
ABSTRACT

A NOVEL IOT-BASED WIRELESS SYSTEM TO MONITOR HEART RATE

by Mohamed Assem ElSaadany

The Internet of Things (IoT) with smartphone technologies has vast applications in solving the
problems of heart diseases in patients needing care. With wireless sensors and smart devices,
remote monitoring can identify the real-time physical status of heart patients under many normal
physical activities. In this research, we designed and developed an IoT system to monitor heart rate.
A wearable ECG sensor is used to monitor the pulse patterns and smartphone built-in sensors—
accelerometer and GPS—- are used to measure the body acceleration and location information of
the user. Data is collected via a Low Energy (LE) Bluetooth communication network between the
ECG sensor and smartphone for further processing in the phone. Experimentation and verification
is conducted on a number of test subjects with different test scenarios including sitting, walking,
jogging, and running. The sensor outputs, with heart rate acquired from the experiment, are
presented in this research. An algorithm for activity classification is implemented and discussed in
the results.
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Chapter 1

Introduction

The Internet of Things (IoT) is a massive and growing virtual universe with a very high demand

over the past few years caused by the increasing number of electronic devices and sensors connected

to the Internet and to each other. Applications for this technology can be found in manufacturing,

industrial systems, medical and healthcare, transportation, as well as others. According to K.

A. Hua [1], the Internet is expected to have over 28 billion devices connected by 2020. Even

though the number seems massive, it is reasonable taking into account the number of applications

and uses considered. It is not just the number of smartphones, computers, and sensors used in

well-known industries but, also, sensors used to monitor livestock animals such as cows and sheep.

Since animals are very valuable, there is a need to track and monitor their movement patterns

and behavior. Using deep learning algorithms, farmers can detect any abnormality in their assets,

especially for large numbers of animals.

Using IoT in the medical and healthcare field is of a great interest and is proving to be efficient

and useful for monitoring a patient’s health conditions using smart devices and sensors. In recent

years the medical sensors and devices are getting smaller in size, more accurate and precise, and it

is now easier to create communications modules connecting these sensors and devices. Collecting

large sets of data and performing an appropriate analysis on this data is the new ongoing challenge

since a person’s health is critical, especially in regards to heart related conditions. Heart disease is
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the leading cause of deaths for men and women worldwide [2] 1, with over 600,000 deaths a year

in the US alone. It is estimated that these deaths cost the US an estimate of $207 billion including

the cost of health-care services, medications, and lost productivity. One of the most common heart

diseases is heart attacks which occurs when the heart muscle does not get enough oxygen supply

from its intervening blood vessels. This often happens when the coronary arteries, which are the

passages that allow the blood flow to the heart muscle, are narrowed or blocked due to the buildup

of fats and other substances known as plaque. Heart attack symptoms do not occur in the same

severity, however, in all individuals. It is common for people experiencing heart attacks to be found

clutching their chest or arm, losing balance, and even falling to the ground. About 15% of people

having a heart attack will die from it and half of that happens outside a hospital. This presents a

serious problem that needs to be solved.

Anyone is susceptible to a heart attack, however, most heart attacks occur to middle-aged or

older individuals with the average age of the first heart attack to be around 70 for men and 73 for

women [3]. In order to address this problem, our research focuses more on the elderly age group.

We study the symptoms experienced when people get heart attacks and design a system that helps

those patients monitor their heart conditions, and predict any abnormality.

The proposed system works with the Electro-Cardio-Gram (ECG or EKG) signal collected

from a patient body in real-time. ECG data collection devices can be seen almost at every hospital

and physicians’ offices. This signal is an electrical representation of the heart’s activity and it

carries much information that can be used to check for the heart’s condition to see if there is any

abnormality. An ECG signal contains three waves as seen in Fig. 1.1 P, QRS complex, and T.

Figure 1.1: One period of ECG signal

1Most of references regarding heart disease facts and statistics come from this site https://www.cdc.gov/heartdisease/
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Our research is concerned with the heart rate, as well as the ST segment, these two parameters

are affected in the case of ST-segment Elevation Myocardial Infarction (STEMI) Heart Attacks.

STEMI is a serious form of heart attack that requires immediate attention and occurs when the

coronary artery is completely blocked. In this form of heart attack, the heart rate often increases,

blood pressure elevates, respiratory rate increases, and coughing and wheezing [4]. Figure 1.2 is

an example showing one period of an ECG signal with an elevated ST.

Figure 1.2: ECG signal for STEMI heart attack

With the recent advances in mobile technologies and the decreasing cost of the smartphones

with respect to their growing capabilities and power, smartphones proved to be the best portable and

most efficient devices because of their ubiquity and adaptability to a wide variety of applications.

