Towards Scalable and Dynamic Data Encryption for
Multi-Tenant SaaS

Ansar Rafique, Dimitri Van Landuyt, Vincent Reniers, Wouter Joosen
imec-DistriNet, KU Leuven
3001 Leuven, Belgium
{Ansar.Rafique, Dimitri.Vanlanduyt, Vincent.Reniers, Wouter.Joosen}@cs.kuleuven.be

ABSTRACT

Application-level data management middleware solutions
are becoming increasingly compelling to deal with the com-
plexity of a multi-cloud or federated cloud storage and multi-
tenant storage architecture.

However, these systems typically support traditional data
mapping strategies that are created under the assumption of
a fixed and rigorous database schema, and mapping data ob-
jects while supporting varying data confidentiality require-
ments therefore leads to fragmentation of data over dis-
tributed storage nodes. This introduces performance over-
head at the level of individual database transactions and
negatively affects the overall scalability.

This paper discusses these challenges and highlights the po-
tential of leveraging the data schema flexibility of NoSQL
databases to accomplish dynamic and fine-grained data en-
cryption in a more efficient and scalable manner. We illus-
trate these ideas in the context of an industrial multi-tenant
SaaS application.

CCS Concepts

eInformation systems — Data federation tools;
Cloud based storage; Distributed storage; eSecurity
and privacy — Management and querying of encrypted
data;

Keywords

Cloud data storage, NoSQL, Data encryption, Untrusted
clouds, Secure data management, Multi-tenant SaaS

1. INTRODUCTION

Software applications are increasingly offered as services
that are deployed on cloud platforms [4, 15]. The limitations
of traditional databases in terms of performance, scalability,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC 2017,April 03-07, 2017, Marrakech, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. .. $15.00
http://dx.doi.org/10.1145/3019612.3019855

411

availability, and fault-tolerance in a cloud environment have
been studied extensively and are currently well known [1,
12]. This has given rise to a class of cloud-friendly databases,
commonly referred to as NoSQL databases, which have be-
come the backbone of cloud-based applications [3].

One of the key characteristics of cloud computing is that
storage is outsourced to specialized cloud storage services [5].
Many organizations actively outsource their storage to cloud
storage providers for economic reasons. However, at the
same time organizations are reluctant to share their sensitive
data with public cloud providers, due to limited trust and
privacy issues [5, 9, 16]. This forms a main obstacle to wider
adoption of cloud storage and the respective cloud storage
providers [14, 23]. Therefore, cryptographically encrypting
confidential data from within the application level is the
most feasible cloud storage data security tactic and must
be considered before adapting to external cloud providers.

In the context of a multi-tenant Software-as-a-Service (SaaS)
application, confidentiality and privacy requirements may
differ considerably between tenants. For example, different
customer organizations (tenants) may impose different con-
fidentiality requirements at any level of granularity (i.e. from
full entity towards individual attributes). This form of cus-
tomization must be supported at run time, in an efficient
and a scalable manner.

In addressing these requirements, the SaaS provider com-
monly lacks data model flexibility to accommodate seamless
changes at runtime. In addition, dealing with such require-
ments at the application level (i.e., in code) is not an ade-
quate strategy, as it (i) substantially increases application
complexity; (ii) inherently limits the requirements that can
be accommodated; and (iii) hardcodes these requirements,
as such hindering the ability to flexibly change the stor-
age architecture. Moreover, as the communication channel
between the application and the external cloud provider(s)
cannot necessarily be trusted, dealing with confidentiality
and privacy requirements only at the database level does not
mitigate threats of snooping the application data in motion
and requires trust in third-party cloud storage providers.

This paper, hence argues and motivates that the complex
confidentiality and privacy requirements of multi-tenant
SaaS applications must be realized by application-level mid-
dleware. We envision on leveraging the data model flexibil-
ity of columnar NoSQL databases —in terms of their ability
to support dynamic columns— to accommodate different re-

quirements of multiple tenants simultaneously.

