
Exploring Russian Tap-Code Text Entry Adaptions for
Users with Reduced Target Hitting Accuracy

Frode Eika Sandnes
Department of Computer Science, Faculty of

Technology, Art and Design, Oslo and Akershus
University College of Applied Sciences

P.O. Box 4, St. Olavs plass
0130 Oslo, Norway
+47 67 23 50 03

Frode-Eika.Sandnes@hioa.no

Fausto Orsi Medola
Laboratory of Ergonomics and Interfaces,

Department of Design, Faculty of Architecture, Arts and
Communication, UNESP
Bauru, São Paulo, Brazil

+55 14 3103-6062

fausto.medola@faac.unesp.br

ABSTRACT

Text is still the dominant form of human-computer-human

communication. Users with certain motor or visual impairments

may be unable to use certain text entry interfaces such as the small

virtual keyboards on mobile phones effectively due to challenges

hitting small targets. Despite the vast amount of research into text

entry, no efforts have explored the so-called Russian tap-codes, or

knock codes, which were commonly used to communicate between

prison inmates. Tapping does not require the user to hit a specific

target. This study proposes a theoretical framework for classifying

text entry designs. The framework is used to explore 16 text entry

designs, namely the classic Russian tap code and design variations

exploiting more recent results in text entry research and the context

of current hardware, allowing unfeasible designs to be easily

eliminated.

CCS Concepts

• Human-Centered computing ➝Accessibility➝Accessibility

design and evaluation methods • Human computer interaction

(HCI)➝HCI design and evaluation methods➝Heuristic

evaluations.

Keywords

Motor impairment; low-vision; target hitting; text entry;

accessibility.

1. INTRODUCTION
Although user interfaces increasingly rely on non-textual

interaction such as voice [1] and gestures [2], a majority of

interaction between man and machine still depends on text entry,

especially as computers are used to mediate written communication

between humans. Text entry is an active research field that is driven

by constant advancements in input device technology, especially as

the form factors has changed from the desktop to mobile and smart

devices. Advances in text entry technology aimed at the general

population has also benefitted users with various disabilities.

Moreover, assistive technologies, such as text prediction [3], have

also benefited non-disabled users.

The literature on text entry is vast. After the invention of the

typewriter, many alternative keyboard layout designs were

explored [4]. Moreover, chording was early proposed as a means

for more efficient text input, where instead of hitting individual

keys to produce the letters, key patterns where pressed to recall

letters [5, 6]. Unfortunately, chording did not succeed, probably

due to the effort needed to learn chords and a lack of a standard.

One exception to this is possibly braille chording [7, 8, 9] which

have several current implementation for Smartphones such as

mBraille and TypeInBraille [9]. Blind users already familiar with

Braille can thus use such braille chording keyboards without having

to learn a new chording alphabet.

Notably the most important developments during the last decades

include the mobile device platform and the touch display. The

mobile platform led to many new innovative strategies for inputting

text without a full keyboard, most of which were based on keys.

Research have focused on using numeric keypad-based input with

and without letter disambiguation [10, 11] and devices with even

fewer keys [12, 13]. Other input devices such as joysticks have also

been studied [14].

The emergence of affordable touch displays sparked much research

into virtual keyboards and gestures and currently touch display

technology and mobile device technologies have converged into the

mobile smart device platform.

Both research and the practice field shows that the classic

QWERTY layout has survived despite its obvious inefficiencies.

Many users are already familiar with the QWERTY layout from the

desktop platform and thus do not have to learn a new text entry

system. Recent research has thus instead focused on providing

accurate text prediction to speed up the text input and abbreviation

based input in languages with long compound words [15].

A challenge with the current state of the art mobile text entry, which

is based on virtual keyboards with text prediction, is that the

individual virtual keys are small and difficult to both see and hit.

These text input interfaces are thus challenging to use for

individuals with reduced motor abilities and reduced vision. In

particular, older users find Smartphone text-entry difficult as they

often have both reduced vision and motor functioning.