For our system to work the following challenges are addressed. We need to

• Build an integrated IoT system

• Collect real-time data of ECG and accelerometer

• Detect abnormality in heart rate as well as body balance

• Develop an algorithm to predict heart attacks

• Create an alert notification system

3



Our system is based on a smartphone that is connected with IoT devices to gather and send data

to and from an AndroidTM application that is used for analysis and display. Our system monitors

a patient’s real-time ECG signal and uses the smartphone’s accelerometer to obtain data regarding

the patient’s body movement. Our system analyzes and evaluates specific parameters to detect

any abnormality in the ECG; subsequently, it checks body movement. After these processes are

completed, our algorithm would then make decisions as to when a heart attack might occur. In case

of emergencies, our application will make aware the user and inform a physician or caregiver.
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Chapter 2

Motivation and Related Work

2.1 Problem definition

People can get heart attacks anytime and anywhere whether sitting, walking, driving, eating, or

performing any Activities of Daily Living (ADL). This results in many negative consequences for

heart attack victims, such as loss of balance as well as reduction of independence since they will

have a fear of being alone in case something happens and they need assistance. This will also have

the consequence of them being isolated and unsocial due to the decline in the health conditions. Our

system aims to collect continuous data to monitor the heart patterns as well as other information

gathered by the built-in smartphone sensors, enabling the system’s users to live their lives more

normally without having to constantly worry about their health.

Many existing systems monitor health conditions or detect problems and alert users. Our

research and system is unique because it examines a wide variety of health attributes. First, given

sensor’s data and ECG signals, our system uses an algorithm we developed to predict heart attacks

rather than just detect them. This is done by studying the symptoms and patterns prior to heart

attacks of actual patients that were diagnosed with the condition. We also challenge ourselves to

develop and implement a Low Energy (LE) real-time abnormality detection system using an LE

Bluetooth device for power consumption and by decreasing computation complexity, in addition to

having a sleep mode option on the application.
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2.2 Related work

This section examines the different work and research that have been done on related systems. The

goal of our system aims to outperform these systems by using acquired data, analyzing the gathered

information, then, from the results develop a novel and unique system that yields better results.

The system prototype, proposed by R. S. B. Rosli aims to detect heart problems for patients in

an attempt to provide more mobile means to monitor heart conditions [5]. A pulse sensor is used to

obtain the ECG signal, which is then processed by an Arduino TM to determine the heart rate. If it

is out of the normal range, the user is alerted via a text message. Global System for Mobile (GSM)

module was used for communication between the phone and ArduinoTM. First, the user specifies

the minimum and maximum heart rate providing a "normal" range. Then, it transmits this range

via text to ArduinoTM to set a threshold. A sensor keeps reading data from the user until the text

message "Stop" is sent. The user will be alerted with a text message only when the heart rate falls

out of range.

A smartphone based system was developed by G. Wolgast to monitor and detect heart failures

in real-time [6]. A single lead heart monitor sensor was used with an ArduinoTM microcontroller,

LE Bluetooth device and antenna to send and receive data to and from the AndroidTM application

created on the smartphone. This research focuses on the communications aspects to exchange data

in the most effective way with minimum noise to obtain a clear signal for analysis and display on

the application. The AndroidTM application has two modes: one for displaying the ECG signal

and one to show the signal’s strength. The authors claim that the system was able to transmit a

noise free signal to the smartphone with high accuracy and that only further software development

is needed for heart failures predictions by looking at the ST-segment.

A. Dewan and M. Sharma proposed a hybrid algorithm that would be able to extract unknown

patterns and other information related to heart disease based on previous heart disease database

records [7]. The main focus of this proposed system is to use data mining techniques and utilize

the already stored at the hospital to make decisions regarding predictions of heart diseases.

One proposed system byM. Koshti uses IoT based devices to monitor heart condition [8]. Using

body worn sensors to collect data, the proposed system then sends these data using ZigBeeTM
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modules to a remote location and the received data is monitored and graphed on a computer using

serial connection. Such system makes it difficult for patients to track real-time data because, unlike

smartphones that are highly portable, computers are not so portable. Our proposed system has a

unique architecture as it embeds wireless IoT devices for heart monitoring and prediction of heart

attacks and links them to a smartphone.

The work done by D. S. Medhekar focuses on the use of Bayesian classification and uses the

Naive Bayes algorithm to predict heart attacks given an unknown data sample as input. This works

on two phases. First the training phase in which a database from the Cleveland clinic was used

to create models and classes. The datasets contains information about heart disease diagnosis and

303 observations on 14 parameters such age, gender, chest pain, blood pressure, and other ECG

parameters. Next, there is the testing phase where a prediction probabilistic algorithm classifies

the input as high, average, or low risk, after a training sequence is used [9].

P. Jambhulkar and V. Baporikar proposed a system that uses Data Mining (DM) and Wireless

Sensor Network (WSN) to predict heart disease, by collecting a large set of data from the Cleveland

heart disease databases and, comparing different algorithms and classification techniques, that

are run on the collected datasets [10]. This research found Naive Bayes to be the most accurate

technique for this process. It outperforms more sophisticated classifications in predicting outcomes

based on large set of data using probability theory. The authors then proposed WSN to collect

multiple patients in real-time and then transmit that data to a central system. Then MATLAB TM

will be used to extract necessary features from the datasets for heart disease predictions using a DM

technique via MATALBTM. The proposed system does not utilize the smartphone and, thus, it is

not a system for all users. Rather it is a system for a hospital or a Cardiologist to use in monitoring

patients.

A smartphone based system by M. Raihan was developed to predict heart attacks using clinical

data and data mining techniques. An AndroidTM application was created on the smartphone to

collect the user’s information. No sensors or real time data are used as an input to the application.