The remainder of this paper is organized as follows: Sec-
tion 2 provides the necessary background information and
introduces a motivating example for the paper. Section 3
presents our analysis of the main requirements, while Sec-
tion 4 outlines our ideas on addressing these requirements.
Section 5 connects and contrasts our work with other related
research in this area. Finally, Section 6 concludes the paper
and indicates directions for the future work.

2. BACKGROUND

In the context of a multi-tenant SaaS application, differ-
ent tenants commonly impose different requirements on the
application', and these requirements also affect the data
storage tier of the application. There is therefore a need
to customize the multi-tenant SaaS application at run time
to meet these different non-functional requirements.

This section first outlines and discusses a number of current
and timely trends in the context of multi-tenant Software-as-
a-Service (SaaS) applications. The presented research goals
are motivated strongly from the context of these trends. Sec-
tion 2.1 introduces the trend of offering storage as a service.
Secondly, the data tier of multi-tenant SaaS applications is
increasingly being structured as a federated storage archi-
tecture, which we discuss in Section 2.2. Then, Section 2.3
introduces the motivating example for the paper.

2.1 Cloud Storage

Cloud providers offer online and on-demand services that
can elastically scale up (or down) dynamically as demand
increases (or decreases). Cloud data storage is one of the
prominent services of cloud providers, which predominantly
allows data owners to store their data in the cloud.

From the point of view of the SaaS application provider,
however, the selection of a single cloud storage provider in
practice is a difficult decision: (i) application providers face
a lack of trust in the cloud storage provider and are reluc-
tant to share sensitive application data; (ii) they and their
customer organizations (tenants) may require different ser-
vice levels (guarantees as to data availability, performance,
and responsiveness), and technologies for different types of
data; and (iii) as market conditions change, they may op-
portunistically want to switch cloud storage providers but
be confronted with a situation of provider lock-in.

2.2 Federated Storage Architecture

To address these concerns, SaaS providers are increasingly
leveraging a combination of different cloud storage resources,
technologies, and providers in a so-called federated storage
architecture. A federated storage architecture combines dif-
ferent storage resources (private and cloud resources) and
allows data storage needs of a single application provider
to be attained by combining different cloud storage offer-
ings. This however comes at the cost of increased complex-
ity and maintenance, which is commonly addressed in the
application-level middleware [2, 19, 14].

!Usually expressed in Service Level Agreements (SLAs)

412

2.3 Multi-Tenant Log Management Case

As a running example for this paper, we present a
multi-tenant Log Management-as-a-Service (LMaaS) appli-
cation [14, 15]. This SaaS application provides log manage-
ment facilities to its customer organizations (tenants), for
example, banks, supermarkets, hospitals, telecom operators,
etc. The application focuses on storing large amounts of
heterogeneous data: raw log entries, archived logs, log meta-
data, historical logs, incident reports, and time series data
and is successful in doing so by using a federated storage ar-
chitecture, and by applying multi-tenancy, i.e. sharing these
storage resources maximally among tenants.

In the case of the LMaaS application, log aggregation com-
ponents are installed at the tenants’ side, which collect and
stream log events to the LMaaS application. Figure 1 il-
lustrates three such events, each sent by a different tenant

organization, which are stored in a single Log database table.
rows

1D ‘ DevicelID ‘ DeviceName ‘ DeviceType ... Tenant
1 401 BRI-Router-001 ciscortr 1
2 701 BRI-special-001 cisco-ace 2
3 301 CAN-PIX-FW-001 Pixy 3

Figure 1: Log table for storing events information.

The table holds a chunk of log data, identified by an ID
attribute, which uniquely identifies each row in the Log ta-
ble. The (DevicelD, DeviceName, DeviceType, and ...) at-
tributes hold information about the device that generated
the log event. The Tenant attribute refers to the tenant for
which the event is generated.

