
Product-Line Architectures in Industry: A Case Study

Jan Bosch
University of KarlskronaAXonneby

Department of Software Engineering and Computer Science
S-372 25 Ronneby, Sweden, , +46 457 787 26

Jan.Bosch@ipd.hk-r.se, http://www.ide.hk-r.se/-bosch

ABSTRACT
In this paper, a case study investigating the experiences from
using product-line architectures is presented involving two
Swedish companies, Axis Communications AB and
Securitas Larm AB. Key persons in these organizations have
been interviewed and information has been collected from
documents and other sources. The study identified a
collection of problems and issues. The identified problems
include the amount of required background knowledge,
information distribution, the need for multiple versions of
assets, dependencies between assets, use of assets in new
contexts, documentation, tool support, management support
and effort estimation. Issues collected from the case study
are the questioned necessity of domain engineering units,
business units versus development departments, time-to-
market versus asset quality and common features versus
feature superset. For each problem, a problem description,
an example, underlying causes, available solutions and
research issues are identified whereas for each issue the
advantages and disadvantages of each side are discussed.

Keywords
Product-line architectures, case study, experiences

1 INTRODUCTION
Product-line architectures have received attention in
research, but especially in industry. Many companies have
moved away from developing software from scratch for each
product and instead focused on the commonalities between
the different products and capturing those in a product-line
architecture and an associated set of reusable assets. This
development is, especially in the Swedish industry, a logica
development since software is an increasingly large part of
products and often defines the competitive advantage. When
moving from a marginal to a major part of products, the
required effort for software development also becomes a
major issue and industry searches for ways to increase reuse
of existing software to minimize product-specific
development and to increase the quality of software.

A number of authors have reported on industrial experiences
with product-line architectures. In [16], results from a

pe~ission ~0 nlakc digital or hard copies of all or part of this work tbl
personal or classroom use is granted without fee provided that copies
are not m&c or distributed tbr profit or commercial advantage and that
copies bear this notice and the full citation 011 the first page. TO COPY
other\vise, to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a f~.
KSE ‘99 Los Angles CA
Copyright ACM 1999 l-58113-074-0/99/05...$5.00

workshop on product line architectures are presented. Also,
[14] and [6] describe experiences from using product-line
architectures in an industrial context. The aforementioned
work reports primarily from large, American software
companies, often defense-related, which are not necessarily
representative for software industry as a whole, especially
not for small- and medium-sized enterprises.

In this paper, we report on a product-line architecture case
study involving two Swedish software development
organizations, i.e., Axis Communications AB and Securitas
Larm AB. The former develops and sells network-based
products, such as printer-, scanner-, camera- and storage-
servers, whereas the latter company produces security- and
safety-related products such as fire-alarm, intruder-alarm
and passage control systems. Since the beginning of the ‘9Os,
both organizations have moved towards product-line
architecture based software development, especially through
the use of object-oriented frameworks as reusable assets.
Since these organizations have considerable experience
using this approach, we report on their way of organizing
software development, the obtained experiences and the
identified problems.

The contribution of this paper is, we believe, that it provides
exemplars of industrial organizations in software industry
that can be used for comparison or as inspiration. In addition,
the experiences and problems provide, at least part of, a
research agenda for the software architecture reuse
community and makes the relations to other research
communities more explicit.

The remainder of the paper is organized. as follows. In the
next section, the research method used for the case study is
briefly described. The two companies forming the focus of
the case study are described in section 3. The problems
identified during data collection are discussed in section 4,
whereas section 5 discusses the issues collected from the
case study. Section 6 discusses related work and the paper is
concluded in section 7.

2 Case Study Method
The goal of the study was twofold: first, our intention was to
get an understanding of the product-line architecture state of
practice in ‘normal’ software development organizations, i.e.
organizations of small to average size, i.e., tens or a few
hundred employees, and unrelated to the defense industry.
Second, our goal was to identify those research issues that
are most relevant to software industry with respect to

544

http://crossmark.crossref.org/dialog/?doi=10.1145%2F302405.302690&domain=pdf&date_stamp=1999-05-16

Figure 1. Product-Line and Product Software Architectures in Axis Communications

product-line software architectures.

The most appropriate method to achieve these goals, we
concluded, was through interviews with the system
architects and technical managers at software development
organizations. Since this study marks the start of a three year
government-sponsored research project on software
architectures involving our university and three industrial
organizations, i.e. Axis Communications AB, Securltas
Larm AB and Ericsson Mobile Communications AB, the
interviewed parties were taken from this project. The third
organization, a business unit within Ericsson Mobile
Communications, is recently start-up and has not yet
produced product-line architectures or products. A second
reason for selecting these companies was that, we believe
them to be representative for a larger category of software
development organizations. The organizations develop
software that is to be embedded in products also involving
hardware, are of average size, e.g., development departments
of 10 to 60 engineers and develop products sold to industry
or consumers.

The interviews were based upon a questionnaire that was
used to guide the process, although divergence to related
topics was accepted. The interviews were video-taped for
further analysis afterwards and in some cases documentation
from the company was used to complement the interviews.
The interviews often started with a group discussion and
were later complemented with interviews with individuals
for deeper discussions on particular topics.

The questionnaire used for guidance categorized the domain
of product-line architectures into five topics, i.e., context,
technological, process, business and organizational issues.
For each topic, the intention was to discuss the history, the
status-quo, the vision and experienced problems. During the
interviews, the main focus was on process and technological
issues.

3 Case Study Organizations

Case 1: Axis Communications AB
Axis Communications started its business in 1984 with the
development of a printer server product that allowed IBM
mainframes to print on non-IBM printers. In 1986, the
company developed the first version of its proprietary RISC
CPU that allowed for a better performance and cost-
efficiency than standard processors for their data-

communication oriented products. Today, the company
develops and introduces new products on a regular basis.
Since the beginning of the ‘9Os, object-oriented frameworks
were introduced into the company and since then, a base of
reusable assets is maintained based on which most products
are developed.

