

Yuan, F., Guo, G., Jose, J. M., Chen, L., Yu, H., and Zhang, W. (2017)

BoostFM: Boosted Factorization Machines for Top-N Feature-based

Recommendation. In: IUI 2017: 22nd Annual Meeting of the Intelligent

User Interfaces Community, Limassol, Cyprus, 13-16 March 2017, pp. 45-

54. ISBN 9781450343480 (doi:10.1145/3025171.3025211)

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/135914/

Deposited on: 31 January 2017

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk33640

http://dx.doi.org/10.1145/3025171.3025211
http://eprints.gla.ac.uk/135914/
http://eprints.gla.ac.uk/135914/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

BoostFM: Boosted Factorization Machines for Top-N
Feature-based Recommendation

Fajie Yuan† , Guibing Guo‡ , Joemon M. Jose† , Long Chen† ,

Haitao YuT† , Weinan Zhang⊥

† University of Glasgow, UK ‡ Northeastern University, China
TUniversity of Tsukuba, Japan ⊥Shanghai Jiao Tong University, China

f.yuan.1@research.gla.ac.uk, guogb@swc.neu.edu.cn, wnzhang@sjtu.edu.cn

ABSTRACT

Feature-based matrix factorization techniques such as Fac-
torization Machines (FM) have been proven to achieve im-
pressive accuracy for the rating prediction task. However,
most common recommendation scenarios are formulated as
a top-N item ranking problem with implicit feedback (e.g.,
clicks, purchases) rather than explicit ratings. To address this
problem, with both implicit feedback and feature informa-
tion, we propose a feature-based collaborative boosting recom-
mender called BoostFM, which integrates boosting into fac-
torization models during the process of item ranking. Specifi-
cally, BoostFM is an adaptive boosting framework that linearly
combines multiple homogeneous component recommenders,
which are repeatedly constructed on the basis of the individual
FM model by a re-weighting scheme. Two ways are proposed
to efficiently train the component recommenders from the
perspectives of both pairwise and listwise Learning-to-Rank
(L2R). The properties of our proposed method are empirically
studied on three real-world datasets. The experimental results
show that BoostFM outperforms a number of state-of-the-art
approaches for top-N recommendation.

ACM Classification Keywords

1.2.6 Artificial Intelligence: Learning (K.3.2)

Author Keywords

Factorization Machines; BoostFM; Pairwise; Listwise;
Feature-based; Top-N Ranking

INTRODUCTION

Recently, matrix factorization (MF) models have gained much
attention in collaborative filtering (CF) recommender systems
due to their good performance and efficiency when dealing
with large sparse datasets [4]. However, classical MF meth-
ods only involve the interactions between users and items but
no consideration of additional auxiliary information, such as

the context and item side information. In practice, it is com-
mon that auxiliary information is available in recommender
systems. Thus, we may regard such information as features
to help improve recommendation quality, which is hereafter
referred to as Feature-based Recommendation1 . As a matter
of fact, many MF variants have been proposed in recent litera-
ture [13, 14]. Most of these models rely on strict assumptions
and usually require complicated inference when being adapted
for a new problem, though they are designed to incorporate
certain types of feature information in specific settings. There-
fore, the models capable of integrating any types of auxiliary
information are more practical, as well as more elegant in
theory. So far, two of the most flexible and effective methods
for feature representation in CF are based on Tensor Factor-
ization (TF) [12, 27] and Factorization Machines (FM) [21,
4]. Generally, the type of feature information used in TF is
usually limited to categorical variables. By contrast, FM takes
as input both categorical and real-valued variables, and thus is
more general.

It has been recognized that the original FM model is presented
for the rating (or other ordering information on user feedback)
prediction task, the performance of which is usually evaluated
by the metric Root Mean Square Error (RMSE). However,
achieving good accuracy in terms of RMSE usually does not
guarantee equivalent effectiveness in the case of top-N item
recommendation [28]. On the other hand, in practice, most
prevalent user feedback is not explicit (e.g., in terms of ratings)
but implicit [23]. Examples for implicit feedback are clicks,
purchases, watched videos or played songs, which are much
cheaper to obtain since a user does not have to express his
taste explicitly. Implicit feedback is often one-class [22], i.e.,
only positive class is available, and thus algorithms optimized
for multiple classes cannot be directly applied for implicit
feedback data [31, 32]. In this paper, we study the problem
of optimizing item ranking with implicit feedback and feature
information.

To deal with both feature information and implicit feedback,
we employ the boosting technique to improve the recommen-
dation accuracy by combing the power of multiple individ-
ual ‘weak recommender’. Boosting techniques were first em-
ployed to improve the performance of classification by integrat-

1

In this regard, the classical user-item based recommendation can be treated as the
simplest form of Feature-based Recommendation (where users and items are read as
two basic features). Note that we target at modeling more general features in this work.

mailto:f.yuan.1@research.gla.ac.uk
mailto:f.yuan.1@research.gla.ac.uk
mailto:wnzhang@sjtu.edu.cn

ing a series of weak classifiers (i.e., the classification accuracy
rate should be larger than 0.5) into a stronger one with better
performance [11]. Previous research has proven that boosting
techniques usually come with better convergence properties
and stability [2, 5]. So far, the most common implementation
of boosting is AdaBoost [8], although some newer boosting
variants are reported. We find that boosting techniques have
been recently introduced to solve recommendation problems
with better results than single CF algorithms [11, 28, 16, 5].
However, we emphasize that all existing solutions are based
on the basic matrix factorization model, which fails to incor-
porate more general feature information. Moreover, in our
work the learning process of each component recommender
is optimized for (item) ranking with implicit feedback, which
differs from previous works either optimized for rating predic-
tion [11] or item ranking based on explicit rating datasets [5,
28]. Finally, we formulate feature information as context and
item (with side information) vectors, the flexible representa-
tion of which allows to describe various input formats such as
user profile, item attributes, successive context as well as their
combinations. Thanks to this, in our boosting procedure each
observed context-item pair is able to be treated as a training
instance for weighting calculation, which makes our work
distinguished from other literature either treating a given user
or query as an instance.

In this paper, we propose BoostFM, a boosting approach for
top-N Feature-based Recommendation with implicit feedback,
by combining the well-known boosting framework with FM.
Specifically, we first employ FM to build the individual com-
ponent recommender and multiple homogeneous component
recommenders are linearly combined to form a strong rec-
ommender. The coefficient of each component recommender
is calculated from a weighting function designed based on a
certain performance metric (e.g., AUC and NDCG). At each
boosting round, we devise two optimization methods to train
our component recommenders inspired by ideas of both pair-
wise and listwise Learning-to-Rank (L2R). In addition, we
develop a re-weighting strategy and assign a dynamic weight
to force the optimization concentrating more on observed
context-item interactions with bad evaluation performance.
Finally, we perform experiments on three publicly available
datasets and compare BoostFM with state-of-the-art CF ap-
proaches. Our results demonstrate that BoostFM noticeably
outperforms all counterparts in terms of top-N recommenda-
tion accuracy.

RELATED WORK

The work in this paper closely relates to two research areas,
i.e., top-N Feature-based Recommendation and Boosting tech-
niques. We discuss them separately and then position our work
with respect to them.

