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Abstract

Spatial Hypertext represents associations between chunks of information by
spatial or visual attributes (such as proximity, color, shape etc.). This allows
expressing information structures implicitly and in an intuitive way. How-
ever, automatic recognition of such informal, implicitly encoded structures by
a machine (a so-called spatial parser) is still a challenge. One reason is, that
conventional (non-adaptive) parsers are conceptually restricted by their under-
lying source of information (i. e., the spatial hypertext). Due to this limita-
tion there are several types of structures that cannot be recognized properly.
This inevitably limits both quality of parser output and parser performance.
We claim that considering temporal aspects in addition to spatial and visual
properties in spatial parser design will lead to significant increase in parsing
accuracy, detection of richer structures and thus higher parser performance.

For the purpose of providing evidence, parsers for recognizing spatial, visual
and temporal object relations have been implemented and tested in a series
of user surveys. It turned out, that in none of the test cases pure spatial or
visual parser could outperform the spatio-temporal parser. Instead, the spatio-
temporal parser was able to compensate limitations of conventional parsers.
Furthermore, differences in parsing accuracy were successfully tested for statis-
tical significance. The results indicate a non-trivial effect that is recognizable
by humans. We have shown that the addition of a temporal parser shifts ma-
chine detected structures significantly closer to what knowledge workers intend
to express.
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Resumé

Spatial Hypertext repræsenterer associationer mellem informationsdele fra spa-
tiale eller visuelle attributter (såsom nærhed, farve, form osv.) Dette gør det
muligt at udtrykke informationsstrukturer implicit og på en intuitiv måde. Men
automatisk genkendelse af sådanne uformelle, implicit kodede strukturer (ved
anvendelse af en såkaldt spatial parser) er stadig en udfordring. En af grun-
dene er, at konventionelle (ikke-adaptive) parsere begrebsmæssigt er begrænset
af deres underliggende informationskilde (dvs. den spatiale hypertekst). På
grund af denne begrænsning, er der flere typer af konstruktioner, der ikke kan
genkendes korrekt. Dette begrænser uundgåeligt både parser output kvaliteten
og parser ydeevnen. Vi hævder, at inddragelse af temporale aspekter i tillæg
til spatiale og visuelle egenskaber i spatial parser design vil føre til betydelig
øgning af parsing nøjagtighed samt detektering af rigere strukturer og dermed
højere parser ydeevne.

Med henblik på at vise dette, er parsere for genkendelse spatiale, visuelle og
temporale objekt relationer implementeret og testet i en række brugerunder-
søgelser. Det viste sig, at i ingen af testcasene var en ren rumlig eller visuel
parser mere effektiv end den spatio-temporale parser. I stedet var den spatio-
temporale parser i stand til at kompensere for de konventionelle parseres be-
grænsninger. Endvidere blev forskelle i parsing nøjagtighed med succes testet
for statistisk signifikans. Resultaterne indikerer en ikke-triviel effekt, der kan
observeres af mennesker. Vi har vist, at tilføjelse af en temporal parser rykker
maskinopdagede strukturer betydeligt tættere på, hvad videnarbejdere har til
hensigt at udtrykke.
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Chapter 1

Introduction

Hypertext goes far beyond what we know today from the World Wide Web.
The general idea behind and its basic concepts go much further than simply
linking and following trails of webpages. Consequently, hypertext allows for
much more advanced applications than we are using today in our digital lifes.
This introductory chapter is intended to illustrate that.

1.1 Classic Hypertext

Literally the prefix “hyper-” means “over” or “beyond”, which highlights a su-
periority over (written) text. So in the classic sense of the word one could
understand hypertext as a kind of “super”-text. What makes such text “super”
or superior over plain text is its structure (i. e., how elements of a document
entity are related to each other). Unlike written text, which can be seen as a
one-dimensional sequence of words, sentences or pages respectively, hypertext
documents do not need to be linear. They are rather networks of document
items which may be traversed in a non-linear fashion. This classic type of
hypertext is also known as Node-Link Hypertext.

Node-link hypertext has got its name from its underlying model, including two
core elements, node and link. Nodes are holders of content (i. e., carriers of
verbal or non-verbal information) [1]. The ways in which these chunks of text
or other media are interconnected are defined by links [2]. Links describe (nav-
igable) associations between nodes and can herewith determine both (a) how
to reach a certain node and (b) how to interpret node content [1]. So on
one hand links are tightly associated with traversal [1] and can therefore be
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Chapter 1. Introduction

used as a means of navigation, but on the other hand links also can express
meaning [3] and hence can be used as an instrument for giving node content a
semantic context [1].

Following the node-link model, authors of hypertext documents are required
to express information structures by formal nodes and links. Thus, writers of
hypertext must use formalisms. This, however, has certain drawbacks.

Explicitly creating and linking nodes is something many people are not familiar
with. Therefore it is not surprising that some people may find it unnatural and
therefore difficult to use the formal node-link scheme [1, 4]. This is especially
the case when users only have an incomplete or vague idea about what to
express. Fuzzy or partial knowledge is usually of implicit nature. Formalisms
however require explicit statements. Thus, tacit information which might have
been left implicit in a less formal representation must be made explicit when
using nodes and links [5]. This leads to an increased cognitive load and high
effort of expression.

On the other hand (formal) hypertext is not an ideal representation technique
for describing emerging information structure; that is, for describing informa-
tion that continually evolves [6]. Emerging structures change frequently and
therefore require continuous structuring and restructuring of their representa-
tion. Recurring restructuring of networks of nodes and links, however, can be
cognitively difficult and therefore time consuming [6]. Due to that overhead,
traditional hypertext is poorly suited for many kinds of information analysis
and design tasks [2].

Both, support for lowering users’ effort of expression [7] and emerging structure
support [1] can be provided by interfaces allowing for visual communication.
Visual communication is conveyance of information via visual aids (e. g., shape,
color etc.) and can be differentiated from written and spoken communication
by its (a) implicit; (b) informal and (c) emergent nature [8]. Visual communi-
cation is amazingly natural [8] and intuitive. Often people organize information
in the form of notes on boards and desks and herewith unselfconsciously com-
municate in a non-verbal but visual fashion [8]. Conveying such implicitly
encoded information does not require prescriptive communication rules. Users
do not need to agree on a basic communication framework [9] in order to un-
derstand a visual message. This reduces communication overhead [9] and keeps
the “visual language” used for communication lightweight and flexible.

Combining classic hypertext and visual communication makes it possible to
convey nodes and links via visual aids and therefore to visually communicate
information structure. This results in an alternative representation form of hy-
pertext, which is natural, lightweight and flexible. This new form of hypertext
is called “Spatial Hypertext”.

2



1.2. Spatial Hypertext

1.2 Spatial Hypertext

Implicit As already pointed out, people may find it difficult to use the formal
node-link scheme [1, 4]. This is mainly because explicitly creating and linking
formal nodes is something most people are not familiar with. However, people
are accustomed to arranging objects in space [1]. A good example of this is our
daily office work. We build heaps or piles of related papers on desk, we arrange
cards on bulletin boards, write short notes on whiteboards or use a text marker
to highlight important or associated parts in a document. In other words, we
use our natural ability to perceive and associate objects to manage daily office
work and thereby build visually perceivable networks of information objects.
One could understand that as a physical implementation of hypertext. Spatial
hypertext is based on that idea. Rather than explicitly connecting nodes by
(potentially typed) formal links, as it would be done in node-link hypertexts,
spatial hypertext expresses associations between information units implicitly
by spatial and visual attributes (e. g., proximity, color, shape etc.) [1,7]. Thus,
as opposed to classic node-link hypertext where we define structure explicitly,
the focus of spatial hypertext lies on implicit relationships [7].

Ambiguous A desired consequence of spatial hypertext’s implicit nature
(that is, of not defining links explicitly) is constructive ambiguity [3, 9]. “Am-
biguous” means in this context, that spatial hypertext allows for being inter-
preted in multiple ways. Visual expression created by humans can be clear and
explicit but may also leave some room for interpretation; without being invalid.
This allows to create information structure even when users only have a vague
or incomplete idea about what to express [10]. That way spatial hypertext
supports the creation of fuzzy or unclear information structures [10].

Informal Spatial hypertext permits users to express implicit knowledge in
visual information spaces. It thereby supports intuitive interaction with a vi-
sual medium and allows for direct manipulation of structure [6]. In spatial
hypertext, modification of information happens immediately by changing spa-
tial and visual properties and does not require formalisms [11]. There is no need
to prematurely commit to language conventions for expressing certain types of
structure [12]. Instead spatial hypertext allows the user to create instances of
structures even before naming and typing them [10]. It thereby supports ex-
plorative development of emerging structures and visual languages [10] through
informal interaction [12]. This informal nature of spatial hypertext has a great
advantage: We do not run the risk of formalising information incorrectly or in-
consistently. Formalization errors are usually difficult to correct [5] and make
“ill-formalized” information more difficult to use than information not formal-
ized [2]. In spatial hypertext we do not have this problem.
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Chapter 1. Introduction

Emergent Since spatial hypertext expressions are based on language ele-
ments that are easy to change (i. e., it is easy to change a visual property or
move an object), spatial hypertext supports expression of evolving interpre-
tations [7]. It is therefore appropriate for information-intensive tasks where
information continually evolves [7]; that is, for tasks which typically include
collecting, analyzing, organizing and sharing of information [13]. The docu-
ments resulting from such tasks are usually under constant modification [13]
and just rarely reach the state of a final product [7]. Usually, they are more an
encoding of evolving lightweight structures [14] or rather “freewheeling” struc-
tures [3]. Spatial hypertext is therefore not only of implicit, ambiguous and
informal but also of emergent nature [6].

1.3 Spatial Parsing

Having encoded information in spatial hypertext, human users can easily re-
trieve and decode it again. For a machine, however, it is not necessarily easy
to detect such implicit and idiosyncratic structures. This is solved by using
so-called Spatial Parsers.

Spatial parsers are (software) components which implement highly specialized
structure detection algorithms. These detection algorithms are designed for
retrieving information structures which are implicitly encoded in spatial and
visual arrangements of objects generated by humans. We know these arrange-
ments already as spatial hypertext.

To avoid misunderstandings it should be noted, that analyzing spatial hyper-
texts is no “parsing” in the classic sense of the term. In visual language pro-
cessing “spatial parsing” is defined as “the process of analysing an input picture
to determine its syntactic structure” [15]. So, “parsing” is synonymous to “syn-
tactic analysis”. This requires syntax definition, for example via picture layout
grammars [15] or graph grammars [16]. Spatial hypertext, however, is of in-
formal, implicit, ambiguous and emergent nature. Which means, that we do
not know beforehand how words of the language are generated. Thus, prema-
ture definition of an adequate grammar is not possible. For sure we can define
“some” set of production rules. Such a formal grammar, however, does not
differ among different users [17] and cannot emerge [10]. Thus it will not cover
all desired structural aspects of the visual language.

It is important to note, that in spatial parsing we do not assume that we
can unambiguously recover syntactic structure [3, 14]. The purpose of parsing
spatial hypertexts is not to “debug” formal spatial or visual expression [3]. The
point is rather to uncover some partially-framed structure which are hidden in
human-generated spatial layouts [14].
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1.3. Spatial Parsing

One could also say, that spatial parsers infer implicit structural knowledge
from explicit spatio-visual knowledge and thereby turn implicit information
structures into explicit ones [10].

Since this is more a matter of interpretation than checking for syntactical cor-
rectness, it should be considered to rather call such structure detectors “spatial
interpreter” (instead of “spatial parser”). Anyhow, to be consistent with exist-
ing literature, we will use the term “parser”.

Why do we need structure recognition? When implemented and integrated
into a spatial hypermedia system, a spatial parser could be used to trigger or
support various high-level services. Such features include contextual search and
intelligent navigation [6], but also user notification or structure suggestion [14].

Especially to be emphasised is a spatial parser’s support in multi-user envi-
ronments (i. e., when multiple users collaborate on the same visual information
space). By providing feedback about what the spatial parser (and therefore the
system) has “understood” as structure, spatial parsing may identify ambiguous
structures and suggest a common interpretation to all users [10]. Firstly, the
users would become aware of the possible interpretations of the structures; sec-
ondly, they could efficiently agree on a common interpretation. This would
avoid miscommunication based on contradictory interpretation of the spatial
structure. Without such a shared understanding, the dialog between users
about personal reflections and understanding of information becomes a diffi-
cult task and the hypertext material themselves are only of limited utility [10].

What requirements must be met by a spatial parser in order to support such ad-
vanced functionality? In [10] three core requirements were identified: (a) spatial
parsers must be able to interpret spatial and visual relationships; (b) parsers
must tolerate people’s different ways of expressing structure spatially and vi-
sually (where over-interpretation should be avoided) and (c) a spatial parser
should extract only intended structure (i. e., parsers should “understand” what
human users intend to express).

Especially the last requirement poses major challenges when it comes to prac-
tical implementation. A functional spatial parser must detect only intended
structure, even though whether something is structure or not is a subjective
matter of personal opinion and therefore depends on the user’s individual per-
spective [10]. In many cases we neither have information about authors and
their personal motivation nor about context of application. Nevertheless the
parser should be able to deliver (some) meaningful results. This is probably
the reason why only little work has been done on practical spatial parsing.

Designing a spatial parser includes making several decisions. The most essen-
tial ones are (a) deciding what kinds of structure should be recognized and

5



Chapter 1. Introduction

(b) which spatial or visual attributes should be used for doing that. Since
in theory all aspects of visual appearance could be crucial for understanding
spatial structure [10], one might think, that detection of exhaustive explicit
structure is only possible if a parser uses all aspects of what is expressed vi-
sually [10]. This, however, is not feasible. The same applies to the decision of
what kinds of structure should be recognized. We cannot satisfy all individual
perceptions of what might be structure or not [10], and therefore cannot detect
“everything”. However, what can be done is identifying some structure which
is accepted by most users. This is why spatial parsers are typically (though
not exclusively) built on heuristics for spatial pattern recognition [10,12]. Such
heuristics are ideally valid across different contexts of application and cultural
environments.

Structures in human generated layouts are formally elusive. This is mainly
because they only become manifest in the user’s thoughts and therefore only
exist in mind [17]. This makes it difficult to discuss them. Nevertheless, it has
been tried to identify several categories of spatial and visual structures.

1.4 Structures

According to [12] there are four common ways of noting relationships visually
and spatially (Fig. 1.1): (a) relationships by spatial arrangement; (b) relation-
ships by object type; (c) relationships by collection and (d) relationships by
composition.

Spatial Arrangement Relationships by spatial arrangement are expressed
via spatial proximity and alignment, which can be of different form [12]. A
common, basic framework of such proximity- and alignment-based structure
types may look as illustrated in Fig. 1.2: Structure types are split up into
two main categories, Ordered Groupings and Unordered Groupings. Ordered
groupings require visual uniformity of objects (i. e., the members of such groups
must be of the same type) and they require a certain alignment of objects. As
for unordered groupings, the opposite is the case: They may be built up of
objects of different types and do not require a certain alignment of members.
They are unordered [10].

Ordered groupings are, for instance, Lists, which exist in two different layouts:
aligned horizontally, called Horizontal Lists and aligned vertically, labeled Ver-
tical Lists [10,14]. Other ordered groupings are, Matrices [10,14] (or Tables [3]),
where objects are aligned both, vertically and horizontally [3]. Therefore, ma-
trices and tables can be seen as compositions of lists [14]. Finally, so-called

6



1.4. Structures

a) spatial arrangement b) object type 

c) collection d) composite 

Figure 1.1: Four common ways of noting relationships visually and spatially [12]

Unordered Groupings 

Pile Heap 

Ordered Groupings 

Lists 

Horizontal List 

                Vertical List 

Matrix/Table 

Stack 

Figure 1.2: Basic spatial structure types [3, 10, 14]
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Figure 1.3: Relationships by object type [12] – sample layout with two visual categories of
objects (position and alignment do not matter)

Stacks are ordered groupings as well [10, 14]. Stacks are defined as sets of sig-
nificantly overlapping objects of the same type [14] that are aligned in some
direction [10]. Thus, they may be considered as “compressed” lists.

Pile [10] and Heap [14] are unordered groupings. They do not require a certain
alignment of objects [10]. However, what they do require, is, that objects are
partly overlapping and have either the same type, this way they form a pile,
or they have different types, which defines a heap [10,14].

Object Type Relationships noted by object type (or by visual type) are
categorical relationships expressed by visual similarities (see Fig. 1.3) [10, 12].
“Visually similar” refers to objects that have similar color, font, extent, shape,
border width etc. – their position and alignment do not matter. Even if objects
were randomly distributed over the screen, they still might be perceived to have
some categorical relation if they share certain visual properties [10]. That way
we can express “category membership, that cross-cuts spatial positioning” [12].
This type of structure can be seen as Taxonomic Set, as taxonomic sets are
groupings in which all members belong to the same category [3].

Collections Categorical relationships between objects may also be noted
through so-called Collections [12]. There are two different notions (see Fig. 1.4):
(a) explicit and (b) implicitly defined collections.

Firstly, collections can be seen as explicit, regional selections of objects which
reside in separate subspaces [10]. This notion supports the creation of subspace
trees which then can express hierarchical ordering of collections [10]. This way
it becomes possible to express hierarchical category structures [12]. Thus collec-
tions can be used to define taxonomies. Such distinct subspace trees, however,
neither fit spatial hypertext’s implicit nor informal nature. They are rather
means to organizing artifacts and are therefore more an application feature
than a visual language feature. Thus, one could argue whether this type of ex-
plicit structure has any relevance for spatial parsing. Nevertheless, hierarchical
subspaces have become an integral part of several spatial hypermedia systems.
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1.4. Structures

a)  b)  

Figure 1.4: Relationships by collection [12] – two samples for explicitly and implicitly
defined collections

Secondly, a collection may be seen as an implicit step by step selection of
objects. When objects get moved into clearly, spatially separated clusters over
time, they form distinct areas that emerge [18]. When objects located together
in such an area also relate to the same task [10], they can be used to express
activity-related relationships. This is why such implicit collections are usually
called Activity-Related Areas [12]. One could argue now that these structures
are nothing more than spatial clusters. Objects in the same area may refer to
the same task but they do not need to. Just because two objects are located
close to each other and are spatially separated from the rest of the hypertext, it
does not necessarily mean that they refer to the same task. For sure they seem
to have some relation, but the spatial hypertext does not “tell us” which one.
The statement, that “objects in the same cluster relate to the same task” is just
an assumption and nothing a spatial parser could verify. Thus from a spatial
parsing perspective this notion of implicitly defined collections refers more to
spatial clustering than to activity realted working areas. Spatial clusters fit
perfectly into the category of Unordered Groupings (since they are proximity-
based and do not require a certain alignment of member objects). So one can
discuss whether it does not make more sense to treat collections as “relationships
noted by spatial arrangement”.

Composites The last category of relationships to be discussed are noted by
composition (see Fig. 1.5). The key element here are so-called Composites.
According to spatial hypertext literature composites are defined as lightweight,
abstract, recurring, regular spatial patterns of different object types [14, 19].
They are spatial combinations of two or more instances of different visual types,
where each object occupies a known position in the structure [3, 12]. There-
fore, composites rely on both relative spatial positioning and the ability to
distinguish between different types of objects [3]. For instance, labeled verti-
cal lists [14, 19] can be defined as composites, comprising of vertical lists with
header symbols (an example is illustrated in Fig. 1.5). Using composites it be-
comes possible to express relationships between different types of objects [10].

9



Chapter 1. Introduction

Figure 1.5: Relationships by composition [12] – sample layout with three instances of
labeled lists (i. e., compositions of vertical lists and header symbols)

Primary vs. Secondary In addition to classifying structures by their spa-
tial and visual appearance, as we did in the last section, one can also categorize
them by their expressive power and their visual effects for the viewer. Depend-
ing on how easily structures may be visually separated from each other and
therefore how easily they can be identified as discrete meaningful units, we can
distinguish between (a) primary and (b) secondary structures.

Primary structures typically get noticed sooner by viewers than secondary
structures. Thereby they get recognized as the structural “backbone” of a visual
structure and “guide” the viewer through the interpretation process. Secondary
structures rather build on top of primary structures and are often used for re-
finement only (i. e., they express nuances of primary structures [20]).

One could argue now (as the findings in [20] suggest), that spatial properties
(e. g., proximity, alignment etc.) are primary means for describing structure,
whereas color, shape, opacity etc. are secondary aspects of visual expression.
Following this argumentation we can classify all previously defined spatial struc-
ture types (incl. lists, stacks, spatial clusters etc.) as primary structures. Tax-
onomic sets (expressed by visual similarity), however, overlap spatial structure
and thereby link structure elements via tacit cross references [12]. Thus they
can be regarded as secondary structures.

The sample layout in Fig. 1.6 illustrates that. Fig. 1.6 shows a horizontal align-
ment of four vertical lists; each comprising three colored rectangular objects.
One can understand that table-like layout of rectangles as an expression of the
primary aspects of the overall information structure. The two different colors
assigned to rectangles only extend that “master”-structure by tacit cross refer-
ences between list elements and thus cover secondary aspects of the structure.

10



1.5. Implementations

Figure 1.6: Sample layout – primary vs. secondary structures

1.5 Implementations

Pioneer implementations of spatial parsers were inspired by obervations of
how people use map-centered hypertext systems. One of those systems was
Aquanet, a hypertext system that allowed users to work with geometrical and
textual information objects in a (shared) information space [21]. Experiences
with Aquanet [18] showed, that people prefer spatial representations of hyper-
text over more explicit and formal models [3], and thus put particular impor-
tance on implicit expressions [14].

In order to get a better understanding of such human-generated spatial lay-
outs, a survey was conducted in both, computational and non-computational
settings [3, 14]. Within the scope of that study researchers examined several
spatial hypertexts created in three different systems [3]: (1) NoteCards [22];
(2) the Virtual Notebook System (VNS) [23] and (3) Aquanet [21]. Hav-
ing analyzed those sample hypertexts, each the result of a long-term informa-
tion management or analysis task, it turned out that spatial layout and visual
properties allow to identify specific types of structures (such as, horizontal and
vertical lists, taxonomic sets etc.) [3].

Based on these findings, and the results of analogous studies of the way people
organize materials [24–26], an early “Heuristic Structure Recognizer” [3] was
developed and tested. First experiments using that prototypical recognizer led
to the conclusion, that automatic detection of implicit structure is feasible,
and that it is therefore a worthwhile subject of further investigation [3]. This
finding was one of the main driving forces for integrating a spatial parser into
the VIKI system [12].

1.5.1 Spatial Parsing in VIKI and VKB

Instead of tightly coupling functionality in a more monolithic implementation,
VIKI’s spatial parser realised its structure detection functionality via composi-
tion of and delegation between independent structure recognition modules [14].
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Figure 1.7: VIKI’s spatial parser – architecture for spatial recognition [14]

This modular and thus flexible architecture (Fig. 1.7) comprized three core
components: (1) a reconfigurable Pipeline of spatial structure recognizers (“spe-
cialists”); (2) a Blackboard of shared information and (3) a so-called Strategist
used for setting up the pipeline [14].

The “heart” of the VIKI parser was its Pipeline of specialists. Specialists
were heuristics-based software components, responsible for identifying particu-
lar types of structures. Those modules used the spatial display and its current
parse as input and produced a new parse as output. Thus, each specialist was
a small spatial parser in itself. VIKI included specialists for detecting both, ho-
mogeneous structures, such as lists (horizontal and vertical) and stacks, but also
heterogeneous structures, such as heaps and composites. Attributes used for
recognizing these structure types included position, extent and object type. [14]

Each specialist produced output which could be used as input for other special-
ists. By doing so, specialists got linked together in a chain, or a pipeline [14].
Pipelining different instances of (not necessarily different) specialists together,
has two desirable effects: (a) a single specialist can operate multiple times (even
though we perform only a single pass) [14] and (b) already detected structures
can be re-parsed, which makes it possible to identify higher level structures [3]
(i. e., the pipeline implements a bottom-up parsing strategy [14]).

In addition to communicating via input and output, specialists shared global
information via the Blackboard. This included information, such as object

12



1.5. Implementations

types (defined by the user), composite types (defined by the system) but also
statistics on the use of each type recorded in the blackboard. Specialists for
heterogeneous structures created new (system-defined) types, added them to
the blackboard and updated usage statistics (in order to reflect the new struc-
tures). Specialists for the detection of homogeneous structures did not create
new blackboard entries and used the types of their input objects instead. [14]

The third and last component in VIKI’s parsing architecture was the so-called
Strategist. The strategist‘s main task was to detect the optimal order in which
specialists should be applied (i. e., the parsing “strategy”). This was accom-
plished by performing some initial statistical analysis of object alignments. The
resulting dominant orientation of the spatial layout was then used to determine
the order of specialists in the pipeline. [14]

One assumption of VIKI’s parser was the definition of user-generated types.
It was assumed, that atomic information objects were given unique and mean-
ingful types by the user. Practical experience with VIKI had shown, however,
that often times users did not define such types [11]. This limited the spatial
parser’s effectivity, since VIKI, by default, treated untyped objects to be of the
same type [7].

This problem was solved in VIKI’s successor VKB [7], by patching in a visual
preprocessor before the spatial parser. That preprocessor had the function to
automatically assigning types to each object which did not have a user-defined
one. This was realized by implementing a heuristic type assignment algorithm
building on the following simple rule:
Objects which have similar visual attributes (incl. width, height, background and
border color, and border width) are considered to have the same type, whereas
visually dissimilar objects are considered to be of different types [7].
Using this rule to automatically assigning visual types to objects, the preproces-
sor did not only support the spatial parser in interpreting ambiguous layouts,
but also decreased the workload for the users [11].

A more recent alternative to this very early implementation of a spatial parser
is FLAPS [11], which was (among other applications) also integrated into VKB.

Unlike the spatial parser described in [14] and [7] respectively, the FLAPS-
parser is a fuzzy-logics-based, multi-pass algorithm, which generates so-called
“containment graphs” instead of simple parse trees [11]. Thus, what differenti-
ats FLAPS from previous parser implementations, is (1) how parser output is
represented and (2) how core structures are detected.

Previous spatial parsers tried to resolve ambiguity by determining the best
interpretation and discarding all others [11]. This procedure resulted in distinct
containment hierarchies of visual structure elements (i. e., parse trees). Parser
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output created by FLAPS, however, are graphs, where each node can have
multiple parent nodes [11]. Such “containment graphs” may therefore include
cycles. Thus, FLAPS produces no conventional parse trees as output.

Just like previous parsers in VKB, also FLAPS uses independent structure rec-
ognizers for piles, vertical lists, horizontal lists etc. The crucial difference is that
recognition specialists in FLAPS are based on fuzzy-logic. FLAPS’ structure
recognizers consist of fuzzy rules which can be processed by a fully-functional
fuzzy-logic inference engine. Object attributes analyzed when doing such infer-
ences, include (a) proximity and regularity and (b) visual similarity of objects.
Proximity and regularity are determined by alignment and relative distance
between objects. Evaluation of object similarity depends on visual character-
istics (e. g., color, size etc.) and object type (e. g., image, text etc.). This
fuzzy-logics-based approach makes such recognizers particularly well suited for
recognizing ambiguous structures. [11]

FLAPS’ main parse procedure includes the following four steps: (1) recognize
as many structures as possible (by passing the whole space to every recognizer);
(2) automatically merge alternative interpretations into a single coherent struc-
ture; (3) repeat this procedure considering the recently detected structures and
(4) keep doing this as long as further structures can be recognized [11].

For automatic merging FLAPS follows a minimalistic approach, where different
merging strategies are chosen, depending on whether two structures exclude,
intersect, fully overlap or are identical. When two interpretations exclude or
intersect, then no special merging action is required, since FLAPS can deal
with both cases. When one structure is a subset of another (i. e., when one
is contained by another), then the merging operation “absorbs” the subset
structure and updates the relationship graph accordingly. Finally when two
structures were assigned different types but have exactly the same elements,
they get joined into a new structure with a compound type (i. e., a new type
automatically generated from both individual types). [11]

Both VIKI’s and VKB’s original spatial parsers belong to the most important
and best know parser implementations in the spatial hypermedia domain. Both
broke ground for a completely new way of visual analysis: Spatial Parsing.

Nevertheless, in addition to those pioneer implementations, there are further
parsers used in other systems than VIKI and VKB. Some of them shall be
mentioned in the following sections.
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1.5.2 Adaptive Spatial Parsing

As already pointed out, interpreting spatial hypertexts is a highly subjective
issue. Whether something is perceived as structure or not strongly depends on
a person‘s individual perspective [10]. However, users’ individual ways of visual
thinking are usually unknown to a spatial hypermedia system. Nevertheless,
a functional spatial parser still should be able to “understand” what a user
intended to express by a certain arrangement of information objects. This
poses great challenges for designers of spatial parsing algorithms.

One possible (though not the best) strategy for approaching this problem, is
adapting a spatial parser to its users. This could be accomplished, either by tai-
loring a parser manually to particular user requirements (e. g., via customized
implementation or configuration), or by adapting a parser automatically (e. g.,
via supervised or unsupervised learning). While having the disadvantage of
tying together parsers and user profiles (which undesirably limits flexibility),
this adaptive approach still provides a possible solution to the aforementioned
“subjective perception”-problem.

The spatial parser design described in [17] is based on that idea. Building on
the work presented in [3, 14], Igarashi et al. [17] developed an adaptive parser
which uses explicit user feedback to self-adjust to users’ expectations. Their
parser has the ability to “learn” from a user’s corrections of (subjectively) wrong
interpretations made by the system and thereby supports automatic adaption.

Conceptually the parser comprizes of two features: (1) a Link Model, which
forms the basis for the parsing process and (2) Automated Parameter Tuning,
which facilitates the parser in “learning” from users [17].

The core element of the so-called Link Model is a graph. Each vertex in that
graph symbolizes an information object and each edge represents a candidate
relationship. The main task of the structure recognition procedure is to eval-
uate such candidates by their strength of connection and to reject those links
which are not “fit” enough to be part of an intended structure. [17]

This basically works as follows: In a first step links are created between ad-
jacent objects. This link creation process happens in three steps: (1) sorting;
(2) finding candidates and (3) link creation. First, all objects get sorted
by their upper left x-coordinate. Then, for each object, all proximity candi-
dates are identified (again by comparing x-coordinates). Finally, links to the
closest neighbors are created (i. e., links to the nearest candidate in all eight
directions). This link creation procedure gets triggered everytime an object
was moved on the screen and so the neighborhood of some objects must have
changed. The following steps are executed only on demand. [17]
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In the next step the strengths of links are calculated. This strength calculation
process includes two phases: (1) primary strength calculation and (2) interac-
tion process [17].