A user is asked to enter information such as age, previous heart conditions, or other health related

data in the form of answering questions. These entered data are then evaluated and interpreted
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by the application to calculate the risk of having a heart. A score is calculated for every datum

provided by the user. Then using a Chi-Square correlation, Fisher’s exact test, and probabilistic

techniques a risk score is calculated and displayed for the user [11].

Another proposedwork concerning the prediction of a heart attack is conducted by theUniversity

of Turku, Finland [12]. Their system would predict heart attacks solely using the gyroscope sensor

on smartphone. The smartphone is placed on the patient’s chest and, using a sensitive embedded

sensor, they are able to detect the micro-movements when the blood flow to the heart muscle is

disturbed. The proposed system is claimed to have an accuracy of 70%-90% if the patient’s baseline

is recorded before the heart attack.

Table 2.1 provides a simple comparison between our system and other proposed related work

previously discussed which shows that our system is unique.

Table 2.1: Comparison of our system and other related work

IoT
system

Has monitoring
capability

Has detection
capability

Prediction
system

Low Energy
system

Real-time
system

Rosli’ 16 N N Y N N Y
Wolgast’ 16 Y Y Y N Y Y
Dewan’ 15 N N N Y N N
Koshti’ 15 Y Y N N N Y
Medhekar’ 13 N N N Y N N
Jambhulkar’ 15 Y Y Y Y N Y
Raihan’ 16 N N N Y N N
Our System Y Y Y Y Y Y
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Chapter 3

System Architecture

The architecture is a key factor differentiating our proposed system from other previously proposed

systems that use body-worn sensors to monitor the heart rate and, provide ECG data. In our system,

we have an ECG sensor connected to the body as shown in Fig. 3.1 ECG data is sent via Bluetooth

to our smartphone application. Accelerometer data is also collected internally from the smartphone

and both sensors’ data are stored in a database. After analysis, if there is any abnormality in heart

pattern, a voice alert is set to alert the user and inform an attending doctor or caregiver, while

using the smartphone’s GPS to show the location information of the user. The following sections

describe the system implementation.

Figure 3.1: Architecture of proposed system
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3.1 Hardware

Our hardware architecture consists of two IoT devices a smartphone and ECG data acquisition

device with the communication module. The sensor is soldered to the microcontroller and the LE

Bluetooth module. A 9V battery is used to power the device, making it portable and easy to use.

3.1.1 Heart Monitor Sensor

The AD8232 is a 4mm x 4mm single lead heart rate monitor that is operational at 3.3 volts, between

-40 and 85 degrees Celsius and with low current supply of about 170 µA. The circuit is designed

to extract, amplify, and filter small bio-potential signals in the presence of noisy conditions, such

as those created by motion or remote electrode placement. It has an integrated filter coupled with

an amplifier that produces a high gain signal (G=100) and a high pass filter in a single stage, thus

allowing the AD8232 to recover quickly so that it takes valid measurements after connecting the

electrodes to the subject, thus saving cost and space. Three electrodes are connected to the body

as shown in Fig. 3.2, with a 3.5mm jack for the Biomedical Pad Connection on the other end

connected to the heart rate monitor through which analog readings are read continuously and sent

to the output pin. On the board, we also have an LED indicator that will simulate the rhythm of

heart beat [13].

Figure 3.2: AD8232 Heart Monitor
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3.1.2 Arduino UNO

An Arduino UNO is a powerful micro-controller with 6 analog input pins and 14 digital pins that

can be used for either input or output. It works with a High Performance, Low Power Atmel®AVR®

8-BitMicrocontroller chip that is operational at 1.8 to 5.5V and between -40 and 85 degrees Celsius.

The power consumption for the Arduino UNO at 1MHz, 1.8V, 25 Celsius is 0.2 mA on Active

Mode, 0.1 µA on Power-down Mode and 0.75 µA on Power-save Mode. The microcontroller can

be powered by a battery, USB cable, or AC-to-DC adapter [14].

Figure 3.3: Arduino UNO

3.1.3 Bluetooth Shield

An Adafruit Bluefruit LE ShieldTM is a LE Bluetooth Shield for the Arduino UNO that operates

on 5V. It is interfaced with the Arduino using hardware SPI pins (MISO, MOSI, SCK) that can

be soldered with the micro-controller, in addition to a chip select line (default D8), interrupt line

(default D7), and reset (default D4) [15].

Figure 3.4: Adafruit Bluefruit LE Shield
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3.1.4 Connected Devices

Reliable connection between the different components is achieved by soldering the devices together

instead of having connections using wires that can be loosened by body movement, impact with

other objects. Soldering also creates a neat, single device that can be easily used as in Fig. 3.5.

Figure 3.5: Prototype IoT device

In order to have a more user friendly device, a leather pouch was handmade to contain the unit.

Straps were also added, as seen in Fig. 3.6, that enable a user to attach the device around the arm.

