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ABSTRACT 

Text is still the dominant form of human-computer-human 

communication. Users with certain motor or visual impairments 

may be unable to use certain text entry interfaces such as the small 

virtual keyboards on mobile phones effectively due to challenges 

hitting small targets. Despite the vast amount of research into text 

entry, no efforts have explored the so-called Russian tap-codes, or 

knock codes, which were commonly used to communicate between 

prison inmates. Tapping does not require the user to hit a specific 

target. This study proposes a theoretical framework for classifying 

text entry designs. The framework is used to explore 16 text entry 

designs, namely the classic Russian tap code and design variations 

exploiting more recent results in text entry research and the context 

of current hardware, allowing unfeasible designs to be easily 

eliminated.   

CCS Concepts 

• Human-Centered computing ➝Accessibility➝Accessibility 

design and evaluation methods   • Human computer interaction 

(HCI)➝HCI design and evaluation methods➝Heuristic 

evaluations. 
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Motor impairment; low-vision; target hitting; text entry; 

accessibility. 

1. INTRODUCTION 
Although user interfaces increasingly rely on non-textual 

interaction such as voice [1] and gestures [2], a majority of 

interaction between man and machine still depends on text entry, 

especially as computers are used to mediate written communication 

between humans. Text entry is an active research field that is driven 

by constant advancements in input device technology, especially as 

the form factors has changed from the desktop to mobile and smart 

devices. Advances in text entry technology aimed at the general 

population has also benefitted users with various disabilities. 

Moreover, assistive technologies, such as text prediction [3], have 

also benefited non-disabled users. 

The literature on text entry is vast. After the invention of the 

typewriter, many alternative keyboard layout designs were 

explored [4]. Moreover, chording was early proposed as a means 

for more efficient text input, where instead of hitting individual 

keys to produce the letters, key patterns where pressed to recall 

letters [5, 6]. Unfortunately, chording did not succeed, probably 

due to the effort needed to learn chords and a lack of a standard. 

One exception to this is possibly braille chording [7, 8, 9] which 

have several current implementation for Smartphones such as 

mBraille and TypeInBraille [9]. Blind users already familiar with 

Braille can thus use such braille chording keyboards without having 

to learn a new chording alphabet. 

Notably the most important developments during the last decades 

include the mobile device platform and the touch display. The 

mobile platform led to many new innovative strategies for inputting 

text without a full keyboard, most of which were based on keys. 

Research have focused on using numeric keypad-based input with 

and without letter disambiguation [10, 11] and devices with even 

fewer keys [12, 13]. Other input devices such as joysticks have also 

been studied [14].  

The emergence of affordable touch displays sparked much research 

into virtual keyboards and gestures and currently touch display 

technology and mobile device technologies have converged into the 

mobile smart device platform.   

Both research and the practice field shows that the classic 

QWERTY layout has survived despite its obvious inefficiencies. 

Many users are already familiar with the QWERTY layout from the 

desktop platform and thus do not have to learn a new text entry 

system. Recent research has thus instead focused on providing 

accurate text prediction to speed up the text input and abbreviation 

based input in languages with long compound words [15].  

A challenge with the current state of the art mobile text entry, which 

is based on virtual keyboards with text prediction, is that the 

individual virtual keys are small and difficult to both see and hit. 

These text input interfaces are thus challenging to use for 

individuals with reduced motor abilities and reduced vision. In 

particular, older users find Smartphone text-entry difficult as they 

often have both reduced vision and motor functioning. 

This paper takes a step back and explores Russian tap codes. To the 

best of the authors’ knowledge Russian tap codes have not been 

explicitly explored in context of text input. Tap codes involve a 

simple system where letters are organized into a 5 × 5 grid where a 

letter is signaled by tapping the row and the column with a little 

pause in-between.  
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Figure 1. Text entry design framework with impressionistic 

classification of text entry technologies from the literature. 

Tap codes were typically used in prisons where inmates in different 

cells communicated with each other using the concrete walls. The 

success of the tap code, used without the aid of computers, was 

probably due to its simplicity and efficiency.  