Feature-based Recommendation

Feature-based Recommendation has gained much popularity
in recent years, and considerable efforts have been made by
researchers and practitioners. Prior works (e.g., [1]) exploited
feature information for pre- or post-filtering to make standard
models feature-aware, where potential (e.g., 2-order or even
high order) interactions between different feature variables

have not been considered, leading to unsatisfactory perfor-
mance. Recent works mostly revolve around combining fea-
ture information with factorization to directly model the user,
item and auxiliary feature variables [26, 31]. Two significant
approaches have been developed: tensor factorization (TF)
[12, 29] and Factorization Machines (FM) [21, 4]. Whereas
those works are designed to solve the rating prediction task [22,
31], the goal of item recommendation is usually regarded as
a top-N item ranking task. Motivated by this, state-of-the-art
methods by combining L2R and feature-based CF models have
been proposed with significant accuracy improvements [26,
27, 18]. For instance, TFMAP [27] employs TF to capture the
3-way user-item-context relations, and learns it by maximizing
Mean Average Precision (MAP); in the same light, CARS ex-
plores multiple objective functions to train a novel TF model.
Ranking FM [18, 31, 32, 10], on the other side, aims to ex-
ploit FM as the rating function to model the pairwise feature
interaction, and to build the ranking algorithm by maximizing
various ranking measures such as the Area Under the ROC
Curve (AUC) and the Normalized Discount Cumulative Gain
(NDCG).

Boosting

Boosting technique is a general framework for improving the
accuracy of a given learning algorithm [8, 30]. The central
idea is to repeatedly form a number of ‘weak learners’ by
using a homogeneous weak algorithm on re-weighting training
data. Then, a strong learner with boosted total performance
is created by composing weak learners linearly. Boosting
was originally proposed to enhance the performance of binary
classification, where AdaBoost (Adaptive Boosting) is the
most well-known boosting algorithm. Following this, various
extensions have been made to deal with problems of multi-
class classification [9], regression [2], and ranking [30].

Recently, researchers have proposed to construct boosting tech-
niques in Recommender Systems. For example, two boosting
frameworks inspired by AdaBoost have been presented for the
rating prediction task by applying both memory- and model-
based CF algorithms [11]. AdaMF [28] borrows the idea
from adaRank by combining matrix factorization (MF) rec-
ommender with boosting methods. The coefficient function
for each MF recommender is calculated based on the Nor-
malized Discount Cumulative Gain (NDCG) performance of
the stronger recommender. However, the component recom-
menders are constructed using the CF algorithm for rating
prediction, which is suboptimal for item recommendation task.
Similar work has been done in [5], where the component
recommender is constructed using Probability matrix factor-
ization (PMF) on explicit rating datasets.

Our work relates to above works, but differs in several signifi-
cant aspects. First, in BoostFM, the component recommender
is constructed by feature-based factorization models instead of
a simple scoring function (i.e., so-called weak learner). Again
individual FM model can easily achieve relatively good rec-
ommendation. Thus, we can regard FM as a relatively strong
recommender2 . Second, the component recommenders are

2

Previous literature has shown that AdaBoost demonstrates better generalizing perfor-
mance with correlated strong learners [15].

+ +

linear polynomial

c

c

constructed by optimizing weighted pairwise and ‘listwise’ ob-
jective functions in the form of implicit feedback, rather than
approximating users’ explicit ratings (e.g., [11, 28]). Third,
most above boosting techniques either treat a query [30], a
given user [28], or a feature vector [8] (but with explicit order-
ing information) as a unit to assign boosting instance weights,
the way of which might not be directly applied for pairwise
item comparisons with both implicit feedback and auxiliary

where vk is the k-th row vector of V with d factors. The linear
term in Eq. (1) contains unary interactions of each feature
variable xk with the target ŷ; the polynomial term models
the interaction between the k-th and kt-th latent vector with
a factorized parametrization. In [20], it has shown that the
efficiency of FM can be reduced to linear complexity O(dn)
as Eq. (1) can be mathmatically expressed as

n 1 d n n

information. To address this, we formulate a flexible feature

ŷ(x) = ∑ wk xk +

∑ ((∑ vk, f xk)
2 − ∑ v2 2

representation for describing various auxiliary information in

k=1

2
f =1

k=1

i=1

k, f xk) (3)

FM, whereby an observed context-item pair can be treated
as a training instance for boosting weight calculation. With
these advantages, our BoostFM framework and component
recommenders by two ways of optimization can be coupled
together seamlessly. To our best knowledge, BoostFM is the
first study for feature-based collaborative ranking by adopting
the boosting technique. Note it is worth mentioning that one
recent work [4] has exploited the gradient boosting algorithm
for rating prediction with FM. However, we argue that our
work targets at top-N item ranking, a completely different
recommendation task.

PRELIMINARIES

In this section, we briefly describe a key component related
to our BoostFM, i.e., Factorization Machines (FM), and a
flexible feature vector representation for different auxiliary
information. Then we present the problem formulation of
Feature-based recommendation from implicit feedback.

Factorization Machines

Factorization Machines (FM) [21] is a cutting-edge feature-
based CF algorithm, which utilizes a factorized representation
to model the nested interactions among n input variables in
feature vector x3 . In this subsection, we will show how to
employ FM to represent general feature information.

Let xc ∈ RV C be an arbitrary feature vector that represents
context c ∈ C with V C real-valued variables, and xi ∈ RV I be
a feature vector that represents item i ∈ I with V I variables

(including both item and side information), and thus we have
x = (xc , xi). For example, in a music recommender system x
could be represented as

In CF scenarios, most elements xk in x are 0. Let N(x) be the
average number of non-zero elements in all vectors, we notice

N(x) « n under sparsity (i.e., the complexity of FM becomes
O(dN(x))). Hence, we argue that exploiting FM to train a
set of component recommenders enjoys the advantage of low
computational complexity, and is thus feasible in practice.

Feature-based Recommendation from Implicit Feedback

Let C be a set of context and I a set of items. In our scenario a
set of observed interactions (i.e., so-called implicit feedback)
S ⊂ C × I are available. For example, C could be a set of users,
and I a set of music tracks, and S represents which music tracks
a user has played, i.e., (a set of) user-music interactions. As
previously mentioned, C can be fit with more general examples
with additional variables, such as user mood, social friends,
as well as spatial-temporal environments, denoted by xc , also
I might express items with additional side information, e.g.,
the artist or category of a music track, denoted by xi . Note
that non-observed interactions do not explicitly indicate an
item, e.g., j, is not relevant to c [22]. It may be the result
that the existence of j is unknown to c. The task of top-N
recommendation with implicit feedback is to recommend a
list of items that are supposed to be most relevant for a given
context but has not interacted with before. Accordingly, for
Feature-based Recommendation, the task can be formulated
as: estimating a ranking r̂(j|c) for each non-observed (c, j)
feature vector x (i.e., (xc , x j)), where r̂(j|c) is usually modeled
by a scoring function ŷ(j|c) (or ŷ(c, j) interchangeably).

For item recommendation tasks, the accuracy of a recom-
mender can be assessed by various ranking metrics, such as
AUC4 [23], NDCG [17], the Mean Average Precision (MAP)

users 10 social friends time music tracks artists [27], Precision@N and Recall@N [14], where N is the number
x = (

,.
0

-
,

.
--
.
--
.
--_

1
"---

.
--
.
--
.
--
,
--
0
..
,
,.---------------_"----------------.. ,.--_"---.. ,.----------_"-----------.. ,.------_"-------..

