing in the literature, little atten-
tion is given to the formalization of the adaptation components themselves, which is
important to provide guarantees of correctness of the adaptation [Iftikhar and Weyns
2014]. Moreover, a precise way to express the computational meaning of components
interaction (graphically rendered by the use of arrows) in MAPE patterns is missing.

Some other limits, instead, are intrinsic of the proposed framework. Properties used
for model review and for the verification of MAPE-K correctness (see Sects. 6.1 and 6.2)
are automatically derived from the ASM model and then translated, together with the
model, to NuSMYV for verification. Such translation introduces an overhead that limits
the scalability of the verification approach (in addition to the classical state explosion
problem of model checking). However, as seen in Sect. 6.4, the verification of MAPE-K

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:32 P. Arcaini et al.

correctness scales better than model review; indeed, while model review is very general
and produces several properties to check different qualities of the specification (mini-
mality, consistency), verification of MAPE-K correctness is more specific and produces
few properties to check that the MAPE pattern has been executed correctly.

9. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we introduced the concept of self-adaptive ASMs, based on the notion of
multi-agent ASMs, as formal framework to specify self-adaptive systems. The frame-
work permits to write an ASM model of a self-adaptive system and provides a tech-
nique to identify the components involved in a MAPE-k loop and how these compo-
nents interact. The framework permits both to describe simple MAPE-k loops or more
complex loops structured according to some patterns. Thanks to the formalization of
interaction between components of a MAPE-k loop, some temporal properties can be
automatically derived from the specification to check that the components involved
in a MAPE-k loop communicate correctly and are executed in the correct order (as,
for example, specified by the MAPE pattern). In addition to this novel technique, the
framework can also exploit classical validation and verification techniques for ASMs,
as scenario-based validation and model review (here tailored for self-adaptive ASMs).

The proposed framework does not provide a direct support for modeling uncertainty,
timing aspects, and quality properties. However, the integration of the framework with
others designed to address these missing aspects is feasible. As future work, we plan to
consider the approach in [Mirandola et al. 2014b] to deal with non-functional proper-
ties for SA, and to exploit appropriate extensions of ASMs with time models [Graf and
Prinz 2007] for specifying time-triggered adaptation. We also plan to consider runtime
monitoring techniques [Arcaini et al. 2012] to connect our formal model to a runtime
adaptation middleware and study the conformance relation between the model and the
real system execution at runtime.

REFERENCES

Dhaminda B. Abeywickrama, Nicklas Hoch, and Franco Zambonelli. 2013. SimSOTA: Engineering and Sim-
ulating Feedback Loops for Self-adaptive Systems. In Proceedings of the International C* Conference on
Computer Science and Software Engineering (C3S2E ’13). ACM, New York, NY, USA, 67-76.

Dhaminda B. Abeywickrama and Franco Zambonelli. 2012. Model Checking Goal-Oriented Requirements
for Self-Adaptive Systems. In IEEE 19th International Conference and Workshops on Engineering of
Computer-Based Systems, ECBS 2012, Novi Sad, Serbia, April 11-13, 2012. IEEE, 33—-42.

Rasmus Adler, Ina Schaefer, Tobias Schuele, and Eric Vecchié. 2007. From Model-Based Design to Formal
Verification of Adaptive Embedded Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 76-95.
Robert Allen, Rémi Douence, and David Garlan. 1998. Specifying and analyzing dynamic software architec-
tures. In Fundamental Approaches to Software Engineering: First International Conference, FASE’98
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS’98 Lisbon,
Portugal, March 28 — April 4, 1998 Proceedings, Egidio Astesiano (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 21-37.

Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. 2010a. AsmetaSMV: A Way to Link High-Level
ASM Models to Low-Level NuSMV Specifications. In Abstract State Machines, Alloy, B and Z (Lecture
Notes in Computer Science), Marc Frappier, Uwe Glésser, Sarfraz Khurshid, Régine Laleau, and Steve
Reeves (Eds.), Vol. 5977. Springer Berlin Heidelberg, 61-74.

Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. 2010b. Automatic Review of Abstract State Ma-
chines by Meta Property Verification. In Proceedings of the Second NASA Formal Methods Symposium
(NFM 2010), NASA/CP-2010-216215, César Munoz (Ed.). NASA, Langley Research Center, Hampton
VA 23681-2199, USA, 4-13.

Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. 2012. CoMA: Conformance Monitoring of Java
Programs by Abstract State Machines. In Runtime Verification (Lecture Notes in Computer Science),
Sarfraz Khurshid and Koushik Sen (Eds.), Vol. 7186. Springer Berlin Heidelberg, 223-238.

Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. 2014. Offline Model-Based Testing and Runtime
Monitoring of the Sensor Voting Module. In ABZ 2014: The Landing Gear Case Study, Frédéric Boniol,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:33

Virginie Wiels, Yamine Ait Ameur, and Klaus-Dieter Schewe (Eds.). Communications in Computer and
Information Science, Vol. 433. Springer International Publishing, 95-109.

Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. 2016. SMT-based automatic proof of ASM model
refinement. In Software Engineering and Formal Methods: 14th International Conference, SEFM 2016,
Held as Part of STAF 2016, Vienna, Austria, July 4-8, 2016, Proceedings, Rocco De Nicola and Eva Kithn
(Eds.). Springer International Publishing, Cham, 253-269.

Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. 2011. A model-driven process
for engineering a toolset for a formal method. Software: Practice and Experience 41, 2 (2011), 155-166.

Paolo Arcaini, Roxana-Maria Holom, and Elvinia Riccobene. 2016. ASM-based formal design of an adaptivity
component for a Cloud system. Formal Aspects of Computing 28, 4 (2016), 567-595.

Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. 2015. Modeling and Analyzing MAPE-K Feedback
Loops for Self-Adaptation. In 10th IEEE /ACM International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2015, Florence, Italy, May 18-19, 2015. IEEE, 13-23.

Bjorn Bartels and Moritz Kleine. 2011. A CSP-based Framework for the Specification, Verification, and Im-
plementation of Adaptive Systems. In Proc. of the 6th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS °11). ACM, New York, NY, USA, 158-167.

Christoph Beierle and Gabriele Kern-Isberner. 2003. Modelling Conditional Knowledge Discovery and Belief
Revision by Abstract State Machines. In Abstract State Machines 2003: Advances in Theory and Practice
10th International Workshop, ASM 2003 Taormina, Italy, March 3-7, 2003 Proceedings, Egon Borger,
Angelo Gargantini, and Elvinia Riccobene (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 186—
203.

Egon Borger and Robert Stiark. 2003. Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer Verlag.

Yuriy Brun, Giovanna Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle, Marin Litoiu, Hausi
Miiller, Mauro Pezze, and Mary Shaw. 2009. Software Engineering for Self-Adaptive Systems. Springer-
Verlag, Berlin, Heidelberg, Chapter Engineering Self-Adaptive Systems Through Feedback Loops, 48—
70.

Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch Lafuente, and Andrea Vandin. 2013. Adapt-
able Transition Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 95-110.

Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch Lafuente, and Andrea Vandin. 2015. Mod-
elling and Analyzing Adaptive Self-assembly Strategies with Maude. Sci. Comput. Program. 99, C
(March 2015), 75-94.

Radu Calinescu, Simos Gerasimou, and Alec Banks. 2015. Fundamental Approaches to Software Engineer-
ing: 18th International Conference, FASE 2015, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings. Springer Berlin
Heidelberg, Berlin, Heidelberg, Chapter Self-adaptive Software with Decentralised Control Loops, 235—
251.

Radu Calinescu and Shinji Kikuchi. 2011. Foundations of Computer Software. Modeling, Development, and
Verification of Adaptive Systems: 16th Monterey Workshop 2010, Redmond, WA, USA, March 31- April 2,
2010, Revised Selected Papers. Springer Berlin Heidelberg, Berlin, Heidelberg, Chapter Formal Methods
@ Runtime, 122-135.