This paper takes a step back and explores Russian tap codes. To the

best of the authors’ knowledge Russian tap codes have not been

explicitly explored in context of text input. Tap codes involve a

simple system where letters are organized into a 5 × 5 grid where a

letter is signaled by tapping the row and the column with a little

pause in-between.

SAMPLE: Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

DOI: http://dx.doi.org/10.1145/12345.67890

Figure 1. Text entry design framework with impressionistic

classification of text entry technologies from the literature.

Tap codes were typically used in prisons where inmates in different

cells communicated with each other using the concrete walls. The

success of the tap code, used without the aid of computers, was

probably due to its simplicity and efficiency.

The tap code is comparatively much easier to learn than the widely

used Morse code, which has shown to be less suitable for text entry

[16]. Both Morse code and tap codes rely on rhythmic patterns, and

it has been found that users naturally exhibit regular rhythmic

patterns when entering text using certain systems [17].

Some of the research efforts and commercial products available

share similarities with the tap codes, instead of taps two-

dimensional scrolling is used to select the desired character [18].

The elegance of tap codes is that users do not hit a specific target,

but rather signal the information in easy-to-understand and simple

temporal pulses. Since no target hitting tasks are involved, issues

of accuracy, speed and size described by Fitts’ law [19] does not

apply. This study discusses the tap codes in context of recent text

entry research and current technology.

2. METHOD
First, a framework for classifying text entry designs is presented.

This framework allows the strengths and weaknesses of a design to

be identified easily, and it allows poor designs to be discarded

before committing to time-consuming user testing. Next, the classic

Russian tap code and several designs adaptions based on the classic

tap code are analyzed using the framework.

2.1 Text Entry Design Classification
Text entry designs often balance coding in the temporal and spatial

domain. The proposed classification framework therefore

organizes text entry design according to these dimensions. Figure 1

shows an example of the classification framework applied to

several text entry strategies reported in the literature.

The framework divides the temporal (T) and spatial (S) domains

into one (1), few (2) and many (3). In this classification the classic

QWERTY keyboard is classified as S3-T1, that is, each of the many

characters have a unique spatial position on the keyboard (many)

and only one step is needed to recall each character (T1). The

classic chording techniques are classified as S2-T1 as only one step

is needed and usually only five keys are used. Note that variations

on the chording keyboard, such as one based on visual mnemonics,

require several steps [20, 21] and are therefore classified as S2-T2.

The classic Tegic T9 disambiguation technique for numeric keypad

input is also classified as S2-T2 as it involves only 8 keys (few) and

character input with subsequent word selection. Gestures are

classified as S3-T3 since a gesture in reality is a complex temporal

and spatial shape, although the actual execution of a gesture may

be simple.

Figure 2. The classic tap-codes (left), Polybius square (right).

 Figure 3. Enhanced tap codes: no-z layout (left), letter

frequency optimized square (right) (right).

Note that the classic QWERTY keyboard also can be partially

considered a chord keyboard as SHIFT is usually pressed together

with a character to produce uppercase characters. It could also be

placed in the T2 category when considering the use of CAPSLOCK

needing two steps. However, for simplicity, these low-probability

cases are ignored herein.

One interpretation of the framework is that increased spatial

complexity requires pointing accuracy, while increased temporal

complexity requires both physical and mental effort. These issues

need to be carefully balanced for a given context. Note that it is no

practical input strategy for S1-S2 as it would have to be based on a

binary alphabet. Moreover, no existing text input strategy could be

identified for S1-T2, that is, text input strategies that do not require

hitting a specific target, and that require few input steps.

2.2 Classic Tap Codes

The classic Russian tap-codes were based on the Russian alphabet.

However, the English version that was used in the American

prisons comprised a 5 × 5 grid of characters (see Figure 2). Since

English has 26 characters K is given the same code as C. To send a

D the user first tap once to signal the first row, then a short pause,

followed by four consecutive taps to signal the fourth character

along the row. That is, D would be communicated using tap + pause

+ tap + tap + tap + tap.

Tap codes go back to the Polybius square that was used in ancient

Greece where rows of flames were used to send signals according

to row and column coding. The typical English version of the

Polybius square places the character J in the same cell as I.