, , 0, 0.1, ..., 0.1, 0, 0, 1, 0, 0, ..., 1, ..., 0, 0, 1, ..., 0)
"--..,.---_ "-------------------------..,.------------------------_

c i

The commonly used 2-order FM is defined as

of recommended items. For better understanding the following
approach, we show the definitions of AUC and NDCG (per
context) as below

1 1

n n n AUC(c) =
I+

 ∑
I I+

 ∑ I(r̂(i|c) < r̂(j|c)) (4)

ŷ(c, i) = ŷ(x) = ∑ wk xk + ∑ ∑ vk , v
t xk x

t (1)
| c |

i∈Ic
| \ c |

j∈I\Ic

k=1
k k

k=1 kt =k+1 |I|

2
relr̂(i|c) 1

"-------..,.------_ "-------------------------..,.------------------------_

NDCG(c) = Zc ∑
−

log2 (r̂(i|c) + 1)

(5)

where the model parameters Θ that have to be estimated are

w ∈ Rn (n = V C + V I), V ∈ Rn×k , and ·, · is the dot product
of two latent vectors with the dimensionality d in the low rank
space

d

 vk , vkt = ∑ vk, f · vkt , f (2)
f =1

3
In the followings, scalar variables are set in the default math font, e.g., wk , vk, f , while

vectors (lower case) and matrices (upper case) are in bold face, e.g., w, V, Q.

r̂(i|c)=1

where I+ is the set of items that have been observed under con-
text c (I\I+ is the remaining items), and I(·)=1 if the condition

is true, and 0 otherwise; relr̂ represents the relevance score of a
candidate item at the position r̂, here we use a binary value 0-1
(irrelevant-relevant). Zc is calculated from the normalization
constant so that the ideal ranker will get NDCG of 1.

4
Note that maximizing a smoothed AUC is still a popular way for item recommendation

problem (e.g., [26, 22]), although it is position-independent.

ci

c

g = ∑

c∈C c + | | | I

c

c

ci

C

∑

BOOSTED FACTORIZATION MACHINES

Inspired by the AdaBoost [7, 25] algorithm for classification,
we propose a novel algorithm to solve the recommendation
problem by optimizing the item ranking. The algorithm is
referred to as Boosted Factorization Machines (BoostFM for
short).

BoostFM

Algorithm 1 BoostFM

1: Input: The observed context-item interactions S, parame-
ters E and T .

2: Output: The strong recommender g(T)

3: Initialize Q
(t)

= 1/|S|, g(0) = 0, ∀(c, i) ∈ S
4: for t =1,..., T do

5: Create component recommender ŷ(t) with Q(t) on S,

We aim at devising a set of ‘weak learner’5 sequentially to ∀(c, i) ∈ S, i.e., Algorithm 2;

model the pairwise interactions between various feature vari-
ables. Besides, the BoostFM algorithm is supposed to concen-
trate hard on optimizing the objective function defined based

6: Compute the ranking accuracy E

∀(c, i) ∈ S;
7: Compute the coefficient βt ,

r̂(c, i, y(t)) ,

on ranking measures. We observe from Eq. (4) and Eq. (5) (t)

(t)

∑(c,i)∈S Qci {1+E [r̂(c,i,y)]} 1

that the accuracy of a recommender model is determined by βt = ln(
(t)

(t)

) 2 ;

the rank positions (i.e. r̂(i|c)) of positive items i ∈ I+ of each ∑(c,i)∈S Qci {1−E [r̂(c,i,y)]}

context c. Thus, we devise a general performance measure 8: Create the strong recommender g(t) ,

function E [r̂(c, i, g)] to denote the recommendation accuracy (t) t
h=1 βh ŷ

(h) ;
associated with each observed context-item pair. The argu- 9: Update weight distribution Q(t +1) ,
ment of general function r̂(c, i, g) is the rank position of item i
for each context c, calculated by the trained function g. Thus

 Q
(t +1)

=
ci ∑

exp{−E [r̂(c,i,g(t))]}
;

[(t)

we can rewrite the ranking metric of AUC and NDCG as below 10: end for
(c,i)∈S exp{−E r̂(c,i,g

)]}

1 1 1 1
AUC=

|C|
∑

|I+ |
∑
i∈Ic

E [r̂(c, i, g)] = ∑ +

(c,i)∈S c

E [r̂(c, i, g)] (6)
|

where ŷ(t)
 is the t-th component recommender and βt ∈ R+

where
E [r̂(c, i, g)] =

1

|I\I+ |
∑

I(r̂(i|c) < r̂(j|c)) (7)

is the coefficient which is usually determined by the overall

recommendation performance of ŷ(t) at t-th boosting round.
c

j∈I\I+ BoostFM runs for T rounds and creates a new component

NDCG=
1

Zc
|C|

|I|

∑
2

relr̂(i|c) − 1

log (r̂(i|c) + 1)
1

=
|C| ∑

Zc E [r̂(c, i, g)] (8)

recommender y(t) at each round. Then the newly trained rec-
ommender is integrated to the final ensemble recommender

where
c∈C r̂(i|c)=1 2

 (c,i)∈S

1
g(t) . The minimization in Eq. (11) is converted to

E [r̂(c, i, g)] =
log2 (r̂(i|c) + 1)

(9)
arg min ∑ exp{−E

r̂(c, i, g(t−1) + βt y

(t))

} (13)

To maximize Eq. (6) or Eq. (8)6 , we propose to minimize
βt ,y

(t) ∈Φ (c,i)∈S

the following objective function (Note that 1 , 1 , Z

are

 where Φ is the set of possible component recommenders, and

normalizing constants).
|C| |I+ | c

g(t −1) = ∑t −1

(h)

h=1 βh y . To solve Eq. (13), we propose to main-

argmin ∑ {1 − E [r̂(c, i, g)]} (10)
tain a distribution of weights over each observed (c, i) pair in

the training data, denoted by matrix Q ∈ R|C|×|I|. The weight
g∈Ω

(c,i)∈S

where Ω is the set of ranking scoring functions. It is non-
trivial to directly optimize E [r̂(c, i, g)], which is clearly a non-
continuous function. Instead, we propose to minimize an upper

value on the (c, i) training instance at round t is denoted by

Q
(t)

. More specifically, the weight distribution reflects the
emphasis on the component recommender. At each boosting

round, weight values Q
(t)

on (c, i) pairs with low rank perfor-
bound of Eq. (10) (by leveraging the property e−x ≥ 1 − x

ci
mance by the ensemble strong recommender (i.e., Eq. (12)) are

(x ∈ R)) such that it can be fitted into the AdaBoost framework
easily.

increased so that the component recommender at next boosting
round would be forced to give more penalties to those ‘hard’

argmin ∑ exp{−E [r̂(c, i, g)]} (11) training instances. For the implementation of BoostFM, we
g∈Ω

(c,i)∈S

BoostFM is expected to form a strong recommender by lin-
early combining multiple homogeneous component recom-
menders7 . Thus the ranking function (so-called strong recom-
mender) g can be expressed as

T

propose to employ the ‘forward stage-wise approach’ [14],
where g(t) is treated as the additive model, y(t) is the basis
function, and βt is the expansion coefficient of a basis func-

tion. BoostFM starts with g(0) = 0, and then adds new basis
functions greedily, without changing the parameters (i.e., Θ)
and coefficients of those that have already been added. At

g(t) = ∑ βt ŷ
(t) (12)

t=1
each round t, a new expansion coefficient βt

(t)

and basis func-

5
As a ‘weak learner’, FM fairly meets the basic conditions in both linear complexity

 tion y can be found to minimize the exponential objective

and higher prediction accuracy than random guessing.
6 Maximization of both equations works well in practice, although we only report the

function. More details about the BoostFM have been shown
in Algorithm 1. Note that it is computationally expensive

results by optimizing Eq. (6) for clarity.
7

The term weak recommender and component recommender are used interchangeably
to calculate E

r̂(c, i, y(t)) directly due to the large size of

throughout the paper. implicit feedback, we solve it by first performing a uniform

c

2

∈

i j

i j

Q

2

− −

sampling to obtain a few non-observed items (say 50), and
then calculating the rank of i among them as an unbiased es-
timator of r̂(i|c). Following [30], it can be proved that there
exists a lower bound in terms of the performance measures, as
presented in appendix.