The tap code is comparatively much easier to learn than the widely 

used Morse code, which has shown to be less suitable for text entry 

[16]. Both Morse code and tap codes rely on rhythmic patterns, and 

it has been found that users naturally exhibit regular rhythmic 

patterns when entering text using certain systems [17].   

Some of the research efforts and commercial products available 

share similarities with the tap codes, instead of taps two-

dimensional scrolling is used to select the desired character [18]. 

The elegance of tap codes is that users do not hit a specific target, 

but rather signal the information in easy-to-understand and simple 

temporal pulses. Since no target hitting tasks are involved, issues 

of accuracy, speed and size described by Fitts’ law [19] does not 

apply. This study discusses the tap codes in context of recent text 

entry research and current technology.  

2. METHOD 
First, a framework for classifying text entry designs is presented. 

This framework allows the strengths and weaknesses of a design to 

be identified easily, and it allows poor designs to be discarded 

before committing to time-consuming user testing. Next, the classic 

Russian tap code and several designs adaptions based on the classic 

tap code are analyzed using the framework. 

2.1 Text Entry Design Classification 
Text entry designs often balance coding in the temporal and spatial 

domain. The proposed classification framework therefore 

organizes text entry design according to these dimensions. Figure 1 

shows an example of the classification framework applied to 

several text entry strategies reported in the literature.  

The framework divides the temporal (T) and spatial (S) domains 

into one (1), few (2) and many (3). In this classification the classic 

QWERTY keyboard is classified as S3-T1, that is, each of the many 

characters have a unique spatial position on the keyboard (many) 

and only one step is needed to recall each character (T1). The 

classic chording techniques are classified as S2-T1 as only one step 

is needed and usually only five keys are used. Note that variations 

on the chording keyboard, such as one based on visual mnemonics, 

require several steps [20, 21] and are therefore classified as S2-T2.  

The classic Tegic T9 disambiguation technique for numeric keypad 

input is also classified as S2-T2 as it involves only 8 keys (few) and 

character input with subsequent word selection. Gestures are 

classified as S3-T3 since a gesture in reality is a complex temporal 

and spatial shape, although the actual execution of a gesture may 

be simple. 

   

 

Figure 2. The classic tap-codes (left), Polybius square (right). 

 

 

 Figure 3. Enhanced tap codes: no-z layout (left), letter 

frequency optimized square (right) (right). 

Note that the classic QWERTY keyboard also can be partially 

considered a chord keyboard as SHIFT is usually pressed together 

with a character to produce uppercase characters. It could also be 

placed in the T2 category when considering the use of CAPSLOCK 

needing two steps. However, for simplicity, these low-probability 

cases are ignored herein.  

One interpretation of the framework is that increased spatial 

complexity requires pointing accuracy, while increased temporal 

complexity requires both physical and mental effort. These issues 

need to be carefully balanced for a given context. Note that it is no 

practical input strategy for S1-S2 as it would have to be based on a 

binary alphabet. Moreover, no existing text input strategy could be 

identified for S1-T2, that is, text input strategies that do not require 

hitting a specific target, and that require few input steps. 

2.2 Classic Tap Codes 

The classic Russian tap-codes were based on the Russian alphabet. 

However, the English version that was used in the American 

prisons comprised a 5 × 5 grid of characters (see Figure 2). Since 

English has 26 characters K is given the same code as C. To send a 

D the user first tap once to signal the first row, then a short pause, 

followed by four consecutive taps to signal the fourth character 

along the row. That is, D would be communicated using tap + pause 

+ tap + tap + tap + tap. 

Tap codes go back to the Polybius square that was used in ancient 

Greece where rows of flames were used to send signals according 

to row and column coding. The typical English version of the 

Polybius square places the character J in the same cell as I. 

  Temporal (sequential actions) 
  One (T1) Few (T2) Many (T3) 

Spatial 
(simultan 
-eous  
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One (S1)   Morse code [16] 
Eye-blink [28] 
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chording [20, 21] 

Menu-based [13] 
Numpad-multitap 

Many (S3) QWERTY-keyboard QWERTY with  
prediction [3, 15] 

Gestures [2] 
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Figure 4. Numeric keypad-based tap-codes: multitap-layout 

(top), three-dimensional multitap (second from top), one-

dimensional T9 (second from bottom), two-dimensional T9 

(bottom). 