 Temporal (sequential actions)
 One (T1) Few (T2) Many (T3)

Spatial
(simultan
-eous
actions)

One (S1) Morse code [16]
Eye-blink [28]

Few (S2) Chording [5, 6]
Joysticks [14]

T9-disambigu
-ation [11]
Mnemonic
chording [20, 21]

Menu-based [13]
Numpad-multitap

Many (S3) QWERTY-keyboard QWERTY with
prediction [3, 15]

Gestures [2]

1,1

A
1,2

B
1,3

CK
1,4

D
1,5

E
2,1

F
2,2

G
2,3

H
2,4

I
2,5

J
3,1

L
3,2

M
3,3

N
3,4

O
3,5

P
4,1

Q
4,2

R
4,3

S
4,4

T
4,5

U
5,1

V
5,2

W
5,3

X
5,4

Y
5,5

Z

1,1

A
1,2

B
1,3

C
1,4

D
1,5

E
2,1

F
2,2

G
2,3

H
2,4

IJ
2,5

K
3,1

L
3,2

M
3,3

N
3,4

O
3,5

P
4,1

Q
4,2

R
4,3

S
4,4

T
4,5

U
5,1

V
5,2

W
5,3

X
5,4

Y
5,5

Z

1,1

A
1,2

B
1,3

C
1,4

D
1,5

E
2,1

F
2,2

G
2,3

H
2,4

I
2,5

J
3,1

K
3,2

L
3,3

M
3,4

N
3,5

O
4,1

P
4,2

Q
4,3

R
4,4

S
4,5

T
5,1

U
5,2

V
5,3

W
5,4

X
5,5

Y

1,1

E
1,2

T
1,3

O
1,4

S
1,5

L
2,1

A
2,2

I
2,3

H
2,4

C
2,5

F
3,1

N
3,2

R
3,3

U
3,4

G
3,5

B
4,1

D
4,2

M
4,3

Y
4,4

V
4,5

J
5,1

W
5,2

P
5,3

K
5,4

X
5,5

Q

Figure 4. Numeric keypad-based tap-codes: multitap-layout

(top), three-dimensional multitap (second from top), one-

dimensional T9 (second from bottom), two-dimensional T9

(bottom).

The effectiveness of these classic tap-codes are explored herein

using the proposed framework and the keystrokes per character

(KSPC) measure proposed by MacKenzie et al. [22].

2.3 Enhanced Tap Codes

Three basic variations on the tap codes are investigated. First, the

effects of starting in different corners are explored, that is, starting

on the right instead of on the left, or on the bottom instead of on the

top tapping along the opposite direction. Four cases are thus

considered, top-left, top-right, bottom-left and bottom-right.

Next, Z is the character with the lowest frequency in English.

Calculations were thus performed to explore the effect of giving K

its own cell and instead discarding Z (Figure 3).

Finally, a tap-code optimized according to letter frequencies were

explored (see Figure 3) where the most frequent characters were

assigned the cells requiring the fewest taps. The goal was to

determine the theoretically lower bound on the number of taps

needed. However, research also show that such optimized layouts

require new learning and hence are considered uncomfortable to

use despite being the most efficient. The worst-case layout is also

explored. It is simply the optimized layout mirrored along the

diagonal going from the bottom left to the top right cell.

2.4 Numeric Keypad Layouts
Unfortunately, the alphabetic square layout requires learning [23,

24]. Instead, existing layouts already familiar to users are explored.

One of these is the numeric keypad found on older mobile phones.

The first of four designs simply involves placing the characters out

in a 3 × 11 grid resembling the actual character sequence of the

numeric keypads (see Figure 4 top). The blank spaces are ignored.

Figure 5. QWERTY-based tap codes: three-dimensional

QWERTY tap code (top), two-hand two-dimensional tap code

centered in the top middle (center) and two-hand three-finger

one-dimensional QWERTY tap codes (bottom).

Figure 6. Tap-code designs overview.