Component Recommender

Since this work targets at the top-N recommendation task,
we thus propose the ranking optimization methods to create
the component recommenders. Naturally, it is feasible to
exploit the L2R techniques to optimize Factorization Machines
(FM). There are two major approaches in the field of L2R,
namely, pairwise and listwise approaches. In the following, we
demonstrate ranking factorization machines with both pairwise
and listwise optimization.

Weighted Pairwise FM (WPFM)

Inspired by RankNet [3], we employ the weighted cross en-
tropy (CE) as pairwise objective function to learn the pref-
erence relations between each two (c, i) pairs. The compo-
nent recommender based on pairwise optimization is called

Algorithm 2 Component Recommender Learning

1: Input: The set of all pairwise relations Ds , the weight

distribution Q(t) , hyper-parameters γθ , η
2: Output: Θ = (w, V)
3: Initialize Θ: w ← (0, ..., 0); V ∼ N (0, 0.1);
4: for e = 1, ..., maxiter do
5: Uniformly Draw (c, i) from S ;
6: Uniformly Draw j from I\I+ ;
7: for f ∈ {1, ..., d} do
8: for k ∈ {1, ..., n} ∧ xk * 0 do
9: Update vk, f as in Eq. (19);

10: end for
11: end for
12: for k ∈ {1, ..., n} ∧ xk * 0 do
13: Update wk as in Eq. (18);
14: end for
15: end for

where

Weighted Pairwise Factorization Machines (WPFM for short).

G(xi , x
j
) =

 n

vl, f (x
i xi − x

j
x

j
) − vk, f (xi

− x
j

) (20)

Following [3], let (i, j) I be a set of item pairs under context
c

k k ∑
l=1

k l k l k k

c ∈ C, and Pi j be the probability of pairwise relevance ordering

from ground truth. For example, let P
c

∈ {0, 0.5, 1} be defined
as 1 if i is more relevant than item j under context c (i.e.,
i >-c j), 0 if i is less relevant, and 0.5 if they have the same
relevance. The original CE objective function is given

L = ∑ ∑ ∑ −P
c

log Pc −

1 − P

c
log

1 − Pc

γθ (i.e., γwk
, γvk, f

) is a hyper-parameter for the L2 regulariza-
tion, and η is the learning rate. Algorithm 2 shows how the
component recommender is optimized with weighted pairwise
constraints.

Weighted ‘Listwise’ FM (WLFM)

For the top-N item ranking task, the recommendation quality
i j i j i j

c∈C i∈I j∈I
i j (14)

is highly position-dependent, i.e., the accuracy of items near

where Pc is the modeled posterior, i.e., Pc =
exp(ŷ(xi)−ŷ(x j))

.
 the top of the ranked list is more important to that of the low-

i j i j 1+exp(ŷ(xi)−ŷ(x j)) position items [31]. In this sense, the pairwise objective func-
In the implicit feedback settings, only positive observations
are available, where non-positive observations are mixed with
both non-relevant and unknown items. To simplify Eq. (14),
we thus formalize the set of all pairwise relevance relations
Ds ⊆ C × I × I as

Ds = {(c, i, j)|i ∈ I+
and j ∈ I\I+ }

tion might be a suboptimal scheme for item recommendation
tasks, although it gains much popularity according to recent
literature. Instead, listwise approaches solve this problem in a
more elegant way where the models are formalized to directly
optimize a specific list-level ranking metric, such as NDCG.
However, it is difficult to directly optimize the ranking metrics

c c because they are either non-continuous or non-differentiable.

Accordingly, we have P
c

=1. Finally, by combining the weight
distribution Q, the new objective function and gradient be-
comes

y(xi) − ŷ(x j))

To solve this challenge, our method bypasses the problem by
adding listwise information into WPFM, the way of which
is referred to as Weighted ‘Listwise’ Factorization Machines

8

L = − ∑ Q
(t)

log
exp(̂ (WLFM). The implementation of WLFM is inspired by the

ci
(c,,i, j)∈Ds

∂ L

1 + exp(ŷ(xi) − ŷ(x j))
(15)

∂ ŷ(xi) − ∂ ŷ(x j)
design idea of LambdaRank [19].

∂ θ
= ∑

(c,,i, j)∈Ds

λi, j
∂ θ

(16) Following [19], we design a similar lambda function as
f (λi, j , ζc), where ζc is the current item ranking list for con-

where λi, j is the learning weight for (i, j)c pair text c. For example, we use NDCG as the ranking measure,
f (λi, j , ζc) is given

∂ L((i, j)c)
(t)
ci

λi, j =

∂ (ŷ(xi) ŷ(x j))
= −

1 + exp(ŷ(xi) ŷ(x j))
(17)

 f (λi, j , ζc) = λi, j |6NDCG(c)i j | (21)

To deal with the large number of pairs |Ds |, an efficient ap-

proach is to exploit Stochastic Gradient Descent (SGD) with

where 6NDCG(c)i j is the size of NDCG change for c when

the positions of items i, j get swapped, computed by

bootstrap sampling. By differentiating Eq.(1) with respect to
θ , we can obtain

1
6NDCG(c)i j = Zc (

log (r̂(i c) + 1)
−

1
) (22)

2 | log2 (r̂(j|c) + 1)

wk ← wk −η (λi, j (x
i − x

j
) + γw wk) (18) k k k

8
The general formulation of WLFM is listwise, although its implementation in practice

is pairwise. Please also note that in [31] LFM is treated as a single model while LFM in

vk, f ← vk, f − η (λi, j G(xi , x
j
) + γv

 vk, f) (19) this paper serves as component recommenders with non-uniform boosting weights.

k k k, f

That is, WLFM can be implemented by replacing λi, j with
f (λi, j , ζc) in Eqs. (18) and (19). The implementation is rea-
sonable for Information Retrieval (IR) tasks but unfortunately
infeasible for recommendation tasks based on implicit feed-
back. The reason is to calculate 6NDCG(c)i j of different

item pairs, the recommender has to score all the items in ζc to
find the rank of i and j. In IR tasks, the candidate documents
returned by the retrieval model have already been reduced
to a small size [34]. However, in recommendation scenario,
since there is no query to filter candidate items, all unobserved
items have to be considered as candidates (i.e., |ζc | = |I|).
That means the additional computational complexity before
each parameter update is O(|I| · Tpred), where Tpred is the run

time to predict an item score by FM. The huge computational
complexity is obviously infeasible in practice.