(a) Envelope in leather pouch (b) Adding straps to wrap around the arm

Figure 3.6: Portable wearable Device
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3.2 Software

To receive and analyze data from the hardware in our system, an AndroidTM heart rate collector

interface in the smartphone is used. We developed a Bluetooth communication system that is

capable of transmitting data from the pulse to the smartphone. On receiving inputs from the

accelerometer (in the directions of the x-, y-, and z-axes) and ECG sensors, the system processes

the data to identify an abnormality in the heart rate or pulse. To process the embedded sensors’

data, the communication module performs two software tasks: one for the Arduino and the other

for the smartphone. The Arduino, is programmed to read an analog signal from the ECG sensor

and creates a data packet converting the signal into a digital form. Subsequently, the Arduino will

transmit those packets to the phone as a response to the data sending request. It will also manage

the Bluetooth communication by coordinating with the LE Bluetooth device. The smartphone

application can communicate with a Bluetooth device to collect sensor data by a polling request.

The sensor data will be saved to the database and analyzed by parsing a packet to calculate the real

ECG signals’ value from the sensor and the threshold value of an individual subject. To install our

software on the smartphone, code file must be run on an Android Studio, Eclipse, or any IDE that

supports Java, while connecting the phone serially with the personal computer.

3.2.1 Arduino

The software component on the Arduino device does two tasks by interfacing with two hardware

components connected to the microcontroller. These are the Bluetooth shield and the heart monitor

sensor. Code is written to read the analog input from the heart rate monitor chip and convert it

to a discrete floating point number between 0 and 1 that represents the voltage; thus, it acts as

Analog-to-Digital Converter (ADC). Another code identifies and setups the pins used to interface

the LE Bluetooth Shield with the Arduino allowing it to send data through the Bluetooth device.

13



3.2.2 AndroidTM

AndroidTM application software was written on Android Studio using Java and XML. This is the

front end of the system that acts as the user interface that allows for interaction with our IoT device.

The following subsections describe our application.

Login/Sign up

Figure 3.7 (a) shows the first page of our AndroidTM application. This procedure allows the user to

either log into our system or create an account. For storing information, we use the smartphone’s

database along with a Cloud database such as Microsoft Azure Cloud. In the future, this will allow

for privacy and confidentiality of user information. When a user enters information and presses

the "LOGIN" button, information is checked in the database and, if valid, then application takes

the user to the main page. When the user presses the "SIGN UP" button, s/he is prompted with the

window shown in Fig. 3.7 (b) to enter the required information. Upon pressing the "SUBMIT"

button at the end of that page, the information is sent to the database for storage.

Figure 3.7: Login/Registration Page
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Main page

On logging-in, the user will be directed to the home page shown in Fig. 3.8. The "SEARCH" tab

takes the user to another page that lists the available Bluetooth devices nearby, as well as any devices

paired with the smartphone. Pressing "USER INFORMATION" retrieves the information for that

particular user from our database for display. The "ECG DATA" tab allows the user to access

the real-time graphs of the ECG and shows the heart rate. The "ACCELEROMETER DATA" tab

allows the user to access the real-time accelerometer data showing both the numerical values and

the real-time graphs. The "COMBINED GRAPHS" displays, for the user, the real-time graphs for

both sensors’ data. Finally, the "DECISION MAKING" tab includes the status of the user’s health

conditions and whether or not everything looks normal, or if a critical condition exists and the user

needs immediate attention.

Figure 3.8: Main Application Page
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Connect to IoT device

Figure 3.9 shows the available nearby Bluetooth devices as well as the paired devices. Our

application searches for our device by name and, if not found, after 120 seconds that is a default

setting, then the search process can start again by simply pulling down the page to refresh. If the

device was found, then we can initiate pairing by clicking the device name on the nearby devices

list. If the device is discovered and paired, then clicking on the device name in the paired list will

open a connection with the device to start receiving data and the application will redirect the user

back to the main page once connected successfully. An important feature of our system is that the

application is designed to work only with our specific device and will not connect to any other

Bluetooth device.

Figure 3.9: Bluetooth Connection Page
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Display ECG

Figure 3.10 allows the user to monitor a real-time graph of the ECG signal with the y-axis as voltage

and x-axis time in seconds. The numerical value of the beats/min will be displayed for the user

with an alert message, if the heart rate is too high or too low.

Figure 3.10: ECG Page

Display Acceleration

Figure 3.11 shows the two pages that appear for the user when the user presses on the "AC-

CELEROMETER DATA" tab. First, window (a) shows the real-time numerical values for the

three axes x, y and z. When the user presses on "DISPLAY GRAPHS", window (b) will appear

to display the real-time graphs of the three axes, with the y-axis as the acceleration and x-axis the

time in seconds. With the phone in the user’s pocket, those graphs tell us the direction of the body

movement.
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Figure 3.11: Accelerometer Page

Display Combined Graphs

Figure 3.12 shows the real-time graphs of both sensors’ used. The top graph is showing the ECG

signal while the bottom one is a real-time plot of the average of the three axes of the accelerometer

and also displays the numerical value of the average. The average can be used instead of looking

at each axis separately in an attempt to reduce the computation complexity. Note that both pages

containing the ECG signal on the application cannot be accessed unless connected to the IoT device.

Figure 3.12: ECG and Acceleration Graphs Page
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Chapter 4

Data Collection

ECG and Accelerometer data are to be collected for a number of patients, different age groups,

and genders. Data is also collected for different activities for healthy test subjects. This allows

us to look at the different patterns of the ECG signals and body acceleration data. The following

subsections show the methods by which these data are collected.