Initially, primary calculations are done for each link. This includes calculation
of a strength value and a list-level value. The strength of a link is defined as
a function of the distance between two objects, and the list-level (i e., the list
likeliness) is a function of both, distance and the x-/y-gaps between objects.
Both functions (strength and list-level) can be adjusted by the adaption process,
which is discussed afterwards. In addition to these two values, each link is also
assigned a type. If the previously calculated list-level value is non-zero, then
the link is typed as “list-link” (horizontal or vertical respectively). Otherwise
the link type is set to “cluster-link”. [17]

The second part of the strength calculation is based on interactions among
links and includes two revision cycles. In the first cycle, links which probably
do not link list elements together (because they are conflicting with links be-
tween surrounding objects), are assigned a decreased list-level value. For these
purposes a parameterized factor is applied. In the second cycle, strength values
are re-calculated through “repression and reinforcement” (i. e., adjacent links
with different types repress each other and adjacent links of the same type re-
inforce each other). This has the effect of strengthening links between objects
that are located close to each other or are regularly aligned. [17]

Having calculated how strong connections of certain types are, it becomes pos-
sible to use those strength-indiators for filtering out links which most likely
belong to a structure. This is done as follows: First, the stronger (or most
stable) links are selected. Then, objects connected by these links are grouped
together in result candidates. The only thing that remains to be done is to
decide on the (primary) type of these groupings (i. e., vertical list, horizontal
list or just cluster). This decision is based on the number of links belonging
to each structure type. The type that has the most links in a structure gets
selected. [17]

It becomes obvious, that the link model in [17] differs fundamentally from the
“pipeline of specialists”-approach presented in [3, 14]. Shipman et al.’s algo-
rithms focus on the recognition of distinct classes of structures, and are partic-
ularly well-suited for analysing layouts which resulted from meaningful human
activities, such as document triage. The link model in [17], on the other hand,
targets more flexible and ambiguous layouts that do not include the notions of
stacks, heaps, composites etc.

What also sets this parser apart from known solutions in VIKI and VKB, is
its ability to adapt automatically to user expectations. The parser’s second
essential feature besides the Link Model is called Automated Parameter Tun-
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ing and allows the parser to “learn” from explicit user feedback. This tuning
mechanism is based on search heuristics and works interactively. [17]

Building on genetic algorithms, the tuning mechanism operates on evolving
generations of individuals. Individuals (or candidate solutions) lie in a config-
uration parameter space and represent potential parser configurations. Each
of these candidate configurations holds a set of parameters and a score. The
score indicates how well the parser would perform (in analysing user-generated
training samples), if the respective configuration parameters were applied. This
“fitness”-indicator is given by a fitness function (or evaluation function), which
checks how close a given training parse result comes to the respective sam-
ple structure. By statistically selecting solutions that are “fit” enough and by
applying operators, such as mutation and crossover, the tuning mechanism
realises a search routine for finding “optimal” parser configurations. [17]

Combining this heuristic parameter tuning mechanism with an interactive user
interface allows for incremental refinement of a spatial parser’s configuration,
without the need to define any numerical parameters. This is an attractive al-
ternative to the cognitive complexity of tuning a set of configuration parameters
manually. [17]

1.5.3 Shared Spatial Parsing

The spatial parser developed by Reinert et al. [10,27] targets a different aspect
of spatial hypermedia: Collaboration.

Amongst other benefits, spatial parsers can be used to resolve inconsistencies in
structural interpretation and can be therefore especially helpful in collaborative
environments. For that reason Reinert et al. implemented an incremental
parser whose parse results can be stored persistently and shared among different
collaborative users. Their shared spatial parser was designed as an open parsing
service provided by an open and collaborative spatial hypermedia system, called
CAOS [10,27].

Conceptually the CAOS-parser builds on VIKI (Sect. 1.5.1) and the algorithm
discussed in the last section (Sect. 1.5.2). In addition to recognizers for lists
and heaps the CAOS-parser also implements heuristics for the detection of
matrices; which is (semantically) not supported by VIKI and Igarashi et al.’s
implementation. Stacks, composites and clusters are not part of the design. [10]

Measures used for inferring these types of structures include indicators for prox-
imity, alignment and extent, but not for visual similarities. As for proximity
there is only a single measure: the absolute distance between two objects in
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two-dimensional space. When used together with a distance threshold that
indicates how far apart objects can be from each other to still have a struc-
tural relation, this measure allows for identifying spatially separated structures.
That thresold value is defined by two configuration parameters (one parameter
for each dimension). Alignment, on the other hand, is decided by analysing
position deviations in both dimensions. The position used for this is the upper
left corner of an object’s bounding box. The maximum allowed variances in
both directions are given by configuration parameters again. [10]

The CAOS-parser implements an event-driven, bottom-up algorithm. It is
event-driven insofar as the parsing procedure gets triggered by editing events
(i. e., manipulation of objects). Thus, single parser runs are not performed on
demand but whenever spatial structures might have changed. When started,
parsing happens in a bottom-up fashion. This means that the algorithm tries to
build more complex structures out of simpler ones. By doing this in a repetitive
fashion the parser can identify high-level structures (e. g., lists of lists). [10]

Like VIKI also the CAOS-parser uses configurable structure experts to recog-
nize certain types of structures. There are four experts called in the following
order: (1) heap expert; (2) horizontal list expert; (3) vertical list expert and
(4) matrix expert [10].

The heap expert is invoked first. During execution, the following happens:
Firstly, all objects in the information space are sorted according to their x-
coordinate. Once that is done, all pairwise combinations of objects are checked
for overlapping. When two objects overlap, the ratio between overlapping area
and object extent is calculated for both objects. If one of those values exceeds
a given limit, the heap expert treats the two objects as heap elements. Here
the expert pursues the strategy of making heaps as big as possible. [10]

Detection of heaps is followed by list recognition. The expert for recognizing
horizontal lists basically proceeds as follows: In a first step all objects get
sorted by their upper left x-coordinate. This allows for horizontal iteration
over all objects in the information space. In a second step, each object is
assigned an itersection box. Position and extent of such a box depend on list
alignment and proximity parameters. In the horizontal case an intersection
box touches the upper right corner of an object. The expert then iterates
through all objects from left to right and performs intersection checks between
intersection boxes and upper left corner points. When two objects intersect
they can be regarded as list elements. In this case the expert either builds
a new list starting with these two objects or a previously detected list gets
extended (where lists are build as long as possible). Objects identified as list
elements are skipped in further passes. Basically, the vertical list expert does
the same. The only differences lie in the relative positioning of intersection
boxes (i. e., in the vertical case they would touch the bottom left corner of an
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object) and the coordinate used for sorting (i. e., in the vertical case it would
be the upper left y-coordinate). [10]

The matrix expert, which is called last, turns lists of lists into matrices and
therefore depends on the list experts. Thus, list experts always must be called
before the matrix expert. Its working principle can be described by the fol-
lowing three steps: (1) look for matrix candidates; (2) verify candidates as
matrices and (3) substitute spatial objects. Firstly the matrix expert iterates
through all objects in the information space and identifies potential matrices.
Such a matrix candidate is either a horizontal list of vertical lists, or a vertical
list of horizontal lists. In both cases element lists must be of the same length.
In the second step candidates are reparsed to check for correct alignment. This
is done by checking, whether a vertical list of horizontal lists could also have
been parsed as horizontal list of vertical lists. When this is the case, the expert
substitutes the respective list of lists for a new spatial object that represents a
matrix structure. [10]

One basic assumption of the CAOS-parser is, that spatial hypertext simulates
desk work and is therefore conceptually limited to vision in two-dimensional
space. The same applies to Igarashi et al.’s adaptive spatial parser (Sect. 1.5.2)
and parser implementations in VIKI and VKB (Sect. 1.5.1). This, however,
does not necessarily have to be the case. Spatial hypertext implementations
may go far beyond the classic “deskwork-paradigm”. Working with spatial
hypertext can be more than simply arranging papers on a 2d-canvas.

1.5.4 Three-Dimensional Spatial Parsing

Nielsen and Ørbæk [28, 29], for instance, have explored spatial hypertext in
three-dimensional spaces. In [28,29] they described a spatial parser for TOPOS,
a prototypical information management system which supports informal group-
ings of information objects in a three-dimensional space.

Nielsen and Ørbæk argued, that there is only little difference between subjective
and objective placements of objects in a two-dimensional space. Which means,
that the difference between perceived structure and physical structure is fairly
small when the information space is limited to two dimensions. The reason
for that is, that spatial hypermedia systems that implement two-dimensional
information spaces allow users to view spatial structures from a fixed perspec-
tive only. Although the information space can be navigated via zooming and
panning, the viewing angle is always the same. [28,29]

This is not the case in a three-dimensional environment. There, camera position
and orientation can have significant influence on how proximity and proportions
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of objects are perceived. In other words, depending on the viewing angle,
groupings of objects may look completely different. For this reason it does
not make much sense to parse such a space from an objective global view
point. The resulting structures would much too often confuse users. Instead
three-dimensional parsers should analyze the scene from a user’s (subjective)
viewpoint. This can be accomplished by providing the parser with the user’s
current viewing frustum. Nielsen and Ørbæk’s parser implementation is based
on that idea. [28,29]

Although being designed for usage in a three-dimensional context, the core
parsing algorithm was mainly inspired by VIKI’s (Sect. 1.5.1) and Igarashi
et al.’s spatial parser (Sect. 1.5.2). For that reason the TOPOS-parser uses
Igarashi et al.’s link model (in a slightly modified and extended form, called
“proximity model”) combined with Shipman et al.’s concept of configurable
structure experts (for recognizing clusters and arbitrarily oriented lists). Au-
tomated parameter tuning via evolutionary algorithms, however, was not im-
plemented. [28,29]

Contrary to parser implementations in VIKI and VKB, the TOPOS-parser
does not search the space for well-structured layouts and rather focuses on the
recognition of (rough) groupings of objects [28, 29]. It therefore operates on
a higher level of abstraction. While being conceptually valid, this approach
is rather inappropriate in more specialized contexts of application, such as
linear document authoring or movie editing. This is why more specialized
parsers typically do not build on such “general purpose”-algorithms. Instead
they implement algorithms which are tailored to specific application purposes
and thus operate on a lower abstraction level. Good examples for that can be
found in the work by Yamamoto et al. [30–32].

1.5.5 Specialized Spatial Parsers

Yamamoto et al. [30–32] developed a series of spatial hypermedia systems (la-
beled as “ART”-systems), that support early stages of information authoring.
Such information authoring includes writing research articles or books, prepar-
ing multimedia presentations or editing movies. Systems in the “ART-family”
use spatial representations not as a medium for representing final artifacts but
as a means for authoring linear, hierarchical, and network structures. [31,32]

Spatial parsers can be used in ART-systems to convert such structures into
sequential texts, slides or video clips. Thus, the focus of an ART-parser is not
on identification of certain structure types (such as, stacks, clusters etc.), but
on translation of spatial information into more explicit textual or multimedial
artifacts which can be used in an ongoing authoring process. [30–32]
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Currently there are no parser implementations available for translating hier-
achical arrangements and network structures [32]. However, ART-systems sup-
port the conversion of spatially aligned objects to linear text documents. Thus,
parsing of linear structure is possible [30].

The respective spatial parser simply scans all objects on the screen sequen-
tially from top-to-bottom or from left-to-right (depending on its configuration)
and thereby serializes their textual content [30, 31]. Other spatial and visual
features, such as shape, size, color etc., have no influence on the parser’s de-
cisions [31]. Although being an apparently simple approach to spatial parsing
this linear structure recognizer still fulfills its application purpose.

Finally, it should be noted, that expressing structure via arbitrary arrangement
of objects, as known from other systems, is not a use case in ART. Unlike other
information spaces, the two-dimensional ART-space has pre-assigned semantics
and is therefore more a feature interface than a “free” information space [31].
This can be largely ascribed to the working principle of the spatial parser: If
a user intends to use the parser for auto-generating documents from spatially
aligned text snippets, then he must follow predefinded language conventions.
In concrete terms, an object’s relative position in 2d-space is always interpreted
as its position in the respective document sequence. Interpretation of arbitrary
arrangements of objects is not supported. Thus, it can be argued whether the
“ART-family” of authoring systems really implement spatial hypertext. Never-
theless, we regard the ART-parser as specialized spatial parser.

A last example for a specialized spatial parser is given in [33], where spatial
neighborhood detection in Web Squirrel is presented. Neighborhoods in Web
Squirrel are groups of items clustered around labels. Such labeled clusters can
be nested inside each other and thereby support the creation of hierarchical
category structures. The size of such neighborhoods is decided by a configurable
spatial parser which implements the following algorithm:

First, the neighborhood boundary of each neighborhood label M is set to the
label’s Vicinity. The Vicinity of an object is defined as the object’s bounding
rectangle, scaled by a given factor (e. g., 1.5). Then, for each object whose
Vicinity intersects a neighborhood boundary, and for each neighborhood label
having a smaller fontzise than M the following is done: that item or neighbor-
hood is added to M and M ’s neighborhood boundary is updated to the union
of former bounds and the Vicinity of the newly added object. This gets re-
peated either until all items have been assigned to some neighborhood, or until
the Vicinities of all remaining objects lie outside of any neighborhood. [33]
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Chapter 2

Formal View

The last chapter was supposed to serve as both, an introduction into the field(s)
of spatial hypermedia and spatial parsing and as an overview of relevant liter-
ature. It was shown how spatial hypertext and spatial parsing are informally
defined (Sect. 1.2 and Sect. 1.3) and which practical solutions to the parsing-
problem were developed (Sect. 1.5).

In summary, we can define spatial hypertext as an alternative representation
form of traditional hypertext, which is natural, lightweight and flexible. In
contrary to classic node-link hypertext, spatial hypertext expresses associations
between information objects implicitly by spatial and visual attributes [1, 7],
supports constructive ambiguity [3, 9], does not require premature (formal)
language definition [12], and supports expression of evolving lightweight struc-
tures [7, 14]. In short, spatial hypertext is of implicit, ambiguous, informal
and emergent nature (Sect. 1.2). Information structures which are implic-
itly encoded in such human-generated arrangements of objects are detected
by heuristics-based (software) components, so-called spatial parsers. Spatial
parsers infer implicit structural knowledge from explicit spatio-visual knowl-
edge and thereby turn implicit information structures into explicit ones. In
short, the process of parsing spatial hypertexts can be defined as retrieving
hidden information structures from human-generated layouts (Sect. 1.3).

Although being accepted within the spatial hypermedia community, this view
on spatial hypertext and spatial parsing is purely informal. Nobody has tried
yet to define both spatial hypertext and spatial parsing formally. Which means
that there is no common theoretical, mathematical basis yet, which could be
used to approach the parsing problem more systematically. This chapter is
intended to change that.
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2.1 Spatial Hypertext Languages

As pointed out already, spatial hypertext can be seen as an alternative rep-
resentation form of traditional hypertext. Rather than making information
structure explicit by defining formal nodes and links, spatial hypertext targets
at expressing and communicating implicit structure via visual aids (e. g., shape,
color etc.). Visual expression and communication of implicit structural knowl-
edge requires an appropriate visual notation. Such a visual language must be
compatible with the core characteristics of spatial hypertext (Sect. 1.2) and
therfore has to be lightweight, flexible and intuitive. We denote such visual
notations as Spatial Hypertext Languages.

Spatial hypertext languages are informal, visual languages for implicit structure
representation. Expressions in such a language are collections of visual features
that describe structure but, as opposed to visual programming languages, do
not specify behaviour. Spatial hypertext languages are not intended for specify-
ing dynamics and are rather used for describing static networks of information
units. In a general sense, spatial hypertext is structure expressed in a visual
representation language.

From a formal point of view, one can see a language as a set of (meaningful)
structures, which are called words. Words are constructed from symbols and
the set of symbols from which the words of the language may be formed is
known as alphabet. This simple, set-theoretical definition applies not only to
string-based languages, where words are viewed as one-dimensional sequences
of symbols, but also holds true for visual languages. Also visual languages can
be defined as sets of words constructed from symbols. The crucial difference,
however, is that (1) “visual symbols” are graphical rather than textual and
(2) “visual words” are diagrams rather than strings. A good example for that
are languages defined by picture layout grammars [15].

Following this idea, we can define spatial hypertext languages as sets of spa-
tial hypertext artifacts (i. e., words), where each artifact is nothing more than
a flat collection of spatial hypertext symbols. We use the term “artifact” due
to the emergent character inherent to spatial hypertexts (Sect. 1.2): that is,
arrangements of information objects that emerge in the course of an informa-
tion analysis task are rather intermediate results (or steps) of a development
process than just self-contained expressions in a particular language. For this
reason, we consider the term “artifact” as being more appropriate than simply
calling elements of a spatial hypertext language “words”. Thus we define spa-
tial hypertext languages as sets of spatial hypertext artifacts. Such artifacts
are sets of spatial hypertext symbols, and symbols are collections of spatial
or visual properties (such as, position, shape, color etc.). Symbol properties
are represented as instances (or elements) of attribute types, which are sets of
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attribute values. The definition of such types forms the visual character of a
spatial hypertext language.

Spatial examples for such attribute types include position, size, orientation,
but also shape. We define “shape” as all the geometrical information of an
object that is invariant to changes of location, orientation and size. Visual
attributes, on the other hand, may include line settings (such as line style,
color, thickness etc.), surface properties (such as fill color, textures etc.), but
also opacity or transparency values. The concrete definition of such spatial
and visual attribute types strongly depends on the visual user interface of a
spatial hypermedia system. One system, for example, might allow for arbitrary
placement of objects in R2, whereas another one holds objects in a discrete
two-dimensional grid. Although both systems support spatial arrangement
of objects they still implement different definitions of position: the first one
builds on real-valued vectors, whereas the latter one assignes objects to cells in
a grid. Thus, in theory we can identify several classes of attribute types which
most likely belong to a spatial hypertext language (such as: position, size,
orientation, shape, color etc.). The exact definition of these sets of attribute
values depends on concrete system implementation.

Another point to be noted, relates to the definition of well-formed words (or
well-formed artifacts). As pointed out already in the last chapter (Sect. 1.3), we
cannot know how words of a spatial hypertext language are generated before the
hypertext gets modeled and the visual language has emerged. Thus premature
definition of an adequate formal grammar is not possible. We therefore need an
alternative approach to grammatical construction in order to formally define
spatial hypertext.

Here we benefit from the set-theoretical view on formal languages, that was
menioned before: If we define a formal language L as some set of words over
an alphabet Σ and if we denote the set of all words over the same alphabet as
Σ∗, then L effectively is a subset of Σ∗ (i. e., L ⊆ Σ∗). Such a subset could be
defined now in two ways: either by explicitely listing or describing all elements
that belong to the set of well-formed words (e. g., by using a formal grammar,
an automaton etc.) or by excluding all words from Σ∗ which do not belong to
the language. The latter approach allows for an easy, formal approximation to
languages with an unclear syntactic structure. Spatial hypertext languages are
good examples for that. This will become clear from the following details:

As designers of spatial hypermedia systems we may not be able to predict ex-
actly which artifacts might be regarded as being well-formed, but we usually
know which hypertexts are uncommon or simply not possible. When design-
ing spatial hypermedia interfaces two fundamental decisions must be made,
(1) which spatial or visual properties should be used and (2) which constraints
should be put on visual information objects.
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First of all, the designer must specify relevant spatial and visual attribute
types. It must be defined which classes of properties should be supported by
the visual interface (e. g., position, shape, size etc.), and it must be decided
how to implement these features. This implicitly defines the set of all visual
symbols that can be formed; that is, the spatial hypertext “alphabet”.

Secondly, the designer must decide on potential constraints on symbols and
symbol combinations. It must be defined whether to prohibit certain attribute
value combinations (e. g., via respective rules in a symbol editing dialog), or if
particular symbol combinations in the workspace should be avoided (e. g., by
activating or deactivating gui components that are used for symbol creation).
This way the system designer determines which symbols are allowed and may
be put together in the same artifact. The designer thereby limits the number
of artifacts which can be built and effectively defines the spatial hypertext
language that is available via the user interface.

That language can be further refined by the user of the system. In the course
of creating, modifying and deleting symbols, users select subsets of attribute
type definitions (e. g., by choosing only black and white as fill-color) and tend
to avoid certain attribute value and symbol combinations (e. g., black spheres
are never used together with white rectangles). By adding such additional con-
straints on symbols and attributes, users implicitly refine an interface language
into “their language” (which is the language currently in use).

So, in practical implementations both can limit the range of a spatial hypertext
language, system designers and users. Designers impose restrictions on visual
interfaces and users of such interfaces choose those features that might be ap-
propriate for solving a certain problem. Insofar we do not fully agree with [34]
stating that such a visual language is “not prescriptive or restrictive”. To some
extent every spatial hypertext language is restrictive. Spatial hypertext lan-
guages are always bound to system implementations and are therefore limited
by system design. In other words, there is no spatial hypertext implementation
which allows for “total freedom” in expression.

Although this might sound negative, it still allows us to define sets of spatial
hypertext artifacts which most likely do not belong to a certain spatial hyper-
text language. By excluding these words from the full set of artifacts, we can
approximate a spatial hypertext language as follows:

LSH = Σ∗
SH \XSH (2.1)

Here, LSH is a symbolic placeholder for a single spatial hypertext language
(i. e., a set of spatial hypertext artifacts), Σ∗

SH is the set of all artifacts which
can be build from given attribute type definitions, and XSH is an eXclusion
set comprising all spatial hypertext artifacts not part of the language LSH .
According to this definition, XSH must be a subset of Σ∗

SH . We decided that
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2.1. Spatial Hypertext Languages

XSH should be a proper subset, and therefore may not be equal to Σ∗
SH .

The reason for this is, that we consider empty spatial hypertext languages
(such as LSH =

(

Σ∗
SH \ Σ

∗
SH

)

= ∅) as being of no practical relevance. One
could even argue, that such an empty set of artifacts is no spatial hypertext
language anymore, since the spatial aspect (in the form of spatial arrangements
of objects) is completely missing. Only expression of space (even if it is just
an empty information space) forms a spatial language. Otherwise it would be
nothing more than just some empty language. Thus we define:

XSH ⊂ Σ∗
SH (2.2)

We also assume, that the empty spatial hypertext artifact Hε (which is just an
empty set of spatial hypertext symbols), is not an element of the exclusion set
XSH . This is intended to guarantee, that the empty artifact Hε does never get
excluded and is therefore an element of any spatial hypertext language. Thus
we can be sure that Hε is always a well-formed artifact. Given that Hε = ∅,
we can extend our definition from Eq. 2.2 to:

XSH ⊂ Σ∗
SH , Hε /∈ XSH (2.3)

The second fundamental component besides the exclusion set XSH is Σ∗
SH .

Σ∗
SH is defined as the set of all spatial hypertext artifacts which can be gener-

ated based on a given spatial hypertext “alphabet”, which we denote as ΣSH .
Even though this definition was inspired by the Kleene-hull Σ∗ over an alpha-
bet Σ, it is mathematically not exactly the same. This will become clear from
the following details:

Assume that we have n ≥ 1 Attribute types A0, A1, . . . , An−1. Each Ai shall be
defined as a non-empty set of attribute values (i. e., Ai 6= ∅ for 0 ≤ i ≤ n− 1).
Then we can define the non-empty set of all spatial hypertext symbols which
may be formed from elements out of A0, A1, . . . , An−1 as:

ΣSH = (A0 ×A1 × . . .×An−1) (2.4)

According to this definition, the “alphabet” ΣSH represents the set of all at-
tribute value combinations (i. e., n-tuples of attributes) which could be formed
from n predetermined attribute types. Our definition of Σ∗

SH builds on this
n-ary cartesian product as follows:

Σ∗
SH = {H|H ⊆ ΣSH} = 2ΣSH (2.5)

Σ∗
SH is the set of all Hypertext artifacts H (i. e., flat collections of symbols)

that are subset of or equal to the spatial hypertext “alphabet” ΣSH . Thus,
Σ∗

SH is the set of all subsets of ΣSH (incl. Hε,ΣSH ∈ Σ∗
SH) and is therefore

the powerset of ΣSH .

Given these definitions we can finally rewrite LSH =
(

Σ∗
SH \XSH

)

to:

LSH =
(

2ΣSH \XSH

)

=
(

2(A0×A1×...×An−1) \XSH

)

(2.6)
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Even though this is an apparently straightforward approach to formalization,
it still allows us to talk about spatial hypertexts in a uniform way (something
which had not been possible before). This will proof very helpful in what we
are going to do in the following chapters.

In summary we can formally define a spatial hypertext language as follows:

LSH = Σ∗
SH \XSH

Σ∗
SH = {H|H ⊆ ΣSH} = 2ΣSH

ΣSH = (A0 ×A1 × . . .×An−1) , n ≥ 1

Ai 6= ∅ (0 ≤ i ≤ n− 1)

XSH ⊂ Σ∗
SH , Hε /∈ XSH , Hε = ∅

⇒ LSH =
(

2ΣSH \XSH

)

=
(

2(A0×A1×...×An−1) \XSH

)

(2.7)

Here it becomes obvious that spatial hypertext languages are mainly deter-
mined by two components: ΣSH and XSH . This allows for a parameterized
definition of such languages in a “template-like” notation (which will play an
important role later in this thesis):

LSH 〈ΣSH , XSH〉 :=
(

2ΣSH \XSH

)

(2.8)

So, instead of
(

2ΣSH \XSH

)

one could also use the synonymous expression
LSH 〈ΣSH , XSH〉. This does not change the original meaning of Eq. 2.7 and is
merely used for simplification.

The following example shall help us to better understand Eq. 2.7:

Let us assume, that we are looking for the smallest spatial hypertext language
possible. Following Eq. 2.1, every spatial hypertext language LSH can be de-
fined as LSH =

(

Σ∗
SH \XSH

)

, where XSH ⊂ Σ∗
SH (Eq. 2.2). Thus, the size of

LSH is determined by the size of both Σ∗
SH and the exclusion set XSH . The

larger Σ∗
SH and the smaller XSH the greater the size of LSH , and, vice versa,

the smaller Σ∗
SH and the larger XSH the smaller the size of LSH will be. Con-

sequently, if one intends to reduce the size of LSH to a minimum, then Σ∗
SH

must be minimized and XSH must be maximized. This is exactly what we are
doing now:

Firstly, we need an adequate definition of attribute types. According to Eq. 2.4,
both is required (a) there has to be at least one attribute type defined and
(b) attribute types may never be empty. Both requirements can be met, if
we have only a single attribute type, including only a single attribute value.
The semantics of the type, however, do not matter in this example (typically
it would be position; since we are primarily interested in spatial expressions).
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2.1. Spatial Hypertext Languages

Here, such a minimal attribute type shall be defined as:

Amin = {a}

When we apply now the rule implied by Eq. 2.4 on Amin we get:

ΣSHmin
=
{

(a)
}

(2.9)

So, the minimal set of spatial hypertext symbols (which we denote as ΣSHmin
)

includes only a single element with only one attribute. When we take this
definition of a minimal spatial hypertext “alphabet” and apply the rule implied
by Eq. 2.5 on it, then we get the following minimal set of spatial hypertext
artifacts:

Σ∗
SHmin

= 2ΣSHmin = 2{(a)} =
{

{

(a)
}

, ∅
}

=
{

{

(a)
}

, Hε

}

(2.10)

This minimal set includes just two elements: an artifact with only a single
symbol – the unary tuple (a) – and the empty spatial hypertext artifact Hε = ∅
(which is by default included in the power set).

So, we know already both minimal sets, ΣSHmin
(Eq. 2.9) and Σ∗

SHmin
(Eq. 2.10).

What still needs to be determined is an adequate, maximized exclusion set
(which we will denote as XSHmax).

According to Eq. 2.3, an exclusion set XSH must be a proper subset of Σ∗
SH and

may not inlude Hε. In our case this means, that XSHmax
⊆ (Σ∗

SHmin
\ {Hε}),

which can be rewritten as follows:

XSHmax
⊆
(

Σ∗
SHmin

\ {Hε}
)

⇔ XSHmax
⊆

(

{

{

(a)
}

, Hε

}

\ {Hε}

)

⇔ XSHmax
⊆
{

{

(a)
}

}

The only two assignments of the variable XSHmax
which could fulfill the con-

straint XSHmax
⊆ {{(a)}}, are XSHmax

= ∅ and XSHmax
= {{(a)}}. Since we

are searching for an exclusion set, that should be maximal in size, we can reject
XSHmax

= ∅. We therefore set:

XSHmax
=
{

{

(a)
}

}

(2.11)

Knowing now both required components Σ∗
SHmin

(Eq. 2.10) and the maximal
exclusion set XSHmax

we can finally determine the minimal language LSHmin
:

LSHmin
= Σ∗

SHmin
\XSHmax

=
{

{

(a)
}

, Hε

}

\
{

{

(a)
}

}

= {Hε}

LSHmin
⇔ LSH

〈

ΣSHmin
, XSHmax

〉

(2.12)
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From this (Eq. 2.12) it can be concluded, that the smallest spatial hypertext
language possible is a language that comprizes only of a single element, which
is the empty spatial hypertext artifact (Hε). Thus, the least we can express
with a spatial hypertext language is an empty information space (i. e., white
screen). Spatial hypertexts do not fall simply from sky, but are always the
result of a development process that has to start from somewhere (typically
from an empty workspace). In this regard our definition makes perfect sense.

So far we have discussed which artifacts (or words) belong to a spatial hypertext
language. In addition to this “syntactic view”, if you want to call it that, there
is still another aspect, that is even more important: semantics

As we have already seen (Sect. 1.4), there is only little concrete structure in
human-generated layouts. Although in spatial hypertext research one has tried
to identify several categories of spatial and visual structures (such as lists,
stacks, piles, heaps etc.) they still should be treated with caution. There is no
guarantee that these spatial patterns are always valid or that their recognition
brings any benefit. The main reason for this is, that implicit structures typically
emerge individually in mind and depend on the context in which they are used.
This makes premature definition of default-structures extremely difficult (or
even impossible). In other words, there is not too much we can say about
spatial hypertexts before users start working on them.

To put it in one sentence:

Spatial hypertext structures result from creative work
and therefore cannot be predicted!

Not only did this influence our definition of spatial hypertext languages (as
given in Eq. 2.7), but has also affected our understanding of “spatial parsing”:

Rather than checking the canvas against predefined structural patterns (which
is common practice today), spatial parsers should imitate humans in the way
they perceive structure. In other words, instead of searching hypertexts for
supposedly universal structures (such as stacks, tables, heaps etc.), spatial
parsers rather should perceive structure through the lense of a human observer
(i. e., spatial parsers should “interpret” spatial hypertexts).

As system designers we cannot with any certainty predict which structures are
typically created by users. That is not possible. In this respect spatial hyper-
text offers just too much creative leeway. The one thing we can be sure of,
however, are the basic principles by which human observers (and thus hyper-
text authors) perceive spatial structure. Good examples include the so-called
Gestalt-principles or rather Gestalt-heuristics (such as the laws of similarity,
proximity, or symmetry etc.). By an intelligent combination of such heuris-
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tics, spatial parsers could provide structural interpretations which might come
quite close to what author(s) had in mind when they were creating a hypertext.
This way one could detect intended structure for a large number of people in
many different contexts of application, even though it is unknown who created
the hypertext and for what purposes. Our parsing algorithms (that will be
discussed later on) build on this idea. They take spatial hypertext artifacts
as parser input, analyse them with basic, common sense heuristics and finally
generate output in the form of so-called interpretations, which are discussed in
the following section.

2.2 Spatial Hypertext Interpretations

As already pointed out in Sect. 1.2, spatial hypertext is of ambiguous nature.
This allows for reading spatial hypertext artifacts in different ways. Both,
humans and parsers may have different views on spatial hypertext and its
implicitly encoded information. Depending on the angle from which one tries to
understand the spatial and visual dependencies displayed on screen (or provided
via other interfaces), there will typically be more than only one way to read
the hypertext. Depending on your previous knowledge in mind and where you
start with your analysis, different aspects are treated with different priority,
so that some structures will be preferred over others. This results in multiple
(alternative) interpretations.