To solve the efficiency problem, we propose a lambda-
motivated sampling scheme following [31]. Suppose an ideal
lambda function f (λi, j , ζc) for each training pair (i, j)c is given
with the current item ranking list ζc , the idea is that if we have
a scheme that generates the training item pairs proportional to
the probability f (λi, j , ζc)/λi, j (just like 6NDCG(c)i j), then
we can achieve an almost equivalent training effect. That
means we should draw item pairs according to probability
distribution p(j|c) ∝ f (λi, j , ζc)/λi, j , i.e., drawing more item
pairs if they generate a larger 6NDCG after swapping. To
illustrate which item pair would generate a larger 6NDCG by

swapping, we give a schematic of a ranked list as below, where
+1 and −1 are observed and non-observed items respectively.

6NDCG(c)71 =0.409

Rank Order :
,.---_"--..

Table 1: Basic statistics of datasets. Each tuple represents
an observed context-item interaction. Note that tags in
MLHt dataset are regarded as recommended items (i.e., j
in x j), while a user-item (i.e., user-movie) pair is regarded
as context (i.e., c in xc).

Datasets Users Items Tags Artists Albums Tuples
MLHt 2113 5908 9079 - - 47958
Last.fm 983 60000 - 25147 - 246853
Yahoo 2450 124346 - 9040 19851 911466

for the distribution. Therefore, for WLFM, Line 6 in Algo-
rithm 2 can be replaced by the above sampler. Regarding the
complexity, the popularity-aware sampler does not increase
the complexity because the popularity distribution is static and
can thus be calculated in advance.

EXPERIMENTS

In this section, we conduct comprehensive experiments on
three publicly accessible datasets to verify the effectiveness of
BoostFM in various settings.

Experimental Setup

Datasets, Evaluation Metrics and Baselines

We use three CF datasets for our experiments, namely, Movie-
Lens Hetrec (MLHt)10 (user-movie-tag triples, where the con-
text is a user-movie pair, the item is the tag), Last.fm11 (user-
music-artist triples, where the context is the user, the item is
a music track with an artist) and Yahoo music12 (user-music-
artist-album tuples, where the context is the user, the item is a
music track with an artist and album). In the MLHt dataset, the
task is to recommend top-N relevant tags for each user-movie

−1, −1, +1, −1, −1, −1, +1 "------------..,.-----------_
, −1 , ..., −1 pair, while in Last.fm and Yahoo datasets, it is to recommend

6NDCG(c)75 =0.033

We observe that the value of 6NDCG(c)71 is larger than
that of 6NDCG(c)75 . This implies 6NDCG(c)i j is likely

to be larger if non-observed items have a higher rank. This
is because the high ranked non-observed items hurt the rank-
ing performance more than the low ranked ones. However,
we still have the same computational complexity issue since
we need to score all non-observed items before finding one
with a higher rank. To overcome the challenge, we exploit
an item popularity sampling strategy by drawing more non-
observed items with high popularity as substitutes for high
ranked non-observed items. This is because an ideal item
ranker is supposed to assign higher ranks to observed items
than non-observed ones. As we know, popular items have
more chances to be an observed item. Hence, it is reasonable
to devise a popularity-aware sampler to replace the uniform

top-N preferred music tracks (with item side information) to
each user. To speed up the experiments, we follow the com-
mon practice as in [6, 31] by randomly sampling a subset of
users from the user pool of the Yahoo dataset, and a subset of
items from the item pool of the Last.fm dataset. The MLHt
dataset is kept in its original form. The statistics of the datasets
after preprocessing are summarized in Table 1.

To evaluate the top-N recommendation quality of BoostFM,
we present the results with two standard ranking metrics used
in previous recommendation literature [14, 17], namely, Pre-
cision@N and Recall@N (denoted by Pre@N and Rec@N
respectively)13 , where N is the number of recommended items
(again, tags are considered as items in the MLHt datasets).

For top-N recommendation, with given context c, we compute
Pre@N and Rec@N as follows [14]:

one in Algorithm 2. We implement a sampler p j by sampling
popular items proportionally to the empirical item popularity

Pre@N(c) =
t pc

t p + f p and Rec@N(c) =
t pc

t p + tn

(24)

c c c c

distribution9 , e.g., exponential or power-law distribution. p j
is given below

r(j)

where t pc is the number of items contained in both the ground
truth and the top-N rank list predicted by algorithms; f pc is

10 http://grouplens.org/datasets/hetrec-2011/
p j ∝ exp(− |I| × ρ

), ρ ∈ (0, 1] (23) 11 dtic.upf.edu/~ocelma/MusicRecommendationDataset/

where r(j) represents the rank of item j among all items I
according to the overall popularity, ρ is a tuning parameter

9
In practice, the item popularity distribution in recommender datasets usually follows

approximately a long-tail distribution [31, 22].

lastfm-1K.html
12 http://webscope.sandbox.yahoo.com/catalog.php?datatype=
r&did=2

13 Please note that we have verified our algorithm with other ranking metrics (i.e., MAP,

NDCG, MRR), all of which show a consistent trend in performance, but are omitted
here for saving space.

http://grouplens.org/datasets/hetrec-2011/
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=2
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=2

P
re

@
N

P

re
@

N

P
re

@
N

R
e

c
@

N

R
e

c
@

N

R
e

c
@

N

the number of items contained in the top-N rank list but not
in the ground truth; and tnc is the number of items contained
in the ground truth but not in the top-N rank list. The final
performance reported is an average of Pre@N (Rec@N) values
of all context.

In our experiments, we compare our BoostFM with several
powerful CF baselines. For clarity, we refer to BoostFM with
WPFM and WLFM as B.WPFM and B.WLFM respectively.
For tag recommendation in the MLHt dataset, we utilize Most
Popular (MP) [17], Factorization Machines (FM) [21] and
Pairwise Interaction Tensor Factorization (PITF)14 [24] as
baselines. For music recommendation based on item side in-
formation, we utilize MP, User-based Collaborative Filtering
(UCF)15 [33], FM, Bayesian Personalized Ranking (BPR) [23],
and Pairwise Ranking Factorization Machines (PRFM) by ap-
plying the CE loss and Hinge loss [18] (denoted by PRFM.CE
and PRFM.H respectively).
Hyper-parameter Settings

When performing the learning algorithms, there are several
critical hyper-parameters needed to be set. (1) The number of
component recommender T : For the purpose of comparison,
T of BoostFM is set to 10 in all three datasets if not explicitly
declared. The contribution of T will be discussed later. (2)
Learning rate η and regularization γθ : We first employ the
5-fold cross validation to find the best η by running BoostFM
with η ∈ { 0.005, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.4}, and
then tune γθ in the same way while fixing η . Specifically, η is
set to 0.08 in the Last.fm and Yahoo datasets, and 0.4 in the
MLHt dataset; γθ is set to 0.05, 0.02 and 0.005 in the Last.fm,
Yahoo and MLHt dataset respectively16 . In our experiments,
we find all FM based models perform well enough by just
employing polynomial term (see Eq. (1)), and thus we omit the
configuration of the linear term. Baseline algorithms are tuned
in the same way. (3) Latent dimension d: For comparison
purposes, it is common practice (e.g., [17, 33]) to assign a
fixed d value (e.g., d = 30 in all experiments) for all methods