Matteo Camilli, Angelo Gargantini, and Patrizia Scandurra. 2015. Specifying and verifying real-time self-
adaptive systems. In 26th IEEE International Symposium on Software Reliability Engineering, ISSRE
2015, Gaithersbury, MD, USA, November 2-5, 2015. IEEE, 303-313.

Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Stefano Iannucci, Francesco Lo Presti, and Raf-
faela Mirandola. 2012. MOSES: A Framework for QoS Driven Runtime Adaptation of Service-Oriented
Systems. IEEE Trans. Softw. Eng. 38, 5 (Sept. 2012), 1138-1159.

Alessandro Carioni, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. 2008. A Scenario-Based
Validation Language for ASMs. In Abstract State Machines, B and Z (Lecture Notes in Computer Sci-
ence), Egon Borger, Michael Butler, Jonathan P. Bowen, and Paul Boca (Eds.), Vol. 5238. Springer Berlin
Heidelberg, 71-84.

Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper Andersson, Basil
Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna Di Marzo Serugendo, Schahram Dustdar,
Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff
Kramer, Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi A. Miiller, Sooyong Park, Mary Shaw,
Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle. 2009. Software Engineering for Self-
Adaptive Systems: A Research Roadmap. Lecture Notes in Computer Science, Vol. 5525. Springer Berlin
Heidelberg. 1-26 pages.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:34 P. Arcaini et al.

Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese. 2014. Software Engineering for Self-
Adaptive Systems: Assurances (Dagstuhl Seminar 13511). Dagstuhl Reports 3, 12 (2014), 67-96. http:
//drops.dagstuhl.de/opus/volltexte/2014/4508

Rogério de Lemos, Holger Giese, HausiA. Miiller, Mary Shaw, Jesper Andersson, Marin Litoiu, Bradley
Schmerl, Gabriel Tamura, Norha M. Villegas, Thomas Vogel, Danny Weyns, Luciano Baresi, Basil
Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Ron Desmarais, Schahram Dustdar, Gregor Engels,
Kurt Geihs, Karl M. Goschka, Alessandra Gorla, Vincenzo Grassi, Paola Inverardi, Gabor Karsai, Jeff
Kramer, Anténia Lopes, Jeff Magee, Sam Malek, Serge Mankovskii, Raffaela Mirandola, John Mylopou-
los, Oscar Nierstrasz, Mauro Pezze, Christian Prehofer, Wilhelm Schifer, Rick Schlichting, Dennis B.
Smith, Jodo Pedro Sousa, Ladan Tahvildari, Kenny Wong, and Jochen Wuttke. 2013. Software Engineer-
ing for Self-Adaptive Systems: A Second Research Roadmap. In Software Engineering for Self-Adaptive
Systems II. Lecture Notes in Computer Science, Vol. 7475. Springer Berlin Heidelberg, 1-32.

Brahim Djoudi, Chafia Bouanaka, and Nadia Zeghib. 2014. Model Checking Pervasive Context-Aware Sys-
tems. In Proceedings of the 2014 IEEE 23rd International WETICE Conference (WETICE ’14). IEEE
Computer Society, Washington, DC, USA, 92-97.

Naeem Esfahani, Ehsan Kouroshfar, and Sam Malek. 2011. Taming Uncertainty in Self-adaptive Software.
In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Founda-
tions of Software Engineering (ESEC/FSE °11). ACM, New York, NY, USA, 234-244.

Naeem Esfahani and Sam Malek. 2013. Uncertainty in Self-Adaptive Software Systems. Springer Berlin
Heidelberg, Berlin, Heidelberg, 214-238.

Jose Luis Fernandez-Marquez, Giovanna Di Marzo Serugendo, Sara Montagna, Mirko Viroli, and
Josep Lluis Arcos. 2013. Description and composition of bio-inspired design patterns: a complete
overview. Natural Computing 12, 1 (2013), 43-67.

Héctor Garcia-Molina. 1982. Elections in a Distributed Computing System. IEEE Trans. Comput. 31, 1 (Jan.
1982), 48-59.

Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. 2008. A Metamodel-based Language and a
Simulation Engine for Abstract State Machines. J. UCS 14, 12 (2008), 1949-1983.

Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. 2002. Self-organising Software Architectures for Dis-
tributed Systems. In Proceedings of the First Workshop on Self-healing Systems (WOSS ’02). ACM, New
York, NY, USA, 33-38.

Didac Gil de la Iglesia and Danny Weyns. 2013. Guaranteeing Robustness in a Mobile Learning Application
Using Formally Verified MAPE Loops. In Proceedings of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS ’13). IEEE Press, Piscataway, NJ, USA,
83-92.

Didac Gil De La Iglesia and Danny Weyns. 2015. MAPE-K Formal Templates to Rigorously Design Behaviors
for Self-Adaptive Systems. ACM Trans. Auton. Adapt. Syst. 10, 3, Article 15 (Sept. 2015), 31 pages.
Susanne Graf and Andreas Prinz. 2007. Time in State Machines. Fundam. Inf. 77, 1-2 (Jan. 2007), 143-174.
Matthias Giidemann, Andreas Angerer, Frank Ortmeier, and Wolfgang Reif. 2007. Modeling of self-adaptive
systems with SCADE. In International Symposium on Circuits and Systems (ISCAS 2007), 27-20 May

2007, New Orleans, Louisiana, USA. IEEE, 29222925,

Markus C. Huebscher and Julie A. McCann. 2008. A Survey of Autonomic Computing — Degrees, Models,
and Applications. ACM Comput. Surv. 40, 3, Article 7 (Aug. 2008), 28 pages.

M. Usman Iftikhar and Danny Weyns. 2012. A Case Study on Formal Verification of Self-Adaptive Behav-
iors in a Decentralized System. In Proc. 11th International Workshop on Foundations of Coordination
Languages and Self Adaptation, FOCLASA 2012, Newcastle, UK., September 8, 2012. (EPTCS), Vol. 91.
45-62.

M. Usman Iftikhar and Danny Weyns. 2014. ActivFORMS: Active Formal Models for Self-adaptation. In Pro-
ceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2014). ACM, New York, NY, USA, 125-134.

Jeffrey O Kephart and David M Chess. 2003. The vision of autonomic computing. Computer 36, 1 (2003),
41-50.

Jeffrey O. Kephart and William E. Walsh. 2004. An Artificial Intelligence Perspective on Autonomic Com-
puting Policies. In 5¢th IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY 2004), 7-9 June 2004, Yorktown Heights, NY, USA. IEEE Computer Society, 3—12.

Arnaud Lanoix, Julien Dormoy, and Olga Kouchnarenko. 2011. Combining Proof and Model-checking to
Validate Reconfigurable Architectures. Electron. Notes Theor. Comput. Sci. 279, 2 (Dec. 2011), 43-57.

Jeff Magee and Tom Maibaum. 2006. Towards Specification, Modelling and Analysis of Fault Tolerance in
Self Managed Systems. In Proceedings of the 2006 International Workshop on Self-adaptation and Self-
managing Systems (SEAMS ’06). ACM, New York, NY, USA, 30-36.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

Formal design and verification of self-adaptive systems with decentralized control 0:35

Emanuela Merelli, Nicola Paoletti, and Luca Tesei. 2012. A multi-level model for self-adaptive systems. In
Proceedings 11th International Workshop on Foundations of Coordination Languages and Self Adapta-
tion, FOCLASA 2012, Newcastle, UK., September 8, 2012. (EPTCS), Vol. 91. 112-126.

Raffaela Mirandola, Pasqualina Potena, Elvinia Riccobene, and Patrizia Scandurra. 2014b. A Reliability
Model for Service Component Architectures. JJ. Syst. Softw. 89, C (March 2014), 109-127.

Raffaela Mirandola, Pasqualina Potena, and Patrizia Scandurra. 2014a. Adaptation space exploration for
service-oriented applications. Science of Computer Programming 80, Part B, 0 (2014), 356-384.