Interpretations are encodings of how spatial hypertext can be understood (by
both humans or parsers) and thus form the semantic complement to spatial
hypertext artifacts (Sect. 2.1). In concrete terms, this means that they are
formal descriptions of how visual symbols and (even more important) symbol
relations can be interpreted. Typically, symbols are treated as visual placehold-
ers for information objects, and object relations are implicitly given by symbol
properties. Insofar interpretations only vary in object relations but not in the
number of objects.

We express such interpretations as collections of information structures, or
rather as networks of information objects (remember that spatial hypertext is
actually an alternative representation form of node-link hypertext; Sect. 1.1).
However, to distinguish clearly between the node-link model of classic hypertext
and our formal interpretation model, we will use the terms “information unit”
and “association” instead of “node” and “link”:

Let XI be a set of k (alternative) interpretations Ii (where 0 ≤ i ≤ k − 1):

XI = {I0, I1, . . . , Ik−1} ; |XI | = k (2.13)
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Figure 2.1: Example of a complete, undirected interpretation graph (U,A), including three
information units u0, u1 and u2, which are connected by three associations {u0, u1}, {u0, u2},
and {u1, u2}.

Each interpretation Ii (0 ≤ i ≤ k − 1) included in XI (Eq. 2.13), shall be
defined as a triple (U,A,wi), where U is a set of n information Units, A is a
set of Associations, and wi represents a weighting function that is specific to
interpretation Ii:

Ii := (U,A,wi) (2.14)

Provided that Ω is the universal set of all theoretically possible information
units (i.e., the basic set of all carriers of information), we can define U (which
is some collection of information units) as an arbitrary subset of Ω and herewith
as an element of 2Ω:

U = {u0, u1, . . . , un−1} ∈ 2Ω ; |U | = n (2.15)

Since in theory all elements of U could be associated with each other and as
we are dealing here only with undirected associations, we can define A as the
set of (binary) subsets {u, u′} of U , which can be written as

(

U
2

)

:

A =

(

U

2

)

=
{

{uh, ul}
∣

∣

∣
0 ≤ h < l ≤ n− 1

}

(2.16)

The number of associations |A| is given here by a triangular number:

|A| =

∣

∣

∣

∣

∣

(

U

2

)

∣

∣

∣

∣

∣

=

(

|U |

2

)

=

(

n

2

)

=
n!

2!(n− 2)!
=

n(n− 1)

2
=

n2 − n

2
(2.17)

Together U and A apparently form a complete undirected graph, where vertices
(or nodes) represent information units and edges are regarded as associations.
Fig. 2.1 illustrates a simple example with three information units u0, u1, u2.

With this tool at hand we can express that in theory all carriers of information
u ∈ U that are encoded in a spatial hypertext artifact could be associated with
each other in some way. Modeling full interpretations, however, requires more
than only describing plain connections between objects. Only specifying that
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all units might be related to each other is not sufficient. In addition we must
be able to parameterize associations between information units. This means,
it must be possible to define properties of object relations (if there are any).
This is why the tuple (U,A) gets extended by the binary relation wi.

wi shall be a weighting function assigning weights (i.e., parameters) to edges
(i.e., associations). More precisely wi is a total function mapping A to a non-
empty set of association Parameterizations, which we simply call P :

wi : A→ P,

P = (P0 × P1 × . . .× Pm−1) ∪ Pε , m ≥ 1

Pj 6= ∅ (0 ≤ j ≤ m− 1)

Pε 6= ∅, Pε ⊂ P (2.18)

A key role here is played by Pε. Pε is a (non-empty) set of so-called empty
parameterizations. When assigned to an edge {u, u′} ∈ A, such an empty pa-
rameterization p ∈ Pε may indicate either that there is no specific relationship
between u and u′, or that such a relation is unknown (there might be one,
but we are note sure about it). Given that interpretations are collections of
structures and structures are networks of meaningfully connected information
units, we can use elements of Pε as structure delimiters. In concrete terms,
elements of Pε can be used to separate discrete structures from each other.

Mathematically expressed, using Pε we can define the jth discrete information
structure included in an ith interpretation Ii := (U,A,wi) as a connected sub-
graph I ′ij which has the following properties:

I ′ij := (Uij , Aij , wij)

Uij ⊆ U ;
∣

∣Uij

∣

∣ ≥ 2

Aij =

{

a

∣

∣

∣

∣

∣

a ∈

(

Uij

2

)

∧ wi(a) /∈ Pε

}

⇒ Aij ⊆ A;
∣

∣Aij

∣

∣ ≥ 1

wij : Aij → P \ Pε, ∀a ∈ Aij : wij(a) = wi(a) (2.19)

According to this (Eq. 2.19), we can define information structures as connected
sub-graphs I ′ij of interpretation graphs Ii. Such sub-graphs comprize of at least
two vertices (i. e., information units u ∈ Uij) which are connected by undirected
edges (i. e., associations a ∈ Aij) that are decorated only with values /∈ Pε.

We have chosen
∣

∣Uij

∣

∣ ≥ 2 and so the constraint
∣

∣Aij

∣

∣ ≥ 1 in Eq. 2.19 because we
firmly believe that only relations create structure. Single information units are
nothing more than atomic objects; their internal composition (i. e., “payload”)
does not matter here. Spatial parsers search for visual object relations but do
not “care” about content.
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The following example is intended to make that a bit clearer:

Assume we have selected five random information units u from Ω. For the sake
of simplicity we number them continuously from u0 to u4. The exact values of
these variables shall not play a role here. Then we can, according to Eq. 2.15
and Eq. 2.16 define both components U and A as follows:

U = {u0, u1, u2, u3, u4}

A =



















{u0, u1}, {u0, u2}, {u0, u3}, {u0, u4},
{u1, u2}, {u1, u3}, {u1, u4},
{u2, u3}, {u2, u4},

{u3, u4}



















(2.20)

In addition, the following parameter sets shall be given:

Ptype = {type0, type1, type2}

Pweight = {0.25, 0.50, 0.75, 1.00}

Pε = {ε}

Here, Ptype is a set of discrete type indicators (ranging from type0 to type2)
and Pweight is a discrete set of real-valued weights, which we define (for reasons
of simplicity) in steps of 1

4 from 0.25 to 1.00. The mandatory set of empty
parameterizations Pε shall comprise here only of a single element, which we
denote as ε. With these parameter sets and the definitions given by Eq. 2.18,
we can now define the parameterization set P as follows:

P = (Ptype × Pweight) ∪ Pε

=



















(type0, 0.25), (type0, 0.50), (type0, 0.75), (type0, 1.00),
(type1, 0.25), (type1, 0.50), (type1, 0.75), (type1, 1.00),
(type2, 0.25), (type2, 0.50), (type2, 0.75), (type2, 1.00),

ε



















(2.21)

Based on these definitions of U , A and P we will now describe three example
interpretations: XI = {I0, I1, I2}.

According to Eq. 2.14, each of these interpretations Ii is a triple (U,A,wi),
comprising of the two shared components U and A, and the interpretation
specific weighting function wi. As per Eq. 2.18 wi is a total function and thus
a special binary relation. We therefore illustrate w0, w1 and w2 in tabular
form: see Fig. 2.2.

Each table in Fig. 2.2 includes |A| = 10 ordered pairs consisting of associa-
tions {u, u′} ∈ A (Eq. 2.20) and assigned parameterizations p ∈ P (Eq. 2.21).
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Figure 2.2: Three example weighting functions w0, w1 and w2 illustrated in tabular form.

Values of p were chosen arbitrarily. The definitions given by Eq. 2.19 allow
for identifying a number of discrete information structures in the form of con-
nected sub-graphs. Value pairs belonging to such structures are marked with
different colors (red and blue). When we combine these colored tuples in the
form described in Eq. 2.19 we get the following information structures:

I ′00 =





















{u1, u2, u3, u4},
{

{u1, u2} , {u1, u3} , {u1, u4} , {u2, u4}
}

,


















(

{u1, u2} , (type1, 0.75)
)

,
(

{u1, u3} , (type0, 0.50)
)

,
(

{u1, u4} , (type1, 0.50)
)

,
(

{u2, u4} , (type2, 1.00)
)







































I ′10 =









{u0, u3},
{

{u0, u3}
}

,
{

(

{u0, u3} , (type0, 0.50)
)

}









I ′11 =























{u1, u2, u4},
{

{u1, u2} , {u1, u4} ,
{u2, u4}

}

,










(

{u1, u2} , (type0, 0.50)
)

,
(

{u1, u4} , (type1, 1.00)
)

,
(

{u2, u4} , (type1, 0.75)
)

































I ′20 =









{u1, u3},
{

{u1, u3}
}

,
{

(

{u1, u3} , (type0, 0.50)
)

}









I ′21 =























{u0, u2, u4},
{

{u0, u2} , {u0, u4} ,
{u2, u4}

}

,











(

{u0, u2} , (type2, 0.50)
)

,
(

{u0, u4} , (type1, 1.00)
)

,
(

{u2, u4} , (type1, 0.75)
)
































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Chapter 2. Formal View
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Figure 2.3: Three example interpretations I0, I1 and I2 illustrated in the form of two-
dimensional graph diagrams. Included structures are highlighted in red and blue.

Since these tuples are graphs, one can also illustrate them in form of dia-
grams. Fig. 2.3 illustrates I0, I1 and I2 in two-dimensional graph representa-
tion (aligned from left to right). Included information structures are highlighted
with respective colors, red and blue (which is consistent with Fig. 2.2).

Summarising the above it can be said, that interpretations of spatial hypertext
artifacts are collections of clearly separable networks of meaningfully connected
information units, which we denote as information structures. Together with
our notion of spatial hypertext languages (from Sect. 2.1) this understanding
of interpretations and information structures will play an important role in
following chapters.
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Chapter 3

Critical Review

The last two chapters provided different views on spatial hypermedia. It was
shown how spatial hypertext and spatial parsing are informally defined in liter-
ature (Sect. 1.2 and Sect. 1.3) and which practical implementations of spatial
parsers exist (Sect. 1.5). We also had a formal view on spatial hypertext. Chap-
ter 2 provided a common mathematical, and hence terminological basis, which
allows us now to talk about spatial hypertexts in a uniform way. According to
Sect. 2.1, spatial hypertext languages are defined as sets of spatial hypertext
artifacts, which are flat collections of spatial hypertext symbols. This forms
our “syntactic view” on such languages. Semantics are defined by interpreta-
tions (Sect. 2.2). Interpretations are encodings of how spatial hypertext can
be understood and thus form the semantic complement to spatial hypertext
artifacts. Technically they are graphs of connected information objects.

Spatial parsers are the linking element between spatial hypertext artifacts and
interpretations. They take artifacts as input, analyse them according to pre-
defined heuristics and generate output in the form of interpretations. In a
nutshell, spatial parsers map artifacts to interpretations (Fig. 3.1).

Parser 

1
1.0

1.
0

 0.5

1 2

ܫ3 ∈ ܫ�  
2

ܪ3 ∈ ܪ��  

Figure 3.1: spatial parsers map spatial hypertext artifacts H to interpretations I
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Chapter 3. Critical Review

One of the major goals in spatial hypermedia research is to design and develop
good spatial parsing services. That is, finding feasible ways for automatically
retrieving hidden structure from human generated layouts. Such implicit struc-
ture detection belongs to the most essential features of a spatial hypermedia
system. One could even go further arguing that only spatial parsers transform
visual information spaces into real spatial hypermedia systems. Without struc-
ture recognition they would be nothing more than plain graphical editors with
a database in the backend. Or to put it differently, only spatial parsing makes
an image on the screen a spatial hypertext. But this is almost a philosophical
issue which can be discussed controversially. We shall not go into any more
detail on this.

Regardless of the role spatial parsers play in setting spatial hypermedia systems
apart from normal diagramming applications, we would like to ask the following
question:

What makes a good spatial parser?

The answer to this question is strongly linked to the meaning of “good” and
hence on what a potential system user is likely to expect from a parsing service.
“good” is a vague rating and can relate to many different assessment criteria.
That is why in the following we focus on two major aspects only:

(a) efficiency and (b) effectiveness.

Usually spatial parsers are realized as software components. Therefore, aspects
such as processing speed and resource consumption have, without any doubt,
a great relevance to developing good parsers. In concrete terms, when design-
ing and implementing a fully-functional spatial hypermedia system it must be
ensured that resource allocation by parsers is kept to a minimum and user
interaction with the visual medium is not interrupted or interfered by unneces-
sarily long parser runs. To put it briefly, a good spatial parser should operate
efficiently. In this respect, spatial parsers do not differ from other software
components. But, efficiency alone does not automatically make a good parser
in terms of good structure detection performance.

More important than efficiency is the quality of parser output (i. e. the accuracy
of interpretations). The closer a spatial parser’s interpretation of a spatial
hypertext comes to the real understanding of human users, the greater the
parser’s accuracy. The more accurate a parser’s interpretations are the better
the parsing algorithm and hence the stronger the parser’s performance. Ideally,
spatial parsers extract only structure that was really intended by authors. In
other words, a perfect spatial parser detects exactly what a human user intended
to express by a certain arrangement of information objects.
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Therefore, good spatial parsers do not only perform as resource-saving and as
fast as possible, but also generate interpretations of high accuracy and hence
results of high quality.

Unfortunately both objectives, maximized efficiency and maximal effectiveness
are inherently difficult to reconcile. Especially in computer science they are
often seen as competing aims. This is why we focus on a single aspect only,
namely parsing accuracy. This leads us to the following question:

Is there a need for increased parsing accuracy?

To avoid misunderstandings, it shall be noted that in this thesis we consider
only un–customized parsers and hence systems that do not need to be tailored
for user preferences. Thus, Adaptive Spatial Parsing (Sect. 1.5.2) is not our
issue here.

Does the state-of-the-art in (non-adaptive) spatial parsing call for improved
algorithms that provide more accurate and hence better results? In our opinion
this questions can be answered with “Yes”, for the following reason:

Traditional (non-adaptive) parsing strategies (as described in Sect. 1.5.1) build
on the assumption that a single spatial hypertext artifact is a sufficient source
of information for retrieving implicitly encoded structure that was intended
by authors. Or in other words, it is assumed that static “snapshots” of visual
information spaces include sufficient information for inferring correct structural
meaning. But this need not always be the case.

Quite the contrary: single spatial hypertext artifacts rarely allow for clear
inferences on what authors really intended to express. The reason for this is
that drawing unambiguous conclusions only from spatial and visual properties
would require that structural descriptions given in a spatial hypertext artifact
are also clear and explicit. Although being possible, this still contradicts spatial
hypertext’s ambiguous and implicit nature (Sect. 1.2).

Typically, spatial hypertext rather leaves some room for interpretation. That
is, spatial hypertext allows the viewer (either human or machine) leeway to
interpret spatial and visual properties (Sect. 2.2). The only one who could
resolve such ambiguities correctly is the creater of the respective visual lan-
guage and hence the author of the hypertext (Sect. 2.1). In short, spatial
hypertext is ambiguous and disambiguation requires knowledge which only au-
thors can have. Conventional (non-adaptive) parsers, however, do not consider
such knowledge in their analysis, which innately limits parsing accuracy. This
conceptual restriction makes it difficult to design good parsing algorithms.

Thus, there is with no doubt a need for improvement!
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Chapter 3. Critical Review

3.1 Ambiguous Structures

As already highlighted in Sect. 1.2, lack of clarity is inherently part of spatial
hypertext. As a consequence, disambiguation plays an essential role in spa-
tial parsing. Nevertheless, apart from only few exceptions, such as FLAPS
(Sect. 1.5.1), the focus in designing spatial parsers has been put on aspects
such as collaboration (Sect. 1.5.3), three-dimensionality (Sect. 1.5.4), or linear
document authoring (Sect. 1.5.5) rather than on resolving ambiguities. In other
words, although being crucial for successful spatial parsing, the topic of disam-
biguation has been rather neglected in most current implementations. For this
reason it is worth delving a bit deeper into that subject:

What does “ambiguous” mean in connection with spatial hypertext?

An “ambiguous” spatial hypertext has different possible meanings. The mean-
ing of a spatial hypertext as a whole is defined by the meaning of individual in-
formation units (nodes), which depends on both node content and context [1].
Context again is defined by (implicit) associations of information units with
adjacent nodes within the hypertext [1], which is determined by spatial and
visual properties respectively. As discussed in Sect. 2.2, information units and
associations together form information structures and structures build inter-
pretations. So, one could argue that interpretations are manifestations of the
meaning of spatial hypertext. Thus, by calling a spatial hypertext “ambiguous”
we are emphasizing that one could infer more than only one interpretation.

Intended (or constructive [3,9]) ambiguity is given, when users deliberately ex-
press unclear or fuzzy information structures and herewith allow for alternative
interpretation. This means, authors are aware that there are multiple ways how
a given hypertext could be understood. This constructive use of (intended) am-
biguities to express vague structures is a core feature of spatial hypertext [3,9].
We discussed that already in Sect. 1.2.

In addition to such intended ambiguities, however, evolution of spatial hy-
pertexts might also result in ambiguities that are unintended by authors [35].
Spatial hypertext’s implicit, informal and emergent nature (Sect. 1.2) may lead
to inconsistencies between intention and actual expression. So, it is for exam-
ple possible, that edit operations applied to spatial objects may accidentally
modify the context of related expressions, which then may become undesir-
ably ambiguous [13, 36]. Another example refers to the visual language used.
It is not only the case that the spatial hypertext changes over time [9], the
users’ understanding of their task and herewith the spatial hypertext language
may evolve as well [9, 20, 36, 37]. As a consequence, expressions that could be
clearly understood before a change of language, may become ambiguous after-
wards since the meaning of those visual features used has changed [37]. This
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Figure 3.2: example: list-structures formed by ambiguously aligned rectangles

complicates interpretation of information or makes it practically impossible at
all [36, 37].

This is best explained with an example. Fig. 3.2 illustrates an ambiguous
sample hypertext and its interpretation by a conventional spatial parser at two
consecutive points in time (k0 and k1).

Interpretations are represented here as graphs which are complete, undirected
and weighted. Given weights assigned to edges (i. e., to associations) between
information units range from 0.0 to 1.0 and indicate the strength of a certain
relationship (in this case the strength of spatial dependencies). Thus, a weight
of 0.0 would mean that two objects have no spatial relation, whereas a weight of
1.0 indicates an immediate dependency. For further details on interpretations
see our previous definitions in Sect. 2.2.

In state k0 (top-left of Fig. 3.2) objects 1, 2 and 3 in the middle of the infor-
mation space apparently form a horizontal list; thus they can be interpreted as
structure elements. Rectangles 4 and 5 in the bottom-left and top-right corner,
however, are located too far away from potential neighbors to have a spatial
relation; thus they do not contribute to any structure. A spatial parser can
easily detect that, as can be seen in the bottom-left of Fig. 3.2.
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Chapter 3. Critical Review

When an author pushes now rectangle 4 and 5 closer together, in order to save
space for example, then we get what is illustrated at k1. Suddenly the layout
becomes ambiguous. Only by analysing the spatial layout it is not possible any-
more to decide which rectangles form a discrete list and which objects do not.
Consequently, the spatial parser’s interpretation becomes ambiguous either.
This is why the interpretation graph in the bottom right of Fig. 3.2 comprizes
a single, big information structure which includes all five information units.
The list-structure formed by objects 1, 2 and 3, which could be recognized at
state k0, is still part of this big structure, but, since all the delimiting zero-
weightings have gone, it cannot be unambiguously identified anymore.

The author of this sample hypertext, however, still might recognize that hor-
izontal list as an independent structure. Perhaps the snapshot on the right
was simply intended as a spatially compact (i. e., “compressed”) version of the
hypertext on the left and hence the author does not see any semantic difference
between k0 and k1. Possibly in the user’s mind the list formed by objects 1,
2 and 3 still exists as a discrete unit. In the spatial parser’s interpretation,
however, it does not.

From this we can conclude that implicit information structures in spatial hyper-
text are always a mixture of desired and undesirable structures. Thus, spatial
hypertext includes both, intended and unintended ambiguities.

We denote the degree of such (intended and unintended) ambiguousness as
level-of-ambiguity. It can be measured as the number of possible alternative
interpretations that can be derived from a spatial hypertext. It herewith de-
termines how hard it is to come to a correct interpretation. The smaller that
level is the easier it gets to infer the correct meaning and hence the better a
spatial parser will perform. Consequently, if one intends to improve parsing
performance that level must be decreased. This brings us back to the subject
of “disambiguation”.

A possible way to achieve that is suggested in [36]. According to [36], (un-
wanted) ambiguities can be eliminated by considering a spatial hypertext’s
edit history (called “navigable history”). In concrete terms, if we do not only
look at a static image of our information space, but rather take into account
its evolution as an additional source of information, disambiguation of visual
structures may become possible. This is why in [36] it was suggested to use
such a history to enhance spatial parsing. A possible implementaton, however,
was not described.

Thus, we can see an edit history as a means to reduce the level of (unintended)
ambiguity in spatial hypertext and thus as a means to increase parsing accuracy.
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Figure 3.3: example: (partly) destroyed list-structure of diagonally aligned rectangles

3.2 Destroyed Structures

Besides ambiguous structures (Sect. 3.1) we can identify another structure cat-
egory. So-called destroyed structures are information structures described spa-
tially or visually, which used to exist in the past, but were partly or completely
destroyed in the course of an editing process. Thus, all information structures
which could be automatically detected at a given time in the past but are not
(fully) visible anymore at present, due to changes made to spatial and visual
attributes, fall in this category.

A very simple example which illustrates the nature of such destroyed structures
is given in Fig. 3.3. Fig. 3.3 illustrates a diagonally aligned list of rectangular
shaped information objects and its interpretation by a spatial parser at two
different points in discrete time (k0 and k1). At k0 the interpretation of the
given spatial hypertext comprizes a single information structure including all
four information units. At k1 however unit number 3 is missing which leads
to a drop of the spatial dependency of units 1,2 with rectangle 4 to zero.
Deleted object number 3 is not included at all. The recognized information
structure includes only units 1 and 2. However, what might be geometrically
correct does not necessarily need to be valid from a human user’s perspective.
Probably object number 3 was accidentally destroyed or the user simply forgot
to move 2 and 4 closer together. Maybe from a user’s point of view units 1, 2
and 4 still form a list. A conventional spatial parser, however, recognizes only
a small fraction of that intended structure. A similar example that illustrates
this issue can be found in [36].
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Figure 3.4: example: (completely) destroyed object relation

This becomes even more apparent in cases where information structures are
completely destroyed. You only have to look at Fig. 3.4. As in the previous ex-
ample, also Fig. 3.4 illustrates two consecutive snapshots of a sample hypertext
together with its interpretation by a spatial parser. Due to their spatial prox-
imity at time point k0, both objects 1 and 2 are considered as being strongly
related. That is, the parser “sees” a spatial relation with a strength of one-
hundred percent. A single time step later, however, both objects 1 and 2 have
moved too far away from each other to still have a spatial relation. Conse-
quently, the parser does not just detect a weak connection, but he recognizes
none at all. This does not necessarily need to be correct. Maybe the change
from k0 to k1 happened accidentally (possibly as a side effect of another edit-
ing operation), or the parser’s configuration simply does not fit the author’s
understanding of proximity. Note, that we have absolutely no guarantee that
heuristics used for spatial parsing are universally correct. So there are enough
reasons why a conventional spatial parser erroneously detects nothing in k1.

3.3 Temporal Structures

Both ambiguous (Sect. 3.1) and destroyed structures (Sect. 3.2) can not be de-
tected properly by conventional spatial parsers, even though they are expressed
spatially and visually. It is not surprising that structures formed by totally dif-
ferent attributes than position, size, shape, color etc. can not be recognized
either. This category includes (pure) temporal structures.

The very simple example illustrated in Fig. 3.5 is characteristic of this type of
structures. Fig. 3.5 shows two rectangular information units which are located
too far away from each other to be regarded as spatially associated (i. e., the
strength of spatial dependency would be 0.0). Thus a spatial parser would
not see any information structure. However there still might be an association
between unit 1 and 2, as, when you look back in edit history it could be
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Figure 3.5: example: (pure) temporal structure formed by alternate modification of rect-
angular information objects

recognized that both objects were repeatedly modified in an alternate fashion.
This operation pattern might indicate that there is an association between
object 1 and 2; that is, both objects seem to be related somehow. Human users
might have the same association in mind. This information, however, is not
available to conventional spatial parsers, which limits their practical value.

3.4 Solution

These issues may only be overcome by giving up the idea that spatial and
visual attributes are sufficient for detecting intended structure. In addition to
properties like position, size, shape etc. further sources of information need to
be considered in spatial parser designs.

We suggest that temporal aspects of spatial hypertext are the perfect choice
for solving those problems discussed in the previous sections. A spatial parser
which is “aware” of previous structures (i. e., information structures which used
to exist but are not visible anymore) and “knows” about temporal dependencies
between information units could (a) filter out discrete structures most likely
seen by human users; (b) complete corrupted structures and (c) detect associa-
tions that are purly temporal. We expect this to lead to a significant increase
in parsing accuracy, and hence higher parser performance.

Although the idea of enhancing spatial parsing by temporal information was
proposed already in [12] and [36] it has never been realized. Neither there is
an algorithmic design for such a temporal extension nor was it implemented in
prototypical form. It is therefore still unknown whether such a spatio-temporal
parser would perform better than a conventional spatial parser. This thesis is
intended to change that.
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Chapter 4

Prototype

Research results only applicable in a single application context are generally
very limited, as conclusions cannot be applied to other contexts. This is why
we tried to carry out our investigations as context-independent and therefore
as implementation-independent as possible. To achieve that, we did not build
our research algorithms on some specific spatial hypermedia application. This
would have been too restrictive. Instead, our algorithm design was rather
driven by a theoretical model of a universal spatial hypermedia system. In
other words, in contrast to the usual practice in spatial hypermedia research
we decided to come from theory to prototype, and not the other way round.

We define “typical” spatial hypermedia systems as compositions of two sub-
systems: (a) Editing System (Sect. 4.1) and (b) Interpretation System (Sect.4.2).
In a nutshell, editing systems support creation of visual structure, whereas in-
terpretation systems perform automatic structural analysis. Linked together
they realise interactive structure creation loops. This represents the functional
core of spatial hypermedia systems.

Spatial Hypermedia System

Interpretation System

Editing System

Figure 4.1: Spatial hypermedia system defined as composite of two interconnected sub-
systems: Editing System (Sect. 4.1) and Interpretation System (Sect.4.2)
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4.1 Editing System

Spatial hypertext is not designed on a drawing board and thus is not con-
structed following a predefined blueprint. Instead, visual information structure
emerges (Sect. 1.2). That is, users do not “engineer” formal information struc-
ture, but rather interact with objects in a visual information space to gradually
develop meaningful visual expression. This is rather a creative than a construc-
tive process. Therefore special development tools are required. So-called editing
systems provide users with interactive access to visual information spaces and
herewith support the step-by-step creation of visual structure. Thus, from an
application-oriented perspective, editing systems are tools for spatial hypertext
development. They therefore form the basis for any spatial hypermedia system.

In order to formally describe such systems it is crucial to understand how spatial
hypertext evolves. If we can describe emerging spatial or visual expressions then
we can also define how an editing system behaves.

4.1.1 Evolution of Spatial Hypertext

As far as possible, we tried to keep the following definitions implementation-
independent and avoided the use of an own formal notation. The only excep-
tions to this are generic definitions, that is, the way we describe parameterised
sets, functions or other mathematical objects.

In concrete terms, when the definition of a mathematical object X depends on
one or several other objects (or parameters) P0, P1, . . . , Pn, then we formally
express this as follows:

X〈P0, P1, . . . , Pn〉

This notation was inspired by generic programming, hence the expression above
looks quite similar to what you might know from source code templates.

Note, that we used this notation already in Sect. 2.1 when we introduced spatial
hypertext languages LSH (for details see page 28). So, a good example for this
“template-like” notation would be . . .

LSH〈ΣSH, XSH〉 :=
(

2ΣSH \XSH

)

. . . which is nothing else than a parameterized set
(

2ΣSH \XSH

)

or rather a set
of sets determined by two factors: ΣSH and XSH . This could also be applied
to other mathematical objects, such as tuples, relations or functions. In fact
this is exactly what we do in our following definitions.

48



4.1. Editing System

In order to keep mathematical expressions as compact as possible and there-
fore to facilitate readability of our formal model several basic definitions are
required.

This includes the following definition of Rs〈ΣSH〉:

Rs〈ΣSH〉 :=
{

R
∣

∣

∣R ⊆
(

ΣSH ∪ {ε}
)

×
(

ΣSH ∪ {ε}
)

}

= 2(ΣSH∪{ε})×(ΣSH∪{ε})

(4.1)

According to Eq. 4.1 Rs〈ΣSH〉 is defined as the parameterized set of all binary
relations R ⊆

(

ΣSH ∪ {ε}
)

×
(

ΣSH ∪ {ε}
)

and therefore depends on two factors:
ΣSH und ε. Here, ΣSH represents any set of spatial hypertext symbols and
thus any spatial hypertext “alphabet” (see Eq. 2.4 in Sect. 2.1). The second
parameter ε is an empty symbol (i. e., a symbolic placeholder for “nothing”)
and is supposed to be no element of ΣSH.

As an example, for a given symbol set ΣSH = {s0, s1, s2, s3} a valid relation
R ∈ Rs〈ΣSH〉 might look as follows:











( ε , s0) ,
(s1, s2) ,
(s3, ε )











∈ Rs〈{s0, s1, s2, s3}〉 (4.2)

Therefore, elements (or instances) of Rs〈ΣSH〉 are nothing more than sets of
binary symbol tuples or rather mappings of symbols (i. e., elements on the left
side are mapped to symbols on the right).

We use such relations to describe substitutions or replacement operations. In
the example given above (in Eq. 4.2) we perform three substitutions at once:
ε (quasi “nothing”) becomes s0, s1 transforms into s2 and s3 changes to ε
(i. e., s3 is getting deleted). Thus, relation R describes a transformation of the
symbol set Pres(R) = {s1, s3}, which is defined in Eq. 4.3, into the target set
Posts(R) = {s0, s2}, given by Eq. 4.4.

Pres : Rs〈ΣSH〉 → 2ΣSH , R 7→





⋃

(s,s′)∈R

{s}



 \ ε (4.3)

Posts : Rs〈ΣSH〉 → 2ΣSH , R 7→





⋃

(s,s′)∈R

{

s′
}



 \ ε (4.4)

However, our goal here is not to describe general transformations on any symbol
sets. Our aim is rather to define replacement operations on spatial hypertext
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artifacts. After all we want to describe formally how spatial hypertext evolves.
In concrete terms, we are looking for a universal description of how artifacts
or “words” of any spatial hypertext language are generated. This requires to
refine or rather to constrain the previously defined set Rs〈ΣSH〉 as follows:

RH〈ΣSH, XSH〉 =



















































R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R ∈ Rs〈ΣSH〉,
R 6= ∅
∧





∄
{

(

a, a′
)

,
(

b, b′
)

}

∈
(

R

2

)

:

(a, b 6= ε ∧ a = b) ∨
(

a′, b′ 6= ε ∧ a′ = b′
)





∧
Pres(R),Posts(R) ∈ 2H , H ∈ LSH〈ΣSH, XSH〉



















































(4.5)

Unlike Rs〈ΣSH〉 this definition of RH〈ΣSH, XSH〉 does not only depend on the
spatial hypertext “alphabet” ΣSH but also on XSH. In Sect. 2.1 we defined
XSH as an exclusion set on 2ΣSH . According to Eq. 2.8 XSH forms together
with ΣSH a spatial hypertext language LSH〈ΣSH, XSH〉. Thus, the definition
of RH does not just depend on a spatial hypertext “alphabet”, but on a full
spatial hypertext language. Our definition of RH〈ΣSH, XSH〉 restricts Rs〈ΣSH〉
by three constraints:

Firstly, RH〈ΣSH, XSH〉 may not include the empty set. Empty relations R = ∅
include no mappings of symbols and hence describe no changes. Even though
such “neutral” operations (or rather transitions) have their right to exist, we
will deal with them separately in later sections. For our current definitions
we rather assume that Hypertext-Relations ∈ RH〈ΣSH, XSH〉 always contain
at least one symbol tuple.