Axis develops IBM-specific and general printer servers, CD-
ROM and storage servers, network cameras and scanner
servers. Especially the latter three products are built using a
common product-line architecture and reusable assets. In
figure 1, an overview of the product-line and product
architectures is shown. The organization is more
complicated than the standard case with one product-line
architecture (PLA) and several products below this product-
line. In the Axis case, there is a hierarchical organization of
PLAs, i.e. the top product-line architecture and the product-
group architectures, e.g. the storage-server architecture.
Below these, there are product architectures, but since
generally several product variations exist, each variation has
its own adapted product architecture, because of which the
product-architecture could be called a product-line
architecture. However, for the use in this paper, we use the
term product-line architecture for the top level (or two top
levels in case of the storage and printer-server architectures)
and product architecture for the lower levels. The focus of
the case study is on the marked area in the figure, although
the other parts are discussed briefly as well.

Orthogonal to the products, Axis maintains a product-line
architecture and a set of reusable assets that are used for
product construction. The main assets are a framework
providing file-system functionality and a framework proving
a common interface to a considerable set of network
protocols, but also smaller frameworks are used such .as a
data-chunk framework, a smart pointer framework, a
‘toolkit’ framework providing domain-independent classes
and a kernel system for the proprietary processor providing,
among others, memory management and a job scheduler. In
figure 2, the organization of the main frameworks and a
simplified representation of the product-line architecture is
shown.

The size of the frameworks including the specializations is
considerable, whereas the abstract frameworks is rather
small. The abstract design of the file-system framework is
about 3500 lines of code (LOC). However, each
specialization of the framework implementing a file system

545

Figure 2. Overview of the main frameworks used in Axis products

standard, also is about 3500 LOC and since the framework
currently supports 7 standards, the total size is about 28
KLOC. In the protocol framework, the concrete
specializations are even larger. The abstract protocol
framework is about 2500 LOC. The framework contains
three major specializations, i.e., Netware, Microsoft SMB
and TCP/IP, and a few smaller specializations operating on
top of the aforementioned protocols. The total size of the
framework is about 200 KLOC, due to the large size of
concrete specializations. For example, the implementation of
the Netware protocol is about 80 KLOC.

In addition to the frameworks and the PLA, the other smaller
frameworks are part of most products and each product
contains a substantial part of product-specific code. A
product can, consequently, contain up to 500 KLOC of C++
code.

Axis makes considerable use of software engineering
methods and techniques. As mentioned, the object-oriented
paradigm is used throughout the organization, including
more advanced concepts such as object-oriented frameworks
and design patterns. Also, it makes use of peer review of
software, collects test metrics, performs project follow-ups
and has started to put effort into root-cause analysis of
problems identified after products have been put in operation
in the field.

Systems development at Axis was reorganized into business
units about a year ago. Each business unit has responsibility
for a product or product category, e.g., storage servers.
Earlier, a11 engineers had been part of a development
department. The reorganization was, among others, caused
by the identified need to increase the focus on individual
products. The product-line architecture and its associated
assets, however, is shared between the business units and
asset responsibles are assigned to guide the evolution.

Evolution of products, the PLA and the reusable assets is a

major challenge. The hardware of products evolves at a rate
of l-2 times per year. Software, being more flexible, has
more frequent updates, i.e., 2-4 major updates per year
depending on the product. Since the products are equipped
with flash memory, customers can, after having obtained the
product, upgrade (for free) by downloading and installing a
new version of the software. The evolution is caused by
changing and new requirements. These requirements
originate from customers and future needs predicted by the
business unit. The decision process involves all stakeholders
and uses both formal and informal communication, but the
final decision is taken by the business unit manager. The high
level of involvement of especially the engineers is very
important due to the extreme pressure on time-to-market of
product features. If engineers did not commit to this, it might
be hard to match the deadlines.

The evolution of the product-line architecture and the
reusable assets is controlled by the new product features.
When a business unit identifies a need for asset evolution, it
will, after communicating to other business units and the
asset responsible, basically proceed and extend the asset, test
it in its own context and publish it so that other business units
can benefit from the extension as well. Obviously, this
process creates a number of problems, as discussed later in
the paper, but these have, so far, proven to be manageable.

Case 2: Securitas Larm AB
Securitas Larm AB, earlier TeleLarm AB, develops, sells,
installs and maintains safety and security systems such as
fire-alarm systems, intruder alarm systems, passage control
systems and video surveillance systems. The company’s
focus is especially on larger buildings and complexes,
requiring integration between the aforementioned systems.
Therefore, Securitas has a fifth product unit developing
integrated solutions for customers including all or a subset of
the aforementioned systems. In figure 3, an overview of the
products is presented.

546

intruder-alarm systems access control systems camera control systems

Figure 3. Securitas Larm Product Overview

Securitas uses a product-line architecture only in the fire
alarm products, in practice only the EBL 512 product, and
traditional approaches in the other products. However, due to
the success in the fire-alarm domain, the intention is to
expand the PLA in the near future to include the intruder
alarm and passage control products as well.

Different from most other approaches where the product-line
architecture only contains the functionality that is shared
between various products, the fire-alarm PLA aims at
encompassing the functionality in all fire-alarm product
instantiations. A powerful configuration tool, Win512, is
associated with the EBL 512 product that allows product
instantiations to be configured easily and supports in trouble-
shooting.

The products of Securitas are rather different than the
products mass-produced by Axis. A fire-alarm system, for
example, requires considerable effort in installation, testing,
trouble-shooting and maintenance and the acquisition of
such a system generally involves a long term relation
between the customer and Securitas. Consequently the
number of products for Securitas is in the order of magnitude
of hundreds per year, whereas for Axis the order is in the
tens of thousands per month.

