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ABSTRACT 

Feature-based matrix factorization techniques  such as Fac- 
torization Machines (FM) have been proven to achieve im- 
pressive accuracy for the rating prediction task. However, 
most common recommendation scenarios are formulated as 
a top-N item ranking problem with implicit feedback (e.g., 
clicks, purchases) rather than explicit ratings. To address this 
problem, with both implicit feedback and feature informa- 
tion, we propose a feature-based collaborative boosting recom- 
mender called BoostFM, which integrates boosting into fac- 
torization  models during the process of item ranking. Specifi- 
cally, BoostFM  is an adaptive boosting framework  that linearly 
combines multiple  homogeneous component recommenders, 
which are repeatedly constructed on the basis of the individual 
FM model by a re-weighting  scheme. Two ways are proposed 
to efficiently train the component recommenders from the 
perspectives of both pairwise and listwise Learning-to-Rank 
(L2R). The properties of our proposed method are empirically 
studied on three real-world datasets. The experimental  results 
show that BoostFM outperforms a number of state-of-the-art 
approaches for top-N recommendation. 
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INTRODUCTION 

Recently, matrix factorization (MF) models have gained much 
attention in collaborative filtering  (CF) recommender systems 
due to their good performance and efficiency when dealing 
with large sparse datasets [4]. However, classical MF meth- 
ods only involve the interactions between users and items but 
no consideration of additional auxiliary  information,  such as 

 

 

the context and item side information.  In practice, it is com- 
mon that auxiliary information is available in recommender 
systems. Thus, we may regard such information  as features 
to help improve recommendation quality, which is hereafter 
referred to as Feature-based  Recommendation1 . As a matter 
of fact, many MF variants have been proposed in recent litera- 
ture [13, 14]. Most of these models rely on strict assumptions 
and usually require complicated inference when being adapted 
for a new problem, though they are designed to incorporate 
certain types of feature information in specific settings. There- 
fore, the models capable of integrating any types of auxiliary 
information are more practical,  as well as more elegant in 
theory. So far, two of the most flexible and effective methods 
for feature representation in CF are based on Tensor Factor- 
ization (TF) [12, 27] and Factorization Machines (FM) [21, 
4]. Generally, the type of feature information used in TF is 
usually limited to categorical variables. By contrast, FM takes 
as input both categorical and real-valued  variables, and thus is 
more general. 
 

It has been recognized that the original  FM model is presented 
for the rating (or other ordering information  on user feedback) 
prediction task, the performance of which is usually evaluated 
by the metric Root Mean Square Error (RMSE). However, 
achieving good accuracy in terms of RMSE usually does not 
guarantee equivalent effectiveness in the case of top-N item 
recommendation [28]. On the other hand, in practice, most 
prevalent user feedback is not explicit (e.g., in terms of ratings) 
but implicit [23]. Examples for implicit feedback are clicks, 
purchases, watched videos or played songs, which are much 
cheaper to obtain since a user does not have to express his 
taste explicitly. Implicit feedback is often one-class [22], i.e., 
only positive class is available, and thus algorithms optimized 
for multiple classes cannot be directly applied for implicit 
feedback data [31, 32]. In this paper, we study the problem 
of optimizing item ranking with implicit feedback and feature 
information. 
 

To deal with both feature information and implicit feedback, 
we employ the boosting technique to improve the recommen- 
dation accuracy by combing the power of multiple individ- 
ual ‘weak recommender’. Boosting techniques were first em- 
ployed to improve the performance of classification by integrat- 
 
1 

In this regard, the classical user-item  based recommendation  can be treated  as the 
simplest form of Feature-based Recommendation  (where  users and items are read as 
two basic features). Note that we target at modeling more general features in this work. 
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ing a series of weak classifiers (i.e., the classification accuracy 
rate should be larger than 0.5 ) into a stronger one with better 
performance [11]. Previous research has proven that boosting 
techniques usually come with better convergence properties 
and stability [2, 5]. So far, the most common implementation 
of boosting is AdaBoost [8], although some newer boosting 
variants are reported. We find that boosting techniques have 
been recently introduced to solve recommendation problems 
with better results than single CF algorithms [11, 28, 16, 5]. 
However, we emphasize that all existing solutions are based 
on the basic matrix factorization model, which fails to incor- 
porate more general feature information. Moreover, in our 
work the learning process of each component recommender 
is optimized for (item) ranking with implicit feedback, which 
differs from previous works either optimized for rating predic- 
tion [11] or item ranking  based on explicit rating datasets [5, 
28]. Finally, we formulate feature information as context and 
item (with side information)  vectors, the flexible representa- 
tion of which allows to describe various input formats such as 
user profile,  item attributes, successive context as well as their 
combinations. Thanks to this, in our boosting procedure each 
observed context-item pair is able to be treated as a training 
instance for weighting calculation, which makes our work 
distinguished from other literature either treating a given user 
or query as an instance. 

 

In this paper, we propose BoostFM,  a boosting approach for 
top-N Feature-based Recommendation with implicit feedback, 
by combining the well-known boosting framework with FM. 
Specifically, we first employ FM to build the individual com- 
ponent recommender and multiple  homogeneous component 
recommenders are linearly combined to form a strong  rec- 
ommender. The coefficient of each component recommender 
is calculated from a weighting function designed based on a 
certain performance metric (e.g., AUC and NDCG). At each 
boosting round, we devise two optimization methods to train 
our component recommenders inspired by ideas of both pair- 
wise and listwise Learning-to-Rank (L2R). In addition, we 
develop a re-weighting  strategy and assign a dynamic weight 
to force the optimization concentrating more on observed 
context-item interactions with bad evaluation performance. 
Finally, we perform experiments on three publicly available 
datasets and compare BoostFM  with state-of-the-art CF ap- 
proaches. Our results demonstrate that BoostFM noticeably 
outperforms all counterparts in terms of top-N recommenda- 
tion accuracy. 

 
RELATED WORK 

The work in this paper closely relates to two research areas, 
i.e., top-N Feature-based Recommendation and Boosting tech- 
niques. We discuss them separately and then position our work 
with respect to them. 