Second and third constraint refer to tuple elements: There may be no unordered
pair {(a, a′), (b, b′)} of binary tuples ∈ R for which (a, b 6= ε ∧ a = b) or
(a′, b′ 6= ε∧a′ = b′). This means in plain language that symbols may occur only
once, on the left as well as on the right side of relations R ∈ RH〈ΣSH, XSH〉.
The exception to this are ε-entries.

The reason for the last restriction lies in constraint number three: Pres(R) as
well as Posts(R) must be (not necessarily proper) subsets of a valid spatial
hypertext artifact. With “valid” we mean, that the respective artifact has to be
element of the spatial hypertext language formed by ΣSH and XSH, which is
LSH〈ΣSH, XSH〉. Therefore Pres (R),Posts (R) ∈ 2H with H ∈ LSH〈ΣSH, XSH〉.

In conclusion, RH〈ΣSH, XSH〉 represents the set of all (theoretically) possible
replacement operations on spatial hypertext artifacts H ∈ LSH〈ΣSH, XSH〉.
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Regardless of how the underlying spatial hypertext language is defined, we
can always distinguish between three basic operations on spatial hypertext
artifacts: Artifacts, which are nothing more than flat collections of symbols, can
be (1) extended by new symbols (i. e., they can “increase” in size); (2) symbols
can be removed from an artifact (i. e., they can “decrease”) and (3) included
symbols can be modified (by “changing” their attribute values).

These three classes of relations can be defined as subsets of RH〈ΣSH, XSH〉:

Rincrease〈ΣSH, XSH〉 =

{

R

∣

∣

∣

∣

∣

R ∈ RH〈ΣSH, XSH〉,
∀
(

s, s′
)

∈ R : s = ε ∧ s′ 6= ε

}

Rdecrease〈ΣSH, XSH〉 =

{

R

∣

∣

∣

∣

∣

R ∈ RH〈ΣSH, XSH〉,
∀
(

s, s′
)

∈ R : s 6= ε ∧ s′ = ε

}

Rchange〈ΣSH, XSH〉 =

{

R

∣

∣

∣

∣

∣

R ∈ RH〈ΣSH, XSH〉,
∀
(

s, s′
)

∈ R :
(

s, s′ 6= ε
)

∧
(

s 6= s′
)

}

(4.6)

If one understands now single hypertexts H ∈ LSH as states and elements e of
Rincrease ∪Rdecrease ∪Rchange (Eq. 4.6) as state transitions or rather as events,
then we can effectively use sequences of spatial hypertext artifacts and symbol
relations for describing a spatial hypertext’s evolution.

For this we use the following automaton:

AH〈ΣSH, XSH,MH〉 =















SH〈ΣSH, XSH〉,
EH〈ΣSH, XSH〉,
δH〈ΣSH, XSH〉,

Hinit,
FH〈MH〉















, MH ⊆ LSH〈ΣSH, XSH〉 (4.7)

AH is a deterministic and (potentially) infinite automaton, whose five compo-
nents are defined using three parameters: ΣSH, XSH and MH.

Just like Eq. 4.5 and Eq. 4.6, also the definition of this (Hypertext) Automaton
AH depends on ΣSH, XSH and thus on the language LSH〈ΣSH, XSH〉.

In addition, however, AH is also determined by a very special set of so-called
“Mature” artifacts MH ⊆ LSH〈ΣSH, XSH〉. These artifacts are meant to be hy-
pertexts that include already meaningful structure and therefore should have
significant information content. Thus, MH represents a subset of LSH〈ΣSH, XSH〉
whose elements are more than just any steps in a development process. They
rather should be understood as intermediate results with a significant degree
of consistency.
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The exact definition of MH strongly depends on individual development context
and development goals of hypertext authors. This is why, at this point, we
cannot specify MH any further.

States of AH are nothing more than “words” of a spatial hypertext language.
For this reason, we set SH, which is the set of all possible states of AH, equal
to the language LSH:

SH〈ΣSH, XSH〉 = LSH〈ΣSH, XSH〉 (4.8)

Following this definition, the automaton AH〈ΣSH, XSH,MH〉 could (theoreti-
cally) take up any H ∈ LSH〈ΣSH, XSH〉 as machine state.

Based on Eq. 4.6 we define the total set of input signals or rather events e as:

EH〈ΣSH, XSH〉 =



















e

∣

∣

∣

∣

∣

∣

∣

∣

∣

e ∈









Rincrease〈ΣSH, XSH〉

∪Rdecrease〈ΣSH, XSH〉

∪Rchange〈ΣSH, XSH〉



























(4.9)

Consequently, any addition, removal or modification of symbols could trigger
a state transition.

How such events e ∈ EH〈ΣSH, XSH〉 make the automaton AH “move” through
SH〈ΣSH, XSH〉 and thus through the language LSH〈ΣSH, XSH〉, is defined by
the following transition function δH:

δH〈ΣSH, XSH〉 :
(

SH〈ΣSH, XSH〉 × EH〈ΣSH, XSH〉
)

⇀ SH〈ΣSH, XSH〉,

(H, e) 7→
(

Posts(e) ∪
(

H \ Pres(e)
)

)

∈ SH〈ΣSH, XSH〉,

Pres(e) ⊆ H ∧ Posts(e) ∩
(

H \ Pres(e)
)

= ∅ (4.10)

The transition function δH〈ΣSH, XSH〉 maps pairs of states and events (H, e)
to successor states ∈ SH〈ΣSH, XSH〉 by substituting Pres(e) ⊆ H for Posts(e).
The resulting collections of symbols, or rather the resulting successor states,
must be element of SH〈ΣSH, XSH〉 and thus have to be valid artifacts of the un-
derlying spatial hypertext language. Furthermore, the symbols to be replaced
are expected to be part of H (i. e., Pres(e) ⊆ H) and, as a last requirement,
Posts(e) may not contain symbols that are already included in (H \ Pres(e)),
which is the immutable part of H. Function δH is only defined if all these
conditions are met.

The initial state of AH〈ΣSH, XSH,MH〉 shall be equal to Hε:

Hinit = Hε ∈ SH〈ΣSH, XSH〉 (4.11)
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Spatial hypertexts do not fall simply from sky, but are always the result of
a development process that has to start from somewhere (typically from an
empty information space). Our formal equivalent to “empty space” is the empy
spatial hypertext artifact Hε (i. e., the empty set; see Sect. 2.1). Since Hε is el-
ement of any spatial hypertext language, it is necessarily also ∈ SH〈ΣSH, XSH〉.
Therefore the empty artifact may be used as initial state.

The set of final states or rather final hypertexts FH shall be equal to the pre-
viously mentioned set of mature hypertext artifacts MH:

FH〈MH〉 = MH (4.12)

Consequently, each spatial hypertext artifact H ∈ MH represents a potential
final state of AH〈ΣSH, XSH,MH〉.

Having defined all five components of AH we can finally discuss its dynamics.
Let BH〈ΣSH, XSH,MH〉 be the behaviour of our automaton AH; that is, the
set of all valid sequences of input signals (i. e., events) and their respective
sequences of states (i. e., hypertexts) the automaton would pass through.

In addition, let B′H〈ΣSH, XSH,MH〉 be a subset of BH〈ΣSH, XSH,MH〉 refining
the behaviour of AH:

B′H〈ΣSH, XSH,MH〉 ⊆ BH〈ΣSH, XSH,MH〉 (4.13)

Each element of this subset B′H〈ΣSH, XSH,MH〉 shall be a binary tuple of value
sequences which we denote as (E,H).

E is a sequence of input signals or rather events ek ∈ EH〈ΣSH, XSH〉. For a
given time horizon ke ∈ N+ we define E as follows:

E (0 . . . ke − 1) =
(

e0, e1, . . . , eke−1

)

,

ek ∈ EH〈ΣSH, XSH〉, k = 0, 1, . . . , ke − 1 (4.14)

Driven by E (0 . . . ke − 1) the automaton AH passes through certain sequences
of states. We denote these sequences as H (0 . . . ke) and define them as:

H (0 . . . ke) =
(

H0, H1, . . . , Hke

)

,

H0 = Hinit

Hk+1 = δH〈ΣSH, XSH〉 (Hk, ek) ,

δH〈ΣSH, XSH〉 (Hk, ek)!, k = 0, 1, . . . , ke − 1

Hke
∈ FH〈MH〉 (4.15)

Therefore B′H〈ΣSH, XSH,MH〉 describes how a spatial hypertext, encoded in
LSH〈ΣSH, XSH〉, can evolve from Hε to a (final) mature state ∈MH.
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As pointed out already, the exact definition of MH strongly depends on indi-
vidual development context and development goals of hypertext authors. Con-
sequently, if there is no such information available, which is the default case,
then it is not possible to give a precise definition of MH. So we must assume
that any spatial hypertext could be in a form which is, from an observer’s per-
spective, consistent and therefore potentially final. This is why in this general
case AH may be in a final state ∈MH at any point in discrete time.

This allows for the following simplification:

AH〈ΣSH, XSH〉 := AH〈ΣSH, XSH, LSH〈ΣSH, XSH〉〉 ⇔











SH〈ΣSH, XSH〉,
EH〈ΣSH, XSH〉,
δH〈ΣSH, XSH〉,

Hε











(4.16)
With this partial default-parameterization, if you want to call it that, we effec-
tively set FH equal to SH which is the underlying spatial hypertext language
LSH〈ΣSH, XSH〉. This is almost like defining AH without final states FH.

Based on this simplification we can redefine the behaviour BH of AH〈ΣSH, XSH〉
as follows:

BH〈ΣSH, XSH〉 : = BH〈ΣSH, XSH, LSH〈ΣSH, XSH〉〉

= B′H〈ΣSH, XSH, LSH〈ΣSH, XSH〉〉 (4.17)

4.1.2 Editing Processes

So far we considered only dynamics of artifacts or rather “words” in spatial
hypertext languages. Thus, with our considerations from previous Sect. 4.1.1
we focused solely on language attributes. In concrete terms, we described
formally how spatial and visual representations of implicit structure can evolve,
starting from an empty visual word.

However, in this section we are not simply interested in dynamics of language
elements but rather in complete editing systems.

The behaviour of such interactive visual information spaces is not only deter-
mined by the underlying visual language. In addition to spatial and visual
symbol properties there are further attributes which play an important role for
editing spatial hypertext (e. g., unique object identifiers, content, usage statis-
tics etc.). We summarize these attributes by the term “workspace meta data”.

In this section we complement our previous definitions by such Meta data M .
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To this end, we extend the basic component ΣSH, as it was used already in our
initial definition of Rs〈ΣSH〉 in Eq. 4.1, to a binary cartesian product: ΣSH×M .
Elements of ΣSH ×M are binary tuples of spatial hypertext symbols ∈ ΣSH

and additional meta data ∈ M . In the following we refer to such tuples as
information units u:

∀u ∈ (ΣSH ×M) :

u :=

(

u.symbol,
u.meta_data

)

;
u.symbol ∈ ΣSH,
u.meta_data ∈M

(4.18)

The term “information unit” was introduced already in Sect. 2.2, but in a
different context. Information units u ∈ (ΣSH ×M), as described here, are
primarily used for spatial hypertext Representation. Information units, as we
defined them in Sect. 2.2 rather deal with its Interpretation. Therefore, the
term “information unit” is used in connection with both, spatial parsing as well
as editing systems.

Having extended ΣSH to (ΣSH ×M) we can reformulate the parameterized set
of symbol relations Rs〈ΣSH〉, as it was defined in Eq. 4.1, as follows:

Ru〈ΣSH,M〉 =
{

R
∣

∣

∣R ⊆
(

(ΣSH ×M) ∪ {ε}
)

×
(

(ΣSH ×M) ∪ {ε}
)

}

= 2

(

((ΣSH×M)∪{ε})×((ΣSH×M)∪{ε})
)

(4.19)

The basic structure of this relation set is the same as in Eq. 4.1. The only
difference is, that elements of binary tuples may now include both spatial and
visual attributes as well as meta data.

Analogous to this, both auxiliary functions Pres and Posts, as defined in Eq. 4.3
and Eq. 4.4, can be adapted for use with information units u ∈ (ΣSH ×M).
Following the naming convention from Eq. 4.19 we denote these functions with
Preu (Eq. 4.20) and Postu (Eq. 4.21) and define them as follows:

Preu : Ru〈ΣSH,M〉 → 2(ΣSH×M), R 7→





⋃

(u,u′)∈R

{u}



 \ ε (4.20)

Postu : Ru〈ΣSH,M〉 → 2(ΣSH×M), R 7→





⋃

(u,u′)∈R

{

u′
}



 \ ε (4.21)

In contrast to what we did previously in Sect. 4.1.1 we are here not just dealing
with collections of symbols s ∈ ΣSH, but rather with sets of information units
u ∈ (ΣSH ×M). Consequently, our replacement operations cannot operate
directly on spatial hypertext artifacts H ∈ LSH〈ΣSH, XSH〉. What we need
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instead is an adequate abstraction of LSH〈ΣSH, XSH〉 that we will refer to as
U〈ΣSH, XSH,M〉:

U〈ΣSH, XSH,M〉 =



























U

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

U ∈ 2(ΣSH×M),

∄
{

u, u′
}

∈
(

U

2

)

: u.symbol = u′.symbol

∧
(

⋃

u∈U {u.symbol}
)

∈ LSH〈ΣSH, XSH〉



























(4.22)

Actually, U〈ΣSH, XSH,M〉 is nothing more than the power set of (ΣSH ×M)
restricted by two constraints:

Firstly, U ∈ U〈ΣSH, XSH,M〉 may not include any pair of information units
{u, u′} where u and u′ share their symbol attribute (i. e., u.symbol = u′.symbol).
This means, any combination of spatial and visual properties (i. e., each symbol)
may occur only once in U . The reason for this can be found in the second
constraint of Eq. 4.22. According to that, all symbols of U together must form a
valid element of LSH〈ΣSH, XSH〉, that is a spatial hypertext artifact. Therefore,
each U ∈ U〈ΣSH, XSH,M〉 implicitly contains an artifact H ∈ LSH〈ΣSH, XSH〉.

In a certain sense, one could say that U〈ΣSH, XSH,M〉 represents a spatial
hypertext language LSH〈ΣSH, XSH〉 “enriched” by meta data.

This also includes an empty element; based on the model of Hε ∈ LSH〈ΣSH, XSH〉.
For this we use the empty set of information units Uε:

Uε := ∅ ∈ U〈ΣSH, XSH,M〉 (4.23)

If one substitutes in Eq. 4.5 all components that are defined on symbols, such
as Rs〈ΣSH〉, Pres, Posts and LSH〈ΣSH, XSH〉, for Ru〈ΣSH,M〉, Preu, Postu,
and U〈ΣSH, XSH,M〉, then we get the following set of relations:

RU〈ΣSH, XSH,M〉 =



















































R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R ∈ Ru〈ΣSH,M〉,
R 6= ∅
∧





∄
{

(

a, a′
)

,
(

b, b′
)

}

∈
(

R

2

)

:

(a, b 6= ε ∧ a = b) ∨
(

a′, b′ 6= ε ∧ a′ = b′
)





∧
Preu(R),Postu(R) ∈ 2U , U ∈ U〈ΣSH, XSH,M〉



















































(4.24)

Just like RH〈ΣSH, XSH〉 in Eq. 4.6, also RU〈ΣSH, XSH,M〉 can be further re-
fined by adding constraints. This way, we define three sub-classes of operations.
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Unlike specified in Eq. 4.6 these operations are now called create, delete and
modify rather than increase, decrease or change:

Rcreate〈ΣSH, XSH,M〉 =

{

R

∣

∣

∣

∣

∣

R ∈ RU〈ΣSH, XSH,M〉,
∀
(

u, u′
)

∈ R : u = ε ∧ u′ 6= ε

}

Rdelete〈ΣSH, XSH,M〉 =

{

R

∣

∣

∣

∣

∣

R ∈ RU〈ΣSH, XSH,M〉,
∀
(

u, u′
)

∈ R : u 6= ε ∧ u′ = ε

}

Rmodify〈ΣSH, XSH,M〉 =

{

R

∣

∣

∣

∣

∣

R ∈ RU〈ΣSH, XSH,M〉,
∀
(

u, u′
)

∈ R :
(

u, u′ 6= ε
)

∧
(

u 6= u′
)

}

(4.25)

Again, U〈ΣSH, XSH,M〉, Preu, Postu, as well as the relations from Eq. 4.25
can be used to define an automaton. Unlike AH (Eq. 4.7), however, that new
automaton does not build on spatial hypertext artifacts H, but on sets of
information units U . Consequently, we denote such information Unit Automata
with AU:

AU〈ΣSH, XSH,M〉 =











SU〈ΣSH, XSH,M〉,
EU〈ΣSH, XSH,M〉,
δU〈ΣSH, XSH,M〉,

Uinit











(4.26)

Here, the set of possible states of AU shall be equal to U〈ΣSH, XSH,M〉:

SU〈ΣSH, XSH,M〉 = U〈ΣSH, XSH,M〉 (4.27)

Similar to EH in Eq. 4.9, the set of input signals or rather events EU is defined
as a union of relations: Rcreate, Rdelete and Rmodify

EU〈ΣSH, XSH,M〉 =



















e

∣

∣

∣

∣

∣

∣

∣

∣

∣

e ∈









Rcreate〈ΣSH, XSH,M〉

∪Rdelete〈ΣSH, XSH,M〉

∪Rmodify〈ΣSH, XSH,M〉



























(4.28)

Apparently, there are clear parallels to the previous definition of AH in Sect. 4.1.1.
This also applies to the state transition function δ. In concrete terms, δH from
Eq. 4.10 and the following definition of δU (Eq. 4.29) differ only in their un-
derlying sets of states and events. This is why the following partial mapping
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looks very similar to what was previously defined in Eq. 4.10:

δU〈ΣSH, XSH,M〉 :
(

SU〈ΣSH, XSH,M〉 × EU〈ΣSH, XSH,M〉
)

⇀ SU〈ΣSH, XSH,M〉,

(U, e) 7→
(

Postu(e) ∪
(

U \ Preu(e)
)

)

∈ SU〈ΣSH, XSH,M〉,

Preu(e) ⊆ U ∧ Postu(e) ∩
(

U \ Preu(e)
)

= ∅
(4.29)

The fourth and last component of automaton AU is its initial state or rather
its initial set of information units Uinit (Eq. 4.30). That initial state shall be
equal to Uε from Eq. 4.23. Final states are not defined. With this we follow
the simplification from Eq. 4.16.

Uinit = Uε ∈ SU〈ΣSH, XSH,M〉 (4.30)

Finally, let BU〈ΣSH, XSH,M〉 be the behaviour of AU〈ΣSH, XSH,M〉; that is,
the set of all ingoing sequences of events and their respective states (or rather,
collections of information units). Elements of BU〈ΣSH, XSH,M〉 are binary
tuples of event and state sequences denoted as (E,U).

For a given time horizon ke ∈ N+ such E is define as:

E (0 . . . ke − 1) =
(

e0, e1, . . . , eke−1

)

,

ek ∈ EU〈ΣSH, XSH,M〉, k = 0, 1, . . . , ke − 1 (4.31)

The sequence of states AU passes through for such an input E (0 . . . ke − 1) is
denoted as U (0 . . . ke) and can be formally described as follows:

U (0 . . . ke) =
(

U0, U1, . . . , Uke

)

,

U0 = Uinit

Uk+1 = δU〈ΣSH, XSH,M〉 (Uk, ek) ,

δU〈ΣSH, XSH,M〉 (Uk, ek)! ,

k = 0, 1, . . . , ke − 1 (4.32)

Each tuple (E,U) ∈ BU〈ΣSH, XSH,M〉 that fulfills both conditions, Eq. 4.31
and Eq. 4.32, is called an Editing Process!
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4.1.3 Workspace Model

Object attributes that can be found in every spatial hypermedia workspace and
therefore also in any editing system are: (1) object keys (i. e., unique object
identifiers) and (2) node content (i. e., “payload” of information units).

Certainly, there may be further attributes, such as author information, usage
statistics etc. Those, however, do not necessarily need to be implemented in
a system. As for keys and content, on the other hand, we can be certain that
in some form they can be found in every visual information space. They may
be realised in different ways (e. g., as integers, texts etc.) but they still share
common semantics; that is, in principle they serve the same purpose:

Object keys are used for unique identification of information units and therefore
make it possible to associate or rather to link objects with each other. Node
content, again, can be understood as “payload” of information units, that is,
as what makes a simple object a carrier of information. Since there is no
hypermedia system without nodes and links, both node content as well as keys
are inevitably part of any real spatial hypermedia system. For this reason we
decided to integrate both attributes into our theoretical model.

To this end, we substitute the previously introduced meta data symbol M for
the cartesian product of two new set-parameters: (K × C). Here, K stands
for Keys and C means Content. Therefore, that unary attribute u.meta_data,
which we defined in Eq. 4.18, changes into a binary tuple of key und content:

∀u ∈
(

ΣSH × (K × C)
)

:

u :=









u.symbol,
(

u.key,
u.content

)









;

u.symbol ∈ ΣSH,

u.key ∈ K,

u.content ∈ C

(4.33)

An appropriate derivative of U〈ΣSH, XSH,M〉, which accepts both set-parameters
K and C instead of M , shall be defined as follows:

U〈ΣSH, XSH,K,C〉 =







U

∣

∣

∣

∣

∣

∣

U ∈ U〈ΣSH, XSH, (K × C)〉,

∄
{

u, u′
}

∈
(

U

2

)

: u.key = u′.key







(4.34)

This partial refinement of the parameterized set U〈ΣSH, XSH,M〉 (Eq. 4.22)
by M = (K × C) is combined with the constraint, that keys ∈ K have to be
unique in each U ∈ U〈ΣSH, XSH, (K × C)〉. This means, each u ∈ U must be
clearly identifiable by u.key. Thus, there may be no unordered pair {u, u′} in
U for which u.key = u′.key.
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RU is defined similarly:

RU〈ΣSH, XSH,K,C〉 =











R

∣

∣

∣

∣

∣

∣

∣

R ∈ RU〈ΣSH, XSH, (K × C)〉,
Preu(R),Postu(R) ∈ 2U ,
U ∈ U〈ΣSH, XSH,K,C〉











(4.35)

Also here we substitute M for (K ×C) and hence we refine the given superset
of relations RU〈ΣSH, XSH,M〉 to a subset RU〈ΣSH, XSH, (K × C)〉. Replace-
ment operations R described this way may only be defined on elements of
U〈ΣSH, XSH,K,C〉. This is why our definition in Eq. 4.35 also includes the
constraints Preu(R),Postu(R) ∈ 2U and U ∈ U〈ΣSH, XSH,K,C〉.

When we intersect now RU〈ΣSH, XSH,K,C〉 with relation sets Rcreate, Rdelete

and Rmodify (which were originally defined in Eq. 4.25), and when we substitute
M for (K × C) again, then we can apply the previously known replacement
operations for creation, modification and deletion of information units also on
elements of U〈ΣSH, XSH,K,C〉. For Rcreate and Rdelete this would look as
follows:

Rcreate〈ΣSH, XSH,K,C〉 = RU〈ΣSH, XSH,K,C〉 ∩Rcreate〈ΣSH, XSH, (K × C)〉

Rdelete〈ΣSH, XSH,K,C〉 = RU〈ΣSH, XSH,K,C〉 ∩Rdelete〈ΣSH, XSH, (K × C)〉

(4.36)

According to this, both Rcreate as well as Rdelete are defined as intersections of
RU〈ΣSH, XSH,K,C〉 with partially refined relation sets from Eq. 4.25. With
this we effectively describe Types of relations that combine properties of both
RU〈ΣSH, XSH,K,C〉 as well as of Rcreate or Rdelete. This is a simple form of
multiple inheritance.

In a similar way we can describe modify-relations. Just like Rcreate and Rdelete

also Rmodify can be defined by intersecting two sets of relations: in this case
RU〈ΣSH, XSH,K,C〉 and Rmodify〈ΣSH, XSH, (K × C)〉. Also Rmodify “inherits”
properties from RU〈ΣSH, XSH,K,C〉 and from its counterpart in Eq. 4.25. Here
we add the constraint, that information units may only be mapped to units with
the same key. This means, for each binary tuple (u, u′) which is an element of
a modify relation R ∈ Rmodify〈ΣSH, XSH,K,C〉 we expect that u.key = u′.key.

The purpose of this constraint is to ensure that information units keep their
identity. Otherwise Rmodify would not describe modifications but rather im-
plicit deletion and recreation. Semantically, this would not be what we intend
to express with Rmodify.

60



4.1. Editing System

Rmodify〈ΣSH, XSH,K,C〉 =























R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R ∈







RU〈ΣSH, XSH,K,C〉
∩

Rmodify〈ΣSH, XSH, (K × C)〉






,

∀
(

u, u′
)

∈ R : u.key = u′.key























(4.37)

Relations included in Rmodify〈ΣSH, XSH,K,C〉 describe changes of both sym-
bols as well as content. It may be useful now to view both categories of replace-
ment operations separately. This can be achieved by mapping both attributes
u.content and u.symbol to identical values (just as we did with u.key). More
precisely, we extend our previous definition from Eq. 4.37 by constraints . . .

∀(u, u′) ∈ R : u.content = u′.content
or

∀(u, u′) ∈ R : u.symbol = u′.symbol

This reduces Rmodify to those relations, that either describe only modifications
of symbols (Eq. 4.38) or change of content (Eq. 4.39).

Rchange_symbol〈ΣSH, XSH,K,C〉 =











R

∣

∣

∣

∣

∣

∣

∣

R ∈ Rmodify〈ΣSH, XSH,K,C〉,
∀
(

u, u′
)

∈ R :
u.content = u′.content











(4.38)

Rchange_content〈ΣSH, XSH,K,C〉 =











R

∣

∣

∣

∣

∣

∣

∣

R ∈ Rmodify〈ΣSH, XSH,K,C〉,
∀
(

u, u′
)

∈ R :
u.symbol = u′.symbol











(4.39)

No matter if element of RH〈ΣSH, XSH〉 (Eq. 4.5), RU〈ΣSH, XSH,M〉 (Eq. 4.24)
or now of RU〈ΣSH, XSH,K,C〉, relations always had to contain at least one
binary tuple (i. e., R 6= ∅). Replacement operations, that replace nothing were
not allowed. We intend to change that with the following definition of Rε:

Rε = ∅ (4.40)

Rε is an empty set of binary tuples and thus an empty binary relation. Empty
relations describe no changes and therefore can be used as “neutral” transitions
in a dynamic system, that is, as switching operations that do not change the
current system state. This is exactly what Rε is used for in the following
automaton.

As we could see already in previous sections, we can use definitions of sets,
such as Eq. 4.22, and relations, like in Eq. 4.24, to create system models in
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form of deterministic automata. Since Eq. 4.34 builds on Eq. 4.22 and Eq. 4.35
is based on Eq. 4.24 we can do that also for the (K × C)-extension from this
section. We denote such automata that build on workspace meta data K and
C as Workspace Automata AW:

AW〈ΣSH, XSH,K,C,Esymbol〉 =



















SW〈ΣSH, XSH,K,C〉,
EW〈ΣSH, XSH,K,C,Esymbol〉,

OW〈ΣSH, XSH,K,C〉,
TW〈ΣSH, XSH,K,C,Esymbol〉,
GW〈ΣSH, XSH,K,C,Esymbol〉,

sinit



















(4.41)

Unlike AH (Eq. 4.7) and AU (Eq. 4.26) the workspace automaton AW is not
only determined by ΣSH, XSH or by an abstract set of meta data M . Instead
the given list of parameters in Eq. 4.41 comprises, in addition to ΣSH and XSH,
also K,C and Esymbol. Here, parameters K and C replace the abstract meta
data symbol M (just like in Eq. 4.34 or in Eq. 4.35). Esymbol, on the other
hand, is a symbolic placeholder for a set of symbol events and therefore has to
be subset of Rchange_symbol〈ΣSH, XSH,K,C〉 (Eq. 4.38):

Esymbol ⊂ Rchange_symbol〈ΣSH, XSH,K,C〉 (4.42)

This extended parameter list allows us to determine which operations, in ad-
dition to construction and destruction, are allowed on symbols included in
information units. This makes it easy to adapt the behaviour of AW to con-
crete spatial hypertext languages. You only need to define appropriate deriva-
tives of Rchange_symbol. This means, you only have to extend the definition
of Rchange_symbol with constraints that describe exactly how symbol attributes
may change in certain language(s). Examples for this will be presented later
on in Sect. 4.1.4.

Workspace automata AW may be in the following states SW:

SW〈ΣSH, XSH,K,C〉 =







s := (U, V )

∣

∣

∣

∣

∣

∣

(U, V ) ∈
(

U〈ΣSH, XSH,K,C〉 × 2K
)

,
(

⋃

u∈U {u.key}
)

⊆ V







(4.43)

Unlike SH in Eq. 4.8 and SU in Eq. 4.27 states s ∈ SW are not simply defined as
sets of spatial hypertext symbols H ∈ LSH〈ΣSH, XSH〉 or as sets of information
units U ∈ U〈ΣSH, XSH,M〉. We rather define them as binary tuples (U, V ),
with U ∈ U〈ΣSH, XSH,K,C〉 and V ∈ 2K . Here, U represents, as before, a
set of information units u ∈ (ΣSH × (K × C)). Keys ∈ K uniquely identify
these objects and are collected in V . More precisely, the key set V contains
all identifiers, that were assigned to information units until state s = (U, V )
and therefore cannot be used for labelling of new objects. This also includes
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keys of information units that used to exist in the past but are no element of U
anymore at present state s = (U, V ). This also explains the second constraint
in Eq. 4.43: (

⋃

u∈U{u.key}) ⊆ V . According to this, all u.key of current u ∈ U
must be included in V (i. e., they must be marked as “in use”). However, the
constraint also says that not necessarily all keys ∈ V must also be assigned
to objects in U ; thus V may also include “deprecated” keys. This allows us
to keep track of assigned and unassigned object identifiers and therefore helps
to ensure that new objects always get a key that is not in use already. This
is an aspect of editing spatial hypertext that was not considered in previous
Sect. 4.1.1 and Sect. 4.1.2.

The initial state sinit of our workspace automaton shall be equal to (Uε, ∅):

sinit =
(

Uε, ∅
)

∈ SW〈ΣSH, XSH,K,C〉 (4.44)

Thus, the starting point of any sequence of state transitions in AW is always a
binary tuple of two components: an empty set of information units Uε (Eq. 4.23)
and consequently also an empty set of keys ∅ ⊂ K. Without objects there are
also no identifiers.