0.208

0.188

0.168

0.148

0.128

0.108

0.088

0.068

0.048

0.028

0.008

0.22

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.16

0.14

0.12

0.1

0.08

0.06

0.04

MP

FM

PITF

B.WPFM

B.WLFM

2 4 6 8 10 12 14 16 18 20

N

(a) Pre-MLHt

MP

UCF

FM
 BPR

PRFM.H

PRFM.CE

B.WPFM

B.WLFM

2 4 6 8 10 12 14 16 18 20

N

(c) Pre-Last.fm

MP

UCF

FM

BPR

PRFM.H

PRFM.CE

B.WPFM

B.WLFM

2 4 6 8 10 12 14 16 18 20

N

(e) Pre-Yahoo

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.058

0.051

0.044

0.037

0.03

0.023

0.016

0.009

0.002

MP

FM

PITF

B.WPFM

B.WLFM

2 4 6 8 10 12 14 16 18 20

N

(b) Rec-MLHt

MP

UCF

FM

BPR

PRFM.H

PRFM.CE

B.WPFM

B.WLFM

2 4 6 8 10 12 14 16 18 20

N

(d) Rec-Last.fm

MP

UCF

FM

BPR

PRFM.H
PRFM.CE

B.WPFM

B.WLFM

2 4 6 8 10 12 14 16 18 20

N

(f) Rec-Yahoo

based on factorization models. Results for d=10, 50, 100
show similar behavior but are omitted for space reasons. (4)
Distribution coefficient ρ : ρ ∈ (0, 1] is specific for the WLFM
component recommender, which is tuned according to the
popularity distribution of recommender datasets.

Performance Evaluation

All experiments are conducted with the standard 5-fold cross
validation. The average results over 5 folds are reported as the
final performance.

Accuracy Summary

Figure 1(a-f) shows the prediction quality of all algorithms in
the three datasets. Several insightful observations can be made:
First, all personalized17 algorithms (UCF, BPR, PITF, FM,
PRFM) generally outperform MP, which is a non-personalized

14
We use a shared tag latent factor for the interaction between users and items.

15 Pearson correlation is used in this work to compute user similarity and the top-20 most

similar users are selected as the nearest neighbors.
16 Note FM based models have several regularization parameters, including γw , γv .

Figure 1: Performance comparison w.r.t. top-N values, i.e.,
Pre@N & Rec@N. N ranges from 2 to 20, the number
of component recommender T is fixed to 10, and ρ for
B.WLFM is fixed to 0.3.

method. Besides, our BoostFM (i.e., B.WPFM and B.WLFM)
clearly outperforms all the counterparts in terms of two stan-
dard top-N recommendation metrics. Second, by setting a
larger N, values of Pre@N get lower and values of Rec@N be-
come higher. This observation reveals the typical behavior of
recommender systems: the more items are recommended, the
better the recall but the worse the precision is achieved [31].

Regarding the effectiveness of factorization models, we make
the following observations: (1) Although FM incorporates
additional side information, it still performs poorer than BPR
(without side information) in Last.fm and Yahoo datasets,
which suggests that pairwise approaches may achieve better
results than pointwise approaches for item ranking tasks. This

k k, f
We borrow the idea from [21] by grouping them for each factor layer, i.e., γπ = γwk

,
γξ = γvk, f

.
17

For factorization models, personalization means each context should attain one set of

parameters.

is because the only difference (except from the prediction
functions) between FM and BPR is that they utilize differ-
ent loss functions, i.e., quadratic and negative log-likelihood

P
re

@
1
0

P
re

@
1
0

P
re

@
1
0

R
e
c
@

1
0

R
e
c
@

1
0

R
e
c
@

1
0

R
e
c
@

1
0

P

re
@

1
0

R
e
c
@

1
0

P

re
@

1
0

R
e
c
@

1
0

P

re
@

1
0

0.066

0.065

0.064

0.063

0.062

0.061

0.06

0.059

0.058

0.165

0.16

0.155

0.15

0.145

0.14

0.135

0.13

0.125

0.12

0.115

B.WPFM
B.WLFM

1 2 4 6 8 10 12 15 20 30 40 50

Number of Component Recommender T

(a) Pre-MLHt

B.WPFM

B.WLFM

1 2 4 6 8 10 12 15 20 30 40 50

Number of Component Recommender T

0.59

0.585
0.58

0.575
0.57

0.565
0.56

0.555

0.55
0.545

0.54
0.535

0.53
0.525

0.054

0.051

0.048

0.045

0.042

0.039

0.036

0.033

B.WPFM
B.WLFM

1 2 4 6 8 10 12 15 20 30 40 50

Number of Component Recommender T

(b) Rec-MLHt

B.WPFM
B.WLFM

1 2 4 6 8 10 12 15 20 30 40 50

Number of Component Recommender T

0.065

0.062

0.059

0.056

0.053

0.58

0.56

0.54

0.52

0.5

B.WPFM

B.WLFM

0.1 0.3 0.5 0.8 1.0

r

(a) Pre-MLHt

B.WPFM

0.16

0.15

0.14

0.13

0.12

0.11

0.1 B.WPFM

0.09 B.WLFM

0.1 0.3 0.5 0.8 1.0

r

(b) Pre-Last.fm

0.05

0.045

0.04

0.035

B.WPFM

0.1

0.08

0.05

0.02

0.029

0.022

0.015

B.WPFM

B.WLFM

0.1 0.3 0.5 0.8 1.0

r

(c) Pre-Yahoo

B.WPFM

0.12

0.115

0.11

(c) Pre-Last.fm
0.034

0.032

0.03

(d) Rec-Last.fm
0.48

B.WLFM

0.1 0.3 0.5 0.8 1.0

r

0.03

B.WLFM

0.1 0.3 0.5 0.8 1.0

r

0.008
B.WLFM

0.1 0.3 0.5 0.8 1.0

r

0.105

0.1 0.028 (d) Rec-MLHt (e) Rec-Last.fm (f) Rec-Yahoo
0.095

0.09

0.085

0.08

0.075

B.WPFM
B.WLFM

1 2 4 6 8 10 12 15 20 30 40 50

Number of Component Recommender T

(e) Pre-Yahoo

0.026

0.024

0.022

0.02

B.WPFM
B.WLFM

1 2 4 6 8 10 12 15 20 30 40 50

Number of Component Recommender T

(f) Rec-Yahoo

Figure 3: Performance trend of BoostFM by tuning ρ w.r.t.
Pre@10 & Rec@10. ρ ∈ {0.1, 0.3, 0.5, 0.8, 1.0}, T = 10.

B.WPFM vs. B.WLFM In contrast to B.WPFM, B.WLFM
achieves much better results consistently across all datasets for

Figure 2: Performance trend of BoostFM (i.e., B.WPFM
and B.WLFM) by tuning T w.r.t. Pre@10 & Rec@10. T
ranges from 1 to 50, and ρ is fixed to 0.3.

loss respectively. (2) PRFM (i.e., PRFM.CE and PRFM.H)
largely outperforms BPR, which clearly shows the effective-
ness of recommendation with side information (e.g., artists
and albums). (3) Among all the baseline algorithms, the per-
formance of PRFM and PITF18 is very promising. We believe
two main factors contribute to the appealing results. First, by
applying pairwise ranking losses PRFM and PITF are more ap-
propriate to handle top-N item recommendation tasks than FM
(pointwise); Second, by applying FM and tensor factorization
as ranking functions, PRFM and PITF are more effective to
predict preference orderings (by context and side information)
than BPR.

