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Figure 1: In this work we investigate thermal attacks against PINs and patterns on mobile devices. After entering PINs
(a–c) or patterns (d–f) on a touch screen, a heat trace remains on the screen and can be made visible via thermal imaging.

ABSTRACT
PINs and patterns remain among the most widely used
knowledge-based authentication schemes. As thermal cam-
eras become ubiquitous and affordable, we foresee a new form
of threat to user privacy on mobile devices. Thermal cameras
allow performing thermal attacks, where heat traces, resulting
from authentication, can be used to reconstruct passwords. In
this work we investigate in details the viability of exploiting
thermal imaging to infer PINs and patterns on mobile devices.
We present a study (N=18) where we evaluated how properties
of PINs and patterns influence their thermal attacks resistance.
We found that thermal attacks are indeed viable on mobile
devices; overlapping patterns significantly decrease successful
thermal attack rate from 100% to 16.67%, while PINs remain
vulnerable (>72% success rate) even with duplicate digits.
We conclude by recommendations for users and designers of
authentication schemes on how to resist thermal attacks.
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INTRODUCTION
The increasing amount of sensitive data available on personal
mobile devices, such as personal photos, call logs, bank ac-
counts, and emails underlines the need to secure them against
various kinds of malicious attacks. For this reason, users pro-
tect access to their mobile devices using different authenti-
cation mechanisms, including patterns and PINs as well as
biometric approaches, such as FaceUnlock or TouchID [23].
Privacy concerns are known to influence users’ technology
use decisions [39], suggesting that many users could aban-
don biometric schemes due to the associated privacy impli-
cations such as consequences of biometric information being
disclosed. However, PINs and patterns remain among the most
popular authentication mechanisms as of today [23, 49].

The usable security community lately focused on inves-
tigating different user-centered attacks, such as shoulder-
surfing (e.g., [14, 18, 29]) and smudge attacks (e.g., [43, 51]).
At the same time, a new threat emerged which received only
little attention [4] so far from the research community, that
is, thermal attacks on touch screens of mobile devices. The
past years have witnessed portable thermal cameras becom-
ing available on the mass market, in personal mobile devices
such as CAT S601, or as attachable accessories for mobile de-
vices (e.g., the FLIR One2 or Seek thermal3). Falling hardware
prices made these devices affordable. At the time of publishing

1http://www.catphones.com/phones/s60-smartphone
2http://www.flir.de/flirone
3http://www.thermal.com



this paper, a portable thermal camera with a temperature sen-
sitivity of 0.05◦C can be purchased for ∼400$. This creates
an inherent need to understand the threat imposed by such
devices that enable thermal attacks.

During a thermal attack, a thermal camera operating in the far
infrared spectrum, captures the heat traces left on the surface
of a mobile device after authentication. These traces are re-
covered and used to reconstruct the password. Unlike smudge
attacks, thermal attacks can leak information about the order
of entry for PINs and patterns (see Figure 1). Moreover, they
can be performed after the victim had authenticated, allevi-
ating the need for in-situ observation attacks (e.g., shoulder
surfing attacks) that can be affected by hand occlusions.

While previous work utilized thermal conductance to recog-
nize touch points for interaction [21, 32, 42], in this work we
investigate its reliability to infer passwords from heat traces
left on touch screens after authentication. Abdelrahman et
al. [1] depicted a material space for on-surface heat trace
recognition. Yet, their work did not cover touch screen’s ma-
terial. We investigate thermal attacks on Gorilla glass4, the
standard cover glass used for most touchscreens.

In this work, we explore how current authentication mech-
anisms are vulnerable to thermal attacks. We introduce an
automated computer vision-based approach that analyzes the
heat traces after an authentication process and extracts the
potential PIN or pattern. Our implementation is open source,
hence allowing further experimentation with thermal attacks5.
We report on our findings from a user study where we in-
vestigated how properties of PINs and patterns influence the
success of thermal attacks. In particular, we focus on the type
of authentication scheme, the properties of the password and
the time at which the attack was performed after authentica-
tion. We found that, although thermal images of PINs that
contain duplicate digits do not leak the PIN to the naked eye
(Figure 1), thermal attacks can yield 72% to 100% success
rate when performed within the first 30 seconds after authen-
tication. At the same time, thermal attack success decreases
significantly in case of patterns (from 100% to 17% in the first
30 seconds) if the pattern includes one or more overlaps.

CONTRIBUTION STATEMENT
The contributions of this paper are as follows:

1. Assessment of the thermal contact conductance of state-
of-the-art smartphone touch screens and how commercial
thermal cameras can exploit them for thermal attacks.

2. An automated computer vision approach to analyze the
thermal attack resistance of PINs and patterns by extract-
ing them from heat traces.

3. An in-depth study of how properties of commonly used
authentication schemes affect the success rate of thermal
attacks.

4. A set of recommendations that help users and authentica-
tion scheme designers to overcome thermal attacks.

4http://www.corning.com/gorillaglass/worldwide/en/
products-with-gorilla.html
5https://github.com/Yomna-Abdelrahman/
ThermalAttack.git

RELATED WORK
Our work builds on two strands of prior work: (1) thermal
imaging and (2) the different types of threats to user authenti-
cation on mobile devices.