Similar to EH in Eq. 4.9 and EU in Eq. 4.28 the set of workspace events EW is
defined as a union of replacement operations:

EW〈ΣSH, XSH,K,C,Esymbol〉 =






































e

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e ∈



















Rcreate〈ΣSH, XSH,K,C〉

∪Rdelete〈ΣSH, XSH,K,C〉

∪Rchange_content〈ΣSH, XSH,K,C〉

∪ {Rε}

∪ Esymbol

























































(4.45)

The essential difference to EH and EU is that EW includes, in addition to the
already known relations such as Rcreate or Rdelete, the empty relation or rather
the empty event Rε from Eq. 4.40 as well as the previously mentioned parameter
Esymbol (Eq. 4.42). Note, that Esymbol was defined as an exchangeable set of
symbol events ∈ Rchange_symbol〈ΣSH, XSH,K,C〉.

Like δH and δU also AW’s transition function maps binary tuples of states and
events to successor states. Note, however, that unlike Eq. 4.10 and Eq. 4.29,
this transition function is not denoted with δ. We use the name TW instead:

TW〈ΣSH, XSH,K,C,Esymbol〉 :
(

SW〈ΣSH, XSH,K,C〉

× EW〈ΣSH, XSH,K,C,Esymbol〉

)

⇀ SW〈ΣSH, XSH,K,C〉 (4.46)
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This partial mapping is defined as follows:
(

(U, V ) , e
)

7→
(

U ′, V ′
)

,

U ′ =
(

Postu(e) ∪
(

U \ Preu(e)
)

)

∈ U〈ΣSH, XSH,K,C〉

V ′ =



















V ∪





⋃

u∈Postu(e)

{u.key}



 , if e ∈ Rcreate〈ΣSH, XSH,K,C〉

V , else

where:
(

Preu(e) ⊆ U
)

∧
(

Postu(e) ∩
(

U \ Preu(e)
)

= ∅
)

and if e ∈ Rcreate〈ΣSH, XSH,K,C〉 then ∄u ∈ Postu(e) : u.key ∈ V (4.47)

Driven by workspace events e ∈ EW, TW maps tuples (U, V ) ∈ SW to ordered
pairs (U ′, V ′) ∈ SW. For mapping U to U ′, we replace in U subset Preu(e) by
Postu(e) which effectively creates a new element of U〈ΣSH, XSH,K,C〉:

U ′ =
(

Postu(e) ∪
(

U \ Preu(e)
)

)

∈ U〈ΣSH, XSH,K,C〉 (4.48)

V ′ is defined by cases:

V ′ =



















V ∪





⋃

u∈Postu(e)

{u.key}



 , if e ∈ Rcreate〈ΣSH, XSH,K,C〉

V , else

(4.49)

If e is a construction event (i. e., e ∈ Rcreate〈ΣSH, XSH,K,C〉 ; see Eq. 4.36)
then it shall be presumed that no u ∈ Postu(e) has already been recorded in V .
Or, to express it differently: ∄u ∈ Postu(e) : u.key ∈ V . In this case V needs
to be expanded. Otherwise, if e /∈ Rcreate〈ΣSH, XSH,K,C〉 then V remains
unchanged. In this case we set V ′ = V .

What mainly differentiates AW from AH and AU is its ability to generate
output. This means, our workspace automaton AW does not only react on
ingoing editing events with (hidden) state transitions but it also generates
signals that can be detected from the outside. In concrete terms, AW notifies
its observers of every single state change.

This is why that six-tuple given in Eq. 4.41 includes, in addition to already
known components, such as sets of states and events etc., two other objects:
GW and OW. GW defines how AW Generates output signals. OW shall be the
basic set of that Output.
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The generating (or rather output) function GW accepts tuples of states and
events (s, e) ∈ (SW × EW) and provides the value calculated by TW (s, e) as
output ∈ OW:

GW〈ΣSH, XSH,K,C,Esymbol〉 :
(

SW〈ΣSH, XSH,K,C〉

× EW〈ΣSH, XSH,K,C,Esymbol〉

)

⇀ OW〈ΣSH, XSH,K,C〉,

(s, e) 7→ TW〈ΣSH, XSH,K,C,Esymbol〉(s, e) (4.50)

According to this, GW calculates and returns the successor state to s without
changing its value. It therefore makes sense to set output signals OW equal to
states SW. Each machine state of AW is also a potential output signal:

OW〈ΣSH, XSH,K,C〉 = SW〈ΣSH, XSH,K,C〉 (4.51)

Similar to Eq. 4.14 and Eq. 4.31 also the input of AW shall be defined as tuples
of input signals (or rather events) e ∈ EW:

E (0 . . . ke) =
(

e0, e1, . . . , eke

)

,

ek ∈ EW〈ΣSH, XSH,K,C,Esymbol〉, k = 0, 1, . . . , ke (4.52)

As pointed out already, there are two ways how workspace automata AW react
on such sequences of events E (0 . . . ke): Firstly, they pass through a hidden
sequence of states S (0 . . . ke + 1); see Eq. 4.53. In this respect the definition
of AW is not different from AH (Eq. 4.15) or AU (Eq. 4.32).

S (0 . . . ke + 1) =
(

s0, s1, . . . , ske+1

)

,

s0 = sinit

sk+1 = TW〈ΣSH, XSH,K,C,Esymbol〉 (sk, ek) ,

TW〈ΣSH, XSH,K,C,Esymbol〉 (sk, ek)! ,

k = 0, 1, . . . , ke (4.53)

Secondly, workspace automata AW also provide these hidden states as output
and thus notify their system environment (i. e., their external observers) of
internal state changes. This is why we denote such sequential Workspace-
output as W (0 . . . ke):

W (0 . . . ke) =
(

W0,W1, . . . ,Wke

)

,

Wk = GW〈ΣSH, XSH,K,C,Esymbol〉 (sk, ek) ,

GW〈ΣSH, XSH,K,C,Esymbol〉 (sk, ek)! ,

k = 0, 1, . . . , ke (4.54)
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Workspace  ��  ��+1 ��  

��  ��  

 ��  
��  

Figure 4.2: Abstract blockdiagram of a dynamic workspace system, defined as workspace
automaton AW. Functions TW and GW are illustrated as system blocks. The given pair of
vertical lines at the bottom represents a memory component.

In a nutshell, workspace automata AW transform ingoing sequences of edit
events E (0 . . . ke) into outgoing sequences of workspaces W (0 . . . ke):

Workspace � 0…��   ��  � 0…��  
A more detailed illustration of such workspace systems, which includes both
automata functions TW (Eq. 4.46), GW (Eq. 4.50) as well as a state memory
can be found in Fig. 4.2. Such workspace models AW form the basis for our
definition of editing systems:

According to Fig. 4.3, editing systems extend workspaces by viewer and con-
troller components and hence build on the MVC-pattern. Thus we can easily
summarize an editing system’s behaviour as follows: Viewing components re-
ceive sequences of user interface activities, such as pressing left mouse button,
moving the mouse and releasing the button again, and pass them on to a
controlling module. The controller accepts those sequences of activities and
translates them into adequate commands (or editing events ek ∈ EW). These
events are then forwarded as input signals to a workspace model AW. That
model switches to a new state, as described in Eq. 4.53 or Eq. 4.47 respectively,
and finally publishes the updated status Wk to its observers; that is view and
controller. Thus, one could understand editing systems as visual dynamic sys-
tems that are driven by user activities.

For easier legibility we define:

∀W ∈ OW〈ΣSH, XSH,K,C〉 :

W :=

(

W.info_units,
W.keys_in_use

)

;
W.info_units ∈ U〈ΣSH, XSH,K,C〉,

W.keys_in_use ∈ 2K

(4.55)
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Editing System

view

Workspace 

controller

 ��  ��+1 ��  

��  
��  

Model

��  ��  

 ��  
��  

��  

Figure 4.3: Editing system illustrated as a composite of workspace model AW (Eq. 4.41),
view and controller component

4.1.4 Specialization

In the last section we defined both workspaces and editing systems for any
spatial hypertext language LSH〈ΣSH, XSH〉. We neither specified concrete spa-
tial hypertext symbols ΣSH nor was any specific exclusion set XSH defined.
Consequently, our system model above (Fig. 4.3) leaves it open which spatial
and visual attributes to use for developing spatial hypertext. We also limited
definitions for unique object identification and for content handling to what is
strictly necessary (see Eq. 4.33, Eq. 4.39, or Eq. 4.47). This makes our system
model highly adaptable to a variety of practical implementations, including our
research prototype. For our test implementation we have chosen the following
visual language L#

SH:

L#
SH =

(

Σ#∗
SH \X

#
SH

)

Σ#∗
SH =

{

H
∣

∣

∣
H ⊆ Σ#

SH

}

= 2Σ
#

SH

Σ#
SH =

(

Aposition ×Asize ×Aorientation ×Ashape ×Acolor

)

X#
SH = ∅

⇒ L#
SH =

(

2Σ
#

SH \ ∅
)

= 2Σ
#

SH = 2(Aposition×Asize×Aorientation×Ashape×Acolor)

(4.56)

Here we follow our previous definitions from Eq. 2.7 in Sect. 2.1.
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Eq. 4.56 includes five basic attribute types: position, size and orientation of
objects as well as their shape and color. Further attributes, such as surface
texture, line style etc., would have been too specific and would unnecessar-
ily complicate the following definitions. For the same reason we defined no
constraints on L#

SH, that is, exclusion set X#
SH was set to ∅.

The above mentioned attribute types are defined as follows:

Aposition =
{

(x, y, z)
∣

∣x, y ∈ Z, z ∈ N0

}

Asize =
{

(w, h)
∣

∣

∣w, h ∈ N+
}

Aorientation = {AXIS_ALIGNED}

Ashape = {RECTANGLE,ELLIPSE}

Acolor =
{

(r, g, b)
∣

∣r, b, g ∈ {0, 1, . . . , 255}
}

(4.57)

Aposition is defined as a set of 2- or rather 2.5-dimensional vectors. Here, x, y
are position coordinates in a two-dimensional (discrete) grid Z×Z. The depth
coordinate z ≥ 0 indicates an object layer. Thus, z = 0 identifies the bottom-
level in an information space.

The given size-attribute is defined as proportions (w, h), where both width w
as well as height h may only take values > 0. This is intended to guarantee
that objects in an information space always have a (positive) spatial extent.

For the sake of simplicity we do not support object rotation, hence objects shall
be axis-aligned. For this reason, Aorientation comprises of only a single element,
that is the symbolic placeholder AXIS_ALIGNED.

In Ashape we distinguish between rectangular and ellipsoidal shapes, represented
by two discrete flags RECTANGLE and ELLIPSE. Although further shapes
could be specified they are not necessarily required for our prototypical system.

Finally, elements of Acolor are defined as rgb colors, that is, as triples (r, g, b)
of integral values ∈ {0, 1, . . . , 255}. Further attributes are not used.

From these sets of attribute values we can form 5-tuples or rather symbols
s ∈ Σ#

SH (Eq. 4.56) whose elements shall be denoted as follows:

∀s ∈ Σ#
SH :

s :=















s.position,
s.size,

s.orientation,
s.shape,
s.color















;

s.position ∈ Aposition,

s.size ∈ Asize,

s.orientation ∈ Aorientation,

s.shape ∈ Ashape,

s.color ∈ Acolor

(4.58)

68



4.1. Editing System

Now that both is known, symbol properties as well as their value ranges, we can
specify operations on symbols. This means, now we can define Rchange_symbol-
relations, that describe how attributes from Eq. 4.58 may change.

This requires, in a first step, that we refine Rchange_symbol〈ΣSH, XSH,K,C〉 from
Eq. 4.38 to a fully specified Rchange_symbol〈Σ

#
SH, ∅,N0,String〉. ΣSH = Σ#

SH and
XSH = ∅ or rather XSH = X#

SH are integral components of L#
SH and were

already defined in Eq. 4.56.

With K = N0 we restrict the set of valid object keys ∈ K to integers ≥ 0 and
thus set the type of u.key to “unsigned int”, so to speak. Theoretically, one
could use any set of uniquely identifiable objects as key type K.

String should be a set of character strings. The underlying character encoding
(e. g., ASCII, UTF-8 etc.) is of no importance to us. Thus, with C = String
we limit our model to string-based content (i. e. text). Therefore, we deal with
hyper-text in the classical sense of the term. However, our model is not limited
to that. Just like K also C may be chosen arbitrarily.

The most fundamental editing operations on objects in a 2.5-dimensional space
include translation (i. e., change of position), scaling (i. e., change of size or
proportions) and shifting objects to different layers.

These three categories of edit operations (or rather events) can be defined as
derivatives of Rchange_symbol〈Σ

#
SH, ∅,N0,String〉:

Etranslate =



















R

∣

∣

∣

∣

∣

∣

∣

∣

∣

R ∈ Rchange_symbol〈Σ
#
SH, ∅,N0,String〉,

∀
(

u, u′
)

∈ R :
u′.symbol = translate (u.symbol, ~vt) ,

~vt ∈ (Z× Z)



















Escale =



















R

∣

∣

∣

∣

∣

∣

∣

∣

∣

R ∈ Rchange_symbol〈Σ
#
SH, ∅,N0,String〉,

∀
(

u, u′
)

∈ R :
u′.symbol = scale (u.symbol, ~vs) ,

~vs ∈
(

R+× R+
)



















Eshift_layer =



















R

∣

∣

∣

∣

∣

∣

∣

∣

∣

R ∈ Rchange_symbol〈Σ
#
SH, ∅,N0,String〉,

∀
(

u, u′
)

∈ R :
u′.symbol = shift_layer (u.symbol,∆z) ,

∆z ∈ Z



















(4.59)

These relation sets include three core mappings that specify how symbols may
change: translate (Eq. 4.60), scale (Eq. 4.61) and shift_layer (Eq. 4.62). For
reasons of clarity, we decided to define them separately.
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translate (Eq. 4.60) is a total mapping of binary tuples of symbols s ∈ Σ#
SH and

translation vectors (a, b) ∈ (Z × Z) to symbols s′ ∈ Σ#
SH with altered position

coordinates s.position.x+ a and s.position.y+ b. Depth-coordinate z as well as
remaining attributes do not change their values.

translate :
(

Σ#
SH × (Z× Z)

)

→ Σ#
SH ,































(x, y, z),
size,

orientation,
shape,
color















, (a, b)

















7→















(x+ a, y + b, z),
size,

orientation,
shape,
color















(4.60)

Scaling of objects (Eq. 4.61) is defined similarly. Also here we map pairs of sym-
bols and vectors to geometrically modified symbols. The only difference is that
scaling vectors are used instead of translation vectors and object dimensions
are modified instead of positions.

scale :

(

Σ#
SH ×

(

R+× R+
)

)

→ Σ#
SH ,































position,
(w, h),

orientation,
shape,
color















, (a, b)

















7→















position,
(

round(w × a), round(h× b)
)

,
orientation,

shape,
color















,

round : R+→ N+, ∀x ∈ R+ :

round(x) =

{

1 , if x < 0.5

⌊x+ 0.5⌋ , else
(4.61)

Modification of depth coordinates (i. e., layers) is defined by shift_layer:

shift_layer :
(

Σ#
SH × Z

)

→ Σ#
SH ,































(x, y, z),
size,

orientation,
shape,
color















,∆z

















7→















(

x, y, shift_depth_val (z,∆z)
)

,
size,

orientation,
shape,
color















,

shift_depth_val : (N0 × Z)→ N0, ∀ (z,∆z) ∈ (N0 × Z) :

shift_depth_val (z,∆z) =

{

0 , if (z +∆z) < 0

z +∆z , else
(4.62)
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Etranslate, Escale and Eshift_layer are not the only editing events that can be
defined on symbol properties from Eq. 4.58. In addition we can also refine
Rchange_symbol〈Σ

#
SH, ∅,N0,String〉 to modifications of s.shape (Eq. 4.63) and

s.color (Eq. 4.64). Attribute s.orientation, however, cannot change its value,
since |Aorientation| = 1 (see Eq. 4.57).

Eshape_changed =











R

∣

∣

∣

∣

∣

∣

∣

R ∈ Rchange_symbol〈Σ
#
SH, ∅,N0,String〉,

∀
(

u, u′
)

∈ R :
u.symbol.shape 6= u′.symbol.shape











(4.63)

Ecolor_changed =











R

∣

∣

∣

∣

∣

∣

∣

R ∈ Rchange_symbol〈Σ
#
SH, ∅,N0,String〉,

∀
(

u, u′
)

∈ R :
u.symbol.color 6= u′.symbol.color











(4.64)

All these edit events shall be combined under the common label Esymbol_changed:

Esymbol_changed = Etranslate ∪ Escale ∪ Eshift_layer

∪ Eshape_changed ∪ Ecolor_changed (4.65)

We use Esymbol = Esymbol_changed together with the previously defined param-
eters ΣSH = Σ#

SH, XSH = X#
SH = ∅, K = N0 and C = String as default-settings

or rather as default-configuration of AW〈ΣSH, XSH,K,C,Esymbol〉 (Eq. 4.41),
EW〈ΣSH, XSH,K,C,Esymbol〉 (Eq. 4.45) and OW〈ΣSH, XSH,K,C〉 (Eq. 4.51):

AW := AW 〈Σ
#
SH, ∅,N0,String, Esymbol_changed〉

EW := EW 〈Σ
#
SH, ∅,N0,String, Esymbol_changed〉

OW := OW 〈Σ
#
SH, ∅,N0,String〉 (4.66)

The last three types of symbol events we would like to introduce are, events
for construction and destruction of information units (Eq. 4.67), events for
modification of content (Eq. 4.68) and “neutral” or empty events (Eq. 4.69).

Events for creation and deletion of information units shall be denoted as Ecreate

and Edelete and are given by:

Ecreate := Rcreate〈Σ
#
SH, ∅,N0,String〉

Edelete := Rdelete〈Σ
#
SH, ∅,N0,String〉 (4.67)

Change of content is defined similarly:

Econtent_changed := Rchange_content〈Σ
#
SH, ∅,N0,String〉 (4.68)
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Spatial Hypermedia System

Interpretation System

Editing System

Figure 4.4: Only interpretation systems make an editing system a fully-fledged spatial
hypermedia system

The last category of events to be defined in this section are empty events Eε:

Eε := {Rε} (4.69)

Eε includes only a single element, which is the empty relation Rε from Eq. 4.40.

Our definition of EW from Eq. 4.66 implicitly includes these event categories:

EW = Ecreate ∪ Edelete ∪ Esymbol_changed ∪ Econtent_changed ∪ Eε (4.70)

This will play an important role in Sect. 4.3.

4.2 Interpretation System

The second integral component of spatial hypermedia systems, besides the
previously described editing systems, are interpretation systems (see Fig. 4.4).

Editing systems serve the creation of spatial hypertext, whereas interpretation
systems analyze spatial hypertext to infer visual structure (for this see our
considerations on “spatial parsing” in Sect. 1.3). Without that capability of
recognizing structural meaning such systems would be nothing more than just
diagramming applications without significant intelligence. Only interpretation
systems turn an editing system into what we regard as a fully-fledged spatial
hypermedia system.

Interpretation systems transform ingoing sequences of events ek (Sect. 4.2.1)
and info unit Data Dk (Sect. 4.2.2) into outgoing sequences of Interpretations
Ik (Sect. 4.2.3). Fig. 4.5 illustrates that as a block diagram.

Note, however, that events ek are not to be confused with our definitions from
Eq. 4.66 or Eq. 4.45.

72



4.2. Interpretation System

Interpretation System

��  

��  

��  

Figure 4.5: Interpretation systems transform ingoing sequences of events ek and info unit
data Dk into outgoing sequences of interpretations Ik

4.2.1 Events

Provided that Ω is the universal set of all theoretically possible information
units (see Sect. 2.2), we define the basic set of ingoing Events E〈Ω〉 as:

E〈Ω〉 =

















(

2Ω \ ∅
)

×



























CREATE,
MODIFY_SPATIAL,
MODIFY_VISUAL,

MODIFY_CONTENT,
DELETE











































∪
{

(

∅, ε
)

}

(4.71)

Each of these events e ∈ E〈Ω〉 is a binary tuple (e.objects, e.operation):

∀e ∈ E〈Ω〉 :

e :=

(

e.objects,
e.operation

)

(4.72)

Here, e.objects represents a set of information units ⊆ Ω or rather their ids.
This set identifies all objects, which are affected by the specified event e. The
second tuple element e.operation is a discrete operation flag which serves event
classification. Thus, elements of E〈Ω〉 include both, a set of objects for which
an event has occurred and an identifier of the event or operation type.

This is best explained with some examples: Suppose we define Ω = {0, 1, 2}.
Thus, the basic set of information units comprises only three possible objects.
For the sake of simplicity we numbered them consecutively starting with zero.
Now we shall be able, following our definition from Eq. 4.71, to express the
joint creation of objects 0, 1, 2 with ({0, 1, 2},CREATE), a possibly subsequent
spatial modification of 1 and 2 (e. g., via translation, scaling etc.) could be
described with ({1, 2},MODIFY_SPATIAL ) and a finishing deletion of object
number 0 could be represented by ({0},DELETE ). The binary tuple (∅, ε),
which is also included in Eq. 4.71, is a special type of empty event.

Apparently, our definition of E〈Ω〉 is based on the assumption, that information
units in a workspace can be (a) created; (b) modified (either spatially, visually
or content-related) and (c) they can be deleted.
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4.2.2 InfoUnitData

In addition to events ek ∈ E〈Ω〉 (Sect. 4.2.1) interpretation systems accept a
second input, which is info unit Data Dk. Such data packages Dk contain in-
formation, which is primarily used for structural analysis, that is, for (spatial)
parsing. Here we assume, that this includes geometrical properties of informa-
tion units (such as bounds, shape etc.) as well as information regarding color
and content. Just like events ek ∈ E〈Ω〉 from Sect. 4.2.1, also info unit data
Dk in this section are not to be confused with our previous definitions from
Eq. 4.66 or with W.info_units from Eq. 4.55.

For a precise mathematical definition of these data packages we need several
auxiliary structures and operations. This includes, among other things, a defi-
nition of geometrical bounds:

Our definition of Bounds〈k〉 builds on k-dops and thus generalizes the conven-
tional bounding box:

Bounds〈k〉 =











(

S0, S1, . . . , S( k
2
−1)

)

∣

∣

∣

∣

∣

∣

∣

Si ∈ Slab,
0 ≤ i ≤ k

2 − 1,
k ∈ {8, 16, 32, . . .}











(4.73)

Each b ∈ Bounds〈k〉 is the Boolean intersection of extents along k/2 directions
and hence of k/2 bounding “Slabs” (Eq. 4.74). k is limited to {8, 16, 32, . . .}.

Slab =

{

(~n, dmin, dmax)

∣

∣

∣

∣

∣

~n ∈ (R× R) ∧ |~n| = 1,
dmin, dmax ∈ R ∧ dmax > dmin

}

(4.74)

Slabs are triples of normal vectors ~n and signed distances from the origin
dmin, dmax ∈ R and describe the extent along a certain direction. This is also
why dmax > dmin.

References to elements of such k/2-tuples of triples (~n, dmin, dmax) may become
complex and therefore difficult to read. In order to avoid that, let us do the
following notational simplification:

∀b ∈ Bounds〈k〉 :

b :=















(

b.normal [0], b.min [0], b.max [0]
)

,
(

b.normal [1], b.min [1], b.max [1]
)

,
. . . ,

(

b.normal
[

k
2 − 1

]

, b.min
[

k
2 − 1

]

, b.max
[

k
2 − 1

]

)















(4.75)

With this “array-like” notation we can reference single attributes of bounding
volumes b ∈ Bounds〈k〉 via b.normal [i], b.min [i] and b.max [i] (for 0 ≤ i < k/2).
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For the sake of completeness, it should be pointed out that bounds ∈ Bounds〈k〉
share their normal vectors:

∀b, b′ ∈ Bounds〈k〉 :

b.normal [i] = b′.normal [i], i ∈

{

0, . . . ,
k

2
− 1

}

(4.76)

It is quite obvious, that different bounds with different normal vectors would
make no sense at all. Nevertheless, in order to keep our definitions formally
correct we must exclude that explicitly.

This also applies to a series of auxiliary functions on which we will build on
with our parsing algorithms. This includes functions for accessing horizontal,
vertical and diagonal bounds of b ∈ Bounds〈k〉. These access operations shall
be defined for any k ∈ {8, 16, 32, . . .}:

Assuming that the x-coordinate of b.normal [0] is always 0 and that normal
vectors b.normal [i] are defined counter-clockwise for 0 ≤ i < k/2, we can
define the following shortcuts:

minh : Bounds〈k〉 → R, ∀b ∈ Bounds〈k〉 : minh(b) = b.min

[

k

4

]

maxh : Bounds〈k〉 → R, ∀b ∈ Bounds〈k〉 : maxh(b) = b.max

[

k

4

]

(4.77)

minv : Bounds〈k〉 → R, ∀b ∈ Bounds〈k〉 : minv(b) = b.min [0]

maxv : Bounds〈k〉 → R, ∀b ∈ Bounds〈k〉 : maxv(b) = b.max [0] (4.78)

mind0 : Bounds〈k〉 → R, ∀b ∈ Bounds〈k〉 : mind0(b) = b.min

[

k

8

]

maxd0 : Bounds〈k〉 → R, ∀b ∈ Bounds〈k〉 : maxd0(b) = b.max

[

k

8

]

(4.79)

mind1 : Bounds〈k〉 → R, ∀b ∈ Bounds〈k〉 : mind1(b) = b.min

[

3k

8

]

maxd1 : Bounds〈k〉 → R, ∀b ∈ Bounds〈k〉 : maxd1(b) = b.max

[

3k

8

]

(4.80)

Here, suffix h (Eq. 4.77) stands for “horizontal”, v (Eq. 4.78) for “vertical” and
d0,d1 (Eq. 4.79, Eq. 4.80) for “diagonal”. We distinguish between diagonals
from top-left to bottom-right (d0) and from top-right to bottom-left (d1). This
also explains why in Eq. 4.73 k was limited to {8, 16, 32, . . .}. Eq. 4.77–Eq. 4.80
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require that all four bounding axes are defined, h, v, d0 as well as d1. This only
holds true if k ≥ 8.

We build on these shortcuts with several geometrical functions that will play
an important role for our later definitions of parsing algorithms. Here, it is to
be assumed that the basic semantics behind terms such as “union”, “intersects”,
“contains” etc. are known. That is, it should be clear what it means to merge
two bounding volumes, to check them for intersection, containment etc. Thus,
we are not going to repeat the foundations of bounding volume geometry. Nev-
ertheless, for consistency reasons, we must define at least those functions that
will be used later on in our algorithms.

Width and height of bounding volumes are the easiest to define. For this we
simply calculate the difference between horizontal and vertical bounds from
Eq. 4.77 and Eq. 4.78:

width : Bounds〈k〉 → R+, ∀b ∈ Bounds〈k〉 : width(b) = maxh(b)−minh(b)

height : Bounds〈k〉 → R+, ∀b ∈ Bounds〈k〉 : height(b) = maxv(b)−minv(b)
(4.81)

Scaling and union are slightly more complex:

scale :
(

Bounds〈k〉 × R
)

⇀ Bounds〈k〉, (b, offset) 7→ b′,






(

b′.min [i] = b.min [i]− offset
)

∧
(

b′.max [i] = b.max [i] + offset
)






, i ∈

{

0, . . . ,
k

2
− 1

}

(4.82)

What is special about our definition of scale is, that no scaling factor is used.
Instead dimensions of b ∈ Bounds〈k〉 are increased or decreased by a fixed
offset ∈ R. Thus we use the term “scaling” differently than usual.

With our union-operation, however, we do not deviate from common semantics.
Therefore it is defined as follows:

union :
(

Bounds〈k〉 × Bounds〈k〉
)

→ Bounds〈k〉, (b0, b1) 7→ b′,










(

b′.min [i] = min
(

b0.min [i], b1.min [i]
)

)

∧
(

b′.max [i] = max
(

b0.max [i], b1.max [i]
)

)











, i ∈

{

0, . . . ,
k

2
− 1

}

(4.83)

The remaining five auxiliary functions deltamax, deltamin, contains, intersects,
and centroid require descriptions in form of pseudo code.
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Alg. 1 and Alg. 2 define maximal and minimal extent of bounding volumes
b ∈ Bounds〈k〉. deltamax maximizes the difference (b.max [i] − b.min [i]), for
0 ≤ i < k/2, whereas deltamin calculates the minimal (b.max [i]− b.min [i]).

Alg. 1 deltamax : Bounds〈k〉 → R+, b 7→ r,

1: r ←
(

b.max [0]− b.min [0]
)

2: for i = 1 to
(

k
2 − 1

)

do

3: if
(

b.max [i]− b.min [i]
)

> r then

4: r ←
(

b.max [i]− b.min [i]
)

5: end if

6: end for

7: return r

By substituting ((b.max [i]− b.min [i]) > r) for ((b.max [i]− b.min [i]) < r) this
algorithm for determining the maximal extent of bounding volumes b changes
into a function for calculating their minimal extent deltamin:

Alg. 2 deltamin : Bounds〈k〉 → R+, b 7→ r,

1: r ←
(

b.max [0]− b.min [0]
)

2: for i = 1 to
(

k
2 − 1

)

do

3: if
(

b.max [i]− b.min [i]
)

< r then

4: r ←
(

b.max [i]− b.min [i]
)

5: end if

6: end for

7: return r

Whether a given bounding volume b1 ∈ Bounds〈k〉 is contained by another
bounding volume b0 ∈ Bounds〈k〉 is determined by Alg. 3. For this we define
possible return values as elements of {TRUE,FALSE }.

Alg. 3
contains :
(

Bounds〈k〉 × Bounds〈k〉
)

→ {TRUE,FALSE } , (b0, b1) 7→ r,

1: r ← TRUE
2: for i = 0 to

(

k
2 − 1

)

do

3: if
(

b1.min [i] < b0.min [i]
)

∨
(

b1.max [i] > b0.max [i]
)

then

4: return FALSE
5: end if

6: end for

7: return r
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When we substitute (b1.min [i] < b0.min [i]) for (b1.min [i] > b0.max [i]) and
replace (b1.max [i] > b0.max [i]) by (b0.min [i] > b1.max [i]), then we can eas-
ily transform the contains-algorithm from Alg. 3 into an intersection test for
bounding volumes:

Alg. 4
intersects :
(

Bounds〈k〉 × Bounds〈k〉
)

→ {TRUE,FALSE } , (b0, b1) 7→ r,

1: r ← TRUE
2: for i = 0 to

(

k
2 − 1

)

do

3: if
(

b1.min [i] > b0.max [i]
)

∨
(

b0.min [i] > b1.max [i]
)

then

4: return FALSE
5: end if

6: end for

7: return r

The last auxiliary function we want to define, serves the purpose of calculating
a bounding volume’s centre point. We denote this function as centroid and
define it with the following algorithm:

Alg. 5 centroid : Bounds〈k〉 → (R× R) , b 7→
(

x

y

)

,

1: x← 0.0
2: y ← 0.0
3: P ← corner_points (b)

4: for all

(

a

b

)

∈ P do

5: x← x+ a
6: y ← y + b
7: end for

8: return

(

x/ |P |

y/ |P |

)

Here we assume that corner_points (b), which is used in Alg. 5 in line 3, is
defined for any b ∈ Bounds〈k〉. The function value of corner_points(b) should
be a set of real-valued vectors P , where each ~p ∈ P marks an intersection of
two adjacent boundary lines of b (i. e., a corner point of b).