However, as mentioned above, different tenants may have
different data storage requirements. As an example from
the log management application, we contrast three tenant
organizations, a financial agency (i.e. a bank), a medical in-
stitution (i.e. a hospital), and an SME, that each impose
different requirements when it comes to data confidential-
ity: clearly, stricter regulations on data confidentiality apply
for the financial and medical institution, as opposed to the
SME.

To illustrate with the data presented in Figure 1: as the
tenant with id 1 is a financial agency, even the meta-data
about the device is considered highly sensitive. Similarly,
as tenants with id 2 and id 3 both represent medical insti-
tutions, only a part of the data should be considered to be
sensitive: for the tenant with id 2, only the (DeviceID and
DeviceName) attributes hold sensitive information, whereas
for the tenant with id 3, the (DevicelD, DeviceName, and
DeviceType) attributes contain confidential information.

3. REQUIREMENTS

In this section, we introduce four key requirements for data
encryption solutions in the specific context of multi-tenant
SaaS applications, as introduced in the previous section.

R1. Encryption at Differing Levels of Granularity:
From the perspective of data confidentiality, different
tenants impose different, sometimes even contrasting
confidentiality requirements, and this in turn may af-
fect the level of granularity at which data encryption is

to be applied®. As such, specific data encryption sup-
port is required for applying encryption at differing
levels of granularity at runtime for multiple tenants.

For example, as strict confidentiality requirements ap-
ply to the tenant with id 1, full entity-encryption is
clearly the most suited option. Similarly, as tenants
with ids 2 and 3 operate with relatively relaxed confi-
dentiality requirements, instead of applying full entity-
encryption, partial data encryption (i.e. only encrypt-
ing the sensitive information) is considered a more ap-
propriate strategy.

R2. Application Tier Encryption: In a federated stor-
age architecture that may include different public
cloud providers, storage requires sending the applica-
tion data over uncontrolled communication channels
such as the public Internet. The lack of control and
the trust in these third-party cloud storage providers
force dealing with these confidentiality requirements

within the application tier itself.

R3. Generic, Transparent, and Reusable Solution:
Dealing with the confidentiality requirements of dif-
ferent tenants introduces substantial application com-
plexity. In addition, the ability to change these re-
quirements at run time, for example to accommodate
new tenant requirements or changes in the federated
storage architecture is a strong motivation to external-

ize this solution from the main application code.

More concretely, this requirement is the need for a
generic and a reusable solution, which (i) external-
izes the encryption logic from the application, accom-
plishing a clear separation of concerns (i.e. being able
to change the encryption logic without changing the
application code); and (ii) provides tenant adminis-
trators and SaaS application operators with advanced
configuration and management facilities, such as data
storage policies, cryptographic key management infras-
tructure, configuration dashboards to select different
algorithms for data encryption (e.g., AES, RSA, etc.).

R4. Scalable Data Encryption: Encryption impacts ap-
plication performance significantly [17], and scalability
is a key concern, especially in terms of the amount of

tenants and storage nodes.

The next section outlines our ideas on how to address these
requirements, more specifically by leveraging the data model
flexibility features of columnar NoSQL databases.

4. DISCUSSION

There is an increasing research interest in solving these re-
quirements at the level of advanced data access middleware
platforms [8, 11]. These solutions as such address R2 and
R3 (partially), but not R1 and R4. Especially, the rise of
Object-NoSQL Data Mappers (ONDMs), which apply the
principles of the widely popular Object-Relational Mapping
(ORM) frameworks in a NoSQL context [6, 7, 22].

2Note that differences in search requirements may also affect
the level of granularity at which encryption is to be applied.

413

The data mapping strategies (i.e. how to map in-memory
object to in-table rows) built into these systems however
rely extensively on the assumption of fixed database tables.
This naive strategy would in our example of Figure 1 leads
to the definition of three different database tables, one for
each tenant, and as such these platforms do not address
R4. A negative consequence of scattering data of the same
type over different database tables for example, is that the
back-end NoSQL databases (which are by design distributed
databases) might fragment this data over multiple database
nodes, as such negatively affecting scalability and the overall
performance, for example when performing queries over all
Log entries.