4.1 ECG Data Collection

4.1.1 Using IoT device

Figure 4.1 shows the flow for ECG data is collected using the IoT device. First, when the electrodes

that are attached to the body read the analog signal, this signal passes to the ECG acquisition device

that has a built in amplifier and a filter. Furthermore, a software based amplifier and filter could

be implemented to enhance the signal even more. The signal is passed to the Arduino used as an

ADC, only then, sent to the Android TM mobile application using a LE Bluetooth device to be later

graphed and analyzed on the smartphone.
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Figure 4.1: ECG Data Collection using IoT

The above architecture was initially used to collect data for a number of test subjects as seen in

Table 4.1, none of which were diagnosed with heart problems.

Table 4.1: ECG collection details

Height Weight Age Testing scenarios
3 Females 5’5-5’7 120-180 20-34 Sitting ,Walking
5 Males 5’5-6’1 128-185 23-26 Sitting, Walking, Jogging/Exercising

Figure 4.2 shows how a user can use our IoT device. First, the user powers the device using the

battery cable; then s/he wraps the straps around his or her arm, attaches the red lead to the right

part of the stomach, the black lead to the right part of the chest, and the blue lead to the left part of

the chest.
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Figure 4.2: IoT device usage guide

4.1.2 Previous Stored datasets

In the future, ECG data can be obtained from hospital databases after taking the necessary permis-

sions since the hospital has large sets of data for healthy and non healthy test subjects diagnosed

with heart disease. Large datasets like the ones at the hospital are helpful in testing our prediction

algorithms offline. In addition, datasets can be obtained from databases of Cleveland, Hungary,

Switzerland, and the VA Long Beach that are provided by UCI Machine Learning Repository

[16]. Many different DM techniques and machine learning algorithms can be used to help create

decisions based on archived datasets.

4.2 Accelerometer Data Collection

An accelerometer is available on any smartphone with data for the three axes. We assume that

the smartphone is in the user’s pocket. Data is collected internally, then graphed in real-time to

give a good visual representation for the user. The numerical values can be easily displayed. Data
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obtained for each axis include the gravity component. So, to obtain the actual body acceleration,

the gravity component is first removed prior to data representation. Acceleration data will only be

considered and used when using our IoT device to collect ECG data, since it is unlikely that the

stored ECG datasets at the hospital would have accelerometer data with them as well. We note

that y-axis points upward, the x-axis to the side, and the z-axis is perpendicular to the smartphone

surface. From this, we are able to determine the direction of the body movement.

22



Chapter 5

Results and Evaluation

Data was collected multiple times for different test subjects with a duration of about 1 minute

for each time. An analysis, using MATLABTM, is performed for easier signal processing. Once

acceptable results are obtained and the algorithm is complete, it is then implemented for the mobile

application to be used on real-time data received from the sensors. Note that all data presented and

analyzed in this chapter are collected using our devices and not previously stored data.

During analysis a window of five seconds is used at a time for signal processing of both ECG

and Accelerometer data. After the first five seconds the window moves by one second which was

determined by trial and error to be the smallest possible window to achieve reaching a conclusion

in a reasonable amount of time without losing important information. In our system, that means in

analyzing a 1 minute data we would have 56 windows each with a five second range.

5.1 Body Acceleration

Figure 5.1 shows sample data of the accelerometer that was collected in real-time. Data is graphed

for the three axes as well as the resultant value. Visually, the graph shows abrupt fluctuations when

someone is moving suddenly or is a steady periodic signal when someone is walking.

To better understand of how accelerometer data might change and how those changes can relate

to the body movement, we collected accelerometer data over a period of 1 minute for a healthy test
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Figure 5.1: Accelerometer Data

subject while s/he was performing different activities. For clear representation Fig. 5.2 shows the

graphs of the data for only 25 seconds time frame with sampling rate of 10 points/second.

Figure 5.2: Acceleration for different activities

Average acceleration for the three axes x,y and z was used in the above graph. In the first graph,

while sitting, the acceleration is almost 0. Any fluctuations are due to the sensor being extremely

sensitive to movement.
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In the second graph, when walking, the acceleration is higher, since, two out of the three axes

change significantly (x and z). We note that the graph is not consistent, since the person walking

may slow down, speed up, change direction, or pause for sometime.

The third set of data was taken while jogging and, as observed, the data appear consistent and

periodic; that means that the jogger was maintaining a steady pace the whole time. The average

acceleration here appears to be highest due to the fact that all three axes may be changing in the

process. With steady consistent graphs like these, we can determine the number of steps taken in

that activity.

The last set of data was taken while exercising and the nature of the exercise here was jumping

while squatting so the only axis that would be changing here is the y-axis. Since the exercise

is periodic, and the movement is only in the vertical direction the graph appears periodic. The

frequency is smaller in this instance because the jogging pace is higher than the jumping pace.

Figure 5.3 shows the same data sets but after applying a smoothing filter to remove the high

frequency components, which allows for a cleaner graph.