In addition to Bounds〈k〉 from Eq. 4.73 and the previously defined auxiliary
functions from Eq. 4.77–Eq. 4.83 and Alg. 1–Alg. 5, our definition of informa-
tion unit data D requires four specific object types. These types are labeled
as Layer, Shape, Color, String and are defined as can be seen in Eq. 4.84.
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Layer = N0

Shape = {RECTANGLE,ELLIPSE }

Color =
{

(r, g, b)
∣

∣r, b, g ∈ {0, 1, . . . , 255}
}

String : set of character strings (4.84)

Here, the first three definitions of Layer, Shape and Color build on Eq. 4.57.
Layer corresponds to depth coordinates z ∈ N0 from Aposition, Shape comprises
RECTANGLE and ELLIPSE from Ashape, and Color is, just like Acolor, de-
fined as a set of (r, g, b)-triples. String, on the other hand, represents a set of
character strings. Just like in Sect. 4.1.4 also here the exact character encoding
shall be of no importance. Although, in this special case, there is no substantial
difference between these four sets of objects and our previous definitions from
Sect. 4.1.4, they still should be understood as independent object types. At
least we will treat them as such.

With all these definitions at hand we can finally determine info unit data D as:

D〈Ω, k〉 =

{

D := (V, p)

∣

∣

∣

∣

∣

V ∈ 2Ω,
p : V → InfoUnitData〈k〉

}

(4.85)

According to this definition, each data package D ∈ D〈Ω, k〉 comprises two
components: (1) a set of information units V and (2) a function p which assigns
to each unit ∈ V an element out of InfoUnitData〈k〉.

InfoUnitData〈k〉 is a placeholder for the cartesian product of Bounds〈k〉 (Eq. 4.73)
and our previously defined object types Layer, Shape, Color and String (Eq. 4.84):

InfoUnitData〈k〉 :=
(

Bounds〈k〉 × Layer× Shape× Color× String
)

(4.86)

Thus each (V, p) ∈ D〈Ω, k〉 assigns to a selection of information units V five-
tuples ∈ InfoUnitData〈k〉. Attributes of such tuples are denoted as:

∀d ∈ InfoUnitData〈k〉 :

d :=















d.bounds,
d.layer,
d.shape,
d.color,
d.text















(4.87)
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4.2.3 Interpretations

As we know already, interpretation systems transform ingoing sequences of
events e ∈ E〈Ω〉 (Sect. 4.2.1) and info unit data D ∈ D〈Ω, k〉 (Sect. 4.2.2) into
outgoing sequences of interpretations I ∈ I〈Ω, P 〉.

Based on our considerations from Sect. 2.2 we define I〈Ω, P 〉 as follows:

I〈Ω, P 〉 =















I := (U,A,w)

∣

∣

∣

∣

∣

∣

∣

∣

U ∈ 2Ω,

A =
(

U

2

)

,

w : A→ P















(4.88)

The included “empty” interpretation Iε can be described as:

Iε :=
(

∅, ∅, wε

)

∈ I〈Ω, P 〉, Def (wε) = ∅ (4.89)

Thus, we use Iε as a symbolic placeholer for a triple (U,A,w) ∈ I〈Ω, P 〉, with
U = ∅, the resulting empty set of associations A = ∅ and an empty mapping
w = wε = ∅ (i. e., Def (wε) = ∅).

In the following we will work with a partial refinement of I〈Ω, P 〉:

I〈Ω〉 := I〈Ω, {ε, 0.0, . . . , 1.0}〉 (4.90)

Here we set P equal to {ε, 0.0, . . . , 1.0}.

According to Eq. 2.18 parameter set P shall meet the following criteria:

P = (P0 × P1 × . . .× Pm−1) ∪ Pε , m ≥ 1

Pj 6= ∅ (0 ≤ j ≤ m− 1)

Pε 6= ∅, Pε ⊂ P

For m = 1, P0 = { p ∈ R | 0.0 < p ≤ 1.0 }, Pε = {ε, 0.0} and thus for
P = P0 ∪ Pε = {ε, 0.0, . . . , 1.0} this is satisfied.

Technically, such interpretations (U,A,w) ∈ I〈Ω〉 are complete, undirected and
weighted graphs, which assign to each pair of information units {u, u′} ∈ A a
weight ∈ {ε, 0.0, . . . , 1.0}. Such weights w({u, u′}) shall describe the strength
of a relation between u and u′ (i. e., the higher the value the stronger the
relationship). As an example, a weight w({u, u′}) = 0.0 would mean that there
is no immediate relationship between u and u′. A weight of ε, however, would
indicate that it is unknown whether u and u′ are associated or not; there
might be an association, but the interpretation system cannot make a clear
decision. We could see already some simple examples for such interpretations
in Chapter. 3 in Fig. 3.2, Fig. 3.3, Fig. 3.4, or Fig. 3.5 respectively.
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Interpretation System

merge

��  

��  

��  

parser0 parser1 parsern⋯ 

Figure 4.6: Interpretation systems forward incoming edit steps (ek, Dk) to internal parsing
components. Parse results are then merged together and are finally delivered as output Ik.

4.2.4 Merging

Interpretation systems, as we define them, transform events e ∈ E〈Ω〉 (Eq. 4.71)
and info unit data D ∈ D〈Ω, k〉 (Eq. 4.85) into interpretations I ∈ I〈Ω〉
(Eq. 4.90). One could also say, that interpretation systems are dynamic systems
which transform ingoing sequences of “edit steps” . . .




(

e0
D0

)

,

(

e1
D1

)

, . . . ,

(

eke

Dke

)



 ,

(

ei
Di

)

∈

(

E〈Ω〉
×D〈Ω, k〉

)

, i ∈ {0, 1, . . . , ke}

. . . into outgoing sequences . . .
(

I0, I1, . . . , Ike

)

, Ii ∈ I〈Ω〉, i ∈ {0, 1, . . . , ke}

What still remains to be clarified is how such transformations work; that is,
how tuples (e,D) are finally mapped to I.

The main function of an interpretation system is to perform structural analyses
on spatial hypertext, that is, to retrieve implicitly encoded structure. Theoreti-
cally, such an analysis may be conducted under various aspects, such as spatial,
visual, temporal, content-related or others. Therefore, with our definition of
interpretation systems we generalize the concept of conventional spatial pars-
ing from Sect. 1.3. Fig. 4.6 illustrates that: Incoming edit steps (ek, Dk) are
forwarded to internal parsing components. These components (or sub-systems)
are specialized in analysing certain aspects of spatial hypertext and hence pro-
vide different structural interpretations as parse result. Parse results are then
merged together and are finally delivered as output Ik.

The rationale behind this is that when mixing spatial, visual etc. interpre-
tations in the right proportions then we can filter out structures that were
originally intended by hypertext authors. For this see also our considerations
from Sect. 2.1 (page 31).
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Before we can describe the aforementioned merge algorithm in detail, we need
to define a specific auxiliary data structure, which is List〈Q〉:

List〈Q〉 =











(q0, q1, . . . , qn)

∣

∣

∣

∣

∣

∣

∣

qi ∈ Q,
i ∈ {0, 1, . . . , n} ,

n ∈ N0











∪ {listε} , listε := () (4.91)

Lists of “type” Q, if you want to call it that, are nothing more than ordered
tuples (q0, q1, . . . , qn) of list elements qi ∈ Q (for i ∈ {0, 1, . . . , n}). For empty
lists or rather 0-tuples we use the symbolic placeholder listε. This will serve as
a kind of “default constructor” for empty lists.

Although, in theory, various operations could be defined on such lists, we limit
ourselves only to those which are of importance to our algorithms. This in-
cludes, among other things, functions add, size and get :

Function add (list, q′) serves the purpose of extending a given list ∈ List〈Q〉 by
a new element q′ ∈ Q. We formally describe that as follows:

add :
(

List〈Q〉 ×Q
)

→ List〈Q〉, ∀
(

list, q′
)

∈
(

List〈Q〉 ×Q
)

:

add
(

list, q′
)

=

{
(

q0, q1, . . . , qn, q
′
)

, if list = (q0, q1, . . . , qn) where n ∈ N0
(

q′
)

, else
(4.92)

size (list) determines how many elements are included in a given list ∈ List〈Q〉.
For this it returns the length of the underlying tuple:

size : List〈Q〉 → N0, ∀list ∈ List〈Q〉 :

size (list) =

{

(n+ 1) , if list = (q0, q1, . . . , qn) where n ∈ N0

0 , else
(4.93)

get (list, i) serves index-based read access on single list elements. If the said
index i lies out of range or if list is empty, then get (list, i) returns as function
value the empty symbol ε. This way, function get remains totally defined:

get :
(

List〈Q〉 × N0

)

→
(

Q ∪ {ε}
)

, ∀list ∈ List〈Q〉 :

get (list, i) =

{

qi , if
(

list = (q0, q1, . . . , qn)
)

∧ (0 ≤ i ≤ n) where n ∈ N0

ε , else
(4.94)
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Together with the definition of List〈Q〉 in Eq. 4.91, functions add (Eq. 4.92),
size (Eq. 4.93) and get (Eq. 4.94) allow for statements as illustrated in Alg. 6:

Alg. 6 sample algorithm based on definitions in Eq. 4.92, Eq. 4.93, Eq. 4.94

1: l0 ← listε ⊲ create an empty list l0
2: for i = 0 to 999 do

3: l0 ← add (l0, i) ⊲ fill l0 with integers ∈ {0, 1, . . . , 999}
4: end for

5: l1 ← listε ⊲ create another empty list l1
6: for i = 0 to

(

size (l0)− 1
)

do

7: l1 ← add
(

l1, get (l0, i)
)

⊲ copy all 1000 list entries from l0 to l1
8: end for

In addition to these three functions let us also describe the following auxiliary
operations: empty, first und last. These build on Eq. 4.93 and Eq. 4.94 and are
merely used for syntactic simplification:

empty (list) checks, whether the given list includes no elements and provides
the result as an element of the discrete set {TRUE,FALSE }:

empty : List〈Q〉 → {TRUE,FALSE } , ∀list ∈ List〈Q〉 :

empty (list) =

{

TRUE , if size (list) = 0

FALSE , else
(4.95)

first (list) refines function get (list, i) from Eq. 4.94 to get (list, 0) and thus re-
turns the first list element as function value:

first : List〈Q〉 →
(

Q ∪ {ε}
)

, list 7→ get (list, 0) (4.96)

Similarly, last (list) can be defined as:

last : List〈Q〉 →
(

Q ∪ {ε}
)

, list 7→ get
(

list, size (list)− 1
)

(4.97)
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Interpretation System

merge
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parser0 parser1 parsern⋯ 

Figure 4.7: Interpretation systems delegate edit steps to internal parsers. Parse results are
then mixed together using the merging algorithm described in Alg. 7.

With these definitions at hand we can now define merge (Fig. 4.7) as follows:

Alg. 7

merge :
(

List〈I〈Ω, (R+
0 ∪ {ε})〉〉 × List〈R+

0 〉
)

⇀ I〈Ω, (R+
0 ∪ {ε})〉,

(interpretations,weightingFactors) 7→ Imerge

Require:

(

size (interpretations) = size (weightingFactors)

∧ empty (interpretations) = FALSE

)

1: Imerge ← merge′

(

first (interpretations), 0.0,

first (interpretations),first (weightingFactors)

)

2: for i = 1 to
(

size (interpretations)− 1
)

do

3: Imerge ← merge′

(

Imerge, 1.0,

get (interpretations, i), get (weightingFactors, i)

)

4: end for

5: return Imerge

Alg. 7 accepts a list of interpretations ∈ I〈Ω, (R+
0 ∪{ε})〉 and a list of weighting

factors ∈ R+
0 as input and generates a single merged interpretation Imerge of

type I〈Ω, (R+
0 ∪ {ε})〉 as output.

Prerequisites for this algorithm are, firstly, that there must be a weighting
factor for each ingoing interpretation and secondly, that the given list of inter-
pretations may not be empty; that is, we expect at least one interpretation as
input. Otherwise merge is undefined.

The algorithm essentially performs a cumulative, pairwise merge of interpreta-
tions from i = 0 to (size(interpretations)− 1) using get(weightingFactors, i).
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The “heart” of this procedure is the pairwise merging function merge′, which is
described in detail in the following Eq. 4.98:

merge′ :

(

I〈Ω, (R+
0 ∪ {ε})〉 × R+

0

× I〈Ω, (R+
0 ∪ {ε})〉 × R+

0

)

⇀ I〈Ω, (R+
0 ∪ {ε})〉,

(

(U,A,w0) , α, (U,A,w1) , β
)

7→
(

U,A,w′
)

,

w′ : A→
(

R+
0 ∪ {ε}

)

, ∀a ∈ A :

w′(a) =







































ε , if
(

w0(a) = ε
)

∧
(

w1(a) = ε
)

α× w0(a) , else if
(

w0(a) 6= ε
)

∧
(

w1(a) = ε
)

β × w1(a) , else if
(

w0(a) = ε
)

∧
(

w1(a) 6= ε
)

α× w0(a) + β × w1(a) , else

(4.98)

merge′(I0, α, I1, β) accepts two interpretations I0, I1 ∈ I〈Ω, (R+
0 ∪ {ε})〉 as in-

put, mixes them according to given weighting factors α, β ∈ R+
0 and returns

the merge result as ∈ I〈Ω, (R+
0 ∪ {ε})〉.

This is best explained with an example. Let us assume that there are two
interpretations given:

I0 = (U,A,w0) ; I1 = (U,A,w1)

Shared components U and A shall be defined as follows:

U = {u0, u1, u2} ; A =
(

U

2

)

=











{u0, u1} ,
{u0, u2} ,
{u1, u2}











Weighting functions w0, w1 are given as:

w0 =











(

{u0, u1} , ε
)

,
(

{u0, u2} , 1.0
)

,
(

{u1, u2} , 1.0
)











; w1 =











(

{u0, u1} , ε
)

,
(

{u0, u2} , ε
)

,
(

{u1, u2} , 0.5
)











Weighting factors α, β shall be set to 0.5 each. That is, we intend to mix I0, I1
in a 50% : 50%-ratio.
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Figure 4.8: Two sample interpretations I0 = (U,A,w0) and I1 = (U,A,w1) mixed in a
50% : 50%-ratio using merge′(I0, 0.5, I1, 0.5)

When we apply now merge′ from Eq. 4.98 on I0, I1 using α, β = 0.5, then

merge′(I0, α, I1, β) = merge′((U,A,w0), 0.5, (U,A,w1), 0.5)

results in a triple (U,A,w′) ∈ I〈Ω, (R+
0 ∪ {ε})〉, where w′ is set up as follows:

w′ =











































(

{u0, u1} , ε
)

,
(

{u0, u2} ,

(

(

α× w0

(

{u0, u2}
)

)

= (0.5× 1.0) = 0.5

)

)

,






{u1, u2} ,





(

α× w0

(

{u1, u2}
)

+β × w1

(

{u1, u2}
)

)

=

(

0.5× 1.0
+0.5× 0.5

)

= 0.75





















































Thus it becomes:

w′ =











(

{u0, u1} , ε
)

,
(

{u0, u2} , 0.50
)

,
(

{u1, u2} , 0.75
)











This transformation of I0 and I1 into merge′(I0, 0.5, I1, 0.5) = (U,A,w′) is
illustrated graphically in Fig. 4.8.

4.3 Linking Editing and Interpretation System

Spatial hypermedia systems are compound systems formed by editing systems
(Sect. 4.1) and interpretation systems (Sect. 4.2).

Editing systems transform user interface activities (such as keyboard or mouse
events etc.) into edit events ek ∈ EW〈ΣSH, XSH,K,C,Esymbol〉 (Eq. 4.45) and
workspaces Wk ∈ OW〈ΣSH, XSH,K,C〉 (Eq. 4.51, Eq. 4.55). Both, ek and Wk
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Spatial Hypermedia System

Interpretation System

�′�  

��  ��  �′�  

��  ��  

Editing System

conversion

Figure 4.9: Editing system and interpretation system linked by signal conversion layer

strongly depend on the workspace model and hence on the concrete editing
system. That is, parameters ΣSH, XSH, K, C and Esymbol have significant
impact on the definition of an editing system’s output. The best illustration of
this was given in Sect. 4.1.4.

Interpretation systems, on the other hand, turn events ek ∈ E〈Ω〉 (Eq. 4.71)
and info unit data Dk ∈ D〈Ω, k〉 (Eq. 4.85) into interpretations Ik ∈ I〈Ω〉
(Eq. 4.90). There is no direct dependency on ΣSH or XSH, which desirably
increases reusability and flexibility of our system model. In concrete terms,
changes to workspaces do not automatically require adjustment of interpreters.
This is especially helpful for application development.

However, since both system interfaces require different signals, it is not possible
to link editing and interpretation system directly. Therefore, some kind of
signal conversion layer is needed. According to Fig. 4.9 that conversion layer
has to accomplish two functions:

Firstly, to transform editing system output . . .





(

e0
W0

)

,

(

e1
W1

)

, . . . ,

(

eke

Wke

)



 ,

(

ek
Wk

)

∈

(

EW〈ΣSH, XSH,K,C,Esymbol〉
×OW〈ΣSH, XSH,K,C〉

)

. . . into interpretation system input . . .





(

e′0
D0

)

,

(

e′1
D1

)

, . . . ,

(

e′ke

Dke

)



 ,

(

e′k
Dk

)

∈

(

E〈Ω〉
×D〈Ω, kdop〉

)

, k ∈ {0, 1, . . . , ke}

. . . and, secondly, to transform resulting interpretations . . .

(

I0, I1, . . . , Ike

)

, Ik ∈ I〈Ω〉, k ∈ {0, 1, . . . , ke}
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. . . back into editing system input again:
(

I ′0, I
′
1, . . . , I

′
ke

)

, I ′k ∈ I〈Ω〉, k ∈ {0, 1, . . . , ke}

Such a two-way signal conversion strongly depends on the exact definition
of input and output signals. Unlike previous definitions of editing processes,
workspaces etc. there is no generic formalism that universally describes how
(ek,Wk) are mapped to (e′k, Dk) or Ik is transformed into I ′k. Knowledge about
the exact definition of ΣSH, XSH, K, Ω etc. is needed to accurately decribe
such transformations. In other words, it becomes necessary to specify more
precisely both, editing and interpretation system.

This is why our following definition of conversion functionality builds on EW

and OW from Eq. 4.66. In concrete terms, we define ordered pairs (ek,Wk) as
∈ (EW ×OW) and hence build on our default workspace model AW.

From Eq. 4.66 we know, that K = N0 (i. e., identifiers u.key are typed as
“unsigned int”). This makes it possible to determine Ω for E〈Ω〉, D〈Ω, k〉 and
I〈Ω〉. It should be recalled, that both, keys ∈ K and objects ∈ Ω basically serve
the same purpose: unique identification of information units. Thus, there is
no general need for keys ∈ K and objects ∈ Ω to be of different types. This
is why we set Ω = K = N0 and hence E〈Ω〉 to E〈N0〉 and I〈Ω〉 to I〈N0〉.
The bounding volume parameter k, that is required by D〈Ω, k〉, is set to 16.
k = 16 fulfills the condition k ∈ {8, 16, 32, . . .} from Eq. 4.73 and provides
an approximation of the convex hull that is accurate enough for our purposes.
Thus, tuples (e′k, Dk) are defined as ∈ (E〈N0〉 × D〈N0, 16〉). Interpretations
Ik, I

′
k shall be of type I〈N0〉.

For easier handling we have separated the conversion layer into three compo-
nents: (1) convert_event; (2) convert_info_units and (3) convert_interpretation.
Here, convert_event serves the transformation of ek ∈ EW into e′k ∈ E〈N0〉,
convert_info_units converts Wk ∈ OW into Dk ∈ D〈N0, 16〉) and the third com-
ponent convert_interpretation realizes the change of Ik ∈ I〈N0〉 to I ′k ∈ I〈N0〉.
The blockdiagram in Fig. 4.10 illustrates that.

convert_event maps events e ∈ EW to pairs (e′.objects, e′.operation) ∈ E〈N0〉:

convert_event : EW → E〈N0〉, e 7→

(

e′.objects,
e′.operation

)

(4.99)

Here, e′.objects ⊂ N0 includes identifiers for all information units that are
affected by event e.
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Spatial Hypermedia System

�′�  

��  ��  �′�  

��  ��  

conversion convert_event convert_info_units convert_interpretation

Editing System

Interpretation System

Figure 4.10: Signal conversion between editing and interpretation system is defined by
three functions: convert_event, convert_info_units, and convert_interpretation.

It can be formed from e as follows:

e′.objects =















































∅ , if e ∈ Eε




⋃

u∈Preu(e)

{u.key}



 , if e ∈ Edelete





⋃

u∈Postu(e)

{u.key}



 , else

(4.100)

Since K = Ω = N0 no special mapping is required for transforming u.key ∈ N0

into objects ∈ Ω = N0. In other words, we can copy them directly. e ∈ Eε

indicates an empty event (Eq. 4.69) and hence that there are no objects for
which an event has occurred. In this case, e′.objects can be set to ∅. If e is not
an empty event but ∈ Edelete (Eq. 4.67), then e′.objects can be formed from
keys included in Preu(e) (Eq. 4.20). If e is neither ∈ Eε nor ∈ Edelete, then
identifiers from Postu(e) are used instead (Eq. 4.21).

The second tuple element besides e′.objects is the operation flag e′.operation.
It can be formed from e as follows:

e′.operation =











































CREATE , if e ∈ Ecreate

MODIFY_SPATIAL , if e ∈ Esymbol_changed\Ecolor_changed

MODIFY_VISUAL , if e ∈ Ecolor_changed

MODIFY_CONTENT , if e ∈ Econtent_changed

DELETE , if e ∈ Edelete

ε , else
(4.101)

89



Chapter 4. Prototype

Eq. 4.101 is a conditional mapping of events e ∈ EW to discrete operation flags
(as defined in Eq. 4.71). It therefore classifies events e according to whether
they describe construction or destruction, change of spatial, visual or content-
related attributes, or whether they represent any other event.

convert_info_units defines, how we transform workspaces W ∈ OW into ade-
quate info unit data packages (V, p) ∈ D〈N0, 16〉:

convert_info_units : OW → D〈N0, 16〉, W 7→ (V, p) ,

V =





⋃

u∈W.info_units

{u.key}





p : V → InfoUnitData〈16〉, p =





⋃

u∈W.info_units

{

(

u.key, value(u)
)

}





(4.102)

In V we collect keys for all information units included in workspace W . Func-
tion p assigns to each u.key ∈ V some value(u) ∈ InfoUnitData〈16〉 (Eq. 4.86).

We define value(u) as a mapping of tuples u ∈ (Σ#
SH × (N0 × String)), as

described in Eq. 4.33, to InfoUnitData〈16〉:

value :
(

Σ#
SH × (N0 × String)

)

→ InfoUnitData〈16〉,









symbol,
(

key,
content

)









7→





























create_bounds











symbol.position,
symbol.size,

symbol.orientation,
symbol.shape











,

symbol.position.z,
symbol.shape,
symbol.color,

content





























(4.103)

Here, only the bounds-attribute (see Eq. 4.87) requires some additional calcu-
lation. This is represented by create_bounds:

create_bounds :
(

Aposition ×Asize ×Aorientation ×Ashape

)

→ Bounds〈16〉,










position,
size,

orientation,
shape











7→











( ~n0,min0,max0) ,
( ~n1,min1,max1) ,

. . . ,
( ~n7,min7,max7)











(4.104)
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Spatial Hypermedia System

Interpretation System

Editing System

viewcontroller��  

�′�  

��  

merge

��  

��  

��  

��  

��  

�′�  

��  ��  

workspace

parser0 parser1 parsern⋯ 

�′�  

conversion convert_event convert_info_units convert_interpretation

Figure 4.11: Editing system (Sect. 4.1) and interpretation system (Sect. 4.2) interconnected
via signal conversion functions convert_event (Eq. 4.99), convert_info_units (Eq. 4.102), and
convert_interpretation (Eq. 4.105).

Possible algorithms that realize this mapping of spatial symbol properties
(Eq. 4.57) to 8-tuples of slabs (Eq. 4.74) shall not be defined here.

The third and last conversion function besides convert_event (Eq. 4.99) and
convert_info_units (Eq. 4.102) is convert_interpretation:

convert_interpretation : I〈N0〉 → I〈N0〉, I 7→ I (4.105)

In our special case there is no need for modifying interpretations before they
get transmitted to application level. For our prototypical spatial hypermedia
system we assume, that feedback provided by interpretation systems is used
for graphical display only (i. e., as input for viewing components). For this,
original I ∈ I〈N0〉 as generated by merge (see Alg. 7) is perfectly sufficient.
That is why we define convert_interpretation as an identical mapping I 7→ I.

When we merge Fig. 4.3 (editing system), Fig. 4.6 (interpretation system) and
Fig. 4.10 (conversion) together, we get what is illustrated in Fig. 4.11. Following
this model, one could understand spatial hypermedia applications as dynamic,
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Interpretation System

merge

��  

��  

��  

parser0 parser1 parsern⋯ 

Figure 4.12: The core of every interpretation system are integrated parsing components
implementing highly specialized parsing algorithms.

graphical and intelligent information systems that only “come to life” through
user interaction. Activities in the visual information space are quasi the “pulse”
of spatial hypermedia systems.

4.4 Parsers

Spatial hypermedia systems can be defined as composites of editing systems
(Sect. 4.1) and interpretation systems (Sect. 4.2). Editing systems are mainly
determined by workspace models as described in Sect. 4.1.3, whereas interpre-
tation systems are primarily defined by parsing algorithms. In other words, the
core of every editing system is an information workspace and the heart of an in-
terpretation system are integrated parsing components. On several occasions,
we have already pointed out the importance of parsers for spatial hyperme-
dia systems. According to Chapter. 3 and Sect. 4.2, only structural analyses
make a visual editor a fully-fledged spatial hypermedia system. Thus, spatial
parsers are of particular relevance to our system model. However, except for
our informal descriptions in Sect. 1.3 and Sect. 1.5 and apart from our general
considerations from Chapter. 3 no further explanations on the functionality of
spatial parsers were given so far. Although being crucial for our system de-
sign, our model (see Fig. 4.12) is still missing some explicit and formal parser
definition. This section is intended to change that.

4.4.1 Generic Parser Model

As we know already from Sect. 4.2.4, interpretation systems generalize the
traditional concept of spatial parsing as we discussed it in Sect. 1.3. Parsers
included in interpretation systems do not label their output with pre-defined
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Figure 4.13: Parsers are dynamic systems determined by two components: parse and fade

semantic types (such as stack, heap, table etc.). In contrast to parsers in VIKI,
VKB (Sect. 1.5.1) etc. they are not designed as configurable structure experts
or independent structure recognizers. They rather analyse one and the same
structure(s) from different perspectives (such as spatial, visual, temporal, or
content-related). Figuratively speaking, different parsers view spatial hypertext
through different “glasses” and thus realise a kind of multi-level filtering of
structure. With this abstraction we expect to cover a much greater range of
more general structures than possible with pattern-based approaches.

Although our parsers analyse different attributes with different heuristics, they
still have some characteristics in common. This allows us to define a generic
parser model.

Just like interpretation systems as a whole, also included parsers transform
ingoing sequences of edit steps (e,D) ∈ (E〈Ω〉×D〈Ω, k〉) (see Eq. 4.71; Eq. 4.85)
into outgoing sequences of interpretations I ∈ I〈Ω〉 (Eq. 4.90):

  �0�0 ,  �1�1 ,… ,  ������   Parser  �0 , �1 ,… , ���  

Therefore, both, interpretation systems and integrated parsers have more or
less the same system interfaces. However, what differentiates them is their
internal structure. Thus, we define parsers as dynamic systems determined by
two components (Fig. 4.13): (1) parse and (2) fade.

With parse we specify for selected perspectives (such as spatial, visual etc.) how
to infer the strength of pairwise object relations and therefore how to create
structural interpretations. Thus, parse contains the real parsing algorithm.

The downstream function fade is to be understood as a sort of post-processor.
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fade should post-process or rather finish interpretation results that were previ-
ously generated by parse. Basically, this subsequent processing of parse results
is supposed to work as follows:

When parse cannot detect a relation between two objects, then the fading-
module checks if there is still a connection known from a previous parser run.
If the parser can “remember” such a relationship with a weight > 0.0, then
that old weight gets multiplied by a given fading factor (which we will denote
as α) and is treated as our current parse result. If, however, there is no such
relationship, or if the product of previous weight and fading factor α reaches a
pre-defined fading limit β, then we still accept the result of the current parser
run. This means, then we accept that there is no perceivable association. In
short, the “fading-feature” makes it possible, that associations which are not
recognized anymore, do not simply get omitted. Instead, they fade away. Or
in other words, the parser slowly “forgets” outdated associations. In this regard
fade extends our parser model by some short-term memory. A similar aging-
feature for viewport positions and motion paths in visual workspaces has been
presented in [6]. This extension makes our parser model perfectly suited for
the detection of destroyed structures, as we discussed them in Sect. 3.2.

We define our generic parser model using the following automaton:

AP 〈Ω, n, α, β,Φ, ϕ〉 =



















SP 〈Ω〉,
EP 〈Ω, n〉,
OP 〈Ω〉,

TP 〈Ω, n, α, β,Φ, ϕ〉,
GP 〈Ω, n, α, β,Φ, ϕ〉,

sinit



















(4.106)

The generic Parser Automaton AP is a six-tuple, whose components are deter-
mined by six parameters: Ω, n, α, β, Φ, and ϕ.

Ω is the basic set of information units, as it was used already when we defined
E〈Ω〉 (Eq. 4.71), D〈Ω, k〉 (Eq. 4.85) or I〈Ω〉 (Eq. 4.90). n ∈ {8, 16, 32, . . .} shall
be the bounding volume parameter, which is, according to Eq. 4.85, expected
by D〈Ω, n〉. Here we use n instead of k to avoid name collisions.

α, β ∈ {0.0, . . . , 1.0} are the previously mentioned configuration parameters for
the fade-post processor, that is, fading factor α and fading limit β. Φ is a
set of event categories defining when to trigger a full reparse (for this see our
definition of operation flags in Eq. 4.71).

The last parameter ϕ shall be a mapping (I〈Ω〉 × E〈Ω〉 × D〈Ω, n〉) → I〈Ω〉
defining the core-parsing algorithm; that is, the algorithm behind the system
component parse. This is intended to keep the parser’s structure detection
algorithm variable and therefore our theoretical model as flexible as possible.
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These four constraints are summarized again in Eq. 4.107:

n ∈ {8, 16, 32, . . .}
α, β ∈ {0.0, . . . , 1.0}

ϕ :
(

I〈Ω〉 × E〈Ω〉 ×D〈Ω, n〉
)

→ I〈Ω〉
Φ ⊆



































CREATE,
MODIFY_SPATIAL,
MODIFY_VISUAL,

MODIFY_CONTENT,
DELETE,

ε



































(4.107)

Just like full interpretation systems, also included parsers AP are to accept
edit steps ∈ (E〈Ω〉 ×D〈Ω, n〉) as input and generate interpretations ∈ I〈Ω〉 as
output. This is why we set EP 〈Ω, n〉 to (E〈Ω〉 ×D〈Ω, n〉) and OP 〈Ω〉 to I〈Ω〉.
The set of possible states the parser automaton may pass through shall be equal
to (I〈Ω〉 × I〈Ω〉). In its initial state AP includes only empty interpretations,
hence sinit is set to (Iε, Iε).