 
Feature-based Recommendation 

Feature-based Recommendation has gained much popularity 
in recent years, and considerable efforts have been made by 
researchers and practitioners. Prior works (e.g., [1]) exploited 
feature information for pre- or post-filtering to make standard 
models feature-aware, where potential (e.g., 2-order or even 
high order) interactions between different feature variables 

have not been considered, leading to unsatisfactory perfor- 
mance. Recent works mostly revolve around combining fea- 
ture information with factorization to directly model the user, 
item and auxiliary  feature variables [26, 31]. Two significant 
approaches have been developed:  tensor factorization (TF) 
[12, 29] and Factorization Machines (FM) [21, 4]. Whereas 
those works are designed to solve the rating prediction  task [22, 
31], the goal of item recommendation is usually regarded as 
a top-N item ranking task. Motivated by this, state-of-the-art 
methods by combining  L2R and feature-based CF models have 
been proposed with significant accuracy improvements [26, 
27, 18]. For instance, TFMAP  [27] employs TF to capture the 
3-way user-item-context relations, and learns it by maximizing 
Mean Average Precision (MAP); in the same light, CARS ex- 
plores multiple objective functions to train a novel TF model. 
Ranking FM [18, 31, 32, 10], on the other side, aims to ex- 
ploit FM as the rating function  to model the pairwise feature 
interaction, and to build the ranking algorithm by maximizing 
various ranking measures such as the Area Under the ROC 
Curve (AUC) and the Normalized Discount Cumulative Gain 
(NDCG). 
 
Boosting 

Boosting technique is a general framework  for improving the 
accuracy of a given learning algorithm  [8, 30]. The central 
idea is to repeatedly form a number  of ‘weak learners’ by 
using a homogeneous weak algorithm  on re-weighting  training 
data. Then, a strong learner with boosted total performance 
is created by composing weak learners linearly.  Boosting 
was originally proposed to enhance the performance of binary 
classification, where AdaBoost (Adaptive Boosting) is the 
most well-known boosting algorithm. Following this, various 
extensions have been made to deal with problems of multi- 
class classification [9], regression [2], and ranking [30]. 
 

Recently, researchers have proposed to construct boosting tech- 
niques in Recommender Systems. For example, two boosting 
frameworks  inspired by AdaBoost have been presented for the 
rating prediction task by applying both memory- and model- 
based CF algorithms [11].  AdaMF [28] borrows the idea 
from adaRank by combining matrix factorization (MF) rec- 
ommender with boosting methods. The coefficient function 
for each MF recommender is calculated  based on the Nor- 
malized Discount Cumulative Gain (NDCG) performance of 
the stronger recommender. However, the component recom- 
menders are constructed using the CF algorithm for rating 
prediction, which is suboptimal for item recommendation task. 
Similar work has been done in [5], where the component 
recommender is constructed using Probability matrix factor- 
ization (PMF) on explicit rating datasets. 
 

Our work relates to above works, but differs in several signifi- 
cant aspects. First, in BoostFM, the component recommender 
is constructed by feature-based factorization models instead of 
a simple scoring function (i.e., so-called weak learner). Again 
individual FM model can easily achieve relatively good rec- 
ommendation. Thus, we can regard FM as a relatively strong 
recommender2 . Second, the component recommenders are 
 
2 

Previous literature has shown that AdaBoost demonstrates better generalizing perfor- 
mance with correlated strong learners [15]. 
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constructed by optimizing  weighted pairwise and ‘listwise’ ob- 
jective functions in the form of implicit feedback, rather than 
approximating users’ explicit ratings (e.g., [11, 28]). Third, 
most above boosting techniques either treat a query [30], a 
given user [28], or a feature vector [8] (but with explicit order- 
ing information) as a unit to assign boosting instance weights, 
the way of which might not be directly applied for pairwise 
item comparisons with both implicit feedback and auxiliary 

where vk is the k-th row vector of V with d factors. The linear 
term in Eq. (1) contains unary interactions of each feature 
variable xk with the target ŷ; the polynomial term models 
the interaction between the k-th and kt-th latent vector with 
a factorized parametrization. In [20], it has shown that the 
efficiency of FM can be reduced to linear complexity O(dn) 
as Eq. (1) can be mathmatically  expressed as 
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information. To address this, we formulate  a flexible  feature
 

ŷ(x) = ∑ wk xk +
 

∑ (( ∑ vk, f xk )
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representation for describing various auxiliary information in 
 
k=1 
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f =1 

 
k=1 

 
i=1 

k, f xk )  (3) 

FM, whereby an observed context-item  pair can be treated 
as a training  instance for boosting weight calculation. With 
these advantages, our BoostFM framework and component 
recommenders by two ways of optimization  can be coupled 
together seamlessly. To our best knowledge, BoostFM is the 
first study for feature-based collaborative ranking by adopting 
the boosting technique. Note it is worth mentioning that one 
recent work [4] has exploited  the gradient boosting algorithm 
for rating prediction with FM. However, we argue that our 
work targets at top-N item ranking, a completely  different 
recommendation task. 

 
PRELIMINARIES 

In this section, we briefly describe a key component related 
to our BoostFM, i.e., Factorization Machines (FM), and a 
flexible feature vector representation for different auxiliary 
information. Then we present the problem formulation of 
Feature-based recommendation from implicit feedback. 

 
Factorization Machines 

Factorization Machines (FM) [21] is a cutting-edge feature- 
based CF algorithm, which utilizes a factorized representation 
to model the nested interactions among n input variables in 
feature vector x3 . In this subsection, we will show how to 
employ FM to represent general feature information. 

 

Let xc ∈ RV C  be an arbitrary feature vector that represents 
context c ∈ C with V C real-valued variables, and xi ∈ RV I be 
a feature vector that represents item i ∈ I with V I variables 

(including both item and side information),  and thus we have 
x = (xc , xi ). For example, in a music recommender system x 
could be represented as 

In CF scenarios, most elements xk in x are 0. Let N(x) be the 
average number of non-zero elements in all vectors, we notice 

N(x) « n under sparsity (i.e., the complexity of FM becomes 
O(dN(x))). Hence, we argue that exploiting FM to train a 
set of component recommenders enjoys the advantage of low 
computational complexity, and is thus feasible in practice. 
 