Figure 5.3: Acceleration for different activities after smoothing
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The signal’s energy is also useful in determining the direction of the body movements, hence we

calculate the horizontal and vertical energy. So, for example, in the jumping scenario the vertical

energy will be greater than the horizontal energy while, when walking or falling to the ground, the

horizontal energy will be greater than the vertical energy.

To obtain the energies, we:

• First, assume that we have the raw accelerometer data stored in the vector shown in Eq. (1)

®A0(t) = [ ®A0x(t), ®A0y(t), ®A0z(t)]′ (1)

• Obtain the gravity vector by calculating the bias of the acceleration vector. Bias is found by

taking the average of N acceleration vectors where N is the total number of data instances as

shown in Eq. (2)

®B(t) = 1
N

N∑
t=1

®A0(t) (2)

• Calculate the two tilt angles for the bias vector as follows in Eqs. (3) and (4)

θ1 = arctan(
By

Bz
) (3)

and

θ2 = arctan( Bx

By sin(θ1) + Bz cos(θ1)
) (4)

• Calculate the tilt compensated acceleration vector by multiplying the raw vector with a

rotation matrix as follows in Eq. (5)

®A1(t) =


cos(θ2) − sin(θ1) sin(θ2) − cos(θ1) sin(θ2)

0 cos(θ1) − sin(θ1)

sin(θ2) sin(θ1) cos(θ2) cos(θ1) cos(θ2)


× ®A0(t) (5)
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• Remove the gravity vector from the accelerometer data by calculating the bias of the vertical

component of the acceleration and removing it as in Eq. (6)

®A2(t) = [ ®A1x(t), ®A1y(t), ( ®A1z(t) −
1
N

N∑
t=1

®A1z(t))]′ (6)

• Calculate the magnitude of the horizontal and vertical acceleration as follows in Eqs. (7)

and (8). The reason for this calculation is that there is no other vector bias that can be used

to correct another axis, so we cannot distinguish between lateral and forward acceleration or

between pitch and roll.

Ah(t) =
√
(A2x(t))2 + (A2y(t))2 (7)

and

Av(t) = A1z(t) −
1
N

N∑
t=1

®A1z(t) (8)

• Finally, calculate the accelerometer energy using Eqs. (9) and (10)

eva =

∫ t=T+t0

t=t0
[Av]dt (9)

and

eha =

∫ t=T+t0

t=t0
[Ah]dt (10)

To see how the signal energy can vary depending on the activity, Eqs. (1) - (10) were used

on four different activities multiple times. Table 5.1 shows the average energy calculated for each

case.

Table 5.1: Calculated energies from the accelerometer data for different scenarios

Sitting Walking Jogging Running
Horizontal Energy 0.04172 2.46236 6.9583 10.6153
Vertical Energy 0.00722 -0.03356 0.02574 -0.0664

As shown in table 5.1 the horizontal energy is almost zero when a person is sitting and increases
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as the user moves with faster speed in the horizontal direction. The vertical energy is close to zero

in all cases; however, it also increases from one scenario to the next as, when running, the body is

moving more in the vertical direction than in the walking scenario.

5.2 ECG Signals

The collected ECG signal is graphed in real timewhile extracting the following features for analysis:

heart rate, QRS voltages, T wave voltages, RR interval and the QRS wave durations. The extracted

features are then used as input to the prediction algorithm to produce an output. The sampling rate

used for the ECG signals is 80 points/seconds.

Figure 5.4 shows different sets of data taken for a healthy test subject showing only a time frame

of 20 seconds for clear representation; however, the code was run for 1 minute of every set of data.

Figure 5.4: ECG signal for different activities
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The first data set show that the signal is steady and consistent with no sudden alterations and

that was taken in a sitting resting position. Next, we have the signal when walking and the only

major change here is that the heart rate is higher, which is reasonable since the heart speeds up to

pump more oxygen to the muscles. The third set was taken while jogging: Here, we can see many

features change, namely, the heart rate, voltage peaks and wave durations. The last set of data is for

exercising and, again, we can see all the features are different than in the previous signals.

To extract features from the signal dynamically without having to set a threshold manually, we

perform operations on the signal such as differencing, filtering, and conversion to the frequency

domain, as well as finding peaks and sorting.

Starting with the heart rate Figs. 5.5 and 5.6 show the operations performed to extract this

feature. First, we use differencing to flatten out parts of the signal that do not vary greatly in

magnitude. The result will then contain only the parts that are significantly higher in magnitude

than the other parts of the signal, which typically leaves the QRS peaks more visible.

Figure 5.5: Processed ECG signal

29



A smoothing operation is then performed on the absolute value of the differenced signal with

a window of 20 points. This technique removes the high frequency component in the signal that

can be due to noise, a high sampling rate, or the sensitivity of the sensor. Figure 5.5 shows a five

second window plot of the original signal and after processing. To get the heart rate, we take the

Fourier transform of the processed signal as shown in Fig. 5.6. Then, we find the location of the

maximum peak, which is the frequency of occurrence for that peak, indicating the QRS.

Figure 5.6: Processed ECG signal

As shown in Fig. 5.6, the frequency of the maximum peak is seven. This is consistent with Fig.