To address R1 and R4, we envision more efficient data map-
ping strategies for Object-NoSQL data mappers (ONDMs).
By leveraging the flexibility of columnar NoSQL databases
(i.e. there is no fixed schema according to which data ob-
ject must be structured), data objects that are encrypted
differently can still be stored within a single database table.
This will avoid data fragmentation across multiple database
rows and multiple database nodes and will allow NoSQL
databases to treat this data more efficiently.

5. RELATED WORK

Recently, there has been extensive research focusing on high-
lighting the security issues in NoSQL databases [13, 18, 21].
To end this, several research contributions [10, 20, 22] have
been made, which provide encryption support for NoSQL
databases at different levels to protect outsourced data.

The existing solutions [8, 11] in the state-of-practice to sup-
port encryption at the middleware level either (i) offer lim-
ited support for encryption where attributes with only spe-
cific data types can be encrypted, or (ii) provide solution-
specific data types to be used in the application to encrypt
sensitive data. Moreover, they operate on a fixed data model
and provide no flexibility to support encryption at various
levels of granularity.

A number of libraries are available in different programming
languages, achieving encryption support in the application
level. For example, one of the easiest ways to encrypt sen-
sitive data in Java is by using custom data types provided
by the Java simplified encryption (Jasypt) [8]. However,
these libraries have various limitations: (i) they need to be
configured to specify sensitive data during deployment time;
and (iii) they do not support encryption at various-levels of
granularity, which can also be altered during run-time.

6. CONCLUSION

Outsourcing data to third-party cloud storage providers of-
fer a wide array of clear benefits over hosting data in costly
on premise data centers. In practice, however, data con-
fidentiality considerations often prohibit outsourcing con-
fidential application data to external and often untrusted
storage providers.

This paper motivates that data confidentiality considera-
tions of multi-tenant SaaS applications must be supported
within the application-level middleware by utilizing NoSQL
databases. We envision to create an efficient data mapping

strategy that leverages the flexibility of columnar NoSQL
databases such as Apache Cassandra to support efficient,
dynamic, and scalable data encryption that can be enacted
at different levels of granularity.

This work fits into our ongoing research on application-level
middleware for federated data storage architectures in sup-
port of multi-tenant SaaS applications. This is an ongoing
research, future work involves the implementation of the pro-
posed data mapping strategy and validate it in a prototype.

Acknowledgments This research is partially funded by
the Research Fund KU Leuven (project GOA/14/003 - AD-
DIS), the SBO DeCoMAdS project, and the iMinds Se-
Closed project.

7.
1]

[11]

REFERENCES

D. Agrawal, S. Das, and A. El Abbadi. Big data and
cloud computing: Current state and future
opportunities. In Proceedings of the 14th International
Conference on FExtending Database Technology,
EDBT/ICDT ’11, pages 530-533, New York, NY,
USA, 2011. ACM.

D. Bermbach, M. Klems, S. Tai, and M. Menzel.
Metastorage: A federated cloud storage system to
manage consistency-latency tradeoffs. In 2011 IEEE
4th International Conference on Cloud Computing,
pages 452-459, July 2011.

G. DeCandia et al. Dynamo: amazon’s highly
available key-value store. ACM SIGOPS Operating
Systems Review, 41(6):205-220, 2007.

K. Grolinger, W. A. Higashino, A. Tiwari, and M. A.
Capretz. Data management in cloud environments:
Nosql and newsql data stores. Journal of Cloud
Computing: Advances, Systems and Applications,
2(1):1, 2013.

J. Hu and A. Klein. A benchmark of transparent data
encryption for migration of web applications in the
cloud. In Dependable, Autonomic and Secure
Computing, 2009. DASC ’09. Eighth IEEE
International Conference on, pages 735—740, Dec 2009.
M. Huber, M. Gabel, M. Schulze, and A. Bieber.
Cumulus4j: A Provably Secure Database Abstraction
Layer, pages 180-193. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

Impetus. A JPA 2.1 compliant Polyglot
Object-Datastore Mapping Library for NoSQL
Datastores.
https://github.com/impetus-opensource/Kundera,
2016. [Last visited on December 02, 2016].