Feature-based Recommendation from Implicit Feedback 

Let C be a set of context and I a set of items. In our scenario a 
set of observed interactions (i.e., so-called implicit feedback) 
S ⊂ C × I are available. For example, C could be a set of users, 
and I a set of music  tracks,  and S represents which music tracks 
a user has played, i.e., (a set of) user-music interactions. As 
previously mentioned, C can be fit with more general examples 
with additional  variables, such as user mood, social friends, 
as well as spatial-temporal environments, denoted by xc , also 
I might express items with additional side information, e.g., 
the artist or category of a music track, denoted by xi . Note 
that non-observed interactions do not explicitly indicate an 
item, e.g., j, is not relevant to c [22]. It may be the result 
that the existence of j is unknown to c. The task of top-N 
recommendation with implicit feedback is to recommend  a 
list of items that are supposed to be most relevant for a given 
context but has not interacted with before. Accordingly, for 
Feature-based Recommendation,  the task can be formulated 
as: estimating a ranking r̂( j|c) for each non-observed  (c, j) 
feature vector x (i.e., (xc , x j )), where r̂( j|c) is usually modeled 
by a scoring function ŷ( j|c) (or ŷ(c, j) interchangeably). 
 

For item recommendation  tasks, the accuracy of a recom- 
mender  can be assessed by various ranking metrics, such as 
AUC4 [23], NDCG [17], the Mean Average Precision (MAP) 

users 10 social friends time music tracks artists [27], Precision@N and Recall@N [14], where N is the number 
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The commonly  used 2-order FM is defined as 

of recommended items. For better understanding the following 
approach, we show the definitions of AUC and NDCG (per 
context)  as below 

1 1 

n n n AUC(c) = 
I+

 ∑ 
I  I+

 ∑ I(r̂(i|c) < r̂( j|c)) (4) 

ŷ(c, i) = ŷ(x) = ∑ wk xk + ∑ ∑   vk , v
t  xk x

t (1) 
| c | 

i∈Ic   
| \ c | 

j∈I\Ic
 

 

k=1 
k k 

k=1 kt =k+1 |I| 
 

2
relr̂(i|c)       1

 
"-------..,.------_ "-------------------------..,.------------------------_ 

NDCG(c) = Zc ∑ 
−

 
log2 (r̂(i|c) + 1) 

(5) 

where the model parameters Θ that have to be estimated are 

w ∈ Rn (n = V C + V I), V ∈ Rn×k , and  ·, ·  is the dot product 
of two latent vectors with the dimensionality d in the low rank 
space 

d 

 vk , vkt  = ∑ vk, f · vkt , f (2) 
f =1 

3 
In the followings, scalar variables are set in the default math font, e.g., wk , vk, f , while 

vectors (lower  case) and matrices (upper case) are in bold face, e.g., w, V, Q. 

r̂(i|c)=1 

where I+ is the set of items that have been observed under con- 
text c (I\I+ is the remaining items), and I(·)=1 if the condition 

is true, and 0 otherwise; relr̂ represents the relevance score of a 
candidate item at the position r̂, here we use a binary value 0-1 
(irrelevant-relevant). Zc is calculated from the normalization 
constant so that the ideal ranker will get NDCG of 1. 

4 
Note that maximizing a smoothed AUC is still a popular way for item recommendation 

problem (e.g., [26, 22]), although it is position-independent. 
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BOOSTED FACTORIZATION MACHINES 

Inspired by the AdaBoost [7, 25] algorithm for classification, 
we propose a novel algorithm  to solve the recommendation 
problem by optimizing the item ranking. The algorithm is 
referred to as Boosted Factorization Machines (BoostFM for 
short). 

 
BoostFM 

Algorithm 1 BoostFM 

1: Input: The observed context-item  interactions S, parame- 
ters E and T . 

2: Output:  The strong recommender g(T )
 

3: Initialize Q
(t ) 

= 1/|S|, g(0) = 0, ∀(c, i) ∈ S 
4: for t =1,..., T do 

5: Create component recommender ŷ(t ) with Q(t ) on S, 

We aim at devising  a set of ‘weak learner’5 sequentially to ∀(c, i) ∈ S, i.e., Algorithm 2; 

model the pairwise interactions between various feature vari- 
ables. Besides, the BoostFM algorithm is supposed to concen- 
trate hard on optimizing  the objective function defined based 

6: Compute the ranking accuracy E 

∀(c, i) ∈ S; 
7: Compute the coefficient βt , 

r̂(c, i, y(t ) ) , 

on ranking measures. We observe from Eq. (4) and Eq. (5) (t)
 

(t)
 

∑(c,i)∈S Qci {1+E [r̂(c,i,y )]}  1 

that the accuracy of a recommender model is determined by βt = ln( 
(t)

  
(t)

 ) 2 ; 

the rank positions (i.e. r̂(i|c)) of positive items i ∈ I+ of each ∑(c,i)∈S Qci {1−E [r̂(c,i,y )]} 

context c. Thus, we devise a general performance  measure 8: Create the strong recommender g(t ) , 

function E [r̂(c, i, g)] to denote the recommendation accuracy (t )  t 
h=1 βh ŷ

(h) ; 
associated with each observed context-item  pair. The argu- 9: Update weight distribution Q(t +1) , 
ment of general function r̂(c, i, g) is the rank position of item i 
for each context c, calculated by the trained function g. Thus

 Q
(t +1) 

= 
ci  ∑ 

exp{−E [r̂(c,i,g(t) )]} 
; 

[ (t) 

we can rewrite the ranking metric of AUC and NDCG as below 10: end for 
(c,i)∈S exp{−E r̂(c,i,g

 
)]} 

 