The development at Securitas is organized in a single
development department. A few years ago, the engineers
were located in the business units organized around the
product categories. However, due to the small size of the
engineering group in each business unit, generally a handful,
and that much similar work was performed in the business
units, it was decided to reorganize development into a
development department that acts as an internal supplier to
business units responsible for marketing, installation and
maintenance of the products.

The development department uses a number of software
engineering techniques and methods. Since the beginning of
the 9Os, the object-oriented paradigm has been adopted and,
consequently, concepts such as object-oriented frameworks
and design patterns are used extensively. Peer and team
reviews are used for all major revisions of software and for
all critical parts in the systems. Since the organization is
IS09000 certified, the decision and development processes
are documented and enforced. System errors that appear

after systems have been put in operation are logged and the
counter measures are documented as well.

Some of the problems the development department is
concerned with are the following. No suitable tools for
automated testing of updated software have been found, but
there is a considerable need. In general, the engineers
identify a lack of tools support for embedded systems, such
as compilers translating the right progratnuning language to
the right micro processor. It has proven notoriously hard to
accurately predict the memory requirements of the software
for products. Since hardware and software are co-designed,
the supported memory size has to predicted early in the
project. To minimize cost, one wants to minimize the
maximum amount memory supported by the hardware.
However, in several occasions, early predictions have proven
to be way too optimistic. Finally, since each product area has
an associated organizational product unit and the
development department acts as an internal supplier to these
product units, benefiting from the commonalities between
the different products has proven nearly impossible, despite
the considerable potential.

4 Problems
Based on the interviews and other documentation collected
at the organizations part of this case study, we have identified
a number of topics that we believe to have relevance in a
wider context than just these organizations. The topics are
organized in problems and issues, discussed in this section
and the next, respectively. The problems, as the term implies,
discuss matters that are plain problematic today and for
which the organizations are searching solutions. In the
remainder of this section, the problems that were identified
during the data collection phase of the case study are
presented. For each problem, first a more detailed problem
description is presented, followed by an example and cause
analysis. The subsequent section discusses solutions that can
be applied immediately by software development
organizations. The last point, research issues, identified
topics that need to be addressed by further research.

Background knowledge
Problem. Software engineers developing or maintaining
products based on a product-line architecture require
considerable knowledge of the rationale and concepts
underlying the product-line and the concrete structure of the

547

reusable assets that are part of the PLA. This is generally
true for reuse-based software engineering, but, when using
PLAs, the amount of required knowledge seems to be even
larger. Rather than having knowledge of a component’s
interface, software engineers need to know about the
architecture for which the asset was defined, the semantics of
the behavior of the component and the quality attributes for
which the component was optimized.

Example. New engineers starting at Axis generally require
several months to get a, still superficial, overview over the
PLA and its assets. Only a few engineers in the organization
have a deep understanding of the complete PLA and it was
identified that the learning process basically does not stop.
Understanding the ‘philosophy’ behind the PLA is important
because new engineers should develop their software
compliant to the architecture. Although architecture erosion
can never be avoided completely, it should at least be
minimized.

Causes. Today’s software products often are large and
complex. Complexity of software is both due to the inherent
complexity present in the problem domain and to less-than-
optimal designs of software, resulting in, e.g., insufficient
modularization and too wide interfaces between
components. Secondly, it is generally harder to understand
abstractions than concrete entities. Thirdly, the lack of
documentation and proven documentation techniques is
another cause (see also section). Finally, standard solutions,
such as available for compiler construction, are lacking in
the domains in which Axis and Securitas are operating. If
such standards are present, education programs often
incorporate these solutions, requiring considerably less effort
for new engineers to understand new systems since they
already have a context.

Solutions. Although there are no solutions that solve this
problem completely, some approaches will decrease the
problem. First, a first-class, explicit representation of the
product-line architecture and the architecture of the large
assets should be available so that all software can be placed
in a conceptual context. Second, all design and redesign of
the PLA and the assets should aim at minimizing the
interfaces between components. Finally, although optimal
documentation techniques are not available, using today’s
documentation techniques to provide solid documentation
will be useful support.

Research issues. A number of research issues can be
identified. First, both for representations and for
programming languages, one can identify a lack of support
for high-level abstractions that capture the relevant aspects
while leaving out unnecessary details. Secondly, the design
and acceptance of standard solutions for domains should be
stressed. It is not relevant whether the standard is formal or
de-facto, but whether it becomes part of computer science
and software engineering education programs. Finally, novel
approaches to documentation are required as well as
experimentation and evaluation of existing approaches to
identify strengths and weaknesses.

Information distribution
Problem. The software engineers constructing software
based on or related to the product-line architecture need to be
informed about new versions, extensions and other relevant
information in order to function optimally. Howe.ver, since so
many people are involved in the process, if proves, in
practice, to be very hard to organize the information
distribution. If engineers are not properly informed, this may
lead to several problems, such as double work, software
depending on outdated interfaces, etc.

Example. This problem was primarily identified at Axis and
there may exist a relation to the organizational structure, i.e.
the business units. Since potentially all business units may
generate new versions of the reusable assets, software
engineers have a hard time figuring out the functionality of
the last version and the differences from the most recent
version they worked with. Although information about an
asset extension is broadcasted once the new version is
available, during development other business units are
unaware. This has lead to conflicts at a number of occasions.

Causes. The problems associated with information
distribution can be attributed to a number of causes. First,
with increasing size and organization into business units,
informal communications channels become clogged and
more formalized communications channels are required.
Secondly, a defined and enforced process for asset evolution
is required so that software engineers know when to
distribute and expect information. Thirdly, the business unit
structure shifts focus from commonalities to differences
between products, since software engineers only work with a
single product categories instead of multiple. Finally, there
are no visible differences between versions of assets, such as
the unique interface identifiers in Microsoft COM 1201
where an updated interface leads to a new interface identifier.