Thermal Imaging
Thermal cameras capture the thermal map of a scene. They
operate in the far-infrared spectrum with wavelengths between
7.5 and 13 µm. There are multiple differences between prop-
erties of thermal imaging and those of visible light.

The first thermal property is heat radiation. Compared to visi-
ble light, heat radiation has different reflection properties that
depend on the surface [1]. Thermal reflections were exploited
in previous work to enable body-worn and hand-held devices
to detect mid-air gestures [42].

The second unique property is that thermal imaging is inde-
pendent of light and coloring conditions, which allows thermal
cameras to be used for face and expression recognition [30, 31].
Thermal cameras can provide information about the sensed
body’s temperature, which can be used to infer the physiologi-
cal and cognitive state of users in a contact free manner [41]
by, for example, evaluating their stress levels [28].

A third unique property is that thermal imaging is capable
of detecting input that has been performed in the past. When
a user touches a point on a surface, heat is transferred from
the user to the surface, generating heat traces that slowly fade
away. These traces can be detected using thermal imaging.
Heat traces have been utilized for input [21, 32, 42] and to
authenticate users based on their thermal hand print [11].

In this paper, we investigate the use of thermal imaging to
infer passwords entered on mobile devices, exploiting the fact
that heat traces take time to fade away. We investigate the
thermal properties of state-of-the-art touch screens and study
the impact of password properties on the heat trace and, thus,
the successful retrieval of passwords via thermal imaging.

Threats to Authentication on Mobile Devices
Mobile devices, such as tablets and smart phones, store and
allow access to a plethora of private content. Prior work inves-
tigated a number of threat models that put the user’s private
data at risk.

Shoulder Surfing Attacks
One of the most discussed threats are shoulder surfing attacks,
in which an observer attempts to eavesdrop a user to uncover
private information, among which are login credentials [18].
Different approaches have been introduced to mitigate shoul-
der surfing attacks, ranging from adding random cues [6, 7,
8, 46], splitting the attackers’ attention by requiring them to
observe multiple cues [14, 29], and disguising the user in-
put [15, 22]. Despite focusing on login credentials, research
also investigated methods to protect users from shoulder surf-
ing text messages [19] and pictures [50]. Most of the schemes
that counter shoulder surfing address a threat model where the
attacker can clearly observe the password entry once. Other
threat models cover multiple observation attacks [24, 36, 29,
52] or video attacks [14, 46].



Smudge Attacks
Another type of attack that has been addressed by previous
work is smudge attack, in which an attacker exploits the oily
residues left on the touch screen after interaction to uncover
the password [5]. Smudge attacks perform particularly well
against patterns, as smudges give hints on where the pattern
started. However they can hardly provide any useful informa-
tion about the order of PIN entries. Approaches to mitigate
smudge attacks include graphically transforming the visual
cue on which the password is entered [43, 51], introducing
a random element that leads to different smudges at every
authentication attempt [51], or using multiple fingers to in-
crease the complexity of the pattern [35]. Threat models that
consider smudge attacks assume that the attacker has access to
the mobile device, in addition to clearly visible smudge traces
and optimal lighting conditions to see the smudges clearly.

Thermal Image Attacks
Thermal image attacks exploit properties of thermal imag-
ing. Namely, heat traces are transferred from the user’s hands
to the touch screen during authentication. These traces fade
away slowly [32], allowing thermal cameras to perceive which
parts of the display have been touched even after the user had
already entered the password. Similar to shoulder surfing, ther-
mal attacks leak information about the order of entered PINs
and patterns [5]. In contrast to shoulder surfing, however, ther-
mal attacks can be performed after the user had left the device.
This gives attackers an advantage as they no longer need to
observe the user while authenticating, which makes the attack
more subtle and eliminates hand occlusions. Although thermal
images can be distorted by interaction, a user who performs
limited interactions or leaves the device after authentication is
still vulnerable to thermal attacks.

Mowery et al. investigated the effectiveness of thermal attacks
on ATMs with plastic keypads [34]. They found that thermal
attacks are feasible even after the user authenticated. While
Mowery et al. investigated thermal attacks on plastic keypads
of ATMs, little work was done regarding thermal attacks on
mobile devices and other touch screens devices. In a prelimi-
nary study, Andriotis et al. [4] were able to observe heat traces
resulting from entering a pattern for 3 seconds after authenti-
cation. This allowed them to retrieve parts of the pattern.

In our work, we perform an in-depth analysis of how well ther-
mal attacks perform on PINs and patterns on mobile device
touch screens with respect to different password properties.
We also consider duplicate digits in PINs, and overlaps in
patterns. To do this, we implemented ThermalAnalyzer, which
automatically retrieves passwords from heat traces. Thermal-
Analyzer shows that thermal attacks can be successful even if
they take place 30 seconds after authentication (i.e. 10 times
longer compared to previous work [4]).

UNDERSTANDING THERMAL ATTACKS
Our work relies on the phenomenon of heat transfer from one
object to another. Heat transfers from users’ hands to surfaces
they interact with, leaving traces behind that can be analyzed.
This relies on the surface’s material property know as thermal
contact conductance [12], which refers to the conductivity of
heat between two objects (surfaces) that are in contact.