1 1 1 1 
AUC= 

|C| 
∑ 

|I+ | 
∑ 
i∈Ic 

E [r̂(c, i, g)] = ∑  + 

(c,i)∈S  c
 

E [r̂(c, i, g)] (6) 
| 

 

where ŷ(t )
 is the t-th component recommender and βt ∈ R+

 

where  
E [r̂(c, i, g)] = 

 
1 

|I\I+ |    
∑ 

 

I(r̂(i|c) < r̂( j|c)) (7) 

is the coefficient which is usually determined by the overall 

recommendation performance of ŷ(t )  at t-th boosting round. 
c    

j∈I\I+ BoostFM runs for T rounds  and creates a new component 
 

NDCG= 
1 

Zc 
|C| 

|I| 

∑ 
2

relr̂(i|c)  − 1 

log (r̂(i|c) + 1) 
1 

= 
|C| ∑ 

 
Zc E [r̂(c, i, g)] (8) 

recommender y(t ) at each round. Then the newly trained rec- 
ommender is integrated to the final ensemble recommender 

where 
c∈C r̂(i|c)=1 2

 (c,i)∈S 
 

1 
g(t ) . The minimization in Eq. (11) is converted to 

E [r̂(c, i, g)] = 
log2 (r̂(i|c) + 1) 

(9) 
arg  min ∑ exp{−E 

 
r̂(c, i, g(t−1) + βt y

(t) )
 
} (13) 

To maximize Eq. (6) or Eq. (8)6 , we propose to minimize 
βt ,y

(t) ∈Φ (c,i)∈S 

the following objective function (Note that   1 ,   1  , Z
 
are

 where Φ is the set of possible component recommenders, and 
 

normalizing constants). 
|C| |I+ | c 

g(t −1) = ∑t −1
  

(h)
 

h=1 βh y . To solve Eq. (13), we propose to main- 
 

argmin ∑ {1 − E [r̂(c, i, g)]}  (10) 
tain a distribution  of weights over each observed (c, i) pair in 

the training data, denoted by matrix Q ∈ R|C|×|I|. The weight 
g∈Ω 

(c,i)∈S 

where Ω is the set of ranking scoring functions. It is non- 
trivial to directly optimize E [r̂(c, i, g)], which is clearly a non- 
continuous function.  Instead, we propose to minimize  an upper 

value on the (c, i) training instance at round t is denoted by 

Q
(t ) 

. More specifically, the weight distribution reflects the 
emphasis on the component recommender. At each boosting 

round, weight values Q
(t ) 

on (c, i) pairs with low rank perfor- 
bound of Eq. (10) (by leveraging the property e−x ≥ 1 − x 

ci 
mance by the ensemble strong recommender (i.e., Eq. (12)) are 

(x ∈ R)) such that it can be fitted into the AdaBoost framework 
easily. 

increased so that the component recommender at next boosting 
round would be forced to give more penalties to those ‘hard’ 

argmin ∑ exp{−E [r̂(c, i, g)]}  (11) training instances. For the implementation of BoostFM, we 
g∈Ω 

(c,i)∈S 

BoostFM is expected to form a strong recommender by lin- 
early combining multiple homogeneous component recom- 
menders7 . Thus the ranking function (so-called strong recom- 
mender) g can be expressed as 

 
T 

 

propose to employ the ‘forward stage-wise approach’ [14], 
where g(t )  is treated as the additive model, y(t )  is the basis 
function, and βt is the expansion coefficient of a basis func- 

tion. BoostFM starts with g(0) = 0, and then adds new basis 
functions greedily, without  changing the parameters (i.e., Θ) 
and coefficients of those that have already been added.  At 

g(t) = ∑ βt ŷ
(t)  (12) 

t=1 
each round t, a new expansion coefficient  βt 

(t )
 

and basis func- 

5 
As a ‘weak learner’, FM fairly meets the basic conditions  in both linear complexity

 tion y can be found to minimize the exponential objective 

and higher prediction accuracy than random guessing. 
6 Maximization of both equations works well in practice, although we only report the 

function.  More details about the BoostFM have been shown 
in Algorithm 1.  Note that it is computationally expensive 

  
results by optimizing Eq. (6) for clarity. 
7 

The term weak recommender and component recommender are used interchangeably 
to calculate E 

 
r̂(c, i, y(t ) ) directly due to the large size of 

throughout the paper. implicit feedback, we solve it by first performing  a uniform 



c 

2 

∈ 

i j 

i j 

Q 

2 

− − 

sampling to obtain a few non-observed items (say 50), and 
then calculating the rank of i among them as an unbiased es- 
timator of r̂(i|c). Following [30], it can be proved that there 
exists a lower bound in terms of the performance  measures, as 
presented in appendix. 

 
Component Recommender 

Since this work targets at the top-N recommendation task, 
we thus propose the ranking optimization  methods to create 
the component recommenders.  Naturally, it is feasible to 
exploit the L2R techniques to optimize Factorization Machines 
(FM). There are two major approaches in the field of L2R, 
namely, pairwise and listwise approaches. In the following, we 
demonstrate ranking factorization machines with both pairwise 
and listwise optimization. 

 

Weighted Pairwise FM (WPFM) 

Inspired by RankNet [3], we employ the weighted cross en- 
tropy (CE) as pairwise  objective  function to learn the pref- 
erence relations between each two (c, i) pairs. The compo- 
nent recommender based on pairwise optimization is called 

Algorithm 2 Component Recommender Learning 

1: Input: The set of all pairwise relations Ds , the weight 

distribution Q(t ) , hyper-parameters γθ , η 
2: Output: Θ = (w, V) 
3: Initialize Θ: w ← (0, ..., 0); V ∼ N (0, 0.1); 
4: for e = 1, ..., maxiter do 
5: Uniformly Draw (c, i) from S ; 
6: Uniformly Draw j from I\I+  ; 
7: for f ∈ {1, ..., d} do 
8: for k ∈ {1, ..., n} ∧ xk * 0 do 
9: Update vk, f  as in Eq. (19); 

10: end for 
11: end for 
12: for k ∈ {1, ..., n} ∧ xk * 0 do 
13: Update wk as in Eq. (18); 
14: end for 
15: end for 
 
 
where 

Weighted Pairwise Factorization Machines (WPFM for short).  