Solutions. The interviewed companies do not use separate
domain engineering units and are very hesitant about their
usefulness. (See section for a detailed discussion) However,
instantiating separate organizational units responsible for
reusable assets and their evolution would address several of
the aforementioned causes. In either case, defining and,
especially, enforcing explicit processes around asset
evolution would solve some of the problems.

Research issues. The primary research issue is concerned
with the processes surrounding asset evolution. More case
studies and experimentation is required to gather evidence of
working and failing processes and mandatory and optional
steps. A second research issue is the visibility of versions in
software. As discussed in [20], although the strict Microsoft
COM model has clear advantages, it does not fit traditional
object models (since interfaces and objects are decoupled
through a forwarding interface) and there are other
disadvantages associated with the approach as well.

Multiple versions of assets
Problem. The reusable assets that are part of the product line
are generally optimized for particular quality attributes, e.g.,
performance or code size. Different products in the product-
line, even though they require the same functionality, may

548

have conflicting quality requirements. These requirements
may have so high priority that no single component can fulfil
both. The reusability of the affected asset is then restricted to
only one or a few of the products while other products
require another implementation of the same functionality.

Example. In Axis, the printer server product was left out of
the product-line architecture (although it can be considered
to be a PLA on its own with more than 10 major variations)
because minimizing the binary code size is the driving
quality attributes for the printer server whereas performance
and time to market are the driving quality attributes for the
other network-server products.

One can even identify that the printer server product is a
much more mature product that has come considerably
further in its lifecycle, compared to the storage, camera and
scanner products. The driving quality attributes of a product
tend to change during its lifecycle from feature and time-to-
market driven to cost and efficiency driven [16].

Causes. The main cause for this problem are incompatible
differences between quality requirements for a particular
asset. For example, it may be impossible to incorporate both
the performance and code size requirements in a single
component because they conflict with each other. A second
cause is that domain functionality and quality attribute
related functionality (as well as the structure of the asset) are
heavily intertwined early in the design process, thus not
allowing for, e.g., a component with conditional code.
Finally, since business units focus on their own quality
attributes and design for achieving those during asset
extension, multiple versions of assets may be created even
though a unified solution may exist.

Solutions. A solution aiming at minimizing the number of
implementations of assets is to relax quality requirements for
one or more of the product categories, thereby allowing to
incorporate all requirements in one version of the asset. In
addition, a separate domain engineering unit may, due to the
focus shifted from products to reusable assets, find unified
solutions where product engineering units may not.

Research issues, An important research issue is to find
approaches that allow for late composition of domain
functionality and quality attribute-related functionality.
Examples of this can be found in aspect-oriented
programming [lo] and in the layered object model [l] and
121. In addition, evaluation techniques for assessing the
effects of extensions and changes on the quality attributes of
an asset early in the design process would help identify
potential conflicts.

Dependencies between assets
Problem. Since the reusable assets are all part of the
product-line architecture, they tend to have considerable
dependencies between them. This reduces the reusability of
assets in different contexts, but also complicates the
evolution of assets within the PLA since each extension of
one asset may affect multiple other assets. On the other hand,
evolution of assets in itself may create dependencies.
Addition of new functionality may require extension of more
than one asset and in the process often dependencies are

created between the involved assets to implement the
functionality.

Example. To give an example from Axis: at some point, it
was decided that the file system asset should be extended
with functionality for authorization. To implement this, it
proved to be necessary to also extend the protocol asset with
some functionality. This created a (another) dependency
between the file system and the protocol assets, making it
harder to reuse them separately.

Causes. The foremost cause for the dependencies between
assets at the interviewed companies is the time-to-market
pressure. Getting out new products and subsequent versions
of existing products is very high up on the agenda, thereby
sacrificing other topics. Second, the dependencies between
assets is a sign of accelerated aging of software and, in
effect, decrease the value of the assets, which represent
considerable investments. However, since no economic
models are available that visualize the effects of quick fixes
causing increased dependencies, it is hard to establish the
economic losses of these dependencies versus the time-to-
market requirements. Thirdly, reorganization of software
assets that have been degrading for some while is often not
performed, again since the time-to-market requirements
direct effort to product development rather than asset
maintenance. Finally, dependencies between assets are
generally not visible until one tries use them in a concrete
product.

Solutions. At Axis, so-called code reviews are performed
when a consensus is present that an asset needs to be
reorganized. During a code review, the software architects
from the business units using the asset gather to redesign the
asset in order to improve its structure. As a complement,
both Axis and Securitas have responsibles for each asset and
evolution of assets has to be approved by them. However,
because of time-to-market pressures, these responsibles
sometimes need to accept less-than-optimal solutions.
Thirdly, to improve on these issues, management must
relieve some time-to-market pressure, accepting delay of one
product so that subsequent products can enter the market
sooner. Finally, explicitly documenting asset dependencies
will at least visualize them, so that dealing with the
dependencies can planned.

Research issues. Several topics for future research can be
identified. First, methods and associated tools for code
reengineering and reorganization would ease the task of asset
maintenance. Second, as mentioned earlier, high-level
abstractions for representing subsystems and large
components are lacking in notations as well as in
programming languages. These abstractions should also
allow for representing dependencies between components as
well as the type of dependencies. Finally, economic models
are needed for calculating the economic value of asset and,
in particular, the effect of various types of changes and
extensions on the asset value.

Assets in new contexts
Problem. Since assets represent considerable investments,
the ambition is to use assets in as many products and

549

domains as possible. Howevm, once an asset is developed for
a particular domain, product category and operating context,
it often proves to be hard to apply the asset in different
domains, products or operating contexts. The design of
assets often hardwires design decisions concerning these
aspects unless the type of variability is known and required
at design time.,

Example. The main asset for Securitas is the highly
successful fire-alarm system. In the near future, Securitas
intends to develop a similar asset for the domain of intruder-
alarm systems. Since the domains have many aspects in
common, their intention is to reuse the firealarm asset and
apply it to the intruder alarm domain, rather than developing
the asset from scratch. However, initial investigations show
that the domain change for the asset is not a trivial endeavor
either.