The effectiveness of these classic tap-codes are explored herein 

using the proposed framework and the keystrokes per character 

(KSPC) measure proposed by MacKenzie et al. [22]. 

2.3 Enhanced Tap Codes 

Three basic variations on the tap codes are investigated. First, the 

effects of starting in different corners are explored, that is, starting 

on the right instead of on the left, or on the bottom instead of on the 

top tapping along the opposite direction. Four cases are thus 

considered, top-left, top-right, bottom-left and bottom-right. 

Next, Z is the character with the lowest frequency in English. 

Calculations were thus performed to explore the effect of giving K 

its own cell and instead discarding Z (Figure 3). 

Finally, a tap-code optimized according to letter frequencies were 

explored (see Figure 3) where the most frequent characters were 

assigned the cells requiring the fewest taps. The goal was to 

determine the theoretically lower bound on the number of taps 

needed. However, research also show that such optimized layouts 

require new learning and hence are considered uncomfortable to 

use despite being the most efficient. The worst-case layout is also 

explored. It is simply the optimized layout mirrored along the 

diagonal going from the bottom left to the top right cell. 

2.4 Numeric Keypad Layouts 
Unfortunately, the alphabetic square layout requires learning [23, 

24]. Instead, existing layouts already familiar to users are explored. 

One of these is the numeric keypad found on older mobile phones.  

The first of four designs simply involves placing the characters out 

in a 3 × 11 grid resembling the actual character sequence of the 

numeric keypads (see Figure 4 top). The blank spaces are ignored. 

 

Figure 5. QWERTY-based tap codes: three-dimensional 

QWERTY tap code (top), two-hand two-dimensional tap code 

centered in the top middle (center) and two-hand three-finger 

one-dimensional QWERTY tap codes (bottom). 

 

Figure 6. Tap-code designs overview. 

The second design is three-dimensional (see Figure 4 second from 

the top). First, the user taps the desired row on the “keypad”, next 

the user taps the desired column and finally taps to the desired 

character on the “key”. 

The last two designs in the numeric keypad category leans on 

numeric keypad input disambiguation where only the “button” with 

the set of characters is input, and a dictionary is used to 

disambiguate which word was intended. The first design is a simple 

one-dimensional tap code where the user taps through to the desired 

letter-group.  

The second design is two-dimensional where the user selects the 

letter group by tapping the desired row followed by the column (see 

Figure 4 bottom).  

2.5 Exploring QWERTY Familiarity 
Finally, tap-codes based on the well-known QWERTY layout were 

explored. The first design is a three-dimensional tap code where 

one tap is first used to select the left side or two taps are used to 

select the right side. Next, one, two or three taps are used to select 

the row, and finally taps are used to select the desired column 

starting from the center (see Figure 5 top). 

The following two designs are two-dimensional tap codes based on 

the assumption that the user can tap independently using the left 

and the right hand, and thereby control the selection for each side 

of the layout.  
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Table 1. Characteristics of the tap-code designs. 

 taps  Characteristic 

Design name Min  Max mean class Dimension Hands Fingers Dictionary 

Russian (top left) 2 10 5.77 S1-T3 2D  1  

Russian (top right) 2 10 5.37 S1-T3 2D  1  

Russian (bottom left) 2 10 7.62 S1-T3 2D  1  

Russian (bottom right) 2 10 7.22 S1-T3 2D  1  

Polybian  2 10 5.79 S1-T3 2D  1  

No-z 2 10 6.10 S1-T3 2D  1  

Frequency optimized 2 10 4.48 S1-T3 2D  1  

Worst case 2 10 8.51 S1-T3 2D  1  

Numpad layout 2 14 6,70 S1-T3 2D  1  

Numpad cube 3 10 5.50 S1-T3 3D  1  

T9 linear 1 8 5.46 S1-T3 1D  1 Yes 

T9 grid 2 6 4.84 S1-T2 2D  1 Yes 

QWERTY 3 9 5.76 S1-T3 3D  1  

QWERTY bimanual center 2 8 4.35 S2-T2 2D 2 2  

QWERTY bimanual left 2 8 4.53 S2-T2 2D 2 2  

QWERTY three-finger 1 5 2.72 S2-T1 1.5D 2 6  

One variation starts in the top left corner for both sides, while the 

other variation starts in the middle, that is, in the top left corner for 

the left side and the top right corner for the right side. This design 

assumes that the skills of accessing the QWERTY layout mirrors 

across hands [25]. 

The final QWERTY based tap code assumes that three fingers on 

each hand are used to tap the keys associated with the respective 

row of the keyboard. This design thus constitutes six parallel tap 

codes. Simple pointing is needed to place fingers in the initial 

position, but it is similar to chording in that this is only done once 

when starting.  

These last three QWERTY designs deviate from the classic one-

channel tap code paradigm by allowing tapping on different 

channels. This is not possible with prison walls, but this prison wall 

limitation obviously does not apply to computers. 

3. RESULTS 
The results of the analysis are discussed according the three layout 

categories, namely alphabet square layouts, numeric keypad 

layouts and QWERTY layouts. 

3.1 Alphabet Square Layouts 
Figure 6 shows that most of the two dimensional tap codes belong 

in the S1-T2 category. The classic Russian tap-code clearly requires 

a minimum of two taps and a maximum of 10 taps, with an average 

of 5.7 taps per character. The starting point and tapping direction 

clearly have a significant effect on the number of taps. Luckily, the 

classic tap-code configuration is just marginally worse than the 

theoretically best which is achieved by starting in the top right 

corner with a mean of 5.37 taps per character. When starting at 

either the left or right bottom corner the mean taps per characters 

exceed 7. 

The English version of the Polybius square gives only a marginally 

lower mean of 5.79 taps per characters. However, reshuffling the 

characters of the grid by removing Z has a larger impact and results 

in the mean number of taps per character exceeding 6.1. 

The results for the frequency optimized tap code gives a mean of 

4.48 taps per character, which is better than the T9 grid. The 

disadvantage with the optimized grid is that the user will have to 

learn a new unintuitive layout. However, no dictionary is used and 

any character sequence can therefore be input. The worst-case 

layout reveals an upper bound of a mean of 8.51 taps per character. 

Common for all the tap code strategies based on square layouts is 

that a large number of taps is needed to enter characters regardless 

of layout, and at most 10 taps are needed to produce the worst-case 

character. Clearly, one does not need to conduct a user evaluation 

to predict that the amount of tapping is time-consuming, repetitive 

and frustrating for users. Even the input of simple phrases require 

many taps. In prisons the tap codes were used with short form 

coding such as GBU – God bless You, etc. Therefore, tap codes 

could perhaps be combined with some intuitive abbreviation 

expansion engine [15] or telegram expansion techniques inspired 

by SOUNDEX [26] or Metaphone [27]. For such mechanisms to 

succeed they have to be simple and require minimal learning. 

Although tap codes in its classic form is not the optimal text input 

strategy for most users given modern hardware, it may be a 

workable solutions for individuals with certain forms of reduced 

motor functioning. Taps do not necessarily have to be performed 

with fingers per se, it could equally well be another modality such 

as eye-blinking [28], non-finger physical movement, an uttered 

sound, etc. 

One important characteristic to be learnt from the tap codes is the 

square configuration as this is the optimal two-dimensional layout 

in terms of character access and effort needed. However, several 

commercial designs involving alphabetic layout have chosen non-

square rectangular layout accessible via navigation buttons. The 

non-square configurations increases the average number of steps to 



access a given character. The idea of combining two characters 

such as C and K with the Russian square or I and J with the Polybius 

square could also be adopted in regular alphabetic layouts to 

achieve square layouts. Combining two characters with relatively 

low probability will be trivial to disambiguate using a simple 

language model. Other European languages with extended 

alphabets could also be reduced to a simple 5 × 5 square of the sake 

of simplicity. Previous keyboard layout research [4] has focused 

more on the position of the characters than on the actual shape of 

the keyboard layouts.  

3.2 Numeric Keypad Layouts 
The results of the evaluation shown in Figure 6 reveal that the T9 

grid approach is classified as S1-T2, a category that is not 

documented in the text entry research literature. This means that its 

advantage is single channel of taps with few symbols. Table 1 

shows that the average number of taps per character with T9 grid is 

4.48 with a maximum of 6 taps. The disadvantage of T9 grid is that 

it requires disambiguation and it is thus impossible to input tokens 

not present in dictionaries. Moreover, the statistics does not take 

the extra manual disambiguation steps into consideration, that is, 

when the user have to select between different options. 

Although the numeric layout is familiar to most users, the analysis 

shows that it does not pose any particular advantage when physical 

effort is considered together with the mental effort needed. 

Moreover, one may ponder whether people’s familiarity with the 

numeric keypad layout is disappearing as the classic T9 mobile 

phones used for texting have been replaced with touchscreen 

Smartphones. The designs based on the numeric keypad layouts can 

thus be discarded. 

3.3 QWERTY Layouts 
Two strategies that stand out in category S2-T1 and S2-T2 are 

QWERTY three finger and QWERTY bimanual, respectively. Of 

the two bimanual methods, the one based on starting in the center 

gives a slightly better mean of 4.35 taps per character over 4.53 by 

always starting in the top left corner. These results are better than 

both T9 grid and the optimized square. Moreover, it utilizes a layout 

already familiar to the user and does not involve any 

disambiguation. However, it relies on the user being able to use two 

channels of tapping, preferably using the left and the right hand to 

mimic keyboard based bimanual text entry.  

The three-finger tap code is also a bimanual text input strategy and 

actually involves six fingers in total (3 for each hand). This strategy 

yields the lowest mean taps per keystroke, namely 2.72, with a 

minimum of 1 and maximum of 5 taps. It is mentally simple to use 

since it is a one dimensional tap code, and no pauses are needed to 

enter characters. It relies on the familiar QWERTY layout and users 

already familiar with QWERTY will therefore not need to search 

for the location of the characters. However, six fingers are needed 

to tap on six channels without pointing tasks. This require more 

dexterity than single channel tapping. However, if one assumes that 

the fingers remain stationary on the control keys as no pointing and 

hitting of targets are needed.  

Overall, based on the results future work should focus on the three 

text entry strategies based on the QWERTY layout. A natural 

subsequent step is to conduct a user evaluation in the form of a text 

entry experiment to evaluate whether the three methods are feasible 

in practice. Moreover, future work should involve experimentation 

involving users with motor impairments to assess whether the 

methods are beneficial to these users or not. 

4. CONCLUSIONS 
The classic tap code, or knock code, was explored in light of recent 

research into text entry and modern input devices. Tap codes are 

attractive as no pointing tasks are needed. Moreover, a 

classification framework was proposed for exploring and screening 

text entry designs allowing poor designs to be discarded prior to 

time-consuming user testing. Note that the framework is not 

intended as a replacement for user testing. The results show that the 

classic tap codes used in prisons are relatively efficient compared 

to related designs. However, acceptance for the tap code may be 

improved if the familiar QWERTY layout is used instead. The 

results show that the efficiency of tap codes based on the QWERTY 

layout is comparable to that of the classic alphabetical square. 

However, the QWERTY layout also allows easy facilitation of 

bimanual tapping and multi-finger tapping. These optimizations 

greatly reduce the length of the tedious tap sequences without 

increasing complexity. Future research need to confirm the 

feasibility of the derived designs through user evaluations. The 

results of this study also suggest that text entry systems based on 

selecting letters using navigation keys from an alphabetical layout 

also should employ a square grid instead of rectangular layouts to 

minimize motor effort. 