SP 〈Ω〉 = I〈Ω〉 × I〈Ω〉

EP 〈Ω, n〉 = E〈Ω〉 ×D〈Ω, n〉

OP 〈Ω〉 = I〈Ω〉

sinit = (Iε, Iε) ∈ SP 〈Ω〉 (4.108)

Based on this, we can define the transition function TP as follows:

TP 〈Ω, n, α, β,Φ, ϕ〉 :
(

SP 〈Ω〉 × EP 〈Ω, n〉
)

→ SP 〈Ω〉,
(

(I, J) , (e,D)
)

7→
(

I ′, J ′
)

,

I ′ = parse (I, e,D)

J ′ = fade
(

J, I ′
)

(4.109)

TP maps pairs of states (I, J) ∈ SP 〈Ω〉 and input signals (e,D) ∈ EP 〈Ω, n〉
to subsequent states (I ′, J ′) ∈ SP 〈Ω〉. This mapping or rather this transition
from (I, J) to (I ′, J ′) takes place in two steps: Firstly, parse transforms inter-
pretation I into I ′, considering the ingoing edit step (e,D). One could also
say, that parse switches the first half of the current state I to I ′. In a second
step, we map I ′ together with the remaining J to J ′. This is accomplished by
J ′ = fade

(

J, I ′
)

. By this means TP connects both functions parse and fade
in series and thus realises a two-stage state transition from (I, J) ∈ SP 〈Ω〉 to
(I ′, J ′) ∈ SP 〈Ω〉.

The included auxiliary function parse can be seen as a conditional call of the
parsing function ϕ (Eq. 4.107). It thus controls when to perform a reparse and
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when to keep previous parse results instead:

parse :
(

I〈Ω〉 × E〈Ω〉 ×D〈Ω, n〉
)

→ I〈Ω〉,

(I, e,D) 7→ I ′ =

{

ϕ (I, e,D) , if e.operation ∈ Φ

I , else
(4.110)

A full reparse happens only if e.operation ∈ Φ (Eq. 4.107). Only when the
assigned event category e.operation identifies a given input event e as reparse
event, then the ingoing triple (I, e,D) gets mapped to ϕ (I, e,D). If, however,
e.operation is not an element of Φ, then previous interpretation I is used as
function value instead; that is parse (I, e,D) = I.

The second function, besides parse (Eq. 4.110), that plays an important role
for the definition of TP (Eq. 4.109) is fade. fade maps pairs of interpretations
((U0, A0, w0), (U1, A1, w1)) to triples (U1, A1, w

′); expressed formally:

fade :
(

I〈Ω〉 × I〈Ω〉
)

→ I〈Ω〉,
(

(U0, A0, w0) , (U1, A1, w1)
)

7→
(

U1, A1, w
′
)

(4.111)
(U0, A0, w0) shall be understood as the (temporal) predecessor of (U1, A1, w1).
This means, (U0, A0, w0) is part of the (still) up-to-date parser state, whereas
(U1, A1, w1) already represents a new (internal) parse result; for details on this
see fade (J, I ′) in Eq. 4.109. U1 and A1 can be copied directly into the result
triple. Only weighting function w′ needs recalculation. It is set up as follows:

w′ : A1 → {ε, 0.0, . . . , 1.0} , ∀a ∈ A1 :

w′(a) =







fade′
(

w0(a), w1(a)
)

, if a ∈ A0

w1(a) , else
(4.112)

For better legibility, we decided to split the definition of fade up into three
parts: fade, which is given above, fade′ (Eq. 4.113) and fade′′ (Eq. 4.114).

Eq. 4.112 is to be understood as follows: When a given a ∈ A1 is also element
of A0, then both w0(a) and w1(a) and thus also fade′(w0(a), w1(a)) are defined.
Then we can set w′(a) = fade′(w0(a), w1(a)). Or in other words, when associa-
tions a are included in both, current interpretation graph (U1, A1, w1) as well as
in its predecessor (U0, A0, w0), then w′(a) can be set equal to fade′(w0(a), w1(a)).
If, however, a is element of A1 but not of A0, then it can be assumed that a is
new ; that is, association a must have been introduced with the last time step
(e. g., by adding new information units to the workspace). In this case the new
weight w1(a) is taken over into the result graph without modification, that is
w′(a) = w1(a). Deleted associations are excluded from the outset by copying
U1, A1 directly into the result triple (U1, A1, w

′). With (U1, A1, w
′) we simply

drop associations a which are ∈ A0 but not ∈ A1 anymore.
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fade′ accepts pairs of weights (x0, x1), checks whether they allow for reasonable
fading, and provides either fade′′(x0, x1) or x1 as result. Here x0 represents the
(temporal) predecessor of x1 (for this see Eq. 4.112).

fade′ :
(

{ε, 0.0, . . . , 1.0} × {ε, 0.0, . . . , 1.0}
)

→ {ε, 0.0, . . . , 1.0} ,

∀x0, x1 ∈ {ε, 0.0, . . . , 1.0} :

fade′ (x0, x1) =

{

fade′′ (x0, x1) , if (x0 6= ε) ∧
(

x1 ∈ {ε, 0}
)

x1 , else
(4.113)

Only if fading of weights is necessary (x1 ∈ {ε, 0}) and also possible (x0 6= ε),
then we continue our calculation with fade′′(x0, x1). Otherwise, current weight
x1 is used as result; that is fade′(x0, x1) = x1.

The Fading Core-Algorithm is defined by fade′′:

fade′′ accepts weights x0 ∈ {0.0, . . . , 1.0} and x1 ∈ {ε, 0} and maps them to
values ∈ {ε, 0.0, . . . , 1.0}:

fade′′ :
(

{0.0, . . . , 1.0} × {ε, 0}
)

→ {ε, 0.0, . . . , 1.0} ,

∀ (x0, x1) ∈
(

{0.0, . . . , 1.0} × {ε, 0}
)

:

fade′′ (x0, x1) =

{

x0 × α , if (x0 × α) ≥ β

x1 , else
(4.114)

When the product of old weight x0 and fading factor α becomes greater or
equal to fading limit β (Eq. 4.107), then we accept x0×α as “faded” weighting.
Otherwise x1 remains unchanged; that is fade′′(x0, x1) = x1.

This is best explained with an example. Let us assume that there are two
interpretations given:

I0 = (U0, A0, w0) ; I1 = (U1, A1, w1)

U0, U1 and A0, A1 shall be defined as follows:

U0 = U1 = {u0, u1, u2} ; A0 = A1 =











{u0, u1} ,
{u0, u2} ,
{u1, u2}











Weighting functions w0, w1 are given as:

w0 =











(

{u0, u1} , 1.0
)

,
(

{u0, u2} , 1.0
)

,
(

{u1, u2} , 0.0
)











; w1 =











(

{u0, u1} , 1.0
)

,
(

{u0, u2} , 0.0
)

,
(

{u1, u2} , ε
)










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Figure 4.14: Two sample interpretations I0 = (U0, A0, w0) and I1 = (U1, A1, w1) processed
by fade(I0, I1) (Eq. 4.111). Fading factor α is set to 0.95 and fading limit β is 0.05.

Having set fading factor α = 0.95 and fading limit β = 0.05, fade(I0, I1) pro-
vides a result triple (U1, A1, w

′), where w′ is formed as follows:

w′ =





























































{u0, u1} , fade
′

(

w0

(

{u0, u1}
)

,
w1

(

{u0, u1}
)

)

= fade′

(

1.0,
1.0

)

= 1.0



 ,



{u0, u2} , fade
′′

(

w0

(

{u0, u2}
)

,
w1

(

{u0, u2}
)

)

= fade′′

(

1.0,
0.0

)

=
1.00
×0.95

= 0.95



 ,



{u1, u2} , fade
′′

(

w0

(

{u1, u2}
)

,
w1

(

{u1, u2}
)

)

= fade′′

(

0.0,
ε

)

= ε































































Thus, w′ becomes:

w′ =











(

{u0, u1} , 1.00
)

,
(

{u0, u2} , 0.95
)

,
(

{u1, u2} , ε
)











This is also illustrated graphically in Fig. 4.14.

Both auxiliary algorithms parse (Eq. 4.110) and fade (Eq. 4.111) are integral
components of the transition function TP (Eq. 4.109). TP , in turn, can be
found again in AP ’s output function GP :

GP 〈Ω, n, α, β,Φ, ϕ〉 :
(

SP 〈Ω〉 × EP 〈Ω, n〉
)

→ OP 〈Ω〉,
(

s, (e,D)
)

7→ J,

(I, J) = TP 〈Ω, n, α, β,Φ, ϕ〉
(

s, (e,D)
)

(4.115)

Here, TP determines for a given state s and input (e,D) the successor state
to s, which is denoted as (I, J). The second tuple element of this successor
state J is used as return value. From Eq. 4.109 we know, that J needs to be a
function value of fade (Eq. 4.111). Thus GP provides “faded” interpretations as
output. Whether or how this influences parse results can be controlled via two
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Figure 4.15: Blockdiagram of generic parser model AP as defined in Eq. 4.106

tuning parameters α and β. As an example, α = 0.0, β = 1.0 would deactivate
the fading mechanism, since condition (x0 × α) ≥ β from Eq. 4.114 cannot be
satisfied for any x0. In this case fade would map ((U0, A0, w0), (U1, A1, w1)) to
(U1, A1, w1); hence GP delivers the latest (unfaded) result provided by parse.

How GP (Eq. 4.115), embedded transition function TP (Eq. 4.109), as well as
their integral components parse (Eq. 4.110) and fade (Eq. 4.111) are combined is
best illustrated with a blockdiagram. Such a diagram can be found in Fig. 4.15.

We can conclusively summarize the behaviour of such dynamic parsing systems
as follows:

Parsers defined by AP 〈Ω, n, α, β,Φ, ϕ〉 (Eq. 4.106) accept ingoing sequences of
edit steps V (0 . . . ke), where . . .

V (0 . . . ke) =
(

v0, v1, . . . , vke

)

=

(

(

e0
D0

)

,
(

e1
D1

)

, . . . ,
(

eke

Dke

)

)

,

vk ∈ EP 〈Ω, n〉, k = 0, 1, . . . , ke (4.116)

Driven by V (0 . . . ke) they pass through states S (0 . . . ke + 1),

S (0 . . . ke + 1) =
(

s0, s1, . . . , ske+1

)

=

(

(

I0
J0

)

,
(

I1
J1

)

, . . . ,
(

Ike+1

Jke+1

)

)

,

s0 = sinit,

sk+1 = TP 〈Ω, n, α, β,Φ, ϕ〉 (sk, vk) , k = 0, 1, . . . , ke
(4.117)
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. . . and finally they generate sequences of interpretations I (0 . . . ke) as output:

I (0 . . . ke) =
(

I0, I1, . . . , Ike

)

,

Ik = GP 〈Ω, n, α, β,Φ, ϕ〉 (sk, vk) , k = 0, 1, . . . , ke (4.118)

4.4.2 Spatial Parser

Parsers defined by AP 〈Ω, n, α, β,Φ, ϕ〉 (Eq. 4.106) do not classify structures ac-
cording to predefined patterns; that is, they do not label their output as stacks,
heaps, tables or other semantic types. They rather analyze the strength of pair-
wise object relations and hence deliver weighted networks of objects ∈ I〈Ω〉, as
defined in Eq. 4.90. Such analyses can be performed with regard to different
structural aspects. This includes spatial relationships. We mentionated that
already in Sect. 1.4 when we discussed common structure types. Parsers that
are specialized in analysing spatial properties of spatial hypertext and further-
more build on our theoretical parser model from Eq. 4.106 are hereafter referred
to as “spatial parsers”.

Let ΦS be a set of event categories that indicate when to perform a full spatial
parse. For this see our definitions of parse in Eq. 4.110 and Φ in Eq. 4.107.

ΦS =











CREATE,
MODIFY_SPATIAL,

DELETE











(4.119)

According to this definition of ΦS , a full reparse only happens in three cases:
(1) when new information units were added to a workspace and thus spatial
structure might have changed; then the indicator CREATE is used; (2) when
spatial symbol properties got modified, due to translation, scaling etc.; this
is signaled by MODIFY_SPATIAL and (3) information units were removed,
which might have destroyed spatial structure; this is indicated by DELETE.

Assuming that our spatial parsing algorithm is defined by some function parseS :
(I〈Ω〉 × E〈Ω〉 × D〈Ω, k〉) → I〈Ω〉, we can use ΦS from Eq. 4.119 to par-
tially refine AP 〈Ω, n, α, β,Φ, ϕ〉 (Eq. 4.106), TP 〈Ω, n, α, β,Φ, ϕ〉 (Eq. 4.109),
and GP 〈Ω, n, α, β,Φ, ϕ〉 from Eq. 4.115 as follows:

AS〈Ω, n, α, β〉 := AP〈Ω, n, α, β,ΦS, parseS〉

TS〈Ω, n, α, β〉 := TP〈Ω, n, α, β,ΦS, parseS〉

GS〈Ω, n, α, β〉 := GP〈Ω, n, α, β,ΦS, parseS〉 (4.120)

This way our generic parser model AP 〈Ω, n, α, β,Φ, ϕ〉 turns into a parame-
terised model for spatial parsers AS〈Ω, n, α, β〉.
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Figure 4.16: Blockdiagram of spatial parser model AS as defined in Eq. 4.121

For our research prototype we specified in Sect. 4.1.4 several refinements of our
workspace model AW (Eq. 4.66). In Sect. 4.3 this has led to . . .

Ω = N0 and k = 16.

Both parameters can be used now for refining or rather configuring AS〈Ω, n, α, β〉,
TS〈Ω, n, α, β〉 and GS〈Ω, n, α, β〉. As an example we set α, β to . . .

α = 0.95 and β = 0.05.

This results in the following default configuration for spatial parsers AS:

AS := AS〈N0, 16, 0.95, 0.05〉

TS := TS〈N0, 16, 0.95, 0.05〉

GS := GS〈N0, 16, 0.95, 0.05〉 (4.121)

If one substitutes now in Fig. 4.15 components AP , TP and GP for AS, TS and
GS from Eq. 4.121, then one gets the blockdiagram in Fig. 4.16.
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Three-Stage Spatial Parsing Algorithm

According to our considerations from Sect. 2.1 (page 30), spatial parsers should
rather imitate humans in the way they perceive structure than checking a
canvas against pre-defined and supposedly universal patterns (such as heaps,
piles, stacks etc.). In human perception, atomic objects are recognized first
and more complex structures emerge from simpler ones, not vice-versa. This
bottom-up principle gets also reflected in our spatial parsing algorithm:

parseS :
(

I〈Ω〉 × E〈Ω〉 ×D〈Ω, k〉
)

→ I〈Ω〉,

(I, e,D) 7→ normalize
(

parse_list_structures
(

create_terminals (D)
)

)

(4.122)

parseS follows our requirement from Eq. 4.107 and maps triples (I, e,D) ∈
(I〈Ω〉 ×E〈Ω〉 ×D〈Ω, n〉) to interpretations ∈ I〈Ω〉. This mapping proceeds in
three stages: Firstly, create_terminals (D) converts info unit data D ∈ D〈Ω, k〉
into a collection of terminal symbols. In a second step, the bottom-up algo-
rithm parse_list_structures transforms these terminals into a tree of alignment-
oriented structures (i. e., “parse tree”). Finally, function normalize converts this
hierarchical structure into a weighted, “flat” graph ∈ I〈Ω〉. Note, that argu-
ments I and e are not used in the current version of this algorithm.

Before we go into any details on create_terminals, parse_list_structures and
normalize, some basic definitions are needed:

The previously mentioned bottom-up parse requires internal type identifica-
tion of terminals and non-terminals and therefore needs definition of distinct
symbols. For this purpose we introduce the discrete set StructureType:

StructureType =



































ATOM,
UNALIGNED,

HORIZONTAL_LIST,
VERTICAL_LIST,

DIAGONAL_LIST0,
DIAGONAL_LIST1



































(4.123)

Internally our spatial parser distinguishes between atoms, unaligned objects
and collections of objects with horizontal, vertical or diagonal alignment. Anal-
ogous to our definitions from Sect. 4.2.2 we make a distinction between diag-
onal alignment from top-left to bottom-right (DIAGONAL_LIST0 ) and from
top-right to bottom-left (DIAGONAL_LIST1 ). More complex structure types
(such as tables, stacks, piles etc.) have deliberately not been provided. We
rather build on two of the most fundamental attributes of spatial structure and
hence of spatial perception: spatial proximity and alignment. With this we
intend to avoid (potentially wrong) over-interpretation of structure.
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As pointed out already, internally our parsing algorithm works with symbols.
We denote the basic set of such parser symbols as S〈Ω, k〉 and define it as a
cartesian product:

S〈Ω, k〉 =
(

ID×
(

StructureType ∪ {ε}
)

× Bounds〈k〉 ×
(

Ω ∪ {ε}
)

× List〈ID〉
)

(4.124)
Here, ID shall be regarded as a set of unique identifiers and ε represents
some empty (or NULL) element. The definition of Bounds〈k〉 can be found
in Eq. 4.73 and List was introduced already with Eq. 4.91.

Elements of such five-tuples ∈ S〈Ω, k〉 are denoted as follows:

∀s ∈ S〈Ω, k〉 :

s :=















s.id,
s.type,

s.bounds,
s.info_unit,
s.child_ids















(4.125)

Thus, parser symbols s ∈ S〈Ω, k〉 have five attributes: (1) a unique identi-
fier s.id ∈ ID (we will see afterwards what this is used for); (2) an assigned
structure type s.type ∈ (StructureType ∪ {ε}); (3) geometrical properties en-
coded as s.bounds ∈ Bounds〈k〉; (4) the information unit they are (possibly)
linked with s.info_unit ∈ (Ω ∪ {ε}) and (5) a list of child symbol identifiers
s.child_ids ∈ List〈ID〉 (note: our algorithm operates on symbol hierarchies).

In the following we will frequently work with collections of symbols ⊂ S〈Ω, k〉
and thus with the power set of S〈Ω, k〉. However, we will not build directly on
2S〈Ω,k〉, but instead we use a constrained subset denoted as PS〈Ω, k〉:

PS〈Ω, k〉 =







S

∣

∣

∣

∣

∣

∣

S ∈ 2S〈Ω,k〉,

∄
{

s, s′
}

∈
(

S

2

)

: s.id = s′.id







(4.126)

PS〈Ω, k〉 was designed to ensure, that each s contained in an S ⊆ S〈Ω, k〉 can
be clearly distinguished from other s′ ∈ S, even though s and s′ might have
identical type, bounds etc. This makes elements of such S referenceable. From
a software developer’s perspective, one could imagine S ∈ PS〈Ω, k〉 as occupied
object memory and identifiers assigned to s ∈ S as memory addresses or rather
as pointers. At least you could implement them like this.

Following this idea, our definition of PS〈Ω, k〉 requires two basic operations:
(1) create_symbol (Eq. 4.127) and (2) get_symbol (Eq. 4.128).
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create_symbol :



















PS〈Ω, k〉

×
(

StructureType ∪ {ε}
)

× Bounds〈k〉

×
(

Ω ∪ {ε}
)

× List〈ID〉



















→ S〈Ω, k〉,

(S, a1, a2, a3, a4) 7→ (id, a1, a2, a3, a4) ,

(id ∈ ID) ∧ (∄s ∈ S : s.id = id) (4.127)

create_symbol accepts a set of parser symbols S ∈ PS〈Ω, k〉 and four arguments
a1, . . . , a4, that are (according to Eq. 4.124) needed for setting up a new symbol
tuple ∈ S〈Ω, k〉. These arguments a1, . . . , a4 are then combined with some
id ∈ ID, so that there is no s ∈ S for which s.id = id. This way create_symbol
ensures, that new symbols always get an identifier that is not in use already in
a given S ∈ PS〈Ω, k〉. The only thing that remains to be done, is adding new
symbols s = create_symbol (S, a1, . . . , a4) to S. For this, however, a statement
such as S ← (S ∪ {s}) is completely sufficient. In fact, this is exactly what we
use in our algorithms.

Once created and added to S ∈ PS〈Ω, k〉, symbols s ∈ S can be retrieved again
using the function get_symbol:

get_symbol :
(

PS〈Ω, k〉 ×
(

ID ∪ {ε}
)

)

→
(

S〈Ω, k〉 ∪ {ε}
)

,

∀ (S, id) ∈
(

PS〈Ω, k〉 ×
(

ID ∪ {ε}
)

)

:

get_symbol (S, id) =

{

s , if (id 6= ε) ∧ (∃!s ∈ S : s.id = id)

ε , else
(4.128)

get_symbol (S, id) tries to use a set of declared symbols S ∈ PS〈Ω, k〉 in order
to resolve a given id ∈ (ID ∪ {ε}). When such an id is 6= ε (i. e., it is not
a “NULL pointer”) and there is exactly one s ∈ S for which s.id = id, then
get_symbol delivers s as result. Otherwise id cannot be resolved in S, and
hence ε (“nothing”) is returned. This way we keep get_symbol totally defined.

In later algorithms we will operate on tree structures formed by parser symbols
s ∈ S〈Ω, k〉. Hence, we will frequently work with child symbol lists s.child_ids.
Therefore, in order to decrease effort of expression, it makes sense to wrap
the most frequently used list-features in helper routines. We define two such
auxiliary functions that are supposed to simplify child symbol access. These
access operations are: (1) child_count (Eq. 4.129) and (2) child (Eq. 4.130).
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child_count (s) is nothing more than a shortcut to the number of child symbols
beneath s. That is, it simply takes s’ list of child ids and detects size (s.child_ids),
as defined in Eq. 4.93:

child_count : S〈Ω, k〉 → N0, s 7→ size (s.child_ids) (4.129)

Index-based access on single child symbols can be achieved via child (S, s, i).
Here, s represents a parent symbol, i is a list index in s.child_ids and S is the
basic set of symbols where the child with id get (s.child_ids, i) is supposed to
be found. Formally we define child as follows:

child :
(

PS〈Ω, k〉 × S〈Ω, k〉 × N0

)

→
(

S〈Ω, k〉 ∪ {ε}
)

,

(S, s, i) 7→ get_symbol
(

S, get (s.child_ids, i)
)

(4.130)

Both, child_count (Eq. 4.129) and child (Eq. 4.130) are merely used for nota-
tional simplification. This means, we could also do without them and use more
verbose expressions instead. Our following definitions, however, are integral
parts of the parsing algorithm and cannot be substituted:

This includes two basic types of symbols: (1) Satom〈Ω, k〉 (Eq. 4.131) and
(2) Sstruct〈Ω, k〉 (Eq. 4.132). Both sets are derivatives of S〈Ω, k〉 (Eq. 4.124).

Symbols that can be used as structure elements, but do not describe structure
themselves, are denoted as “atoms”. Formally we define them as:

Satom〈Ω, k〉 =







































s

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s ∈ S〈Ω, k〉,
(s.type = ATOM)

∧






(s.info_unit 6= ε) ∧
(

child_count (s) = 0
)

∨
(s.info_unit = ε) ∧

(

child_count (s) = 1
)













































⊂ S〈Ω, k〉

(4.131)
These are symbols s ∈ S〈Ω, k〉 that are explicitely marked with structure type
s.type = ATOM and for which either (s.info_unit 6= ε)∧(child_count(s) = 0) or
(s.info_unit = ε)∧(child_count(s) = 1) holds true. This means, either symbols
s ∈ Satom〈Ω, k〉 are atomic leaf nodes with s.info_unit 6= ε or they are internal
nodes with exactly one child and without a reference to any information unit.

By contrast, symbols that do represent structure are defined by Sstruct〈Ω, k〉:

Sstruct〈Ω, k〉 =



















s

∣

∣

∣

∣

∣

∣

∣

∣

∣

s ∈ S〈Ω, k〉,
(s.type 6= ATOM)

∧
(s.info_unit = ε) ∧

(

child_count (s) > 0
)



















⊂ S〈Ω, k〉

(4.132)
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Structure symbols s ∈ Sstruct〈Ω, k〉 are tagged with a structure type 6= ATOM;
thus the assigned value could also be ε. Additionally they must be linked
with at least one child symbol as structure element. Consequently, symbols
∈ Sstruct〈Ω, k〉 never can be found on leaf node level. As a last requirement,
s.info_unit should always be ε. Thus, structures do not point directly to car-
riers of information in a workspace; only their elements on leaf node level do.

Creation of symbols ∈ Sstruct〈Ω, k〉 is defined by the following algorithm:

8

create_structure :








PS〈Ω, k〉

×
(

StructureType \ {ATOM} ∪ {ε}
)

×
(

List〈ID〉 \ {listε}
)









→







Sstruct〈Ω, k〉
∪
{ε}






,







S,
type,
ids






7→ s,

1: s← ε
2: s0 ← get_symbol

(

S, get (ids, 0)
)

⊲ get first tentitive child symbol s0
3: if s0 6= ε then

4: b← s0.bounds
5: for i = 1 to

(

size (ids)− 1
)

do ⊲ calculate union of all child bounds b

6: si ← get_symbol
(

S, get (ids, i)
)

7: if si = ε then

8: return s
9: end if

10: b← union (b, si.bounds) ⊲ see: Eq. 4.83 for definition of union
11: end for

12: s← create_symbol (S, type, b, ε, ids) ⊲ new s ∈ Sstruct〈Ω, k〉
13: end if

14: return s

create_structure maps triples (S, type, ids) to structure symbols s ∈ Sstruct〈Ω, k〉
(in the fault case ε is used as return value instead). S is a set of predefined
symbols needed for resolving structure element ids, type is either a structure
type 6= ATOM or ε and the last argument ids represents a non-empty list of
structure element identifiers.

As an example, let us create a horizontal list formed from two atomic list
elements; we set . . .

type = HORIZONTAL_LIST and ids = (s0, s1)

Both atoms s0, s1 shall be given by . . .

S =

{

(s0,ATOM, b0, u0, listε) ,
(s1,ATOM, b1, u1, listε)

}

⊂ Satom〈Ω, k〉
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Figure 4.17: hierarchical relationship between horizontal list s2 and atoms s0, s1

Here we assume, that ID = {s0, s1, . . .} and that Ω = {u0, u1, . . .}. This is why
both attributes id and info_unit are set to s0, s1 and u0, u1 respectively. b0, b1
shall be arbitrary bounding volumes ∈ Bounds〈k〉. Their exact position and
dimensions do not matter in this example.

Given these definitions and assuming that create_symbol from Eq. 4.127 assigns
incremented symbol ids si+1 ∈ ID to new symbols, create_structure (S, type, ids)
will deliver the following:

create_structure













{

(s0,ATOM, b0, u0, listε) ,
(s1,ATOM, b1, u1, listε)

}

,

HORIZONTAL_LIST,
(s0, s1)













=















s2,
HORIZONTAL_LIST,

union (b0, b1) ,
ε,

(s0, s1)















The apparent hierarchical relationship between horizontal list s2 and atoms
s0, s1 is illustrated in Fig. 4.17.

As already pointed out at the beginning, our spatial parsing algorithm realises
a bottom-up parse. In this context, it works with two specific categories of
symbols: (1) terminal and (2) non-terminal symbols.

Terminal symbols are defined as atoms ∈ Satom〈Ω, k〉 (Eq. 4.131) that do not
have child symbols. Hence, they are atomic leaf nodes:

Sterminal〈Ω, k〉 =

{

s

∣

∣

∣

∣

∣

s ∈ Satom〈Ω, k〉,
child_count (s) = 0

}

⊂ Satom〈Ω, k〉 (4.133)

The power set of Sterminal〈Ω, k〉 can be defined as a subset of PS〈Ω, k〉 (Eq. 4.126):

Pterminal〈Ω, k〉 =

{

S

∣

∣

∣

∣

∣

S ∈ PS〈Ω, k〉,
S ⊂ Sterminal〈Ω, k〉

}

⊂ PS〈Ω, k〉 (4.134)
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The following operation specifies how terminal symbols are instantiated:

create_terminal :
(

PS〈Ω, k〉 × Bounds〈k〉 × Ω
)

→ Sterminal〈Ω, k〉,

(S, b, u) 7→ create_symbol (S,ATOM, b, u, listε) (4.135)

The non-terminal counterpart to Sterminal〈Ω, k〉 is Snonterminal〈Ω, k〉. Non-
terminals either can be structure symbols Sstruct〈Ω, k〉 or non-terminal atoms
(Satom〈Ω, k〉 \ Sterminal〈Ω, k〉):

Snonterminal〈Ω, k〉 = Sstruct〈Ω, k〉 ∪
(

Satom〈Ω, k〉 \ Sterminal〈Ω, k〉
)

(4.136)

Similar to Eq. 4.134, also the power set of Snonterminal〈Ω, k〉 can be expressed
as a subset of PS〈Ω, k〉 (Eq. 4.126):

Pnonterminal〈Ω, k〉 =

{

S

∣

∣

∣

∣

∣

S ∈ PS〈Ω, k〉,
S ⊂ Snonterminal〈Ω, k〉

}

⊂ PS〈Ω, k〉 (4.137)

Spatial Parsing Algorithm – Stage 1 – Creation of Terminal Symbols

Based on Eq. 4.134 and Eq. 4.135 we describe the first step of our three-stage
spatial parsing algorithm parseS (Eq. 4.122) as follows:

9 create_terminals : D〈Ω, k〉 → Pterminal〈Ω, k〉, (V, p) 7→ S,

1: S ← ∅
2: for all u ∈ V do

3: S ← S ∪
{

create_terminal
(

S, p(u).bounds, u
)

}

⊲ see: Eq. 4.135
4: end for

5: return S

create_terminals takes a “map” (V, p) ∈ D〈Ω, k〉 (Eq. 4.85) and creates for each
information unit u ∈ V a new terminal symbol ∈ Sterminal〈Ω, k〉 (Eq. 4.133).
Following Eq. 4.135 only information unit u and the assigned bounding volume
p(u).bounds are needed for this. Terminals created this way are collected in
some S ∈ Pterminal〈Ω, k〉 (Eq. 4.134).

As an example, let us assume that (V, p) defines two red rectangles with ids u0

and u1 (provided that Ω = {u0, u1, . . .}):

(V, p) =









{u0, u1} ,











(

u0,
(

b0, 0,RECTANGLE, (255, 0, 0) , “content0 ”
)

)

,
(

u1,
(

b1, 0,RECTANGLE, (255, 0, 0) , “content1 ”
)

)


















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Both objects are located on the same layer 0 and their content is set to string
literals “content0 ” and “content1 ” respectively. b0, b1 are arbitrary bounding
volumes ∈ Bounds〈k〉.

Assuming again, that ID = {s0, s1, . . .}, create_terminals transforms this defi-
nition of (V, p) into the following set of terminal symbols S:

S =

{

(s0,ATOM, b0, u0, listε) ,
(s1,ATOM, b1, u1, listε)

}

∈ Pterminal〈Ω, k〉

Apparently, we adopted here only spatial properties in form of bounding vol-
umes b0, b1 into the newly generated atoms. Other attributes (such as layer,
shape, color, content etc.) are of no relevance to our spatial analysis and were
therefore discarded.

In the second stage of our spatial parsing algorithm, terminals generated ac-
cording to Alg. 9 undergo a bottom-up analysis (see parseS in Eq. 4.122).