Brice Morin, Olivier Barais, Gregory Nain, and Jean-Marc Jezequel. 2009. Taming Dynamically Adaptive
Systems Using Models and Aspects. In Proceedings of the 31st International Conference on Software
Engineering (ICSE ’09). IEEE Computer Society, Washington, DC, USA, 122-132.

David J. Musliner. 2000. Imposing Real-time Constraints on Self-adaptive Controller Synthesis. In Proceed-
ings of the First International Workshop on Self-adaptive Software (IWSAS’ 2000). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 143-160.

George A. Papadopoulos and Farhad Arbab. 1998. Coordination Models and Languages. Technical Report.
Amsterdam, The Netherlands, The Netherlands.

Diego Perez-Palacin and Raffaela Mirandola. 2014. Uncertainties in the Modeling of Self-adaptive Systems:
A Taxonomy and an Example of Availability Evaluation. In Proceedings of the 5th ACM | SPEC Interna-
tional Conference on Performance Engineering (ICPE ’14). ACM, New York, NY, USA, 3-14.

Christian Prehofer and Marc Zeller. 2012. Towards runtime adaptation in real-time, networked embedded
systems. In 7th IEEE International Symposium on Industrial Embedded Systems, SIES 2012, Karl-
sruhe, Germany, June 20-22, 2012. IEEE, 271-274.

Ichiro Satoh. 2012. Distributed Computing and Artificial Intelligence: 9th International Conference. Springer
Berlin Heidelberg, Berlin, Heidelberg, Chapter Bio-inspired Self-adaptive Agents in Distributed Sys-
tems, 221-228.

Hui Song, Stephen Barrett, Aidan Clarke, and Siobhan Clarke. 2013. Model-Driven Engineering Languages
and Systems: 16th International Conference, MODELS 2013, Miami, FL, USA, September 29 — October
4, 2013. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, Chapter Self-adaptation with End-
User Preferences: Using Run-Time Models and Constraint Solving, 555-571.

Pieter Vromant, Danny Weyns, Sam Malek, and Jesper Andersson. 2011. On Interacting Control Loops in
Self-adaptive Systems. In Proceedings of the 6th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS ’11). ACM, New York, NY, USA, 202-207.

Danny Weyns, M. Usman Iftikhar, Didac Gil de la Iglesia, and Tanvir Ahmad. 2012. A Survey of Formal
Methods in Self-adaptive Systems. In Proceedings of the Fifth International C* Conference on Computer
Science and Software Engineering (C3S2E ’12). ACM, New York, NY, USA, 67-79.

Danny Weyns, Sam Malek, and Jesper Andersson. 2010a. FORMS: A Formal Reference Model for Self-
adaptation. In Proceedings of the 7th International Conference on Autonomic Computing (ICAC °10).
ACM, New York, NY, USA, 205-214.

Danny Weyns, Sam Malek, and Jesper Andersson. 2010b. On Decentralized Self-adaptation: Lessons from
the Trenches and Challenges for the Future. In Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS ’10). ACM, New York, NY, USA, 84-93.

Danny Weyns, Bradley R. Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mirandola, Christian Prehofer,
Jochen Wuttke, Jesper Andersson, Holger Giese, and Karl M. Géschka. 2013. Software Engineering for
Self-Adaptive Systems II: International Seminar, Dagstuhl Castle, Germany, October 24-29, 2010 Re-
vised Selected and Invited Papers. Springer Berlin Heidelberg, Berlin, Heidelberg, Chapter On Patterns
for Decentralized Control in Self-Adaptive Systems, 76—-107.

Marc Zeller and Christian Prehofer. 2012. Timing Constraints for Runtime Adaptation in Real-time, Net-
worked Embedded Systems. In Proceedings of the 7th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS ’12). IEEE Press, Piscataway, NdJ, USA, 73-82.

Ji Zhang and Betty H. C. Cheng. 2006. Model-based Development of Dynamically Adaptive Software. In
Proceedings of the 28th International Conference on Software Engineering (ICSE ’06). ACM, New York,
NY, USA, 371-380.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