5. REFERENCES 
[1] François Portet, Michel Vacher, Caroline Golanski, Camille 

Roux, and Brigitte Meillon. 2013. Design and evaluation of a 

smart home voice interface for the elderly: acceptability and 

objection aspects. Personal Ubiquitous Comput. 17, 1 

(January 2013), 127-144. 

DOI=http://dx.doi.org/10.1007/s00779-011-0470-5  

[2] Frode Eika Sandnes, Tek Beng Tan, Anders Johansen, Edvin 

Sulic, Eirik Vesterhus, and Eirik Rud Iversen. 2012. Making 

touch-based kiosks accessible to blind users through simple 

gestures. Univers. Access Inf. Soc. 11, 4 (November 2012), 

421-431. DOI=http://dx.doi.org/10.1007/s10209-011-0258-4  

[3] John J. Darragh, Ian H. Witten, and Mark L. James. 1990. 

The reactive keyboard: A predictive typing aid. Computer 

23, 11 (1990), 41-49. 

[4] I. Scott MacKenzie and Shawn X. Zhang. 1999. The design 

and evaluation of a high-performance soft keyboard. In 

Proceedings of the SIGCHI conference on Human Factors in 

Computing Systems (CHI '99). ACM, New York, NY, USA, 

25-31. DOI=http://dx.doi.org/10.1145/302979.302983  

[5] Nathaniel Rochester, Frank C. Bequaert, and Elmer M. 

Sharp. 1978. The chord keyboard. Computer 11, 12 (1978), 

57-63.  

[6] Daniel Gopher and David Raij. 1988. Typing with a two-

hand chord keyboard: will the QWERTY become obsolete? 

IEEE Transactions on Systems, Man and Cybernetics 18, 4 

(1988), 601-609. 

[7] David A Fisher and C. Ward Bond. 1992. A single-handed 

braille chord system for computer keyboard input. In 

Proceedings of Computing Applications to Assist Persons 

with Disabilities, 1992. IEEE, 200-202. 

[8] Myung-Chul Cho, Kwang-Hyun Park, Soon-Hyuk Hong, Jae 

Wook Jeon, Sung Il Lee, Hyuckyeol Choi, and Hoo-Gon 

Choi. 2002. A pair of braille-based chord gloves. In 

Proceedings of the Sixth International Symposium on 

Wearable Computers 2002 (ISWC 2002). IEEE, 154-155. 

[9] Sergio Mascetti, Cristian Bernareggi, and Matteo Belotti. 

2011. TypeInBraille: a braille-based typing application for 



touchscreen devices. In The proceedings of the 13th 

international ACM SIGACCESS conference on Computers 

and accessibility (ASSETS '11). ACM, New York, NY, 

USA, 295-296. 

DOI=http://dx.doi.org/10.1145/2049536.2049614 

[10] I. Scott MacKenzie, Hedy Kober, Derek Smith, Terry Jones, 

and Eugene Skepner. 2001. LetterWise: prefix-based 

disambiguation for mobile text input. In Proceedings of the 

14th annual ACM symposium on User interface software and 

technology (UIST '01). ACM, New York, NY, USA, 111-

120. DOI=http://dx.doi.org/10.1145/502348.502365 

[11] Jun Gong, Bryan Haggerty, and Peter Tarasewich. 2005. An 

enhanced multitap text entry method with predictive next-

letter highlighting. In CHI '05 Extended Abstracts on Human 

Factors in Computing Systems (CHI EA '05). ACM, New 

York, NY, USA, 1399-1402. 

DOI=http://dx.doi.org/10.1145/1056808.1056926  

[12] Scott MacKenzie. 2002. Mobile text entry using three keys. 

In Proceedings of the second Nordic conference on Human-

computer interaction (NordiCHI '02). ACM, New York, NY, 

USA, 27-34. DOI=http://dx.doi.org/10.1145/572020.572025  

[13] Frode Eika Sandnes, Haavard W. Thorkildssen, Alexander 

Arvei, and J. O. Buverad. 2004. Techniques for fast and easy 

mobile text-entry with three-keys. In Proceedings of the 37th 

Annual Hawaii International Conference on System Sciences 

2004. IEEE. 

[14] Frode Eika Sandnes and Andre Aubert. 2007. Bimanual text 

entry using game controllers: Relying on users' spatial 

familiarity with QWERTY. Interact. Comput. 19, 2 (March 

2007), 140-150. 