According to the blackbody model [27], any object above
absolute zero (e.g., surrounding objects in our environment)
emits thermal radiation. This radiation is absorbed, reflected,
and transmitted. However, for fully opaque surfaces the trans-
mitted portion is discarded [20]. This limits the portions of
interest to the reflected and absorbed radiation. Hence, thermal
radiation could be presented as in Thermal reflectivity +
Thermal absorptivity = 1.

As soon as an object contacts a surface, thermal radiation is
transmitted and absorbed by the surface, causing a temperature
change. This leads to heat traces accumulating on the surface.
To compute the transferred heat and identify whether or not
it is detectable by commercial thermal cameras, we measured
the temperature at the contact point (Tcontact). We used a well-
established model by Ray [40] to compute the temperature
at the contact point of the two bodies. In our scenario, the
two bodies are: the human skin (i.e. the user’s finger), and the
mobile device’s touchscreen (i.e. a plate of Gorilla glass).

Tcontact =
bskinTskin + bgorilla glassTgorilla glass

bskin + bgorilla glass
(1)

b =
√
K.P.C (2)

Tcontact depends on the temperature of the contact points
(Tskin and Tgorillaglass) as well as their thermal penetration
coefficient (b). It is the amount of thermal energy penetrated
and absorbed by the surface. The b is defined in Equation 2.
It is composed of the product of thermal conductivity (K),
thermal density (P), and specific heat capacity (C) [38]. The b
of human skin and the gorilla glass for short contact are 1000
JS−1/2m−2K−1 [38] and 1385 JS−1/2m−2K−1 [44] 6 re-
spectively.

Additionally, the detection of temperature changes at the con-
tact point depends on the camera’s sensitivity. The change in
temperature must be higher than the camera’s temperature sen-
sitivity to be distinguishable by the camera. For example, if the
touch screen’s glass has a temperature Tgorillaglass of 23◦C
and the user’s hand temperature Tuser is 30◦C, then Tcontact
would be 25.9◦C according to Equation 1. This results in a tem-
perature difference of 2.9◦C (Tcontact – Tgorillaglass). Hence,
a thermal camera with thermal sensitivity ≤ 2.9◦C would be
able to recover the order in which a PIN/pattern entry was
performed by utilizing the heat trace decays. In our work, the
thermal camera has a thermal sensitivity of 0.04◦C, allowing
different hand temperatures to be sensed.

THREAT MODEL
In our threat model, the attacker (i.e., a person who wants to
access a device without permission) waits for the victim to
complete the authentication process and to leave the mobile
device. This could be the case when the user quickly checks
his latest messages before getting something to drink from
the coffee machine, while leaving the device on his/her desk.
To ensure optimal conditions for the attacker in our threat
model, the user does not interact with the device but merely
6This value was confirmed by lab measurements by the Institute of
Applied Optics in our university



Figure 2: The figure illustrates the recognition pipeline of PINs (top) and patterns (bottom).

authenticates (e.g., to check an update from a notification or a
widget) then leaves the device idle. The attacker then uses a
thermal camera (e.g., integrated into a smart phone) to take a
thermal image of the device’s touchscreen. The attacker then
analyzes the thermal image in a manner similar to our analysis
presented in the following section to identify the PIN/pattern.
Similar to previously discussed threat models [24, 36, 29, 52],
the attacker exploits a chance where the device is unattended
to login and access the user’s private information.

THERMALANALYZER
In the following, we describe the design and implementation
of the ThermalAnalyzer. The ThermalAnalyzer consists of a
thermal camera capturing an image and a recognition pipeline
used to extract the PINs and patterns.

Recognition Pipeline
The recognition pipeline consists of six steps, performed to
extract a PIN or patterns from an image (Figure 2). The steps
are performed using OpenCV7 and include frame extraction,
pre-processing, noise and background removal, and threshold-
ing. The final step is feature extraction to deduce the touch
points’ location and temperature information.

Frame Extraction and Camera Configuration
We captured the thermal image through the Optris thermal
camera API8. Using the interprocessor communication, we
capture the frames in a 16-bit color format along with the
encoding of the temperature information. We configured the
camera using its API to capture temperature values between
19◦C to 32◦C. This was done to achieve higher contrast of
colors that represent different temperature values as depicted
in Figure 2. For each captured frame a pre-processing proce-
dure is performed. This included noise filtering, background
subtraction, and thresholding.

Noise Filtering
We adapted the noise filtering process used by [1, 32, 42] by
applying a 5×5 px median filter, converting the image to grey
scale and reapplying the filter for enhanced noise reduction.
7http://opencv.org/
8http://www.optris.com/software

Background Subtraction
We built a semi-static background model for background sub-
traction. A static model is preferred in our case as we want
the heat trace detected to last over the frames and not to be
adsorbed by a dynamic background model. Yet, on the other
hand a dynamic model is required to tolerate slight tempera-
ture difference of the device along the operation. Hence, we
built a semi-static background model, where the update is con-
trolled by the learning rate (α) parameter, which is a value that
controls the rate of background model updates. An α value of
0.001 showed the best result in preliminary tests. As a result,
the latest heat trace stemming from password entry stays in
the foreground, whereas heat traces from slight changes from
the environment temperature are merged with the background.