G(xi , x 
j 
) =

 n 

vl, f (x
i xi − x 

j 
x 

j 
) − vk, f (xi

 

− x 
j  

)  (20)
 

 

Following [3], let (i, j)  I be a set of item pairs under context 
c 

k    k ∑ 
l=1 

k  l  k  l  k k 

c ∈ C, and Pi j be the probability of pairwise relevance ordering 

from ground truth. For example, let P
c 

∈ {0, 0.5, 1} be defined 
as 1 if i is more relevant than item j under context c (i.e., 
i >-c  j), 0 if i is less relevant, and 0.5 if they have the same 
relevance. The original CE objective function is given 

L = ∑ ∑ ∑ −P
c  

log Pc − 
 
1 − P

c   
log 

 
1 − Pc 

  

γθ  (i.e., γwk 
, γvk, f 

) is a hyper-parameter  for the L2 regulariza- 
tion, and η is the learning rate. Algorithm 2 shows how the 
component recommender is optimized with weighted pairwise 
constraints. 
 

Weighted ‘Listwise’ FM (WLFM) 

For the top-N item ranking task, the recommendation quality 
i j  i j  i j 

c∈C i∈I j∈I 
i j  (14) 

is highly position-dependent, i.e., the accuracy of items near 

where Pc is the modeled posterior, i.e., Pc =  
exp(ŷ(xi )−ŷ(x j ))   

.
 the top of the ranked list is more important to that of the low- 

i j i j 1+exp(ŷ(xi )−ŷ(x j )) position items [31]. In this sense, the pairwise objective func- 
In the implicit feedback settings, only positive observations 
are available, where non-positive observations are mixed with 
both non-relevant and unknown items. To simplify Eq. (14), 
we thus formalize  the set of all pairwise relevance relations 
Ds ⊆ C × I × I as 

Ds = {(c, i, j)|i ∈ I+ 
and j ∈ I\I+ }

 

tion might be a suboptimal  scheme for item recommendation 
tasks, although it gains much popularity according to recent 
literature.  Instead, listwise  approaches solve this problem in a 
more elegant way where the models are formalized to directly 
optimize a specific list-level ranking metric, such as NDCG. 
However, it is difficult to directly optimize the ranking metrics 

c c because they are either non-continuous or non-differentiable. 

Accordingly, we have P
c 

=1. Finally, by combining the weight 
distribution Q, the new objective function and gradient be- 
comes 

y(xi ) − ŷ(x j )) 

To solve this challenge, our method bypasses the problem  by 
adding listwise information into WPFM, the way of which 
is referred to as Weighted  ‘Listwise’ Factorization Machines 

8 

L = − ∑ Q
(t) 

log   
exp( ̂  (WLFM ). The implementation of WLFM is inspired by the 

ci 
(c,,i, j)∈Ds 

∂ L 

1 + exp(ŷ(xi ) − ŷ(x j ))  
(15)

 

∂ ŷ(xi ) − ∂ ŷ(x j ) 
design idea of LambdaRank [19]. 

∂ θ 
= ∑ 

(c,,i, j)∈Ds 

λi, j 
∂ θ 

(16) Following [19], we design a  similar lambda function as 
f (λi, j , ζc ), where ζc is the current item ranking list for con- 

where λi, j is the learning weight for (i, j)c pair text c. For example, we use NDCG as the ranking  measure, 
f (λi, j , ζc ) is given 

∂ L((i, j)c ) 
(t) 
ci

 
λi, j = 

∂ (ŷ(xi ) ŷ(x j )) 
= − 

1 + exp(ŷ(xi ) ŷ(x j ))  
(17)

 f (λi, j , ζc ) = λi, j |6NDCG(c)i j | (21) 

To deal with the large number of pairs |Ds |, an efficient  ap- 

proach is to exploit Stochastic Gradient Descent (SGD) with 

where 6NDCG(c)i j is the size of NDCG change for c when 

the positions of items i, j get swapped, computed by 

bootstrap sampling. By differentiating Eq.(1) with respect to 
θ , we can obtain 

 

1 
6NDCG(c)i j = Zc ( 

log (r̂(i c) + 1) 
− 

 

1 
)  (22) 

2 | log2 (r̂( j|c) + 1) 

wk ← wk −η (λi, j (x
i − x 

j 
) + γw  wk )  (18) k k k 

8 
The general formulation of WLFM is listwise, although its implementation in practice 

is pairwise.  Please also note that in [31] LFM is treated as a single model while LFM in 

vk, f ← vk, f − η (λi, j G(xi , x 
j 
) + γv

 vk, f )  (19) this paper serves as component recommenders with non-uniform boosting weights.
 

k    k k, f 



 

That is, WLFM can be implemented  by replacing λi, j with 
f (λi, j , ζc ) in Eqs. (18) and (19). The implementation is rea- 
sonable for Information Retrieval (IR) tasks but unfortunately 
infeasible for recommendation  tasks based on implicit feed- 
back. The reason is to calculate 6NDCG(c)i j of different 

item pairs, the recommender has to score all the items in ζc to 
find the rank of i and j. In IR tasks, the candidate documents 
returned by the retrieval model have already been reduced 
to a small size [34]. However, in recommendation scenario, 
since there is no query to filter candidate items, all unobserved 
items have to be considered  as candidates (i.e., |ζc | = |I|). 
That means the additional computational complexity before 
each parameter update is O(|I| · Tpred ), where Tpred is the run 

time to predict an item score by FM. The huge computational 
complexity is obviously infeasible in practice. 

 

To solve  the efficiency problem, we propose a lambda- 
motivated sampling scheme following [31]. Suppose an ideal 
lambda function  f (λi, j , ζc ) for each training  pair (i, j)c is given 
with the current item ranking list ζc , the idea is that if we have 
a scheme that generates the training item pairs proportional to 
the probability f (λi, j , ζc )/λi, j (just like 6NDCG(c)i j ), then 
we can achieve an almost equivalent training effect. That 
means we should draw item pairs according to probability 
distribution p( j|c) ∝ f (λi, j , ζc )/λi, j , i.e., drawing more item 
pairs if they generate a larger 6NDCG after swapping.  To 
illustrate  which  item pair would  generate a larger 6NDCG by 

swapping, we give a schematic of a ranked list as below, where 
+1 and −1 are observed and non-observed items respectively. 