DOI=http://dx.doi.org/10.1016/j.intcom.2006.08.003  

[15] Frode Eika Sandnes. 2015. Reflective Text Entry: A Simple 

Low Effort Predictive Input Method Based on Flexible 

Abbreviations. Procedia Computer Science 67 (2015), 105-

112. 

[16] Simon Levine, John Gauger, Lisa Bowers, and Karen Khan. 

1986. A comparison of Mouthstick and Morse code text 

inputs. Augmentative and Alternative Communication 2, 2 

(1986), 51-55. 

[17] Frode Eika Sandnes and Hua-Li Jian. 2004. Pair-wise 

variability index: Evaluating the cognitive difficulty of using 

mobile text entry systems. In Proceedings of the International 

Conference on Mobile Human-Computer Interaction, Lecture 

Notes on Computer Science 3160, Springer Berlin 

Heidelberg, 347-350. 

[18] Didier Augusto Vega-Oliveros, Diogo de Carvalho Pedrosa, 

Maria da Graça Campos Pimentel, and Renata Pontin de 

Mattos Fortes. 2010. An approach based on multiple text 

input modes for interactive digital TV applications. In 

Proceedings of the 28th ACM International Conference on 

Design of Communication (SIGDOC '10). ACM, New York, 

NY, USA, 191-198. 

DOI=http://dx.doi.org/10.1145/1878450.1878483 

[19] I. Scott MacKenzie, Shawn X. Zhang, and R. William 

Soukoreff. 1999. Text entry using soft keyboards. Behaviour 

& information technology 18, 4 (1999), 235-244. 

[20] Frode Eika Sandnes. 2015. Human performance 

characteristics of three-finger chord sequences. Procedia 

Manufacturing 3 (2015),.4228-4235. 

[21] Frode Eika Sandnes. 2006. Can spatial mnemonics accelerate 

the learning of text input chords?. In Proceedings of the 

working conference on Advanced visual interfaces (AVI '06). 

ACM, New York, NY, USA, 245-249. 

DOI=http://dx.doi.org/10.1145/1133265.1133313  

[22] I. Scott MacKenzie. 2002. KSPC (keystrokes per character) 

as a characteristic of text entry techniques. In Proceedings of 

Human Computer Interaction with Mobile Devices. Springer 

Berlin Heidelberg, 195-210. 

[23] Donald A. Norman and Diane Fisher. 1982. Why alphabetic 

keyboards are not easy to use: Keyboard layout doesn't much 

matter. Human Factors: The Journal of the Human Factors 

and Ergonomics Society 24, 5 (1982), 509-519. 

[24] Frode Eika Sandnes. 2010. Effects of common keyboard 

layouts on physical effort: Implications for kiosks and 

Internet banking. In Proceedings of Unitech2010: 

International Conference on Universal Technologies, Tapir, 

Trondheim, Norway, 91-100. 

[25] Edgar Matias, I. Scott MacKenzie, and William Buxton. 

1994. Half-QWERTY: typing with one hand using your two-

handed skills. In Conference Companion on Human Factors 

in Computing Systems (CHI '94), Catherine Plaisant (Ed.). 

ACM, New York, NY, USA, 51-52. 

DOI=http://dx.doi.org/10.1145/259963.260024  

[26] David Holmes and M. Catherine McCabe. 2002. Improving 

precision and recall for soundex retrieval. In Proceedings of 

the International Conference on Information Technology: 

Coding and Computing, 2002. IEEE, 22-26.  

[27] Lawrence Philips. 1990. Hanging on the metaphone. 

Computer Language 7, 12 (December, 1990), 39-43. 

[28] Aleksandra Królak and Paweł Strumiłło. 2012. Eye-blink 

detection system for human–computer interaction. Universal 

Access in the Information Society 11, 4 (2012), 409-419. 

 

 