The second design is three-dimensional (see Figure 4 second from

the top). First, the user taps the desired row on the “keypad”, next

the user taps the desired column and finally taps to the desired

character on the “key”.

The last two designs in the numeric keypad category leans on

numeric keypad input disambiguation where only the “button” with

the set of characters is input, and a dictionary is used to

disambiguate which word was intended. The first design is a simple

one-dimensional tap code where the user taps through to the desired

letter-group.

The second design is two-dimensional where the user selects the

letter group by tapping the desired row followed by the column (see

Figure 4 bottom).

2.5 Exploring QWERTY Familiarity
Finally, tap-codes based on the well-known QWERTY layout were

explored. The first design is a three-dimensional tap code where

one tap is first used to select the left side or two taps are used to

select the right side. Next, one, two or three taps are used to select

the row, and finally taps are used to select the desired column

starting from the center (see Figure 5 top).

The following two designs are two-dimensional tap codes based on

the assumption that the user can tap independently using the left

and the right hand, and thereby control the selection for each side

of the layout.

 1,1

A

1,2

B

1,3

C

1,4

D

1,5

E

1,6

F

2,1

G

2,2

H

2,3

I

2,4

J

2,5

K

2,6

L

2,7

M

2,8

N

2,9

O

3,1

P

3,2

Q

3,3

R

3,4

S

3,5

T

3,6

U

3,7

V

3,8

W

3,9

X

3,10

Y

3,11

Z

 1,1,1

A

1,1,2

B

1,1,3

C

1,2,1

D

1,2,2

E

1,2,3

F

2,1,1

G

2,1,2

H

2,1,3

I

2,2,1

J

2,2,2

K

2,2,3

L

2,3,1

M

2,3,2

N

2,3,3

O

3,1,1

P

3,1,2

Q

3,1,3

R

3,1,4

S

3,2,1

T

3,2,2

U

3,2,3

V

3,3,1

W

3,3,2

X

3,3,3

Y

3,3,4

Z

1

ABC

2

DEF

3

GHI

4

JKL

5

MNO

6

PQRS

7

TUV

8

WXYZ

 1,1

ABC

1,2

DEF
2,1

GHI

2,2

JKL

2,3

MNO
3,1

PQRS

3,2

TUV

3,3

WXYZ

1,1,5

Q

1,1,4

W

1,1,3

E

1,1,2

R

1,1,1

T

 2,1,1

Y

2,1,2

U

2,1,3

I

2,1,4

O

2,1,5

P

1,2,5

A

1,2,4

S

1,2,3

D

1,2,2

F

1,2,1

G

 2,2,1

H

2,2,2

J

2,2,3

K

2,2,4

L

1,3,5

Z

1,3,4

X

1,3,3

C

1,3,2

V

3,1,1

B

 2,3,1

N

2,3,2

M

1,5

Q

1,4

W

1,3

E

1,2

R

1,1

T

 1,1

Y

1,2

U

1,3

I

1,4

O

2,5

A

2,4

S

2,3

D

2,2

F

2,1

G

 2,1

H

2,2

J

2,3

K

2,4

L
3,5

Z

3,4

X

3,3

C

3,2

V

1,1

B

 3,1

N

3,2

M

left taps right taps

5

Q

4

W

3

E

2

R

1

T

top
fingers

1

Y

2

U

3

I

4

O

5

P

5

A

4

S

3

D

2

F

1

G

middle
fingers

1

H

2

J

3

K

4

L

5

Z

4

X

3

C

2

V

1

B

bottom
fingers

1

N

2

M

left taps right taps

 Temporal (sequential actions)
 One (T1) Few (T2) Many (T3)

Spatial
(simultan-
eous
actions)

One (S1) T9 grid
Optimized
tap-code

QWERTY,
Russian,
Polybian,
numpad,
worst-case
tap code

Few (S2) QWERTY
three-finger

QWERTY
Bimanual

Many (S3)

Table 1. Characteristics of the tap-code designs.