6NDCG(c)71 =0.409 

Rank Order : 
,.-----------------------------------------_"------------------------------------------.. 

Table 1: Basic statistics of datasets. Each tuple represents 
an observed context-item interaction.   Note that tags in 
MLHt dataset are regarded as recommended items (i.e., j 
in x j ), while a user-item (i.e., user-movie) pair is regarded 
as context (i.e., c in xc ). 

Datasets Users Items Tags    Artists   Albums Tuples 
MLHt  2113 5908   9079 - - 47958 
Last.fm 983 60000 - 25147 -    246853 
Yahoo 2450   124346 - 9040 19851  911466 

 
 
for the distribution. Therefore, for WLFM, Line 6 in Algo- 
rithm 2 can be replaced by the above sampler. Regarding the 
complexity,  the popularity-aware  sampler does not increase 
the complexity because the popularity distribution is static and 
can thus be calculated in advance. 
 
EXPERIMENTS 

In this section, we conduct comprehensive experiments on 
three publicly accessible datasets to verify the effectiveness of 
BoostFM in various settings. 
 
Experimental Setup 

Datasets, Evaluation Metrics and Baselines 

We use three CF datasets for our experiments, namely, Movie- 
Lens Hetrec (MLHt)10 (user-movie-tag triples, where the con- 
text is a user-movie pair, the item is the tag), Last.fm11  (user- 
music-artist triples, where the context is the user, the item is 
a music track with an artist) and Yahoo music12  (user-music- 
artist-album tuples, where the context is the user, the item is a 
music track with an artist and album). In the MLHt dataset, the 
task is to recommend top-N relevant tags for each user-movie 

−1, −1, +1, −1,   −1, −1, +1 "------------..,.-----------_ 
, −1 , ..., −1 pair, while in Last.fm and Yahoo datasets, it is to recommend 

6NDCG(c)75 =0.033 
 

We observe that the value of 6NDCG(c)71  is larger than 
that of 6NDCG(c)75 .  This implies 6NDCG(c)i j is likely 

to be larger if non-observed items have a higher rank. This 
is because the high ranked non-observed items hurt the rank- 
ing performance more than the low ranked ones. However, 
we still have the same computational complexity issue since 
we need to score all non-observed items before finding one 
with a higher rank. To overcome the challenge, we exploit 
an item popularity sampling strategy by drawing more non- 
observed items with high popularity  as substitutes for high 
ranked non-observed items. This is because an ideal item 
ranker is supposed to assign higher ranks to observed items 
than non-observed ones. As we know, popular items have 
more chances to be an observed item. Hence, it is reasonable 
to devise a popularity-aware  sampler to replace the uniform 

top-N preferred music tracks (with item side information) to 
each user. To speed up the experiments,  we follow the com- 
mon practice as in [6, 31] by randomly  sampling a subset of 
users from the user pool of the Yahoo dataset, and a subset of 
items from the item pool of the Last.fm dataset. The MLHt 
dataset is kept in its original form. The statistics of the datasets 
after preprocessing are summarized in Table 1. 
 

To evaluate the top-N recommendation quality of BoostFM, 
we present the results with two standard ranking metrics used 
in previous recommendation literature [14, 17], namely, Pre- 
cision@N and Recall@N (denoted by Pre@N and Rec@N 
respectively)13 , where N is the number of recommended items 
(again, tags are considered as items in the MLHt datasets). 
 

For top-N recommendation, with given context c, we compute 
Pre@N and Rec@N as follows [14]: 

one in Algorithm 2. We implement a sampler p j by sampling 
popular items proportionally to the empirical item popularity 

Pre@N(c) = 
t pc 

t p + f p and  Rec@N(c) = 
t pc 

t p + tn 

 

(24) 

c c c c 

distribution9 , e.g., exponential or power-law distribution. p j 
is given below 

 

r( j) 

where t pc is the number of items contained in both the ground 
truth and the top-N rank list predicted by algorithms; f pc is 

10 http://grouplens.org/datasets/hetrec-2011/ 
p j ∝ exp(− |I| × ρ 

), ρ ∈ (0, 1] (23) 11 dtic.upf.edu/~ocelma/MusicRecommendationDataset/ 
 

where r( j) represents the rank of item j among all items I 
according to the overall popularity, ρ is a tuning parameter 

9 
In practice, the item popularity distribution in recommender datasets usually  follows 

approximately a long-tail distribution [31, 22]. 

lastfm-1K.html 
12 http://webscope.sandbox.yahoo.com/catalog.php?datatype= 
r&did=2 

13 Please note that we have verified our algorithm with other ranking metrics (i.e., MAP, 

NDCG, MRR), all of which show a consistent trend in performance, but are omitted 
here for saving space. 

http://grouplens.org/datasets/hetrec-2011/
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r&amp;did=2
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r&amp;did=2
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the number of items contained in the top-N rank list but not 
in the ground truth; and tnc is the number of items contained 
in the ground truth but not in the top-N rank list. The final 
performance reported is an average of Pre@N (Rec@N) values 
of all context. 