Before we describe how such parse_list_structures (create_terminals ((V, p))) or
rather parse_list_structures (S) proceeds, let us first define a series of required
auxiliary structures:

With our previous definitions of parser symbols S〈Ω, k〉 (Eq. 4.124) it is already
possible to describe symbol hierarchies (i. e., trees of symbols). For this, see in
particular create_structure from Alg. 8. Symbol trees are inextricably linked
with bottom-up parsing and thus play an important role for the second phase
of our three-stage spatial parsing algorithm. Therefore, in parse_list_structures
we will make intensive use of our previous definitions on hierarchical linking of
symbols. In addition to this, however, we need another alternative formalism
for defining trees. This is described below.

In the following we will repeatedly work with (rooted) out-trees; that is, with
trees having the following properties:

OutTree〈Q〉 : set of all (rooted) out-trees T := (V,E, r),

V (T ) : non-empty set of vertices ;
(

V (T ) 6= ∅
)

∧
(

V (T ) ⊆ Q
)

E(T ) : set of directed edges
(

vi, vj
)

, vi, vj ∈ V (T )

r(T ) : root vertext of T (i. e., r ∈ V (T ), d−T (r) = 0 ∧ d+T (r) ≥ 0)
(4.138)

In total there are four operations on trees T ∈ OutTree〈Q〉 that will be of rele-
vance to our parsing algorithm: (1) leafs (Eq. 4.139); (2) children (Eq. 4.140);
(3) level (Eq. 4.141) and (4) add_child (Eq. 4.142).
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The first operation leafs detects leaf nodes in out trees. This means, it takes a
given T ∈ OutTree〈Q〉 and delivers the set of all vertices v ∈ V (T ) which do not
have any children; that is, for which d+T (v) = 0. For example, leafs (({r}, ∅, r))
would return {r}.

leafs : OutTree〈Q〉 → 2Q, T 7→
{

v
∣

∣

∣
v ∈ V (T ) ∧ d+T (v) = 0

}

(4.139)

Access on a node’s child vertices is defined by function children. It accepts a
T ∈ OutTree〈Q〉 and a vertex v ∈ Q and returns the set of all vertices that are
marked in E(T ) as children of v. If v is /∈ V (T ) or if v ∈ leafs (T ) then ∅ is
returned. A good example for this would be children (({r}, ∅, r), r) = ∅.

children :
(

OutTree〈Q〉 ×Q
)

→ 2Q, (T, v) 7→
{

v′
∣

∣

∣∃!
(

v, v′
)

∈ E (T )
}

(4.140)

Levels of vertices v in trees T ∈ OutTree〈Q〉 are determined by level (T, v).
For this we assume, that there is some function DISTANCE (v0, v1, G(V,E))
defined, which can tell us the length of the shortest path from vertex v0 to
v1 in a given graph G(V,E). Here we also assume, that such a function is
only defined for v0, v1 ∈ V . As an example, level (T, r(T )) would be 0, since
DISTANCE (r(T ), r(T ), G(V (T ), E(T ))) = 0 either.

level :
(

OutTree〈Q〉 ×Q
)

⇀ N0,

(T, v) 7→ DISTANCE
(

r (T ) , v,G
(

V (T ) , E (T )
)

)

, v ∈ V (T ) (4.141)

The last OutTree〈Q〉-“method” is add_child. Applied on a given out tree T ,
add_child (T, v, v′) extends T by a new leaf node v′. The second argument v in-
dicates the vertex, beneath which v′ is to be inserted. add_child (({r}, ∅, r), r, v),
for instance, would result in ({r, v}, {(r, v)}, r).

add_child :
(

OutTree〈Q〉 ×Q×Q
)

⇀ OutTree〈Q〉,

(

T, v, v′
)

7→

(

(

V (T ) ∪
{

v′
}

)

,

(

E (T ) ∪
{

(

v, v′
)

}

)

, r (T )

)

,

v ∈ V (T ) ∧ v′ /∈ V (T ) (4.142)

Note, that in the following we will not work directly with OutTree〈Q〉 but with
a refined subset denoted as TI〈Ω, k〉:

TI〈Ω, k〉 ⊂ OutTree〈PS〈Ω, k〉〉 (4.143)

Apparently, subset TI〈Ω, k〉 identifies specific out trees whose vertices are full
sets of parser symbols rather than simple objects. That is, the tree node-“type”
is PS〈Ω, k〉. For details see our definition of PS〈Ω, k〉 in Eq. 4.126.
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Each so-called “Interpretation Tree” T ∈ TI〈Ω, k〉 is subject to a number of
conditions:

Firstly, root-vertices r of trees T shall comprise only terminal symbols, that is
r(T ) may include only symbols ∈ Sterminal〈Ω, k〉 (Eq. 4.133). Thus we define:

r(T ) ∈ Pterminal〈Ω, k〉 (4.144)

In contrast to root r(T ), remaining vertices V (T ) \ {r(T )} should contain only
non-terminals ∈ Snonterminal〈Ω, k〉 (Eq. 4.136):

(

V (T ) \
{

r (T )
}

)

⊂ Pnonterminal〈Ω, k〉 (4.145)

Each parser symbol, no matter if terminal or non-terminal, may occur only
once in T . Thus, for all S ∈ V (T ):





⋂

S∈V (T )

S



 = ∅ (4.146)

When we denote the total set of parser symbols included in T as SΣ(T ) and
define it as follows . . .

SΣ(T ) :=





⋃

S∈V (T )

S



 ∈ PS〈Ω, k〉 (4.147)

. . . then ∀s ∈ SΣ(T ) :

SΨ (T, s) :=





child_count(s)−1
⋃

i=0

{

child
(

SΣ(T ), s, i
)

}



 ⊂ SΣ(T ) (4.148)

This means, that every single non-terminal in T has to be linked with child
symbols that are also included in T . Here, SΨ(T, s) represents the set of all
child symbols of s in T . For a definition of child see Eq. 4.130.

Finally, ∀(Si, Sj) ∈ E(T ):

(

0 <
∣

∣Sj

∣

∣ < |Si|
)

∧











⋂

s∈Sj

SΨ (T, s)



 = ∅






∧











⋃

s∈Sj

SΨ (T, s)



 = Si







(4.149)
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In plain language, this means that each (non-root) vertex S ∈ (V (T ) \ {r(T )})
comprises at least one symbol (i. e., |S| > 0) and child vertices Sj always contain
less symbols than their parents Si (i. e.,

∣

∣Sj

∣

∣ < |Si|). Furthermore, each s ∈ Si

must be assigned exactly one s′ ∈ Sj and each s′ ∈ Sj has to be assigned at
least one s ∈ Si.

This is best explained with an example. Suppose, we have an interpretation
tree T = (V,E, r) ∈ TI〈Ω, k〉 with V (T ), E(T ) and r(T ) being defined as:

V (T ) = {S0, S1, S2, S3} ; E(T ) =











(S0, S1) ,
(S1, S2) ,
(S0, S3)











; r(T ) = S0

To simplify things, we set S〈Ω, k〉 equal to a set of symbolic placeholders si
(for index i ≥ 0):

S〈Ω, k〉 = {s0, s1, . . .}

S0 ∈ V (T ) shall comprise three terminal symbols s0, s1, s2 ∈ Sterminal〈Ω, k〉:

S0 = {s0, s1, s2} ∈ Pterminal〈Ω, k〉

For remaining elements of V (T ) we define:

S1, S2, S3 ∈ Pnonterminal〈Ω, k〉

In detail these sets of symbols are:

S1 = {s3, s4} ; S2 = {s5} ; S3 = {s6}

Based on these specifications, the total set of symbols SΣ(T ) from Eq. 4.147
can be determined as:

SΣ(T ) = S0 ∪ S1 ∪ S2 ∪ S3 = {s0, s1, s2, s3, s4, s5, s6} ∈ PS〈Ω, k〉

Individual parent-child relations between these symbols are described below:

s0, s1, s2 are terminals ∈ Sterminal〈Ω, k〉 and therefore have no child symbols:

s0.child_ids = s1.child_ids = s2.child_ids = listε

Thus, the following should apply:

SΨ (T, s0) = SΨ (T, s1) = SΨ (T, s2) = ∅

For remaining s3, s4, s5, s6, however, SΨ(T, si) should be 6= ∅ (for 3 ≤ i ≤ 6):

s3.child_ids = (s0.id, s1.id)

s4.child_ids = (s2.id)

s5.child_ids = (s3.id, s4.id)

s6.child_ids = (s0.id, s1.id, s2.id)

⇒

⇒

⇒

⇒

SΨ (T, s3) = {s0, s1}

SΨ (T, s4) = {s2}

SΨ (T, s5) = {s3, s4}

SΨ (T, s6) = {s0, s1, s2}
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Figure 4.18: sample interpretation tree T ∈ TI〈Ω, k〉

The interpretation tree formed from these definitions is illustrated graphically
in Fig. 4.18. From this illustration it becomes particularly clear that interpreta-
tion trees TI〈Ω, k〉 are composites or rather mixtures of primary and secondary
structures. This means, in every T ∈ TI〈Ω, k〉 we can differentiate between
two structures, where one is embedded in the other. The primary structure in
our example would be the out-tree of symbol sets defined by V (T ), E(T ) and
r(T ). In Fig. 4.18 this is illustrated with black borders around braces that are
connected by black upward pointing arrows. Embedded in this “host”-structure
there is a (directed) graph, consisting of grey circles as nodes (each labeled as a
symbol si ∈ SΣ(T )) and grey arrows as edges pointing downwards. This sym-
bol graph represents our secondary structure and is determined, as we know
already from Eq. 4.125, by symbol attribute s.child_ids.

Another good example for an interpretation tree would be:

T =
(

{

∅
}

, ∅, ∅
)

∈ TI〈Ω, k〉

This T comprises of a single vertex only, r(T ), which does not contain any
symbols (i. e., r(T ) = ∅). For such a T the following applies:

r (T ) = ∅ ∈ Pterminal〈Ω, k〉 (Eq. 4.144) ;
(

V (T ) \
{

r (T )
}

)

= ∅ ⊂ Pnonterminal〈Ω, k〉 (Eq. 4.145)

and
(

⋂

S∈{∅} S

)

= ∅ (Eq. 4.146) ; SΣ (T ) = ∅ (Eq. 4.147).

This is why both is satisfied Eq. 4.148 and, since E(T ) = ∅, also Eq. 4.149.
Thus ({∅}, ∅, ∅) is a valid element of TI〈Ω, k〉.
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For this special case of an empty interpretation tree we use a separate symbol:

TIε :=
(

{

∅
}

, ∅, ∅
)

∈ TI〈Ω, k〉 (4.150)

Our previous definition of TI〈Ω, k〉 allows trees that may contain any number
of symbols on leaf-node level. This means, TI〈Ω, k〉 also includes trees T for
which there is at least one S ∈ leafs(T ) where |S| > 1. But this is not always
desirable, as we will see later on. At the latest when we must process the results
of our bottom-up parse we will expect that each leaf node of an interpretation
tree includes one and only one symbol (i. e., quasi as “start symbol”).

This is why we supplement our previous definitions of trees with the following
specialization:

T ′
I〈Ω, k〉 ⊂ TI〈Ω, k〉 :

T ′
I〈Ω, k〉 =

{

T

∣

∣

∣

∣

∣

T ∈ TI〈Ω, k〉,
∀S ∈ leafs (T ) : |S| = 1

}

∪
{

TIε

}

(4.151)

A good example for such T ∈ T ′
I〈Ω, k〉 is the tree illustrated in Fig. 4.18.

Since T ′
I〈Ω, k〉 ⊂ TI〈Ω, k〉 ⊂ OutTree〈PS〈Ω, k〉〉 ⊂ OutTree〈Q〉, all operations

that can be performed on OutTree〈Q〉 can also be applied to TI〈Ω, k〉. This
includes, among others, the previously defined functions (1) leafs (Eq. 4.139);
(2) children (Eq. 4.140); (3) level (Eq. 4.141) and (4) add_child (Eq. 4.142).

In addition let us introduce two operations which are exclusively defined on
interpretation trees TI〈Ω, k〉: (1) child (Eq. 4.152) and (2) leafs (Alg. 10).

The first of these functions “overloads” child from Eq. 4.130:

child :
(

TI〈Ω, k〉 × S〈Ω, k〉 × N0

)

→
(

S〈Ω, k〉 ∪ {ε}
)

,

(T, s, i) 7→ child
(

SΣ(T ), s, i
)

(4.152)

Here we set the basic set of symbols, which is required in Eq. 4.128 for resolving
symbol ids, to SΣ(T ) from Eq. 4.147. This way we specialize child (S, s, i) for
usage on interpretation trees and hence the argument list changes from (S, s, i)
to (T, s, i). To give some examples, when we take our sample tree T from
Fig. 4.18 again, then child (T, s3, 1) would identify s1 as the second child symbol
of s3. Examples where we get ε as return value instead, include child (T, s5, 99)
or child (T, s2, 0).

The second operation on TI〈Ω, k〉 that we want to introduce is called leafs and
builds on our previous definition of child from Eq. 4.152.
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10 leafs :
(

TI〈Ω, k〉 × S〈Ω, k〉
)

⇀ Pterminal〈Ω, k〉, (T, s) 7→ S,

Require: s ∈ SΣ(T )
1: if child_count(s) = 0 then ⊲ if s is a leaf node, then . . .
2: return {s} ⊲ . . . s should be part of the result set
3: end if

4: S ← ∅
5: for i = 0 to

(

child_count(s)− 1
)

do ⊲ apply leafs on all children and . . .

6: S ← S ∪ leafs
(

T, child (T, s, i)
)

⊲ . . . collect result in S ∈ Pterminal〈Ω, k〉
7: end for

8: return S

The recursive algorithm in Alg. 10 accepts an interpretation tree T ∈ TI〈Ω, k〉
and a symbol s ∈ SΣ(T ) and detects the set of all terminal symbols that
can be found beneath s. In other words, leafs (T, s) returns all leaf nodes
of the symbol-subtree that starts at root-node s. If s is a leaf node itself,
then leafs (T, s) returns {s} ∈ Pterminal〈Ω, k〉. The leaf nodes beneath s5 in
our previous sample tree T (Fig. 4.18), for example, could be identified by
leafs (T, s5) = {s0, s1, s2}.

With all these definitions at hand we can finally continue with step number two
of our three-stage parsing algorithm (Eq. 4.122), that is parse_list_structures.

Spatial Parsing Algorithm – Stage 2 – Parsing List Structures

To give you an idea of how the list detection mechanism works, we will go
through an example. For the following demonstration we set . . .

Ω = ID = N0 and k = 16

This corresponds to the default setting of AS from Eq. 4.121.

In addition let us assume, that there is some D ∈ D〈N0, 16〉 given, which de-
scribes four rectangular information units with grey fill color and their ids as
content. The spatial arrangement of these objects shall approximately corre-
spond to what is illustrated in Fig. 4.19.

Let us also assume, that applying create_terminals(D) from Alg. 9 on our given
D has generated the following set of terminal symbols:

S0 =



















s0,
s1,
s2,
s3



















=



















(0,ATOM, b0, 0, listε) ,
(1,ATOM, b1, 1, listε) ,
(2,ATOM, b2, 2, listε) ,
(3,ATOM, b3, 3, listε)



















∈ Pterminal〈N0, 16〉
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Figure 4.19: Four rectangular information units with light grey fill color and numerical ids
as content

For the sake of simplicity, symbolic placeholders si as well as assigned attributes
si.id, si.bounds = bi and si.info_unit were numbered sequentially from i = 0
to i = 3. Bounding volumes b0 to b3 approximate the convex hulls of the four
rectangles from Fig. 4.19.

Informally expressed, our list detection algorithm parse_list_structures will pro-
cess S0 as follows:

In a first, preparatory step, we determine for all symbols s ∈ S0 possible
alignments. For this, our algorithm locates for each s ∈ S0 potential structure-
neighbors N ⊂ S0, that is, objects s′, that are close enough to have a spatial
relation with s. If there are no objects within the reach of s (i. e., |N | = 0), we
regard s as “unaligned”. But if |N | 6= 0, then we determine for all neighbors
s′ ∈ N the dominating alignment between s and s′. As defined already in
Eq. 4.123, we differentiate between horizontal, vertical and diagonal alignment.
Regarding the latter one, we explicitly separate between diagonals from top-
left to bottom-right (denoted as “diagonal0”) and diagonals from top-right to
bottom-left (identified by “diagonal1”). In our example, neighbors of s0 would
be N = {s1, s3}. Object s2 is located too far away from s0 and thus may not
have a direct spatial relation with s0. Fig. 4.19 clearly shows that both s0, s1 as
well as s0, s3 are diagonally aligned; once tilted to the right and once to the left.
Therefore, s0 is a potential element of structures with diagonal alignment. The
same applies to the remaining symbols in S0. Due to their relative positioning,
also s1, s2 and s3 are membership-candidates for diagonal lists.

In order to keep an overview of which symbols are candidates for what kind of
alignment, we collect the results of this pre-analysis in a special data structure,
a so-called “AlignmentAccumulator”. We are using this term because such
structures are effectively used for “accumulating” alignment information. A
detailed formal definition can be found on pages 124 to 127.
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a) b)

Figure 4.20: Depending on whether we search for vertical lists first and horizontal lists
afterwards (snapshot a)) or vice versa (snapshot b)) you get different parse results

To simplify things we illustrate this alignment structure as a table:

❵
❵

❵
❵

❵
❵

❵
❵
❵
❵
❵
❵

symbol
alignment

UA H V D0 D1

s0 NC NC NC C C
s1 NC NC NC C C
s2 NC NC NC C C
s3 NC NC NC C C

This table assigns to each cell (s, a) ∈ (S0 × {UA,H,V,D0,D1 }) an entry out
of {NC,C,S }. The given column headers stand for “UnAligned”, “Horizontal”,
“Vertical”, “Diagonal0”, and “Diagonal1”. Possible cell values indicate whether
the symbol associated with the table row is “No Candidate”, “Candidate” or
a “Structure element”. According to our sample table above, all four symbols
∈ S0 are membership-candidates for structures with D0 - and D1 -alignment.
Based on this preliminary evaluation, our algorithm tries to detect structures.

At this point it is important to understand, that the order in which one searches
for unaligned, horizontal, vertical etc. structures may have significant impact
on the parse result. An example for this can be found above in Fig. 4.20: In
snapshot a) nine out of ten objects are assigned to yellow vertical lists. Thus,
there is only one object left which could be used for a subsequent horizontal
analysis (here: object number 3). Logically, that object alone cannot form a list
and hence remains unassigned. But, if we search for horizontal lists first and
for vertical ones afterwards, then we get a very different picture, as illustrated
in snapshots b). Suddenly all ten objects can be assigned to structures (here:
blue horizontal lists).

Apparently, the order in which we perform different structural analyses may
have significant influence on the structures that can be detected. Unfortunately,
we do not know in general which structure types to prefer over others. This
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means, there is no universally valid order in which you should detect horizontal,
vertical, diagonal etc. lists. This is why our general-purpose parsing algorithm
has to consider all theoretical possibilities of interpretation.

Applied to our example, these are all permutations (a0, . . . , a4) of table colums
{UA,H,V,D0,D1 }, which is a total of 5! = 120 combinations. Thus, in theory,
we have to perform 120 alternative structure detection runs. For performance
reasons, however, we decided to set a0 to a fixed value, that is a0 = UA. Varying
four instead of five elements requires to handle only 4! = 24 permutations,
which reduces the workload to twenty percent. Moreover, it makes perfect
sense to search for unaligned objects first and for lists afterwards. For these
reasons we decided to omit all combinations with ai = UA for 1 ≤ i ≤ 4.
Possibly there are even further permutations that can be excluded right from
the start, for instance because they would lead to redundant structures. In
this version of our algorithm, however, we do not make such assumptions.
Rather we have chosen the strategy to consider all theoretical possibilities of
interpretation first and to eliminate redundant results afterwards.

Let us start out with (UA,H,V,D0,D1 ), which is the given column order in our
sample table. The first three columns UA, H, and V do not include C-entries,
thus we can skip them. Column D0, however, assigns to all four terminal
symbols s0, . . . , s3 the C-flag and hence marks them as potential elements of
D0-aligned lists. Our algorithm sorts these candidate symbols {s0, s1, s2, s3}
in ascending order according to their top-left bounds (i. e., mind0(si.bounds);
see Eq. 4.79). This results in a sorted list (s0, s1, s3, s2). The algorithm then
sequentially runs through this list from left to right, that is from s0 to s2, and
tries to combine symbols of the same type (here: ATOM) to diagonal lists with
a well formed shape. With “well formed” we mean, that we try to form lists with
symmetrically arranged elements. This way we intend to resolve ambiguities in
list membership. In our example, s3 is perfectly aligned with s0. Hence, s0 and
s3 unambiguously form a diagonal list. The same applies to s2 and s1. Thus,
all four terminal symbols s0, . . . , s3 can be regarded as structure elements.

Having updated our alignment table accordingly, we get:

❵
❵

❵
❵

❵
❵

❵
❵
❵
❵
❵
❵

symbol
alignment

UA H V D0 D1

s0 NC NC NC S C
s1 NC NC NC S C
s2 NC NC NC S C
s3 NC NC NC S C

Apparently, all terminal symbols s0, . . . , s3 are marked with the S-flag, which
identifies them as structure elements. Hence, there are no symbols left which
could be part of a D1-aligned list. For this reason, we can skip column D1 and
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Figure 4.21: sample reduction set S1

Figure 4.22: sample reduction set S2

assemble our final set of non-terminals as illustrated in Fig. 4.21. Formally this
can be expressed as:

S1 =

{

(

4,DIAGONAL_LIST0, union (s0.bounds, s3.bounds) , ε, (0, 3)
)

,
(

5,DIAGONAL_LIST0, union (s1.bounds, s2.bounds) , ε, (1, 2)
)

}

For this see our definitions of Snonterminal〈Ω, k〉 from Eq. 4.136 and Sstruct〈Ω, k〉
in Eq. 4.132.

When we repeat that with a slightly modified permutation (UA,H,V,D1,D0 ),
which prefers D1-aligned lists over D0-aligned lists, we get what is illustrated in
Fig. 4.22. Formally the corresponding reduction set S2 would look as follows:

S2 =

{

(

6,DIAGONAL_LIST1, union (s0.bounds, s1.bounds) , ε, (0, 1)
)

,
(

7,DIAGONAL_LIST1, union (s3.bounds, s2.bounds) , ε, (3, 2)
)

}

Other permutations than (UA,H,V,D0,D1 ) or (UA,H,V,D1,D0 ) will result
either in S1 or S2. Therefore they are redundant and can be omitted. See
Alg. 13 for a detailed description of the redundancy check.
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Figure 4.23: sample reduction set S3

Figure 4.24: sample reduction set S4

Further structures can be detected on the next abstraction level. Applying the
same list detection mechanism on symbols ∈ S1 will result in . . .

S3 =



















































8,DIAGONAL_LIST1, union















union

(

s0.bounds,
s3.bounds

)

,

union

(

s1.bounds,
s2.bounds

)















, ε, (4, 5)



















































. . . which is illustrated in Fig. 4.23. S2 can be reduced to . . .

S4 =



















































9,DIAGONAL_LIST0, union















union

(

s0.bounds,
s1.bounds

)

,

union

(

s3.bounds,
s2.bounds

)















, ε, (6, 7)



















































. . . which is illustrated in Fig. 4.24.
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Figure 4.25: sample interpretation tree T ∈ T ′

I
〈N0, 16〉 formed from terminals S0 and

non-terminals S1, S2 and S3, S4

Together, terminal symbols S0 and their reduction sets S1, S2 and S3, S4 form
an interpretation tree . . .

T =



















S3, S4,
S1, S2,
S0











,

{

(S0, S1) , (S1, S3) ,
(S0, S2) , (S2, S4)

}

, S0









∈ T ′
I〈N0, 16〉

. . . which is shown in Fig. 4.25.

For this, see also our definitions of TI〈Ω, k〉 from Eq. 4.143 and its refined subset
T ′
I〈Ω, k〉 from Eq. 4.151.

This T forms the result of our bottom-up parsing algorithm and thus represents
the function value of . . .

parse_list_structures (S0) = T

A detailed and complete, formal definition of parse_list_structures can be found
on the following pages 122 to 138.
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Interpretation Tree Expansion parse_list_structures (S) follows our origi-
nal definition of parseS from Eq. 4.122 and maps collections of terminal symbols
S ∈ Pterminal〈Ω, k〉 to interpretation trees T ∈ T ′

I〈Ω, k〉:

parse_list_structures : Pterminal〈Ω, k〉 → T ′
I〈Ω, k〉,

S 7→ expand_tree
(

(

{S} , ∅, S
)

, S, 2
)

(4.153)

Essentially, parse_list_structures (S) initiates the recursive expansion of a start-
tree T = ({S}, ∅, S), beginning at root-node S ∈ Pterminal〈Ω, k〉 with a minimal
list size of two elements. The resulting tree is guaranteed to be ∈ T ′

I〈Ω, k〉.

In detail we define the recursive expansion of trees T ∈ TI〈Ω, k〉 as follows:

11
expand_tree :
(

TI〈Ω, k〉 × PS〈Ω, k〉 × N0

)

⇀ TI〈Ω, k〉, (T, S,minListSize) 7→ T ′,

Require:
(

S ∈ leafs (T )
)

∧ (minListSize ≥ 2) ⊲ see: Alg. 10
1: T ′ ← reduce (T, S,minListSize) ⊲ see: Alg. 12
2: for all S′ ∈ children

(

T ′, S
)

do ⊲ see: Eq. 4.140
3: T ′ ← expand_tree

(

T ′, S′,minListSize
)

4: end for

5: return T ′

The core of expand_tree (T, S,minListSize), as defined in Alg. 11, are single
steps T ′ ← reduce (T, S,minListSize) as can be seen in line 1. For reasons of
simplicity, we decided to put the formal definition of such expansion steps into
a separate algorithm which can be found in Alg. 12.

In reduce (T, S,minListSize) we basically do the following: Firstly, we check
whether |S| > 1, since for a reduction we need at least two symbols. If that is
not the case then T remains unchanged (i. e., reduce (T, S,minListSize) = T ).
Otherwise we continue by setting up our helper data structure “Alignment-
Accumulator”, which was mentioned already in our introductory example (on
page 117). A complete formal definition of that “table”-structure can be found
on pages 124 to 127.

Once we have created and filled such an accumulator-instance we continue
with the main structure-detection loop, which basically operates as follows:
For each permutation (a0, . . . , a4) of discrete set Alignment (see: Eq. 4.154)
with a0 = UNALIGNED, we reduce S to a set of non-terminals Sreduction and
expand the interpretation tree to T ← add_child (T, S, Sreduction). Redundant
reduction sets Sreduction are rejected. See Alg. 13 for a detailed description of
that pairwise redundancy check.
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12
reduce :
(

TI〈Ω, k〉 × PS〈Ω, k〉 × N0

)

⇀ TI〈Ω, k〉, (T, S,minListSize) 7→ T ′,

Require:
(

S ∈ leafs (T )
)

∧ (minListSize ≥ 2) ⊲ see: Alg. 10
1: T ′ ← T
2: if |S| > 1 then

3: accu← create_accumulator (S) ⊲ see: Eq. 4.156
4: accu← fill_accumulator (accu) ⊲ see: Alg. 14
5: for all permutations (a0, . . . , an) of Alignment,
6: where a0 = UNALIGNED and n =

(

|Alignment| − 1
)

do

7:

(

Sreduction,
terminate

)

← detect_structures











SΣ

(

T ′
)

,
(a0, . . . , an) ,

accu,
minListSize











⊲ see: Alg. 21

8: if terminate = TRUE then

9: T ′ ← add_child
(

T ′, S, Sreduction

)

⊲ see: Eq. 4.142
10: return T ′

11: end if

12: isRedundant← FALSE
13: for all S′ ∈ children

(

T ′, S
)

do ⊲ see: Eq. 4.140
14: if redundant

(

Sreduction, S
′
)

= TRUE then ⊲ see: Alg. 13
15: isRedundant← TRUE
16: break

17: end if

18: end for

19: if isRedundant = FALSE then

20: T ′ ← add_child
(

T ′, S, Sreduction

)

⊲ see: Eq. 4.142
21: end if

22: end for

23: end if

24: return T ′

One integral part of Alg. 12, besides create_accumulator and fill_accumulator
in lines 3, 4 and (Sreduction, terminate)← detect_structures (. . .) in line 7, is the
redundancy check described from line 12 to line 18.

A given reduction set Sreduction is redundant if it is equivalent to at least one
reduction set from a previous run through the structure detection loop. That
is, if it is equivalent to at least one S′ ∈ children (T ′, S), with T ′ being the
partly extended interpretation tree T . Two symbol sets S, S′ ∈ PS〈Ω, k〉 are
regarded as being equivalent, if and only if (1) they have the same number of
elements (i. e., |S| =

∣

∣S′
∣

∣) and (2) for each s ∈ S there exists exactly one s′ ∈ S′

for which s.type = s′.type and s.child_ids = s′.child_ids.
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Reformulated into a pairwise redundancy check for symbol sets (S, S′):

13 redundant :
(

PS〈Ω, k〉 × PS〈Ω, k〉
)

→ {TRUE,FALSE} ,
(

S, S′
)

7→ r,

1: if |S| 6=
∣

∣S′
∣

∣ then

2: return FALSE
3: end if

4: for all s ∈ S do

5: shared← FALSE
6: for all s′ ∈ S′ do

7: if
(

s.type = s′.type
)

∧
(

s.child_ids = s′.child_ids
)

then

8: shared← TRUE
9: break

10: end if

11: end for

12: if shared = FALSE then

13: return FALSE
14: end if

15: end for

16: return TRUE

Alignment Accumulator Given the following two discrete sets . . .

F =











NO_CANDIDATE,
CANDIDATE,

STRUCTURE_ELEMENT











Alignment =



























UNALIGNED,
HORIZONTAL,

VERTICAL,
DIAGONAL0,
DIAGONAL1



























(4.154)
. . . we define the alignment “table”, which was mentioned in our introductory
example (on page 117), as . . .

AlignmentAccumulator〈Ω, k〉 =

{

(S, f)

∣

∣

∣

∣

∣

S ∈ PS〈Ω, k〉,
f : (S × Alignment)→ F

}

(4.155)

Quite obviously, AlignmentAccumulator〈Ω, k〉 is rather a map than simply a
table. Nevertheless, it may be easier to visualize if you think of it as a two-
dimensional table-like structure.

When instantiated, accu ∈ AlignmentAccumulator〈Ω, k〉 shall neither include
CANDIDATE- nor STRUCTURE_ELEMENT-entries. Consequently, for each
“cell” (s, a) ∈ (S ×Alignment) the value of f(s, a) must be NO_CANDIDATE.
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In order to ensure that, we introduce the following constructor function:

create_accumulator : PS〈Ω, k〉 → AlignmentAccumulator〈Ω, k〉, S 7→ (S, f) ,

f : (S × Alignment)→ {NO_CANDIDATE } (4.156)

A concrete example of usage can be found in Alg. 12 in line 3.

Adequate setter and getter operations for accessing single “cells” in such an
alignment “table” are defined in Eq. 4.157 and Eq. 4.158.

set :

(

AlignmentAccumulator〈Ω, k〉
× S〈Ω, k〉 × