
Contextual Programming
(Doctoral Symposium-Extended Abstract)

Robert J. Walker
Department of Computer Science
University of British Columbia

201-2366 Main Mall
Vancouver, BC, Canada V6T lZ4

+16048223061
walker@cs.ubc.ca

ABSTRACT
When information external to a component is not of impor-
tance to the implementation of that component but is present
within it as an artifact of design or programming mecha-
nisms, system structure suffers, resulting in greater difficul-
ties in software evolution and reuse. I am investigating an ap-
proach to lessening the effects of such extraneous embedded
knowledge through the use of dynamic execution information
and static structural information, which comprise the concept
of context.

1 THE PROBLEM
Current approaches to design and programming cause ex-
ternal information to be encoded into components. When
this information is not of importance to the essence of the
these components but is an artifact of design or programming
mechanisms, system structure suffers, resulting in greater
difficulties in software evolution and reuse. I refer to knowl-
edge of the external world that is not explicitly required for
the specification of a component as extraneous embedded
knowledge (EEK). EEK comes in many forms; space does
not permit a full recitation.

As an example of EEK, consider three methods: A, B, and C.

Method A calls B, and B subsequently calls C (Figure la). In
these calls, various parameters are passed; among these is a
piece of information called snip. Method C requires snip
for its execution and A is in the best position to obtain or cal-
culate snip. Method B does not use snip in any way ex-
cept to pass it on to C. At some point, it is decided that C

should be replaced within B by a new method, D (Figure 1 b).
Method D serves the same purpose as C, but does not require
that snip be passed to it. Since we do not want to break all of
B’s clients, we do not change the interface to B. Our system
now performs work that is unneeded and conducts commu-
nication that is unwanted; aside from inefficiency, the code
in support of this EEK obscures the meaningful operations

Permission to make digiti or hard copies of all or part or this work tbl
personal or classroom use is granted without kc provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To COPY
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.
ICSE ‘99 Los Angeles CA
Copyright ACM 1999 I-581 13-074-O/99/05.$5.00

within these methods. The system is harder to change and is
more likely to contain errors.

EEK arises because of the early binding of names by pro-
grammers and the fragility of encapsulation in interface pro-
tocols. Current design and programming mechanisms neces-
sitate these restrictions; a new approach is needed to reduce
the influence of EEK.

A B C A B D

(a) (b)

Figure 1. Method cis replaced with method9 which does not need
the parameter sent from method A, but the data-flow from A still

passes to B, which doesnot use it, 7%e solid arrows indicate control-
flow, the dotted are data-flow.

2 PRIOR RESEARCH
Global variables are a standard means of sharing informa-
tion without passing parameters. There are several standard
objections to the proliferation of global variables, including
name-space collisions and violation of encapsulation [6]. Ev-
ery component accessing a gIobal variable is strongly depen-
dent on its name and type, increasing component coupling
and the presence of EEK.

Predicate classes [l] permit the type of an object to be tran-
siently redefined according to its state (or according to a user-
defined predicate that can be fairly arbitrary). Context rela-
tions [5] provide a language-based mechanism in support of
the Strategy design pattern by allowing “context objects” to
be dynamically attached to instances. Subjectivity [2] allows
different method implementations to be executed for a mes-
sage depending on the run-time type of the sender of the mes-
sage. Such a mechanism could provide flexibility in interpre-
tation of names within messages, but would still require too
restrictive an agreement on the meaning of those names. All
three of these mechanisms permit significant dynamic flexi-
bility, and hence might address the need for eliminating early
binding, but they do not provide any special means for elimi-
nating the forms of EEK not arising from early binding, such

734

http://crossmark.crossref.org/dialog/?doi=10.1145%2F302405.303004&domain=pdf&date_stamp=1999-05-16

as extraneous parameters (Figure 1).

Dynamic scoping (e.g., in Lisp) allows names to be bound
into an external, non-lexical scope at run-time. This is no-
toriously fraught with evolutionary problems, as there is no
guarantee that identical names in different scopes will be se-
mantically equivalent. Even if they initially are semantically
equivalent, an intervening scope can later be introduced with
a non-equivalent variable name.

Reflection [4] can allow a program to monitor and alter itself
dynamically. However, reflection is a general principle that
could be used by other mechanisms in mitigating the effects
of EEK and not a mechanism in itself.

Behaviorally adaptive objects [3] separate objects into two
separate, interacting entities: crystals to represent the state of
an object, receive messages, and select behaviour, and con-
texts to define operations. If more than one context is appro-
priate for the response to a message, the crystal must explic-
itly order the behaviours it selects and somehow resolve con-
flicts between them. Contexts are defined across sets of crys-
tals too, tightly coupling them as a result. Behaviorally adap-
tive objects are fraught with EEK-even more than other ap-
proaches due to the tight coupling of crystals.

Many other related mechanisms exist, but space does not per-
mit their description. No existing mechanisms address all
forms of EEK simultaneously.

3 THE APPROACH

Coupling between components can be mitigated, making
them more reusable and easier to change, by reducing or
eliminating the EEK within them. Such a reduction is possi-
ble through extensions to the concepts of reflection and dis-
patch.

Reflection is ordinarily defined in terms of monitoring and al-
tering what is currently occurring within a system-not what
has already taken place. Many attempts have been made to
leverage the idea of “context” in interpreting messages or se-
lecting implementations (e.g., [5, 31). These approaches are
quite static, looking only at the current state of the system,
or more likely, some small portion thereof. But the previous
state and execution of the system have a lot to say about what
should happen next: whether certain components have been
used yet when they need to have been, or which library should
be used in conjunction with servicing a message from a par-
ticularobject. Just as in human speech, we can use statements
and concepts from earlier communication to understand cur-
rent requests, and we can modify our responses according to
whom we are speaking and under what circumstances. As
long as messages do not become ambiguous, we can be more
concise, providing only that information which is really nec-
essary.

More concretely, consider the problem of extraneous param-
eters again, where component c requires snip from A, and

it happens to be passed through B because that is where
the control-flow goes. Since snip is extraneous to B, it
is needed by B only because of language constraints-the
logical service provided by B does not suggest a need for
snip. Therefore, snip should bypass B altogether (Fig-
ure 2). When the control-flow arrives at C, snip should be
filled in from context. The context mechanism might look
for the most recent object of snip's type that was “floating
in limbo”-in context, that is-and fill in the appropriate pa-
rameter to C. Or it might look for the name snip and do the
filling in that way. To make this safer than dynamic scoping,
the identity of the component or pathway providing snip
could be checked against. , , l *.f11.(.2

A B C

Figure 2. The data-flow from method A bypasses B, which is not
interested in it, thereby eliminating the EEK from B that would have
otherwise been present.

Combining data-flow separation with a particular structuring
and dispatch mechanism should permit the necessary flexi-
bility to adapt components and systems to new situations. By
moving the bindings of component interactions from within
components to their boundaries, the components should be
more easily reusable and the system more easily evolvable.
With the elimination of extraneous constraints and code aris-
ing from too much knowledge about particular components,
their interfaces, and protocols, components should be cleaner
to write and more closely represent their core concern.

ACKNOWLEDGEMENTS
This work would not have been possible without the help and
encouragement of Gail Murphy.

REFERENCES

VI

PI

131

[41

PI

161

C. Chambers. Predicate classes. In ECOOP ‘93-Object-
Oriented Programming, pages 268-296.1993. LNCS 707.

W. Harrison and H. Ossher. Subject-oriented programming: A
critique of pure objects. In Proc. OOPSLA ‘93. pages 41 l-428,
1993.

S. Lang and P. Lockemann. Behaviorally adaptive objects. The-
ory and Practice of Object Systems, 4(3):169-182, 1998.

R Maes. Concepts and experiments in computational reflection.
In Proc. OOPSL4 ‘87, pages 147-155.1987.

L. Seiter, J. Palsberg, and K. Lieberherr. Evolution of object
behavior using context relations. IEEE Trans. on Sojiware En-
gineering, 24(1):79-92, 1998.

W. Wulf and M. Shaw. Global variable considered harmful.
SIGPLAN Notices, 8(2):28-34, 1973.

735