 

In our experiments, we compare our BoostFM with several 
powerful CF baselines. For clarity, we refer to BoostFM with 
WPFM and WLFM as B.WPFM and B.WLFM respectively. 
For tag recommendation in the MLHt dataset, we utilize  Most 
Popular (MP) [17], Factorization Machines (FM) [21] and 
Pairwise Interaction Tensor Factorization (PITF)14 [24] as 
baselines. For music recommendation based on item side in- 
formation, we utilize MP, User-based Collaborative  Filtering 
(UCF)15 [33], FM, Bayesian Personalized Ranking (BPR) [23], 
and Pairwise Ranking Factorization Machines (PRFM) by ap- 
plying the CE loss and Hinge loss [18] (denoted by PRFM.CE 
and PRFM.H respectively). 
Hyper-parameter Settings 

When performing the learning algorithms, there are several 
critical  hyper-parameters needed to be set. (1) The number of 
component recommender T : For the purpose of comparison, 
T of BoostFM is set to 10 in all three datasets if not explicitly 
declared. The contribution  of T will be discussed later. (2) 
Learning rate η and regularization  γθ : We first employ the 
5-fold cross validation  to find the best η by running BoostFM 
with η ∈ { 0.005, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.4}, and 
then tune γθ  in the same way while  fixing η . Specifically, η is 
set to 0.08 in the Last.fm and Yahoo datasets, and 0.4 in the 
MLHt dataset; γθ  is set to 0.05, 0.02 and 0.005 in the Last.fm, 
Yahoo and MLHt dataset respectively16 . In our experiments, 
we find all FM based models perform  well enough by just 
employing polynomial term (see Eq. (1)), and thus we omit the 
configuration of the linear term. Baseline algorithms are tuned 
in the same way. (3) Latent dimension d: For comparison 
purposes, it is common practice (e.g., [17, 33]) to assign a 
fixed d value (e.g., d = 30 in all experiments) for all methods 
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based on factorization models. Results for d=10, 50, 100 
show similar behavior but are omitted for space reasons. (4) 
Distribution coefficient ρ : ρ ∈ (0, 1] is specific for the WLFM 
component recommender, which is tuned according to the 
popularity distribution of recommender datasets. 

 
Performance Evaluation 

All experiments are conducted with the standard 5-fold cross 
validation.  The average results over 5 folds are reported as the 
final performance. 

 

Accuracy Summary 

Figure 1(a-f) shows the prediction quality of all algorithms in 
the three datasets. Several insightful observations can be made: 
First, all personalized17 algorithms (UCF, BPR, PITF, FM, 
PRFM) generally outperform MP, which is a non-personalized 

14 
We use a shared tag latent factor for the interaction  between users and items. 

15 Pearson correlation  is used in this work to compute user similarity and the top-20 most 

similar  users are selected as the nearest neighbors. 
16 Note FM based models have several regularization  parameters, including  γw  , γv      .

 

Figure 1: Performance comparison w.r.t. top-N values, i.e., 
Pre@N & Rec@N. N ranges from 2 to 20, the number 
of component recommender T is fixed  to 10, and ρ for 
B.WLFM is fixed to 0.3. 
 

 
 
method. Besides, our BoostFM (i.e., B.WPFM  and B.WLFM) 
clearly outperforms all the counterparts in terms of two stan- 
dard top-N recommendation metrics. Second, by setting  a 
larger N, values of Pre@N get lower and values of Rec@N be- 
come higher. This observation reveals the typical behavior of 
recommender systems: the more items are recommended, the 
better the recall but the worse the precision is achieved [31]. 
 

Regarding the effectiveness of factorization models, we make 
the following observations:  (1) Although FM incorporates 
additional side information, it still performs poorer than BPR 
(without side information) in Last.fm and Yahoo datasets, 
which suggests that pairwise approaches may achieve better 
results than pointwise  approaches for item ranking tasks. This 

k k, f 
We borrow the idea from [21] by grouping them for each factor layer, i.e., γπ  = γwk 

, 
γξ  = γvk, f 

. 
17 

For factorization models, personalization means each context should attain one set of 

parameters. 

is because the only difference (except from the prediction 
functions) between FM and BPR is that they utilize differ- 
ent loss functions, i.e., quadratic and negative log-likelihood 
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Figure 3: Performance trend of BoostFM by tuning ρ w.r.t. 
Pre@10 & Rec@10. ρ ∈ {0.1, 0.3, 0.5, 0.8, 1.0}, T = 10. 
 
 
B.WPFM vs. B.WLFM In contrast to B.WPFM, B.WLFM 
achieves much better results consistently  across all datasets for 

Figure 2: Performance trend of BoostFM (i.e., B.WPFM 
and B.WLFM) by tuning T w.r.t. Pre@10 & Rec@10. T 
ranges from 1 to 50, and ρ is fixed to 0.3. 

 

 
loss respectively.  (2) PRFM (i.e., PRFM.CE and PRFM.H) 
largely outperforms BPR, which clearly shows the effective- 
ness of recommendation with side information  (e.g., artists 
and albums). (3) Among all the baseline algorithms, the per- 
formance of PRFM and PITF18  is very promising. We believe 
two main factors contribute to the appealing results. First, by 
applying  pairwise  ranking losses PRFM and PITF are more ap- 
propriate to handle top-N item recommendation tasks than FM 
(pointwise);  Second, by applying FM and tensor factorization 
as ranking functions, PRFM and PITF are more effective to 
predict preference orderings (by context and side information) 
than BPR. 

 
BoostFM vs. PRFM and PITF We observe in Figure 1 that 
our BoostFM (i.e., B.WPFM and B.WLFM) consistently out- 
performs the state-of-the-art methods PITF and PRFM, mea- 
sured by the two top-N ranking metrics. For example, in the 
MLHt dataset, we can calculate that B.WPFM outperforms 
PITF by 6.1% and 5.4% in terms of Pre@10 and Rec@10 
respectively19 . In particular, the significant improvements by 
B.WPFM (compared with PRFM.CE and PRFM.H)  are more 
than 18% on Pre@10 and 35% on Rec@10 in both the Last.fm 
and Yahoo datasets. The results shows that the accuracy of 
top-N recommendation can be significantly  improved by using 
the boosting technique. 

 
18 

PRFM is identical to PITF (in terms of ranking functions) when x is composed of three 
non-zero categorical variables. 

19 To save space, we only use the top-10 (i.e., Pre@10 and Rec@10) value for the fol- 

lowing descriptions since the performance trend on other top-N values is consistent. 

ranking metrics in Figure 1. The difference is that the compo- 
nent recommender WLFM is trained by optimizing  a ranking 
measure while WPFM  is trained by minimizing pairwise loss 
which is position-independant.  The results clearly validate 
our previous analysis and demonstrate the effectiveness of our 
proposed ‘listwise’ strategy. 