BoostFM vs. PRFM and PITF We observe in Figure 1 that
our BoostFM (i.e., B.WPFM and B.WLFM) consistently out-
performs the state-of-the-art methods PITF and PRFM, mea-
sured by the two top-N ranking metrics. For example, in the
MLHt dataset, we can calculate that B.WPFM outperforms
PITF by 6.1% and 5.4% in terms of Pre@10 and Rec@10
respectively19 . In particular, the significant improvements by
B.WPFM (compared with PRFM.CE and PRFM.H) are more
than 18% on Pre@10 and 35% on Rec@10 in both the Last.fm
and Yahoo datasets. The results shows that the accuracy of
top-N recommendation can be significantly improved by using
the boosting technique.

18

PRFM is identical to PITF (in terms of ranking functions) when x is composed of three
non-zero categorical variables.

19 To save space, we only use the top-10 (i.e., Pre@10 and Rec@10) value for the fol-

lowing descriptions since the performance trend on other top-N values is consistent.

ranking metrics in Figure 1. The difference is that the compo-
nent recommender WLFM is trained by optimizing a ranking
measure while WPFM is trained by minimizing pairwise loss
which is position-independant. The results clearly validate
our previous analysis and demonstrate the effectiveness of our
proposed ‘listwise’ strategy.

Effect of Number of Component Recommenders

In this subsection, we evaluate the performance sensitivity of
BoostFM to the number of component recommenders T . T
is adjusted from 1 to 50 and ρ for B.WLFM is set to a fixed
value20 (i.e., 0.3) for a fair comparison. The results of all
datasets are summarized in Figure 2, in terms of Pre@10 and
Rec@10. We observe that the top-10 recommendation perfor-
mance generally improves by increasing the number of com-
ponent recommenders T , particularly when T is smaller than
10. When T is larger than 10, adding more component recom-
menders generates marginal performance improvements. In
addition, we can observe that B.WLFM performs significantly
better than B.WPFM, which is consistent with previous results
in Figure 1. Note that when T is set to 1, B.WPFM reduces to
PRFM.CE. The different performance between them comes
from their parameter settings since the best hyper-parameters
of B.WPFM are found based on T = 10.

Effect of Parameter ρ
In this subsection, we study the effect of the second compo-
nent recommender WLFM with the parameter ρ . By tuning
ρ ∈ {0.1, 0.3, 0.5, 0.8, 1.0}, we depict the results in Figure
3. First, we clearly see that BoostFM with WLFM performs
much better than that with WPFM when ρ ∈ [0.3, 1.0]. Partic-

ularly, WLFM produces the best accuracy when setting ρ to

20

Again, the performance trend keeps consistent for any value of ρ ∈
{0.1, 0.3, 0.5, 0.8, 1.0}.

B.WPFM

B.WLFM

R
e

c
@

1
0

P

re
@

1
0

R
e

c
@

1
0

P

re
@

1
0

R
e

c
@

1
0

P

re
@

N

0.06

B.WPFM

B.WLFM

(i,t) (u,i,t)
(c, i)

0.16

0.14

0.12

B.WPFM

B.WLFM

(u,i) (u,i,a)
(c, i)

0.12

0.11

0.10

0.09

0.08

B.WPFM

B.WLFM

(u,i) (u,i,a) (u,i,a,a)

(c, i)

erence (e.g., tagging habits) rather than the movie itself. In
other words, some users assign the same tags for many differ-
ent movies. The user bias problem can be well handled when
the user information is considered during the pairwise com-
parison (e.g, BoostFM with (u, i, t) tuples), while B.WLFM
usually leads to non-improved results without the user context.
The reason might be that the overall popular tags for movies

0.6

0.5

0.4

(a) Pre-MLHt

B.WPFM

B.WLFM

(i,t) (u,i,t)
(c, i)

(d) Rec-MLHt

(b) Pre-Last.fm

0.050

0.045

0.040

0.035

0.030

(u,i) (u,i,a)
(c, i)

(e) Rec-Last.fm

(c) Pre-Yahoo
0.035

B.WPFM

B.WLFM

0.030

0.025

0.020

(u,i) (u,i,a) (u,i,a,a)
(c, i)

(f) Rec-Yahoo

may not be popular tags for user-movie pairs.

CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel ranking predictor
Boosted Factorization Machines (BoostFM) for top-N recom-
mendation with the incorporation of rich feature information.
Inheriting advantages from both boosting technique and FM,
BoostFM is (i) capable of improving top-N recommendation
performance by forming an ensemble of component recom-

Figure 4: Performance comparison w.r.t. Pre@10 &
Rec@10 with context and side information. In (a) (d),
(i, t) denotes an item-tag (i.e., movie-tag) pair and (u, i, t)
denotes a user-item-tag triple; in (b)(c)(e)(f) (u, i) denotes
a user-item (i.e., user-music) pair and (u, i, a) denotes a
user-item-artist triple; similarly, (u, i, a, a) denotes a user-
item-artist-album quad. T is fixed to 10, and ρ is fixed to
0.3.

0.3 across nearly all datasets, but then the performance experi-
ences a significant decrease when setting it to 0.1. The reason
is because the component recommender WLFM concentrates
more gradient steps on the most popular items due to the over-
sampling scheme when ρ is set to a small value (i.e., ρ = 0.1)
based on Eq. (23). In this case, most less unpopular items will
not be chosen for training, and thus the model is under-trained.
In practice, we would suggest to tune the parameter ρ gradu-
ally from a larger value (e.g., 1.0) to a smaller one and find
the one that performs the best in the training set. Empirically,
a relatively smaller ρ can be set on a recommendation dataset
with a longer tail.

Effect of Adding Features

Finding competitive context and auxiliary features is not the
main focus of our work but it is interesting to see to how
BoostFM improves the performance by adding feature infor-
mation. Therefore, we conduct a contrast experimentation
and show the results in Figure 4. First, we observe BoostFM
performs much better with (u, i, a) tuples than that with (u, i)
tuples in Last.fm and Yahoo datasets. This result is intuitive
as a user may like a music track if she likes another one by
the same artist. Second, as expected, BoostFM with (u, i, a, a)
tuples performs further better than that with (u, i, a) tuples in
(c) and (f). The results verify the effectiveness of BoostFM
in modeling item attribute information. In addition, similar
result can be observed in the MHLt dataset: BoostFM achieves
largely better results with (u, i, t) tuples than that with (i, t)
tuples. We draw the conclusion that the more effective fea-
ture information incorporated, the better BoostFM performs.
Interestingly, we find an outlier result in the MHLt dataset
where the B.WLFM does not outperform B.WPFM with (i, t)
pair. By manual inspection, we find that the tags for each
user-movie (i.e., c) pair is highly dominated by the user’s pref-

menders; (ii) very flexible to integrate auxiliary information,
such as context and item side information, by mapping them
into a general feature space. Regarding the optimization of
component recommenders, we have devised both pairwise and
‘listwise’ version ranking FM with an adaptive re-weighting
scheme. Extensive results on three public datasets have shown
that the suggested BoostFM (i.e., B.WPFM and B.WLFM)
clearly outperformed a bunch of state-of-the-art CF counter-
parts.