Thresholding
To segment the regions that are relevant to identifying heat
traces (Figure 2), we used Otsu’s thresholding method [37].
The frame is classified into two set of pixels with minimum
overlap between them based on a dynamically computed
threshold by Otsu’s algorithm. Then, we applied an additional
morphological closing operation to highlight the boundaries
of the thresholded foreground and reduce the background.

Feature Extraction
Our features are classified into (1) circular fitted traces for PIN
detection and (2) line fitted traces for patterns detection.

The heat trace is detectable via extracting the contours from
the binary images, where the image is scanned to detect arrays
of contours. Similar to the work of Sahami et al. [42], we used
a circular fitted contour detection to identify the PIN entries.
The contour center is computed as the spatial moment of the
extracted contour. Using the same approach for detecting the
circular fitted heat traces, we used the Hough Transform [17]
for extracting line fitted contour detection to identify the en-
tered patterns, as depicted in Figure 2.

PIN and Pattern Sequence Detection
At this point in the processing pipeline, the PIN or pattern
entry has been extracted from the captured frames but with no
information about the sequence of entry. To infer the sequence
for the PINs, we utilized a pre-set frame with the keypad to



identify the PIN location using squares. The squares represent
the entire set of regions of interest (ROI). Mowery et al. [34]
reported that representing the ROI with the mean temperature
yields best performance for recovering the order of the entry
sequence. Hence, we compute the mean temperature for each
ROI, and sort them based on their weights.

To identify duplicate entries, we compute the overall average
temperature of each digit. Thereby, the background tempera-
ture is subtracted. Hence, a digit that was never pressed would
have a temperature value of almost zero. Consequently, du-
plicate entries (i.e., the digit that was touched multiple times)
have a value that exceeds the overall average. The number of
duplicates can be inferred from the relative temperature values
of the overall number of detected presses. In summary, given
a four-digits PIN, there would be four detection scenarios:

• Four different heat traces: This means there are no dupli-
cates. Hence, ordering the traces based on their temperature
in a descending manner would infer the sequence.

• Three different heat traces: The heat trace that has a tem-
perature of Tcontact is the last entry in the PIN, as it will
maintain the Tcontact value. This leaves only 3 possibili-
ties for the remaining sequence, which are sufficient for
the attacker to try without being locked out. This approach,
however, will work with recently captured frames as the
heat trace, i.e. Tcontact, decays over time.

• Two different heat traces: According to the relative ratios
of the weights, the number of repetitions of each digit is
identified. Normalizing the weights would then show the
last touched digit. Once the last digit is identified, the at-
tacker can tell whether it is the duplicated one (i.e. the other
duplicate is either in position 1, 2 or 3, while the remaining
digits are ordered according to their heat traces), or the last
digit is a non-duplicated digit, hence the attacker has only 3
possibilities to try without being locked out.

• One heat trace: This means that the PIN consists of the same
number repeated 4 times.

One of the former three conditions could be experienced due
to heat trace decay. In that case, we identified the missing digit
to be unidentified and set it to be the beginning of the PIN
(e.g., if 3 traces where detected with no evidence of duplicates,
the first digit is labeled unknown and the remaining three are
sorted by their temperature weights).

The same approach was followed for the patterns, where the
extracted lines are analyzed and ordered by their mean temper-
ature. Additionally, the temperature of the tips of the extracted
lines were compared to identify the direction. Our algorithm
does not account for a specific pattern length, hence we present
the available heat trace to be the regenerated pattern.

For a more conservative analysis, ThermalAnalyzer is not
optimized for detecting patterns of specific length (max of 9).
This is because in our threat model, and most likely in a real
scenario, the attacker does not know the pattern length. This
means that in cases where the ThermalAnalyzer generated a
guess that is of length n instead of 9, the heat traces of the
remaining 9–n had already decayed by the time of the attack.

Figure 3: Setup with the thermal camera capturing the
phone’s screen.

COLLECTING THERMAL IMAGES
Despite the variety of authentication schemes that were intro-
duced in the past years, personal identification numbers (PIN)
is one of the most commonly used schemes [49]. Moreover, as
Android devices dominate the market, there is an increasing
adoption of pattern, which is an Android graphical password
scheme where users draw a line pattern that connects dots
displayed in a 3×3 grid [45].

In this study we analyze thermal images of a smart phone
screen after a user entered a password. These images are eval-
uated using ThermalAnalyzer. We particularly focus on un-
derstanding how (1) different authentication schemes, (2) the
time between password entry and attack, and (3) password
properties influence the feasibility of thermal attacks.

Design
The study uses a repeated measures design, where all partici-
pants were exposed to all conditions. We studied the effect of
three independent variables on the success of thermal attacks:
(1) the password type: whether the used scheme is a PIN or a
pattern, (2) the age of the heat trace: we analyzed heat traces
0, 15, 30, 45 and 60 seconds after authentication to investigate
for how long they remain exploitable by an attacker, and (3)
the properties of the PINs and patterns.

In case of PINs, the property we studied is the number of
duplicates in the PIN. On one hand duplicates distort the heat
traces, making the entry order less distinguishable. On the
other hand the presence of duplicates reduces the password
space, which means that less information from the thermal
attack would be sufficient to uncover the password.