Causes. Both the state-of-practice as well as leading authors
on reusable software, e.g., [8], design for required variability
only. That is, only the variability known at asset design time
is incorporated in the asset. Since the requirements
constantly evolve, requirement changes related to the
domain, product category or context generally appear after
design time. Consequently, it then often proves hard to apply
the asset in the new environment. A second factor
complicating redesign of the asset is that domain-, product
category- and context-specific functionality are intertwined
early in the design and implementation and no means for late
composition are available.

Solutions. Two approach can be identified to help address
this problem. First, an extensive analysis of possible future
requirements on the product-line should be conducted on a
regular basis. The analysis should be based on the business
strategy, developments in software industry and (future)
customer needs. Second, during the design the engineers
should design to explicitly separate context-specifics,
domain-specifics and product category specifics.
Architectural styles such as layering [171 and design patterns
such as the strategy pattern [7] help to separate different
types of functionality.

Research issues. There is a general acceptance in software
industry that design for reusability should only incorporate
those points of variability that have been identified as likely
to occur, because variability costs in performance and in
software complexity. Thus software should be designed so
that it is easy to add variation points afterwards. However, it
is unclear how one should design software to achieve that.
Secondly, as discussed in section , late composition of
different types of functionality could alleviate the identified
problems. Approaches such as aspect-oriented programming
[lo] and the layered object model [2] investigate such
solutions, but more research is needed.

Documentation
Problem. Although most software is documented for
maintenance purposes, documentation techniques explaining
how to reuse software are still considerably less mature. (See
[15] for a detailed discussion) This problem is complicated
by the low priority of documentation of assets in most

organizations and the backlog of most documentation,
causing the software engineer to be uncertain about whether
the documentation is valid for the latest version of the
reusable asset. One interviewed software engineer suggested
to require executable code in the documentation so one
would be able to check the correctness of a part of the
documentation by compiling the associated example code.

Example. At Axis, both the protocol framework and the file
system framework have evolved considerably recently. One
product, CD servers, a product in the storage servers
category, is still using an old version of the file system
framework. When investigating how to upgrade their
software to using latest version of all assets, they identified
the aforementioned documentation problems.

Causes. First, documentation generally has a low priority
compared to other tasks. This is reinforced by the availability
of experienced engineers that know the assets well enough to
answer questions normally found in documentation.
Obviously, this approach, although working in small
development organizations, easily fails in larger
departments. Secondly, because a documentation backlog
exists, the most relevant version, i.e., the last one, is never
documented. Finally, as mentioned in section , lack of
appropriate documentation techniques for reusable assets is a
known problem [151.

Solutions. Defining documentation as an explicit part of the
asset evolution process, not allowing engineers to proceed
without delivering updated documentation as well might
alleviate the situation. Secondly, documentation as an
activity has to receive higher status and more support from
management. Thirdly, several approaches to documenting
reusable assets exist, such as example applications, recipes,
cookbooks, pattern languages, interface and interaction
contracts, design patterns, framework overviews and
reference manuals. Despite their not being perfect,
documentation using one or some of these techniques is
certainly preferable over not documenting at all.

Research issues. Relevant research issues have been
discussed in earlier sections.

Tool support
Problem. The lack of tool support is a twofold issue. First,
internally developed tool support requires, similar to the
assets that are part of product-line architect’ures, an upfront
investment. Because of the immediate negative effect on
time-to-market of products that are currently under
development, most software engineers reported that it was
extremely hard to get support for tool development despite
the obvious benefits. Second, both companies reported on
the lack of commercial tools that were available on the
market. Both develop embedded systems and even very
general tools such as compilers and tools for testing were not
commercially available (at least not in the required versions),
causing them to either maintain proprietary tools or tool
extensions or perform tasks manually that could relatively
easy be automated.

Example, Securitas uses the C++ programming language
because its main asset, the fire-alarm framework, extensively

550

uses object-oriented concepts. The hardware used in fire-
alarm systems contains a microprocessor for which no C++
compiler is available. Consequently, Securitas uses
CFRONT for converting C++ code to C code, then a
proprietary tool for making changes to the C code, then a
commercial C compiler generating object code and finally a
proprietary tool for rearranging the object code.

Causes. The mix of commercial and proprietary tool support
described above is quite typical. At Axis, but also at other
companies, we have seen similar cases. One of the causes
seems to be that commercial tools generally are very much
closed and users of a tool have no means to change its
behavior. A second possible cause is that either the market
for such specialized tools for embedded systems is too small
to make it economically viable for tool developers to develop
such tools or that market mechanisms are not working
optimally so that specialized tool developers are unable to
get in contact with interested customers. Finally, the limited
support for proprietary tool development is caused by the
prioritization by management discussed earlier.

Solutions. Both the closedness of commercial tools and the
market-related issues cannot be addressed by individual
software development organizations. Proprietary tool
development, on the other hand, is within the control these
organizations. Internal tool development should be seen as a
strategic issue and treated as an investment. It is important to
identify that tool generally automate tasks, allowing them to
be performed by less qualified personnel thereby freeing
experienced software engineers for other tasks. Considering
the currently tight market for software engineers, this
argument may be as important as the economic one.

Research issues. Opening up tools is an important research
issue that is investigated by researchers in CASE and other
tools. However, these tools generally focus on general rather
than embedded systems, which may have different
requirements. Concluding, this remains a topic for further
research.

Management support
Problem. The interviewed companies as well as other
organizations that we have contact with indicate the
difficulty of getting support for moving towards a PLA-
based product development model and away from the oneat-
a-time mentality. The initial investment in a PLA will
generally delay one or more products in their time-to-market,
which often is considered a major problem, despite the
future benefits. In addition, in the long term, a considerable
part of the work force will work on domain engineering
rather than on product engineering, which gives a ineffective
impression to non-technical persons.

Example. Several projects in Securitas had the ambition to
develop reusable assets as part of product development. As
in most projects, these project often had problems to keep
their deadlines. Whenever this situation came up and a
decision concerning the project had to be taken, it was
decided to cancel the development of the reusable assets and
focus on implementing the product functionality only. One
cannot predict alternative futures, but it seems save to

assume that if Securitas had accepted a few delayed
deadlines over the years, it would now both have had a larger
base of reusable assets and more advanced products.

Causes. One can identify three main causes for this problem.
First, senior management generally has limited technical
understanding making it difficult for them to see the benefits
of a product-line architecture approach. Second, the extreme
focus on time-to-market does not allow for later deadlines
that might pay off in later products. Finally, as mentioned
earlier, there is a lack of economic models that show the
benefit of investment in product-line architectures and
associated documentation and tool support.

Solutions. The limited technical understanding of senior
management could be addressed by exposing managers more
to the details and technical aspects of projects. Secondly, the
development of a product-line architecture with associated
assets is a strategic issue and decisions should be taken at the
appropriate level. The consequences for the time-to-market
of products under development should be balanced against
the future returns.

Research issues. Most research issues relevant for this
problem have already been mentioned in earlier sections, e.g.
the development of economic models for product-line
architecture investment.

Effort estimation
Problem. Whereas the interviewed companies have obtained
reasonable accuracy in effort estimation for product
development and maintenance, it proves to be extremely
hard to estimate the development of reusable assets, such as
object-oriented frameworks. This is, among others, due to
the abstract nature of the assets and the required higher levels
of variability, consequently requiring iterative development.
Although one iteration can be planned, it is very hard to
predict the number of iterations that are required for
sufficiently maturing the asset.

Example. The first version of the fire-alarm framework
developed by Securitas took, despite the extensive domain
knowledge by the involved engineers, several iterations
before the most important abstractions were identified.
Atthough each iteration could be planned, it was hard to
know whether the framework would be sufficiently mature
after a particular iteration. Maturity was very important since
fire-alarm systems are highly critical systems that have to go
through an extensive certification process.

Causes. The main cause for this problem is the fact that the
requirements for a reusable asset are much less clear than for
a concrete product. The asset should implement, at least, the
common functionality of a product-line and provide
sufficient configurability to include product-specific
functionality. In addition, it should implement the superset of
the quality requirements of the products in the product-line.
Since, especially quality, requirements are not always clear
for the existing products and, obviously, missing for future
products. Thirdly, reusable assets are generally more abstract
than products and several authors, e.g., 191, have reported on
the difficulty of developing reusable software. Finally,
software engineers, being technical people, can easily get

551

carried away in the design of reusable assets, trying to
include more and more features in the design. We refer to [3]
for a more extensive discussion of this issue.

Solutions. The foremost solution approach is to collect and
analyse the requirements of existi.ng and especially future
Ijroducts in the product-line and, based on that analysis,
identify conflicts and variations between products. We
believe that clearer requirements lead to easier effort
estimation and fewer design iterations. Secondly, staff
requirements are much higher in design of reusable assets
than in regular product development. Several authors, e.g.,
[14] and 161, reported about the importance of involving the
most experienced engineers in these projects and warn
against compromising on staff requirements.

Research issues. A number of research issues can be
identified. First, only very few, design methods focus on
design of reusable assets, e.g. [8], or on architectural design,
e.g. [ll, 4, 181. Considerable more research is required on
methods for design of product-line architectures. Second,
effort estimation techniques generally do not incorporate
variation points or variability in general. New techniques
should be investigated in which these aspects are included.

5 Issues
In the previous section, problems associated with product-
line architecture based software development were
discussed. In this section, a number of issues are discussed
that address the problem of selecting or balancing between
two conflicting aspects. Different from problems, issues
represent fundamental choices for the development
organization related to organizational issues, process issues
or software design issues. In some issues, the two
organizations made the same decisions, whereas in other
issues, they are on different sides.

Domain engineering units
In the interviewed companies, first instances of the reusable
assets were generally developed as a separate project without
an explicit product in mind. However, different from the
models described in [6,14,8,16], the evolution of the assets
was performed as part of product development. The explicit
division in domain engineering and application engineering
discussed by the aforementioned authors was not present at
the interviewed companies.

The interviewed engineers were ambivalent towards separate
domain engineering units. The advantages of separate
domain engineering units, such as being able to spend
considerable time and effort on thorough designs of assets
were generally recognized. On the other hand, people felt
that a domain engineering group could easily get lost in
wonderfully high abstractions and highly reusable code that
did not quite fulfil the requirements of the application
engineers. In addition, having explicit groups for domain and
application engineering requires a relatively large software
development department consisting of at least several tens of
persons.

One can conclude that it is unclear if and, if so, in what cases
an organization should have separate domain engineering
units rather than performing asset development in the

application engineering units. The availability of guidelines
helping managers to decide on this would be highly
beneficial.

When to split off products from the product-line
Another difficult issue to decide upon is when to separate a
product from the product line or when to merge a product
with the product line. In the case of Axis, the printer server
software was kept out of the network-server product line for
three reasons, i.e., the printer server product contains
considerable amounts of software specific to printer servers,
traditionally the printer server software was written in C,
whereas the product-line software written in C++, i.e., a
programming language mismatch, and, thirdly, the quality
requirements for the printer server were different from the
quality requirements for the other network products. In the
printer server, code size was the primary requirement, with
time-to-market as a secondary requirements, whereas in the
other network server products, performance and time-to-
market were both primary requirements. The difference in
quality requirements called for a different organization of the
software assets, optimizing their usability for the other
network server products.

Deciding to include or exclude a product in the product-line
is a complex decision to make, involving many aspects.
Guidelines or methods for making more objective decisions
would be valuable to technical managers.

Business units versus development department
When developing multiple products in one organization,
there basically are two organizational structures one can
choose. First, one can organize around the products, creating
business units that handle all software for a particular
product. The business units should cooperate in order to
develop and maintain reusable assets. Second, one may have
a development department responsible for all products and
staff is assigned to product development or maintenance
projects. In this case, the department is organized more
around the commonalities of the products than the specifics.

Interestingly enough, both interviewed companies have used
both models. Up to a year ago, Axis had one development
department and decided to reorganize in business units
focusing around products or product categories, such as
storage servers. Their reason for reorganizing was that a
single department of 60 engineers was to hard to manage and
that individual products got too little attention. Securitas
Larm, on the other hand, had business units organized
around its products earlier and decided, a couple of years
ago, bring all engineers together in a development
department in order to better exploit the commonalities
between their products. Securitas Larm has a staff of about
25 engineers and is thus considerably smaller than Axis.

There are no general answers to which organizational form is
best. Engineers at Axis do acknowledge that evolution of
common assets has become harder and that synchronization
between the business units is a problem. The underlying
cause seems to be that whenever engineers at one business
unit are forced to define an extension to a reusable asset, they
find it hard to generalize their concrete need so that the

5.52

requirements of other products are covered as well and,
secondly, they are unable to test whether the new version of
the asset works for all other products as well. The latter has
caused problems when product builds for one product
suddenly broke due to evolution of an incorporated asset by
another business unit.

To address the sometimes too specific evolution of reusable
assets, Axis uses “code reviews” which are meetings where
an asset is reengineered and redesigned where necessary by a
group of architects from the different business units to
improve the generality and available variability of the asset.
This activity would not be required when Axis had domain
engineering in place as a separate process, but, as we
discussed earlier, Axis is not convinced of the associated
advantages.

Time-to-market versus asset quality
The driving issue in both companies (as well as in software
industry as a whole) is the time-to-market (TIM)
requirement. All engineers agreed that the TTM requirement
sacrificed asset quality in terms of generality, variability and
maintainability and the development effort required for
subsequent products. However, different from the wide-
spread belief that engineers are victims of (senior)
management that forces these decision on them, we saw that
even when the engineers are part of the decision process, the
TTM requirement was prioritized over asset quality.

Again, the lack of economic models clearly showing the
return on investment of PLA and reusable assets, the cost of
time-to-market delays and the benefits of earlier TTM of
subsequent products causes decisions to be made on
subjective rather than objective grounds.

Common feature core versus feature superset
An important decision that has to be taken is what to include
in the product-line architecture and what to include in the
product-specific and product variation specific code. Axis
uses the more traditional commonality-based approach,
where the PLA includes the functionality shared between the
products and excludes the rest. Securitas, on the other hand,
uses the ‘feature superset’ approach where the PLA
encompasses the merged product functionality, thereby
reducing each product as a subset of the PLA. The advantage
of the latter approach is that only a single code base has to be
maintained and the products can generated from this code
base. However, this approach requires a very good
understanding of the domain and the domain in itself should
be rather stable. In addition, the included products should not
contain functionality that conflicts with the other products.
Concluding, which approach to take is again all but trivial
and depends on the situation. However, the lack of decision
models complicates things even further.

6 Related Work
Product-line architecture based development of software
products has been studied by others as well. Macala et al.
[14] discuss a demonstration project using product-line
development in Boeing in cooperation with the US Navy as
part of the STARS initiative. The authors identify four
elements of product-line development, i.e., process-driven,

domain-specific, technology support and architecture-
centric. The lessons learned during the project are discussed
and a set of recommendations is presented. Especially the
recommendations focus on the introduction of product-line
development, whereas’ we investigated the problems of
product-line based development after its introduction. A
second difference between our studies is that the companies
studied in this paper use a product-line architecture as part of
their main business and are critically dependent on it for
their success and survival. Finally, the types of business
domains of the companies in the studies are fundamentally
different.

Dike1 et al. [6] discuss lessons learned from using a product-
line architecture in Nortel and present six principles, i.e.,
focusing on simplification, adapting to future needs,
establishing architectural rhythm, partnering with
stakeholders, maintaining vision and managing risks and
opportunities. Some of the principles we are able to confirm
in our study, such as the need to deal with complexity
through simplification, whereas we believe that other
principles are not generally applicable, such as the need for
an architectural rhythm and adapting to future needs.

The report from the product-line practice workshop held by
SE1 [16] presents an overview of the state-of-practice in a
number of large software development organizations.
Similar to this paper, contextual, technology, organizational
and business aspects are discussed and a number of critical
factors are identified, including deep domain expertise, well-
defined architecture, distinct architect, solid business case,
management commitment and support and domain
engineering unit. Again, in our case study, we are able to
confirm some critical factors, such as the need for a well-
defined architecture and management commitment, whereas
other factors seem uncritical at the interviewed organizations
such as a domain engineering unit and a distinct architect.
Also Simons [191 reacts against using domain engineering
units and suggests a unified lifecycle model.

Jacobsen et al. [8] presents an complete approach to
institutionalizing software reuse in an organizational context,
including technology, process and business aspects. The
book is based are primarily on experiences from the HP and
Ericsson context and contains excellent suggestions also
suitable for the interviewed companies.

Several approaches to documenting reusable assets have
been proposed and studied. The ET++ framework is
documented using example applications, a cookbook and a
reference manual [13]. Lajoie and Keller [12] discuss an
approach using cross-referenced recipes, design patterns,
and contracts. Mattsson [15] classifies documentation of
object-oriented frameworks into approaches using
cookbooks, design patterns or a framework description
language. Despite all the research on documentation, it
remains a time-consuming activity for the documenter, the
user of the documentation or both.