Jasypt. Java Simplified Encryption.
http://www.jasypt.org/, 2016. [Last visited on July
19, 2016].

L. M. Kaufman. Data security in the world of cloud
computing. IEEFE Security Privacy, 7(4):61-64, July
2009.

L. Liu and J. Gai. A new lightweight database
encryption scheme transparent to applications. In
2008 6th IEEE International Conference on Industrial
Informatics, pages 135—-140, July 2008.

K. Lorey, E. Buchmann, and K. Bohm. TEAL:

414

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

Transparent Encryption for the Database Abstraction
Layer. In Proceedings of the CAiSE 16 Forum at the
28th International Conference on Advanced
Information Systems Engineering, New York, NY,
USA |, 2016.

S. Malkowski et al. Empirical analysis of database
server scalability using an n-tier benchmark with
read-intensive workload. In Proceedings of the 2010
ACM Symposium on Applied Computing, SAC ’10,
pages 1680-1687, New York, NY, USA, 2010. ACM.
L. Okman et al. Security issues in nosql databases. In
2011IEEFE 10th International Conference on Trust,
Security and Privacy in Computing and
Commumnications, pages 541-547. IEEE, 2011.

A. Rafique, D. Van Landuyt, B. Lagaisse, and

W. Joosen. Policy-driven data management
middleware for multi-cloud storage in multi-tenant
saas. In 2015 IEEE/ACM 2nd International
Symposium on Big Data Computing (BDC), pages
78-84, Dec 2015.

A. Rafique, D. Van Landuyt, B. Lagaisse, and

W. Joosen. On the performance impact of data access
middleware for nosql data stores. IEEE Transactions
on Cloud Computing, PP(99):1-1, 2016.

A. Rafique, S. Walraven, B. Lagaisse, T. Desair, and
W. Joosen. Towards portability and interoperability
support in middleware for hybrid clouds. In Computer
Communications Workshops (INFOCOM WKSHPS),
2014 IEEE Conference on, pages 7-12. IEEE, 2014.
S. Q. Ren, S. H. Zhang, Y. Z. Chen, M. R. Felipe,

Y. J. Ha, and K. M. M. Aung. Empirical study of
accelerating data protection for multi-tenant storage.
Advances in Information Sciences and Service
Sciences, 5(13):19-25, 08 2013.

A. Ron, A. Shulman-Peleg, and A. Puzanov. Analysis
and mitigation of nosql injections. IEEFE Security
Privacy, 14(2):30-39, Mar 2016.

S. Seshadri, L. Liu, B. F. Cooper, L. Chiu, K. Gupta,
and P. Muench. A fault-tolerant middleware
architecture for high-availability storage services. In
IEEFE International Conference on Services
Computing (SCC 2007), pages 286-293, July 2007.
V. Sidorov et al. Transparent data encryption for
data-in-use and data-at-rest in a cloud-based
database-as-a-service solution. In 2015 IEEE World
Congress on Services, pages 221-228, June 2015.

D. S. Terzi, R. Terzi, and S. Sagiroglu. A survey on
security and privacy issues in big data. In 10th
International Conference for Internet Technology and
Secured Transactions, pages 202—207, Dec 2015.

X. Tian, B. Huang, and M. Wu. A transparent
middleware for encrypting data in mongodb. In
Electronics, Computer and Applications, 2014 IEEE
Workshop on, pages 906-909, May 2014.

T. Waage and L. Wiese. Foundations and Practice of
Security: 7th International Symposium, FPS 2014,
Montreal, QC, Canada, November 3-5, 201. Revised
Selected Papers, chapter Benchmarking Encrypted
Data Storage in HBase and Cassandra with YCSB,
pages 311-325. Cham, 2015.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20170118110126
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 0
 1

 1

 HistoryList_V1
 qi2base