We studied the influence of having No-duplicates, 1-duplicate,
and 2-duplicates (e.g., 1236, 1223, and 3222 respectively).
Examples are shown in Figures 1a, 1b, and 1c respectively.
In case of patterns, we investigated the effect of the number
of overlaps [48] in the pattern. An overlap occurs when the
user’s finger passes through a node that is already selected. We
expect that overlaps can distort the heat traces enough to make
it infeasible to reconstruct the entered pattern. We studied the
influence of having one, two, or no overlaps in the patterns
(cf. Figures 1e, 1f, and 1d respectively).



Apparatus
Our setup included two Samsung Galaxy Note Edge smart
phones, a thermal camera (Optris PI4509), and a GoPro Hero3
RGB camera, both mounted on a tripod. One smart phone
was used for practicing the passwords and the other one for
the actual input. The thermal camera has an optical resolution
of 382×288 pixels and a frame rate of 80 Hz. It is able to
measure temperatures between -20◦C and 900◦C, and operates
with a thermal sensitivity of 0.04◦C represented by the noise
equivalent temperature difference (NETD)10. The wavelengths
captured by the camera are in the spectral range between
7.5µm and 13µm. The lens provides a 80◦×58◦ field of view.
The thermal camera uses USB as power source as well as to
transfer data. It provides temperature information in the form
of 16-bit color values encoding the temperature information.

To ensure that heat traces are recorded at the intended times,
we used a place mark at a distance of 80 cm in front of the cam-
era (cf. Figure 3) to indicate the optimal position of the smart
phone to record the heat trails with the thermal camera while
minimizing thermal reflection. Additionally, we recorded the
whole study using an RGB video camera. The RGB video feed
was later used to determine the time at which the users fingers
were no longer in contact with the screen.

Participant and Procedure
We recruited 18 participants (10 female and 8 male) with an
average age of 28.3 years (SD = 4.7) using university mailing
lists. All participants were students in different majors. Two
participants were left handed. None of the participants had any
previous experience with thermal cameras.

After participants arrived in the lab, we first asked them to sign
a consent form and explained the purpose of the study. Next,
we handed a set of PINs and patterns printed on cards as well
as the two smart phones to the participants. To avoid errors and
pauses during entry, we asked the participants to familiarize
themselves beforehand with the passwords by entering them
multiple times on the practice smart phone first. We instructed
the participants to enter the password, then immediately place
the study smart phone on the place mark on the table in front
of them (cf. Figure 3). We waited for three minutes between
each entry, to ensure full heat trace decay of the previous
entry. Each participant entered three passwords of each type
(i.e. 18 passwords). The order was counter balanced using a
Latin-square.

The study took approximately 40 minutes. We video recorded
the study for post-hoc analysis of the input times. Throughout
the experiment we recorded the temperature of the partici-
pant’s dominant hand (i.e., the hand used to enter the pass-
word), in addition to the phone’s temperature. The experiment
was conducted in a maintained room temperature of 24◦C.

To analyze the thermal attacks, we considered two approaches:
(1) visually inspecting heat traces and (2) using our computer
vision approach ThermalAnalyzer. The analysis was done by
one of the authors who was not aware and was never exposed
9http://www.optris.com/thermal-imager-pi400

10NETD refers to the electronic noise that is interpreted as a tempera-
ture difference of an object.

Figure 4: The figure shows the heat traces resulting from
entering PINs (top) and Patterns (bottom) as they decay
from 0 to 30 to 60 seconds.

to the list of entered passwords. Additionally, the feed was an-
alyzed from the thermal cameras. Using the ThermalAnalyzer
earlier, the author reported the regenerated PINs and patterns
in a csv file defining all possible combinations.

RESULTS
To evaluate the success of thermal attacks against PINs and
patterns, we measured

1. The success rate: the percentage of cases in which the
thermal attack successfully revealed the entire password
correctly.

2. The Levenshtein distance: the distance between the gen-
erated guesses and the correct password.

The success rate and Levenshtein distance were used in previ-
ous work to reflect how successful attacks are (success rate)
and how close the guess is to the original password (Leven-
shtein distance) [16, 29, 47].

We visually inspected a sample of thermal images from the
data (3 participants). However we could not visually recover
the entire order of the PIN, nor the direction of the patterns.
This is apparent in Figure 1a, where identifying the order of 3
and 6 is challenging to the naked eye. Additionally, the starting
points of the pattern is not visually deducible (see Figure 1e).
Hence, we only considered the PINs and patterns from the
ThermalAnalyzer. We investigated the effect of three indepen-
dent variables: (1) authentication scheme, (2) age of the heat
trace and (3) password properties. The tasks performed during
the study typically require between 26% to 44% CPU usage.

Statistical Analysis
As we have three independent variables, we analyzed the
data using a three-factor repeated measures ANOVA (with
Greenhouse-Geisser correction if sphericity was violated).
This was followed by post-hoc pairwise comparisons using
Bonferroni-corrected t-tests.

Figures 5 and 7 show the success rate per age of the heat
traces and password property. Additionally, Figures 6 and 8
show the Levenshtein distances per age of the heat traces and
password property. The results show that thermal attacks are
more successful against PINs than against patterns.



Figure 5: The successful thermal attack rate against PINs
is significantly higher when the thermal image is taken in
the first 30 seconds. Thermal attacks perform well against
PINs with duplicate digits despite the noise introduced by
touching the same digit multiple times.

Figure 6: The mean Levenshtein distances and standard
deviation between the guessed PINs and the correct PIN.

Authentication Scheme: PINs vs Patterns
Overall, thermal attacks were more successful for PINs (M
= 0.62, SD = 0.31) than for patterns (M = 0.32, SD = 0.16).
Similarly, the Levenshtein is shorter for PINs (M = 0.856,
SD = 0.127) than for patterns (M = 3.14, SD = 0.28). We
found a significant main effect of password type on the Lev-
enshtein distance between the guess and the entered pass-
word F1,17 = 91.923, p < 0.001. Post-hoc analysis showed
significant differences (p < 0.001) between passwords of
type PIN (M = 0.856, SD = 0.127) compared to those of type
pattern (M = 3.14, SD = 0.28). This means guesses against
PINs are generally closer to the original password compared
to those against patterns.

Age of Heat Traces
PINs
Looking at the age of the heat trace, the results show that the
earlier the heat attack is performed, the higher the success rate
and the lower the Levenshtein distance are (cf., Table 1). The
results of the ANOVA revealed a significant main effect of
the heat trace’s age on the Levenshtein distance between the
correct password and the guess F1.79,30.45 = 41.7, p < 0.001.
Post-hoc analysis using Bonferroni corrected t-tests showed
statistically significant differences between 60 seconds and all
other durations (p < 0.001) as well as between 45 seconds
and all other durations (p < 0.001). This shows that thermal

Figure 7: The successful thermal attack rate against pat-
terns is significantly higher when the analyzed thermal
image is taken in the first 30 seconds after authentica-
tion. Furthermore, thermal attacks are significantly less
successful against patterns with overlaps.

Figure 8: The mean Levenshtein distances and standard
deviation for the guessed patterns and the correct pattern.

attacks against PINs that take place within the first 30 seconds
after authentication result in guesses that are significantly
closer to the correct password compared to those done after
30 seconds. This is also reflected in the success rate as shown
in Figure 5. Overall, this suggests that thermal attacks are very
effective against PINs when performed within 30 seconds after
authentication.

Patterns
Similar to the results of the PINs, the results for the patterns
show that the older the traces are, the less likely a thermal
attack is successful and the higher the Levenshtein distances
are (cf., Table 1). We found a significant main effect of the heat
trace’s age on the Levenshtein distance between the correct
pattern and the guess F2.228,38.876 = 13.295, p < 0.001.
Post-hoc analysis using Bonferroni corrected t-tests showed
significant differences (p < 0.05) between 60 seconds and all
other durations.

This shows that thermal attacks against patterns that take place
60 seconds after authentication result in guesses that are sig-
nificantly farther away from the correct password, compared
to those done within the first 45 seconds. This is also reflected
in the success rate shown in Figure 7. Overall, this suggests
that thermal attacks are very effective against patterns when
performed within 45 seconds after authentication.



PIN Pattern
Age Levenshtein Success Rate Levenshtein Success Rate
immediate M=0.222, SD=0.76 M=0.89, SD=0.08 M=0.222, SD=0.76 M=0.46, SD=0.40
15 seconds trace M=0.222, SD=0.76 M=0.87, SD=0.09 M=0.315, SD=0.139 M=0.44, SD=0.40
30 seconds trace M=0.407, SD=0.134 M=0.78, SD=0.08 M=0.407, SD=0.134 (M = 1, SD = 0.39)0.44
45 seconds trace M=1.39, SD=0.2 M=0.35, SD=0.14 M=1.39, SD=0.2 M=0.20, SD=0.14
60 seconds trace M=1.94, SD=0.23 M=0.22, SD=0.12 M=3.8, SD=0.32 M=0.11, SD=0.09

Table 1: The success rate and Levenshtein distances for different ages of the heat trace.

Hand and Screen Temperature
We found that the difference in temperature (Dt) between the
hand and screen influences the success of a thermal attack. The
higher Dt, the more successful is a thermal attack, since more
thermal energy is transferred to the screen (cf. Equation 1).
Using Pearson’s product-moment correlation, we found that
the correlation between Dt and the successful thermal attack
rates increases from 0.55 (at 0 seconds) to 0.85 (at 60 seconds).
This means that there is a strong correlation between Dt and
the success of an attack and that Dt is particularly important
for attacks happening some time after authentication.

Password Properties
PINs Duplicates
We found a significant main effect of number of duplicate dig-
its on resistance to thermal attacks F2,34 = 13.23, p < 0.01.
Post-hoc analysis revealed statistically significant differences
(p < 0.05) between No-duplicates (M = 1.23, SD = 0.25)
and 2-duplicates (M = 0.47, SD = 0.08) and between 1-
duplicate (M = 0.87, SD = 0.15) and 2-duplicates (M = 0.47,
SD = 0.08). This means that the more duplicates a PIN has,
the closer the guess is to the correct PIN.

This shows that although the presence of duplicate digits
makes it harder to determine the order of the detected touches,
the approach is able to determine if a digit is repeated two
or three times. As a result, the security added by overwritten
heat traces in case of duplicate PINs is outweighed by the
significantly reduced password space.

Patterns Overlaps
We found a significant main effect of the number of over-
laps on the distance between the correct pattern and the
guess F1.441,24.503 = 28.563, p < 0.001. Post-hoc analysis
showed significant differences between two pairs (p < 0.001):
patterns with no overlaps (M = 0.48, SD = 0.08) compared to
those with one overlap (M = 3.67, SD = 0.68), and between
patterns with no overlaps (M = 0.478, SD = 0.08) compared to
those with two-overlaps (M = 5.29, SD = 0.43). No significant
differences were found between the third pair (p > 0.05).

This shows that although patterns can be successfully uncov-
ered using thermal attacks up to 30 seconds after authentica-
tion (100% success rate), the presence of overlaps significantly
increases its resistance against thermal attacks.

DISCUSSION
The results of our study and a review of prior work reveal
that surfaces with specific properties can be used to detect on-
surface interaction using thermal imaging. On this basis, in the
previous sections, we presented the results from collecting and

analyzing thermal traces of authentication processes, which
we summarize and discuss grouped by the most important
observations in the following.

We particularly focused on PINs and patterns since they are
currently the most common knowledge-based authentication
schemes [23, 49]. However, other authentication schemes may
be vulnerable to thermal attacks as well. We expect attacks on
graphical passwords that rely on cued-recall [2, 3, 43] to be
similarly effective compared to the patterns we investigated.

PINs are typically easy to uncover using observation attacks
(De Luca et al. report 95% successful attack rate for PINs [15]).
Our results indicate that PINs poorly resist thermal attacks as
well, with overall success rates ranging from 78% to 100%
when attacks are performed within the first 30 seconds after au-
thentication (Figure 5). Although smudge attacks against PINs
can uncover which digits were entered, hence significantly
reducing the password space, thermal attacks can additionally
uncover the order in which the digits were entered.

Without overlaps, patterns of maximum length are uncovered
in 100% of the cases when thermal attacks are performed
within 30 seconds after authentication (Figure 7). However,
just adding one overlap significantly increases resistance to
thermal attacks, as it influence the direction detection and
the order of the performed patterns. Overlaping patterns did
not have the same effect as duplicate PINs, as they also in-
fluence the detected direction and the order of the performed
pattern. Hence we recommend including an overlap movement
in patterns to increase resistance against thermal attacks.

In contrast to overlaps, knight moves do not distort the heat
trace of pattern points but only the path at intersections. Hence,
knight moves are similarly ineffective in making thermal at-
tacks more difficult as they are against smudge attacks.

Moreover, unlike smudge attacks, thermal attacks do not re-
quire finding an optimal angle at which the traces are visible.
Thermal attacks were shown to be tolerant to viewing an-
gle/distance, as reported by Mowery et al. [34]. Mowery et
al. evaluated different distances (30–70 cm) and did not ob-
serve changes in the detection. In our setup the camera was
placed at 80 cm above the phone, hence we expect minimal to
no influence of the distance on the results.

In contrast to observation attacks, thermal images are taken
after authentication, hence the attack is less obvious to the vic-
tim and is not influenced by authentication speed. Additionally,
the operation of thermal imaging allows seamless attacks, as it
operates in a light invariant manner, where lighting conditions
do not influence the capturing of thermal information [34].



Using a thermal camera with high temperature sensitivity and
an automated computer vision approach to detect the traces,
outperformed the results reported by prior related work [34].
Our approach unveils PINs/Patterns with high success after
30 seconds while previous work was successful up to only 3
seconds after authentication. While a higher sensitivity camera
might have led to better results in manual analysis, we believe
the main enhancement to come from the automated computer
vision approach which allowed detection of heat traces despite
being invisible to manual visual inspection.

RECOMMENDATIONS TO RESIST THERMAL ATTACKS
There are ways to resist thermal attacks. We present three
categories: (1) based on the results of our study, we are able to
guide users in selecting PINs/patterns that are resistant to ther-
mal attacks, (2) based on a literature review, we recommend
schemes that are theoretically unaffected by thermal attacks,
and (3) we present novel approaches that distort the heat traces,
reducing the chances for successful thermal attacks.

Selection of PINs and Patterns
Our results indicate that adding a single overlap in an authenti-
cation pattern significantly increases the resistance to thermal
attacks. When it comes to PINs, although duplicates distort the
heat traces thermal attacks rely on, also other factors contribute
to the ease/difficulty of uncovering duplicate PINs.

We recommend to increase the resistance of PINs against
thermal attacks by increasing the number of digits in the PIN.
The longer the PIN the longer it takes the user to enter it,
which would in turn decrease the intensity of heat traces of the
first digits by the time the user authenticates.

Thermal Attack Resilient Schemes
Many authentication schemes have been proposed to resist dif-
ferent types of attacks. We are not aware of systems that were
built with the main aim of resisting thermal attacks on touch
screens. However, some existing knowledge-based schemes
do resist them by design.

One group of authentication schemes resilient against thermal
attacks rely on one or more modalities other than touch input.
For example, biometrics schemes (for example, [10, 13, 25,
26]) rely on data collected by sensors, such as accelerometers,
to identify the user. Since they do not use the touch screen for
dedicated input, they are not vulnerable to thermal attacks.

Similarly, authentication schemes that combine touch input
with another modalites increase the resilience towards thermal
attacks. PhoneLock [6], SpinLock [7], TimeLock [8], and Col-
orLock [8] augment PIN entry by using auditory and haptic
cues the user needs to respond to when authenticating. These
cues are randomized to counter shoulder-surfing attacks. Other
examples utilized eye movements. For example Liu et al. [33]
and Bulling et al. [9] used gaze input to authenticate. Sim-
ilarly, Khamis et al. [29] introduced GazeTouchPass which
combines gaze gestures and touch-input. Depending on the
authentication scheme, the use of thermal cameras can still
help the attacker to reveal the part of the input made on the
touch screen. Being untied to the touchscreen, thermal attacks
against these schemes would fail to uncover the PIN.

a b c

Figure 9: In addition to solutions based on our results and
on prior work, we additionally propose the following ap-
proaches for resisting thermal attacks after entering the
password: (a) using a white flash light for 3 second, (b)
users swaps their hand randomly on the screen to distort
the password’s heat trace and (c) forcing maximum CPU
usage for 3 seconds.

Moreover, novel authentication schemes designed to resist
smudge attacks also increase the resilience towards thermal
attacks since smudge attacks exploit a similar weakness in
touch-based input. For example, SmudgeSafe [43] compli-
cates smudge attacks against graphical passwords by randomly
transforming the underlying image, causing the smudges to
be different at every login attempt. Von Zezschwitz et al. [51]
proposed three token-based graphical password schemes, two
of which were significantly more secure against smudge at-
tacks compared to patterns. The schemes rely on randomly
positioned dragable objects. Hence thermal attacks are not
expected to perform better than smudge attacks against these.

Physical Protection Measures
While novel authentication schemes increase the resistance
towards thermal attacks, increasing the security of current
PIN and pattern input against thermal attacks is still an im-
portant aspect. Placing the hand on the display might remove
all thermal traces on the screen as shown in Figure 9b. How-
ever, there are different procedures that decrease the success
rate of thermal attacks without involving the user. For exam-
ple, increasing the brightness of the display to the maximum
for a few seconds heats up the display temperature and, thus,
reduces the time thermal traces are visible, as depicted in Fig-
ure 9a. Similarly, running computationally heavy processes on
the phone quickly heats the phone up, resulting in a similar
effect as shown in Figure 9c.

LIMITATIONS
In this work we explore and understand the effect of
PIN/Pattern properties on its vulnerability to thermal attacks.
Hence, our threat model assumes a best case scenario for the
attacker. In this case, the user unlocks the phone (e.g., to check
notifications or a calendar entry on the home screen) without
further interaction. We acknowledge that in real-world situ-
ations, users are likely to interact after unlocking the phone,
thus creating further traces. More sophisticated approaches
(e.g., using deep learning) in the future could separate authen-
tication and interaction patterns by, for example, utilizing the
trace’s age to only consider the oldest trace.



We did not measure CPU usage during the study, although it
might influence the success of the thermal attacks. This could
be considered in future work to investigate the influence of the
CPU usage on the success rate of thermal attacks.

We had a stationary setup with the thermal camera at fixed
distance. Initial studies have shown robustness of thermal
attacks against viewing distance. However, exploring different
viewing angles ranging from 0 to 180 degrees from the phone
with combination of different distance, might enhance the
understanding and practicality of thermal attacks.

FUTURE WORK
In future work, our results can be used to generalize thermal at-
tacks on devices with touch screens. We could consider wider
scenarios including tablets and shared public touch screen
devices (e.g., IKEA self check-out, where users enter their
PIN code on a touch screen without any further interaction on
the screen, making their PIN vulnerable to thermal attacks).
Additionally, it would be interesting to extend our Thermal-
Analyzer to include neural networks and learning mechanisms
for a better detection of PINs and patterns. We analyzed one
image for each point in time. We expect that with more sophis-
ticated thermal recording stream of images or video and the
use of the trace history can further increase the success rate of
attacks.

Our findings are based on the thermal camera sensitivity. The
use of a thermal camera with higher thermal sensitivity would
allow the heat traces to be detected even after 60 seconds. We
considered PINs of length four. However the approach can be
replicated as much as required to infer longer PINs.

We analyzed the thermal contact conductance to identify the
applicability of our proposed attack. Additionally, computing
and analyzing the heat transfer coefficient of the touch screen
would provide more detailed information about the decay rate
and the age of the traces. If users know these two thermal
properties, they would be able to identify the possibility of a
thermal attack on their devices.

Another direction could be the analysis of different screen
protectors. We tested some materials, yet a visual analysis
revealed that many other materials perform worse as heat
traces are shown with more intensity compared to the gorilla
glass. A detailed investigation of different screen protector
could yield further insights.

CONCLUSION
We investigated the viability of thermal attacks on state-of-
the-art touch screens and authentication schemes of mobile
devices. To analyze the thermal images we implemented the
ThermalAnalyzer, which was capable of uncovering 72%–
100% of PINs in the first 30 seconds, and 100% of patterns
that do not have overlaps. We additionally found that pattern
overlaps significantly increase resistance to thermal attacks.
Our work validates that thermal attacks are indeed a threat
to mobile devices and should be considered by users and
authentication scheme designers alike. We also furnish several
solutions to protect from thermal attacks that are based on our
results, previous work, and approaches to distort heat traces.
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