7 Conclusions
Product-line architectures have received attention especially
in industry since it provides a means to exploit the

553

commonalities between related products and thereby reduce
development cost and increasing quality. In this paper, we
have presented a case study involving two Swedish
companies, Axis Communications AB and Securitas Larm
AB, that use product-line architectures in their product
development. Key persons i.n these organizations have been
interviewed and information has been collected from
documents and other sources.

In the previous sections, several problems and issues were
described that were identified in the case study organizations
and generalized to a wider context. These problems are
summarized with respect to the categories mentioned in the
introduction, i.e., technology, process, organization and
business. Since the stress of the case study is on technical
and process issues are organization and business treated as a
single unit. In the analysis we focus on the causes that we
believe underlie the identified problems.

A number of research issues apply to more than one
problem. First, high-level abstractions, such as subsystems,
asset dependencies and provided and required interfaces, are
not present in commercially used programming languages.
Second, documentation of reusable assets remains a major
issue inhibiting the success of software reuse, despite the
wide variety of available approaches. Third, a well-defined,
enforceable and tested process for asset development and
evolution that can be adapted to concrete contexts in
software development organizations is required. Fourth,
programming and architecture description language
approaches allowing for late composition of different types
of functionality, e.g., domain-, context-, quality attribute-
and product-specific functionality, should be investigated
further. Finally, tested and relatively simple economic
models for investment in reusable assets, for the effects of
changes and evolution on asset value and for comparing the
effect of time-to-market delays due to the development of
reusable assets to future benefits would greatly contribute to
objective, rather subjective, management of the discussed
issues.

Concluding, product-line architectures can and are
successfully applied in small- and medium-sized enterprises.
These organizations are struggling with a number of difficult
problems and challenging issues, but the general consensus
is that a product-line architecture approach is beneficial, if
not crucial, for the continued success of the interviewed
organizations,

ACKNOWLEDGMENTS
The author would like to thank the software architects and
engineers and technical managers at Axis Communications
AB and Sect&as Larm AB; in particular Torbjorn Soderberg
and Rutger P&son.

REFERENCES
1.

2.

J. Bosch, ‘Design Patterns as Language Constructs’,
Journal of Object-Oriented Programming, Vol. 11, No. 2,
pp. 18-32, May 1998.
J. Bosch, ‘Object Acquaintance Selection and Binding,’
Theory and Practice of Object Systems, Vol. 4, No. 3, pp.
151-1681998.

3.

4.

5.

6.

7.

8.

9.

J. Bosch, ‘Design of an Object-Oriented Framework for
Measurement Systems,’ Object-Oriented Application
Frameworks, M. Fayad, D. Schmidt, R. Johnson (eds.),
John Wiley, 1998. (forthcoming), March 1998.
J. Bosch, P. Molin, ‘Software Architecture Design: Eval-
uation and Transformation,’ Proceedings ECBS’99
(forthcoming), March 1999.
F. Buschmann, C. J%kel, R. Meunier, H. Rohnert,
M.Stahl, Pattern-Oriented Sojtware Architecture -A Sys-
tem of Patterns, John Wiley & Sons, 1996.
D. Dikel, D. Kane, S. Ornburn, W. Loftus, J. Wilson,
‘Applying Software Product-Line Architecture,’ IEEE
Computer, pp. 49-55, August 1997.
E. Gamma, R. Helm, R. Johnson, J.O. Vlissides, Design
Patterns - Elements of Reusable Object-Oriented So)?-
ware, Addison-Wesley, 1994.
I. Jacobsen, M. Griss, P. Jijnsson, Sojtware Reuse - Archi-
tecture, Process and Organization for Business Success,
Addison-Wesley, 1997.
R. Johnson, B. Foote, ‘Designing Reusable Classes,’
Journal of Object-Oriented Programming, Vol. 1 (2), pp,
22-25, 1988.

10. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J-M. Loingtier, J. Irwin, ‘Aspect-Orie.nted Pro-
gramming,’ Proceedings of ECOOP’97 (invited paper),
pp. 220-242, LNCS 1241,1997.

11, P.B. Kruchten, ‘The 4+1 View Model of Architecture,’
IEEE Software, pp. 42-50, November 1995.

12. Richard Lajoie and Rudolf K. Keller, ‘Design and reuse
in object-oriented frameworks: Patterns, contracts, and
motifs in concert,’ Object-Oriented Technology for Data-
base and SofnYare Systems, V.S. Alagar and R. Missaoui
(eds), World Scientific Publishing, Singapore, 1995, pp.
295-312.

13. T. Lewis et al., Object-Oriented Application Frame-
works, Manning Publications, Greenwich, 1995.

14.R.R. Macala, L.D. Stuckey, D.C. Gross, ‘Managing
Domain-Specific Product-Line Development,’ IEEE Sofr-
ware, pp. 57-67, 1996.

15. M.M. Mattsson, ‘Object-Oriented Frameworks - a survey
of methodological issues’, Licentiate thesis, Department
of Computer Science, Lund University, -1996,

16.L. Bass, P. Clements, S. Cohen, L. Northrop, J. Withey,
‘Product Line Practice Workshop Report, Technical
Report CMUSEZ-97-TR-003, Software Engineering
Institute, June 1997.

17. M Shaw, D. Garlan, Sofirvare Architecture - Perspectives
on an Emerging Discipline, Prentice-Hall, 1996.

18. S. Shlaer, S.J. Mellor, ‘Recursive Design of an Applica-
tion-Independent Architecture,’ IEEE Software, pp. 61-
72, January/February 1997.

19. M.A. Simos, ‘Lateral Domains: Beyond Product-Line
Thinking,’ Proceedings Workshop on Institutionalizing
Software Reuse (WISR-8), 1997.

20. C. Szyperski, Component Software - Beyond Object-Ori-
ented Programming, Addison-Wesley, 1997.

554