5.5. Since we had a five second window we calculate the heart rate by multiplying 7 by 12 to get

84 beats/min. This technique was tested on all scenarios and for different test subjects. It proved to

be accurate without the need to set a numerical threshold. The RR interval can be obtained from

the information we have from that window by dividing the window size, in this case, 5 seconds, by
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the number of peaks which is 7 to get 0.714 seconds. Both features extracted fall within the normal

range, 60 to 100 beats/min for a heart rate.

To get the QRS and T-wave voltages, first we observe all the peaks in the signal window

available, then sort them. Using the number of beats, N, calculated earlier we take the largest N

numbers as the QRS values and the second N numbers as the T wave values.

Length Transform [17] used to get the QRS duration. First, we use differencing, then we apply

smoothing with a window size of 5. Next, we find all the peaks in the processed signal, sort them,

take the largest N numbers where N is the number of beats in that window, and average those N

peaks. We create an array of zeros and add ones in the places where the value in the processed

signal is higher than the calculated average value of the peaks. To get the QRS duration for a certain

beat, we count the consecutive ones and divide by the sampling frequency. Figure 5.7 shows the

original signal at the top, the processed signal at the bottom and both bounded by the array of zeros

and ones created to highlight the QRS duration.

Figure 5.7: Length Transform to find QRS duration
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ECG data was collected for different activities. We did this so that, when writing an algorithm,

we could see all the patterns that an ECG signal can have and under what conditions some of the

characteristics would be missing or changing. Table 5.2 shows the different ECG features and the

average values calculated from the all the data collected using our device.

Table 5.2: ECG features average values

Sitting Walking Jogging Running Units
Avg. Heart rate 70.624 79.27 91.027 121.945 beats/min
Avg. RR interval 0.88 0.775 0.663 0.496 seconds
Avg. QRS peak 0.982 0.943 0.852 0.82 volts
Avg. T-wave peak 0.801 0.799 0.789 0.734 volts
Avg. QRS duration 0.082 0.071 0.085 0.07 seconds

5.3 Algorithm

Figure 5.8 shows the flow chart analyzing data using our system. The system takes the input, signal

processes it, analyzes the data, and then makes decision. The process continues, normally unless

Figure 5.8: Flow chart for analyzing data
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the decision notes an abnormality , in which case, it produces an alert message as its output.

We now provide details about the process. First, ECG and accelerometer data were collected

multiple times for different users and different activities. The collected data was saved to train our

algorithm. After that, the system is ready for testing in real time.

Using our system, we start collecting ECG as well as accelerometer data and then performed

some functions to extract the different characteristics and features for both signals. Extracted

characteristics and features are then provided as an input to our algorithm that is trained by

previously stored datasets. The algorithm can be a single classification technique or a hybrid of

multiple techniques.

Based on the output of the algorithm, we make a decision. If the probability of getting a heart

attack is high and an abnormality is detected, then we alert the user as well as caregiver; if the data

looks normal, then the system keeps reading data from both sensors in real-time.

5.3.1 Naive Bayes

After some research, we decided to use Naive Bayes classification because it produces highly

accurate results, it is simple, and easy to implement [18]. Naive Bayes is a probabilistic classifier

that is popular in real time prediction applications. It is based on Bayes’ Theorem which states that

if we have prior knowledge of conditions that might be related to an event, we can describe the

probability of that event. In Naive Bayes, we have a set of features that are used as predictors to

determine the probability of a new data belonging to certain class, as described by Eq. (11).

P(Classc |Featuresx) =
P(Classc)P(Featuresx |Classc)

P(Featuresx)
. (11)

The algorithm assumes that predictors are independent, which means that the presence of a

feature in a class is unrelated to the presence of any other feature. Features usually follow aGuassian

distribution, which has two parameters: the mean and the variance. Assuming we have two features

to model, which are the heart rate (h) and horizontal energy (e) we calculate the mean and variance

for class C1 as follows in Eqs. (12) and (13):
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µ(h,c1) =
1
N

N∑
i=1

hi , σ2
(h,c1) =

1
N

N∑
i=1
(hi − µ(h,c1))2 , (12)

and

µ(e,c1) =
1
N

N∑
i=1

ei , σ2
(e,c1) =

1
N

N∑
i=1
(ei − µ(e,c1))2 . (13)

We apply Eqs. (12) and (13) for all classes C1...Cn so that, for every class, we have the mean

and variance. For a new set of features, h1 and e1, that we want to check to see which class they

belong to, we apply the probability density functions in Eqs. (14) and (15):

p(h1 |c1) =
1√

2πσ2
(h,c1)

e−
1
2
(
(h1 − µ(h,c1))

σ2
(h,c1)

) , (14)

and

p(e1 |c1) =
1√

2πσ2
(e,c1)

e−
1
2
(
(e1 − µ(e,c1))

σ2
(e,c1)

) . (15)

After calculating the density functions for all the features, we can combine them as the features

are independent of each other according to Eq. (16)

P(Featuresx |c1) = p(h1 |c1)p(e1 |c1) . (16)

To satisfy Eq. (11) we need to find the probability of having a certain set of features and the

probability of class C1, using Eqs. (17) and (18), in that order, where N is the number of classes.