 taps Characteristic

Design name Min Max mean class Dimension Hands Fingers Dictionary

Russian (top left) 2 10 5.77 S1-T3 2D 1

Russian (top right) 2 10 5.37 S1-T3 2D 1

Russian (bottom left) 2 10 7.62 S1-T3 2D 1

Russian (bottom right) 2 10 7.22 S1-T3 2D 1

Polybian 2 10 5.79 S1-T3 2D 1

No-z 2 10 6.10 S1-T3 2D 1

Frequency optimized 2 10 4.48 S1-T3 2D 1

Worst case 2 10 8.51 S1-T3 2D 1

Numpad layout 2 14 6,70 S1-T3 2D 1

Numpad cube 3 10 5.50 S1-T3 3D 1

T9 linear 1 8 5.46 S1-T3 1D 1 Yes

T9 grid 2 6 4.84 S1-T2 2D 1 Yes

QWERTY 3 9 5.76 S1-T3 3D 1

QWERTY bimanual center 2 8 4.35 S2-T2 2D 2 2

QWERTY bimanual left 2 8 4.53 S2-T2 2D 2 2

QWERTY three-finger 1 5 2.72 S2-T1 1.5D 2 6

One variation starts in the top left corner for both sides, while the

other variation starts in the middle, that is, in the top left corner for

the left side and the top right corner for the right side. This design

assumes that the skills of accessing the QWERTY layout mirrors

across hands [25].

The final QWERTY based tap code assumes that three fingers on

each hand are used to tap the keys associated with the respective

row of the keyboard. This design thus constitutes six parallel tap

codes. Simple pointing is needed to place fingers in the initial

position, but it is similar to chording in that this is only done once

when starting.

These last three QWERTY designs deviate from the classic one-

channel tap code paradigm by allowing tapping on different

channels. This is not possible with prison walls, but this prison wall

limitation obviously does not apply to computers.

3. RESULTS
The results of the analysis are discussed according the three layout

categories, namely alphabet square layouts, numeric keypad

layouts and QWERTY layouts.

3.1 Alphabet Square Layouts
Figure 6 shows that most of the two dimensional tap codes belong

in the S1-T2 category. The classic Russian tap-code clearly requires

a minimum of two taps and a maximum of 10 taps, with an average

of 5.7 taps per character. The starting point and tapping direction

clearly have a significant effect on the number of taps. Luckily, the

classic tap-code configuration is just marginally worse than the

theoretically best which is achieved by starting in the top right

corner with a mean of 5.37 taps per character. When starting at

either the left or right bottom corner the mean taps per characters

exceed 7.

The English version of the Polybius square gives only a marginally

lower mean of 5.79 taps per characters. However, reshuffling the

characters of the grid by removing Z has a larger impact and results

in the mean number of taps per character exceeding 6.1.

The results for the frequency optimized tap code gives a mean of

4.48 taps per character, which is better than the T9 grid. The

disadvantage with the optimized grid is that the user will have to

learn a new unintuitive layout. However, no dictionary is used and

any character sequence can therefore be input. The worst-case

layout reveals an upper bound of a mean of 8.51 taps per character.

Common for all the tap code strategies based on square layouts is

that a large number of taps is needed to enter characters regardless

of layout, and at most 10 taps are needed to produce the worst-case

character. Clearly, one does not need to conduct a user evaluation

to predict that the amount of tapping is time-consuming, repetitive

and frustrating for users. Even the input of simple phrases require

many taps. In prisons the tap codes were used with short form

coding such as GBU – God bless You, etc. Therefore, tap codes

could perhaps be combined with some intuitive abbreviation

expansion engine [15] or telegram expansion techniques inspired

by SOUNDEX [26] or Metaphone [27]. For such mechanisms to

succeed they have to be simple and require minimal learning.

Although tap codes in its classic form is not the optimal text input

strategy for most users given modern hardware, it may be a

workable solutions for individuals with certain forms of reduced

motor functioning. Taps do not necessarily have to be performed

with fingers per se, it could equally well be another modality such

as eye-blinking [28], non-finger physical movement, an uttered

sound, etc.