The proposed BoostFM can be applied to other ranking do-
mains based on implicit feedback and sparse feature informa-
tion, such as personalized collaborative retrieval and learning
to personalize query auto-completion. For future work, we
intend to investigate its performance in these domains.

ACKNOWLEDGMENTS

Fajie thanks the CSC funding for supporting his research. This
work was also partially supported by the National Natural
Science Foundation of China (No. 61472073).

REFERENCES

1. Linas Baltrunas and Francesco Ricci. 2009.
Context-based splitting of item ratings in collaborative
filtering. In RecSys. 245–248.

2. Alberto Bertoni, Paola Campadelli, and M Parodi. 1997.
A boosting algorithm for regression. In ICANN. 343–348.

3. Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Greg Hullender. 2005.
Learning to rank using gradient descent. In ICML. 89–96.

4. Chen Cheng, Fen Xia, Tong Zhang, Irwin King, and
Michael R Lyu. 2014. Gradient boosting factorization
machines. In RecSys. 265–272.

5. Nipa Chowdhury, Xiongcai Cai, and Cheng Luo. 2015.
BoostMF: Boosted Matrix Factorisation for Collaborative
Ranking. In ECML-PKDD. 3–18.

6. Konstantina Christakopoulou and Arindam Banerjee.
2015. Collaborative Ranking with a Push at the Top. In
WWW. 205–215.

7. Yoav Freund and Robert Schapire. 1999. A short
introduction to boosting. Journal-Japanese Society For
Artificial Intelligence (1999), 1612.

http://www/

c t

ci

8. Yoav Freund and Robert E Schapire. 1995. A
desicion-theoretic generalization of on-line learning and
an application to boosting. In EuroCOLT. Springer,
23–37.

9. Jerome Friedman, Trevor Hastie, Robert Tibshirani, and
others. 2000. Additive logistic regression: a statistical
view of boosting (with discussion and a rejoinder by the
authors). The annals of statistics (2000), 337–407.

10. Liangjie Hong, Aziz S Doumith, and Brian D Davison.
2013. Co-factorization machines: modeling user interests
and predicting individual decisions in twitter. In WSDM.
557–566.

11. Xiaotian Jiang, Zhendong Niu, Jiamin Guo, Ghulam
Mustafa, Zi-Han Lin, Baomi Chen, and Qian Zhou. 2013.
Novel Boosting Frameworks to Improve the Performance
of Collaborative Filtering. (2013).

12. Alexandros Karatzoglou, Xavier Amatriain, Linas
Baltrunas, and Nuria Oliver. 2010. Multiverse
recommendation: n-dimensional tensor factorization for
context-aware collaborative filtering. In RecSys.

13. Yehuda Koren. 2010. Collaborative filtering with
temporal dynamics. Commun. ACM (2010), 89–97.

14. Xutao Li, Gao Cong, Xiao-Li Li, Tuan-Anh Nguyen
Pham, and Shonali Krishnaswamy. 2015. Rank-GeoFM:
a ranking based geographical factorization method for
point of interest recommendation. In SIGIR. 433–442.

15. Xuchun Li, Lei Wang, and Eric Sung. 2008. AdaBoost
with SVM-based component classifiers. EAAI (2008),
785–795.

16. Yong Liu, Peilin Zhao, Aixin Sun, and Chunyan Miao.
2015. A boosting algorithm for item recommendation
with implicit feedback. In IJCAI.

17. W. Pan and L. Chen. 2013. GBPR: Group preference
based bayesian personalized ranking for one-class
collaborative filtering. In IJCAI. 2691–2697.

18. Runwei Qiang, Feng Liang, and Jianwu Yang. 2013.
Exploiting ranking factorization machines for microblog
retrieval. In CIKM. 1783–1788.

19. C Quoc and Viet Le. 2007. Learning to rank with
nonsmooth cost functions. (2007), 193–200.

20. Steffen Rendle. 2010. Factorization machines. In ICDM.
995–1000.

24. Steffen Rendle and Lars Schmidt-Thieme. 2010. Pairwise
Interaction Tensor Factorization for Personalized Tag
Recommendation. In WSDM. 81–90.

25. Robert E Schapire. 2013. Explaining adaboost. In
Empirical inference. 37–52.

26. Yue Shi, Alexandros Karatzoglou, Linas Baltrunas,
Martha Larson, and Alan Hanjalic. 2014. Cars2:
Learning context-aware representations for context-aware
recommendations. In CIKM. 291–300.

27. Yue Shi, Alexandros Karatzoglou, Linas Baltrunas,
Martha Larson, Alan Hanjalic, and Nuria Oliver. 2012.
TFMAP: Optimizing MAP for top-n context-aware
recommendation. In SIGIR. 155–164.

28. Yanghao Wang, Hailong Sun, and Richong Zhang. 2014.
Adamf: Adaptive boosting matrix factorization for
recommender system. In WAIM. 43–54.

29. Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff G Schneider,
and Jaime G Carbonell. Temporal Collaborative Filtering
with Bayesian Probabilistic Tensor Factorization. SIAM.

30. Jun Xu and Hang Li. 2007. Adarank: a boosting
algorithm for information retrieval. In SIGIR. 391–398.

31. Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen,
Haitao Yu, and Weinan Zhang. 2016a. Lambdafm:
learning optimal ranking with factorization machines
using lambda surrogates. In CIKM. 227–236.

32. Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen,
Haitao Yu, and Weinan Zhang. 2016b. Optimizing
factorization machines for top-n context-aware
recommendations. In WISE. 278–293.

33. Fajie Yuan, Joemon M Jose, Guibing Guo, Long Chen,
Haitao Yu, and Rami S Alkhawaldeh. 2016c. Joint
Geo-Spatial Preference and Pairwise Ranking for
Point-of-Interest Recommendation. In ICTAI.

34. Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu.
2013. Optimizing top-n collaborative filtering via
dynamic negative item sampling. In SIGIR. 785–788.

APPENDIX

Theorem 1 indicates that the ranking accuracy in terms of the
performance measures can be continuously grown.

THEOREM 1. The following bound holds in terms of rank-
ing accuracy (e.g., AUC) of the BoostFM algorithm on the
training data:

1 1
∑ +

E [r̂(c, i, g)] ≥

21. Steffen Rendle. 2012. Factorization Machines with
|C|

(c,i)∈S
|Ic |

 1 r

T
l

libFM. TIST (2012), 57. ∑(c,i)∈S |I+ |
1

∏e−δmin

√

1−π (t)2

22. Steffen Rendle and Christoph Freudenthaler. 2014.
Improving pairwise learning for item recommendation

|C|

(t)

−
t =1

(t) t t

from implicit feedback. In WSDM. 273–282. where π (t) = ∑(c,i)∈S Qci E r̂(c, i, y) , δmin = min(c,i)∈S δci ,

23. Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and δ t = E r̂(c, i, g (t −1) + βt y
(t)) − E r̂(c, i, g (t −1)) −

and Lars Schmidt-Thieme. BPR: Bayesian Personalized
Ranking from Implicit Feedback. In UAI. 452–461.

βt E r̂(c, i, y(t)) , for all (c, i) ∈ S and t = 1, 2, ..., T .