P(Featuresx) =
N∑

i=1
P(Featuresx |ci)P(ci) , (17)

and

P(c1) =
Count(c1)

N
. (18)
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Finally, we can calculate the probability of belonging to class C1 given a set of features as

follows using Eqs. (16), (17) and (18) in Eq. (19).

P(c1 |Featuresx) =
P(c1)P(Featuresx |c1)

P(Featuresx)
. (19)

Now, we repeat the above calculations for all the classes and the class with the highest probability

is the output of the algorithm.

To implement a Naive Bayes classifier for our system, we used only two features (heart rate

from the ECG and the horizontal energy from the acceleration) and four classes (Sitting, Walking,

Jogging, Running). First, we created two tables: one called TrainingSet that contains the data for

both features used to train the algorithm and the other ClassNames that contains the names for

the classification classes. Table 5.3 shows details regarding the four classes used as input to our

algorithm.

Table 5.3: Classes count and percentage

Class name Count Percentage
Sitting 560 50%
Walking 336 30%
Jogging 112 10%
Running 112 10%

TrainingSet and ClassNames are then used to train our algorithm. For each class, the algorithm

now has a mean and a standard deviation for each of the features shown in Table 5.4.

Table 5.4: Mean and standard deviation for features in different classes

Sitting Walking Jogging Running

Heart rate Mean 70.6714 80.2857 90.4286 126.4286
Std 11.1329 13.3048 7.7130 8.8121

Horizontal Energy Mean 0.0393 2.4439 6.2831 10.9118
Std 0.0829 0.6034 0.8313 1.6845

The algorithm is then tested on other collected data for validation. When features are extracted

every second, values for the heart rate and the horizontal energy are provided as input to the

algorithm which outputs "1" if they belong to a class and "0" if they are not part of a class. Table

5.5 shows the confusion matrix that describes the performance of the Naive Bayes classifier after it
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is trained. The confusion matrix shows the number of data for which test case values are known to

be true versus other cases, where they can be misclassified. From Table 5.5 we note that we used

a total of 1120 data points to train our algorithm, half of those are sitting data as Table 5.3 shows.

For sitting class, out of the 560 data points only 8 could be misclassified which presents about

1.4% error. For running class out of 109 data points we have 3 can be misclassified accounting for

2.67% error. As for the other two classes we have no misclassification, this is due to the use of

small number of data points, using 10,000 data points to train the algorithm would result in more

robust algorithm with error rate higher than zero in all classes.

Table 5.5: Confusion matrix

Sitting Walking Jogging Running
Sitting 552 8 0 0
Walking 0 336 0 0
Jogging 0 0 112 0
Running 0 0 3 109

The algorithm proved to be highly accurate, as shown in Fig. 5.9. The use of both heart rate

and the horizontal energy clearly separates the four different classes with little overlap.

Figure 5.9: Plot showing the regions of each class using Naive Bayes
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Figure 5.10 is a box plot for the heart rate and different activities, that shows the minimum,

median and maximum values. The x-axis represents the activities, y-axis represents the heart rate

in beats per minute. When sitting, the heart rate is between 60 and 85 with a median of about 70

beats/min. As the activity changes with more muscle movement, we note that the minimum and

median of the heart rate increases.

Figure 5.10: Box plot of heart rates vs activities
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Figure 5.11 shows the box plot of the horizontal energy for all activities. The x-axis represents

activities while the y-axis is the energy. First, in sitting scenario, the energy shows to be almost

zero, as we get faster movement in the horizontal direction we can see that the minimum, median

and the maximum energy values increase.

Figure 5.11: Box plot of horizontal energy vs activities
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Our system is inexpensive, mobile, and validated with real subjects albeit, mostly, healthy subjects.

Such a system would be able to save millions of dollars, since medical hospital bills can be very

high. So, when a modified smartphone contacts a caregiver or hospital in cases of high risks of

heart failures, that eliminates the need to go to the hospital frequently. Saving money for the patient

as well as saving hospital resources also allows doctor’s time to be spent on more critical events as

well as using hospital resources emergency cases.

So far, our system is able to collect data from sensors, send data to the smartphone application

using a LE Bluetooth and plot real-time data of all sensors on the smartphone application. For

offline analysis on MATLABTM as well as to obtain training data sets, collected data is stored ’.txt’

files. We use the Fourier transform, differencing and filtering as techniques to extract features.

Naive Bayes, which is a probabilistic technique, is used for activity prediction based on the training

data sets. We successfully collected data for multiple healthy test subjects doing more than one

activity.

Challenges completed by our system:

• Built an integrated IoT system
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• Collected real-time data of ECG and accelerometer

• Sent data to smartphone via Bluetooth for real-time plotting

• Trained Naive Bayes algorithm using collected data

• Used the trained algorithm for activity prediction

6.2 Future Work

In the future, data for real test cases with heart attacks needs to be collected in order to be used

in training our algorithm. The algorithm would then be able to predict heart attacks based on the

training data sets. We need to create an alert notification system by setting a voice alert to make the

user aware of an emergency, while also notifying the nearest hospital, doctor, or caregiver, and use

available GPS to provide location information for the patient. Additionally, false alarm rates must

be investigated and methods to reduce them need to be developed. under severe noisy conditions.
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