One important characteristic to be learnt from the tap codes is the

square configuration as this is the optimal two-dimensional layout

in terms of character access and effort needed. However, several

commercial designs involving alphabetic layout have chosen non-

square rectangular layout accessible via navigation buttons. The

non-square configurations increases the average number of steps to

access a given character. The idea of combining two characters

such as C and K with the Russian square or I and J with the Polybius

square could also be adopted in regular alphabetic layouts to

achieve square layouts. Combining two characters with relatively

low probability will be trivial to disambiguate using a simple

language model. Other European languages with extended

alphabets could also be reduced to a simple 5 × 5 square of the sake

of simplicity. Previous keyboard layout research [4] has focused

more on the position of the characters than on the actual shape of

the keyboard layouts.

3.2 Numeric Keypad Layouts
The results of the evaluation shown in Figure 6 reveal that the T9

grid approach is classified as S1-T2, a category that is not

documented in the text entry research literature. This means that its

advantage is single channel of taps with few symbols. Table 1

shows that the average number of taps per character with T9 grid is

4.48 with a maximum of 6 taps. The disadvantage of T9 grid is that

it requires disambiguation and it is thus impossible to input tokens

not present in dictionaries. Moreover, the statistics does not take

the extra manual disambiguation steps into consideration, that is,

when the user have to select between different options.

Although the numeric layout is familiar to most users, the analysis

shows that it does not pose any particular advantage when physical

effort is considered together with the mental effort needed.

Moreover, one may ponder whether people’s familiarity with the

numeric keypad layout is disappearing as the classic T9 mobile

phones used for texting have been replaced with touchscreen

Smartphones. The designs based on the numeric keypad layouts can

thus be discarded.

3.3 QWERTY Layouts
Two strategies that stand out in category S2-T1 and S2-T2 are

QWERTY three finger and QWERTY bimanual, respectively. Of

the two bimanual methods, the one based on starting in the center

gives a slightly better mean of 4.35 taps per character over 4.53 by

always starting in the top left corner. These results are better than

both T9 grid and the optimized square. Moreover, it utilizes a layout

already familiar to the user and does not involve any

disambiguation. However, it relies on the user being able to use two

channels of tapping, preferably using the left and the right hand to

mimic keyboard based bimanual text entry.

The three-finger tap code is also a bimanual text input strategy and

actually involves six fingers in total (3 for each hand). This strategy

yields the lowest mean taps per keystroke, namely 2.72, with a

minimum of 1 and maximum of 5 taps. It is mentally simple to use

since it is a one dimensional tap code, and no pauses are needed to

enter characters. It relies on the familiar QWERTY layout and users

already familiar with QWERTY will therefore not need to search

for the location of the characters. However, six fingers are needed

to tap on six channels without pointing tasks. This require more

dexterity than single channel tapping. However, if one assumes that

the fingers remain stationary on the control keys as no pointing and

hitting of targets are needed.

Overall, based on the results future work should focus on the three

text entry strategies based on the QWERTY layout. A natural

subsequent step is to conduct a user evaluation in the form of a text

entry experiment to evaluate whether the three methods are feasible

in practice. Moreover, future work should involve experimentation

involving users with motor impairments to assess whether the

methods are beneficial to these users or not.

4. CONCLUSIONS
The classic tap code, or knock code, was explored in light of recent

research into text entry and modern input devices. Tap codes are

attractive as no pointing tasks are needed. Moreover, a

classification framework was proposed for exploring and screening

text entry designs allowing poor designs to be discarded prior to

time-consuming user testing. Note that the framework is not

intended as a replacement for user testing. The results show that the

classic tap codes used in prisons are relatively efficient compared

to related designs. However, acceptance for the tap code may be

improved if the familiar QWERTY layout is used instead. The

results show that the efficiency of tap codes based on the QWERTY

layout is comparable to that of the classic alphabetical square.

However, the QWERTY layout also allows easy facilitation of

bimanual tapping and multi-finger tapping. These optimizations

greatly reduce the length of the tedious tap sequences without

increasing complexity. Future research need to confirm the

feasibility of the derived designs through user evaluations. The

results of this study also suggest that text entry systems based on

selecting letters using navigation keys from an alphabetical layout

also should employ a square grid instead of rectangular layouts to

minimize motor effort.

5. REFERENCES
[1] François Portet, Michel Vacher, Caroline Golanski, Camille

Roux, and Brigitte Meillon. 2013. Design and evaluation of a

smart home voice interface for the elderly: acceptability and

objection aspects. Personal Ubiquitous Comput. 17, 1

(January 2013), 127-144.

DOI=http://dx.doi.org/10.1007/s00779-011-0470-5

[2] Frode Eika Sandnes, Tek Beng Tan, Anders Johansen, Edvin

Sulic, Eirik Vesterhus, and Eirik Rud Iversen. 2012. Making

touch-based kiosks accessible to blind users through simple

gestures. Univers. Access Inf. Soc. 11, 4 (November 2012),

421-431. DOI=http://dx.doi.org/10.1007/s10209-011-0258-4

[3] John J. Darragh, Ian H. Witten, and Mark L. James. 1990.

The reactive keyboard: A predictive typing aid. Computer

23, 11 (1990), 41-49.

[4] I. Scott MacKenzie and Shawn X. Zhang. 1999. The design

and evaluation of a high-performance soft keyboard. In

Proceedings of the SIGCHI conference on Human Factors in

Computing Systems (CHI '99). ACM, New York, NY, USA,

25-31. DOI=http://dx.doi.org/10.1145/302979.302983

[5] Nathaniel Rochester, Frank C. Bequaert, and Elmer M.

Sharp. 1978. The chord keyboard. Computer 11, 12 (1978),

57-63.

[6] Daniel Gopher and David Raij. 1988. Typing with a two-

hand chord keyboard: will the QWERTY become obsolete?

IEEE Transactions on Systems, Man and Cybernetics 18, 4

(1988), 601-609.

[7] David A Fisher and C. Ward Bond. 1992. A single-handed

braille chord system for computer keyboard input. In

Proceedings of Computing Applications to Assist Persons

with Disabilities, 1992. IEEE, 200-202.

[8] Myung-Chul Cho, Kwang-Hyun Park, Soon-Hyuk Hong, Jae

Wook Jeon, Sung Il Lee, Hyuckyeol Choi, and Hoo-Gon

Choi. 2002. A pair of braille-based chord gloves. In

Proceedings of the Sixth International Symposium on

Wearable Computers 2002 (ISWC 2002). IEEE, 154-155.

[9] Sergio Mascetti, Cristian Bernareggi, and Matteo Belotti.

2011. TypeInBraille: a braille-based typing application for

touchscreen devices. In The proceedings of the 13th

international ACM SIGACCESS conference on Computers

and accessibility (ASSETS '11). ACM, New York, NY,

USA, 295-296.

DOI=http://dx.doi.org/10.1145/2049536.2049614

[10] I. Scott MacKenzie, Hedy Kober, Derek Smith, Terry Jones,

and Eugene Skepner. 2001. LetterWise: prefix-based

disambiguation for mobile text input. In Proceedings of the

14th annual ACM symposium on User interface software and

technology (UIST '01). ACM, New York, NY, USA, 111-

120. DOI=http://dx.doi.org/10.1145/502348.502365

[11] Jun Gong, Bryan Haggerty, and Peter Tarasewich. 2005. An

enhanced multitap text entry method with predictive next-

letter highlighting. In CHI '05 Extended Abstracts on Human

Factors in Computing Systems (CHI EA '05). ACM, New

York, NY, USA, 1399-1402.

DOI=http://dx.doi.org/10.1145/1056808.1056926

[12] Scott MacKenzie. 2002. Mobile text entry using three keys.

In Proceedings of the second Nordic conference on Human-

computer interaction (NordiCHI '02). ACM, New York, NY,

USA, 27-34. DOI=http://dx.doi.org/10.1145/572020.572025

[13] Frode Eika Sandnes, Haavard W. Thorkildssen, Alexander

Arvei, and J. O. Buverad. 2004. Techniques for fast and easy

mobile text-entry with three-keys. In Proceedings of the 37th

Annual Hawaii International Conference on System Sciences

2004. IEEE.

[14] Frode Eika Sandnes and Andre Aubert. 2007. Bimanual text

entry using game controllers: Relying on users' spatial

familiarity with QWERTY. Interact. Comput. 19, 2 (March

2007), 140-150.

DOI=http://dx.doi.org/10.1016/j.intcom.2006.08.003

[15] Frode Eika Sandnes. 2015. Reflective Text Entry: A Simple

Low Effort Predictive Input Method Based on Flexible

Abbreviations. Procedia Computer Science 67 (2015), 105-

112.

[16] Simon Levine, John Gauger, Lisa Bowers, and Karen Khan.

1986. A comparison of Mouthstick and Morse code text

inputs. Augmentative and Alternative Communication 2, 2

(1986), 51-55.

[17] Frode Eika Sandnes and Hua-Li Jian. 2004. Pair-wise

variability index: Evaluating the cognitive difficulty of using

mobile text entry systems. In Proceedings of the International

Conference on Mobile Human-Computer Interaction, Lecture

Notes on Computer Science 3160, Springer Berlin

Heidelberg, 347-350.

[18] Didier Augusto Vega-Oliveros, Diogo de Carvalho Pedrosa,

Maria da Graça Campos Pimentel, and Renata Pontin de

Mattos Fortes. 2010. An approach based on multiple text

input modes for interactive digital TV applications. In

Proceedings of the 28th ACM International Conference on

Design of Communication (SIGDOC '10). ACM, New York,

NY, USA, 191-198.

DOI=http://dx.doi.org/10.1145/1878450.1878483

[19] I. Scott MacKenzie, Shawn X. Zhang, and R. William

Soukoreff. 1999. Text entry using soft keyboards. Behaviour

& information technology 18, 4 (1999), 235-244.

[20] Frode Eika Sandnes. 2015. Human performance

characteristics of three-finger chord sequences. Procedia

Manufacturing 3 (2015),.4228-4235.

[21] Frode Eika Sandnes. 2006. Can spatial mnemonics accelerate

the learning of text input chords?. In Proceedings of the

working conference on Advanced visual interfaces (AVI '06).

ACM, New York, NY, USA, 245-249.

DOI=http://dx.doi.org/10.1145/1133265.1133313

[22] I. Scott MacKenzie. 2002. KSPC (keystrokes per character)

as a characteristic of text entry techniques. In Proceedings of

Human Computer Interaction with Mobile Devices. Springer

Berlin Heidelberg, 195-210.

[23] Donald A. Norman and Diane Fisher. 1982. Why alphabetic

keyboards are not easy to use: Keyboard layout doesn't much

matter. Human Factors: The Journal of the Human Factors

and Ergonomics Society 24, 5 (1982), 509-519.

[24] Frode Eika Sandnes. 2010. Effects of common keyboard

layouts on physical effort: Implications for kiosks and

Internet banking. In Proceedings of Unitech2010:

International Conference on Universal Technologies, Tapir,

Trondheim, Norway, 91-100.

[25] Edgar Matias, I. Scott MacKenzie, and William Buxton.

1994. Half-QWERTY: typing with one hand using your two-

handed skills. In Conference Companion on Human Factors

in Computing Systems (CHI '94), Catherine Plaisant (Ed.).

ACM, New York, NY, USA, 51-52.

DOI=http://dx.doi.org/10.1145/259963.260024

[26] David Holmes and M. Catherine McCabe. 2002. Improving

precision and recall for soundex retrieval. In Proceedings of

the International Conference on Information Technology:

Coding and Computing, 2002. IEEE, 22-26.

[27] Lawrence Philips. 1990. Hanging on the metaphone.

Computer Language 7, 12 (December, 1990), 39-43.

[28] Aleksandra Królak and Paweł Strumiłło. 2012. Eye-blink

detection system for human–computer interaction. Universal

Access in the Information Society 11, 4 (2012), 409-419.