 
Effect of Number of Component Recommenders 

In this subsection, we evaluate the performance sensitivity of 
BoostFM to the number of component recommenders T . T 
is adjusted from 1 to 50 and ρ for B.WLFM is set to a fixed 
value20 (i.e., 0.3) for a fair comparison.  The results of all 
datasets are summarized in Figure 2, in terms of Pre@10 and 
Rec@10. We observe that the top-10 recommendation perfor- 
mance generally improves by increasing the number of com- 
ponent recommenders T , particularly when T is smaller than 
10. When T is larger than 10, adding more component recom- 
menders generates marginal performance improvements.  In 
addition, we can observe that B.WLFM performs significantly 
better than B.WPFM,  which is consistent with previous results 
in Figure 1. Note that when T is set to 1, B.WPFM  reduces to 
PRFM.CE. The different performance between them comes 
from their parameter settings since the best hyper-parameters 
of B.WPFM are found based on T = 10. 

 

Effect of Parameter ρ 
In this subsection, we study the effect of the second compo- 
nent recommender WLFM with the parameter ρ . By tuning 
ρ ∈ {0.1, 0.3, 0.5, 0.8, 1.0}, we depict the results in Figure 
3. First, we clearly  see that BoostFM with WLFM performs 
much better than that with WPFM when ρ ∈ [0.3, 1.0]. Partic- 

ularly, WLFM produces the best accuracy when setting ρ to 
 
20 

Again,   the  performance trend  keeps   consistent for   any  value  of   ρ   ∈ 
{0.1, 0.3, 0.5, 0.8, 1.0}. 
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erence (e.g., tagging habits) rather than the movie itself. In 
other words, some users assign the same tags for many differ- 
ent movies. The user bias problem can be well handled when 
the user information  is considered during the pairwise com- 
parison (e.g, BoostFM with (u, i, t) tuples), while B.WLFM 
usually leads to non-improved results without  the user context. 
The reason might be that the overall popular tags for movies 
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may not be popular tags for user-movie pairs. 
 
CONCLUSION AND FUTURE WORK 

In this paper, we have proposed  a novel ranking predictor 
Boosted Factorization Machines (BoostFM) for top-N recom- 
mendation with the incorporation of rich feature information. 
Inheriting advantages from both boosting technique and FM, 
BoostFM is (i) capable of improving top-N recommendation 
performance by forming an ensemble of component recom- 

Figure 4:    Performance  comparison w.r.t.   Pre@10 & 
Rec@10 with context and side information. In (a) (d), 
(i, t) denotes an item-tag (i.e., movie-tag) pair and (u, i, t) 
denotes a user-item-tag triple; in (b)(c)(e)(f) (u, i) denotes 
a user-item (i.e., user-music) pair and (u, i, a) denotes a 
user-item-artist triple; similarly, (u, i, a, a) denotes a user- 
item-artist-album quad. T is fixed to 10, and ρ is fixed to 
0.3. 

 

 
0.3 across nearly all datasets, but then the performance experi- 
ences a significant decrease when setting it to 0.1. The reason 
is because the component recommender WLFM concentrates 
more gradient steps on the most popular items due to the over- 
sampling scheme when ρ is set to a small value (i.e., ρ = 0.1) 
based on Eq. (23). In this case, most less unpopular  items will 
not be chosen for training, and thus the model is under-trained. 
In practice, we would suggest to tune the parameter ρ gradu- 
ally from a larger value (e.g., 1.0) to a smaller one and find 
the one that performs the best in the training set. Empirically, 
a relatively  smaller ρ can be set on a recommendation  dataset 
with a longer tail. 

Effect of Adding Features 

Finding competitive context and auxiliary features is not the 
main focus of our work but it is interesting to see to how 
BoostFM improves the performance by adding feature infor- 
mation. Therefore, we conduct a contrast experimentation 
and show the results in Figure 4. First, we observe BoostFM 
performs much better with (u, i, a) tuples than that with (u, i) 
tuples in Last.fm and Yahoo datasets. This result is intuitive 
as a user may like a music track if she likes another one by 
the same artist. Second, as expected, BoostFM with (u, i, a, a) 
tuples performs further better than that with (u, i, a) tuples in 
(c) and (f). The results verify the effectiveness of BoostFM 
in modeling item attribute information. In addition, similar 
result can be observed in the MHLt dataset: BoostFM achieves 
largely better results with (u, i, t) tuples than that with (i, t) 
tuples. We draw the conclusion that the more effective fea- 
ture information  incorporated, the better BoostFM performs. 
Interestingly, we find an outlier result in the MHLt dataset 
where the B.WLFM does not outperform B.WPFM with (i, t) 
pair. By manual inspection, we find that the tags for each 
user-movie (i.e., c) pair is highly dominated by the user’s pref- 

menders; (ii) very flexible to integrate auxiliary information, 
such as context and item side information, by mapping them 
into a general feature space. Regarding the optimization  of 
component recommenders, we have devised both pairwise and 
‘listwise’ version ranking FM with an adaptive re-weighting 
scheme. Extensive  results on three public  datasets have shown 
that the suggested BoostFM  (i.e., B.WPFM and B.WLFM) 
clearly outperformed a bunch of state-of-the-art CF counter- 
parts. 

 

The proposed BoostFM can be applied to other ranking do- 
mains based on implicit feedback and sparse feature informa- 
tion, such as personalized collaborative retrieval and learning 
to personalize query auto-completion.  For future work, we 
intend to investigate its performance in these domains. 
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APPENDIX 

Theorem 1 indicates that the ranking accuracy in terms of the 
performance measures can be continuously grown. 
 

THEOREM 1. The following bound holds in terms of rank- 
ing accuracy (e.g., AUC) of the BoostFM algorithm on the 
training data: 
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and Lars Schmidt-Thieme. BPR: Bayesian Personalized 
Ranking from Implicit Feedback. In UAI. 452–461. 

βt E r̂(c, i, y(t ) ) , for all (c, i) ∈ S and t = 1, 2, ..., T . 


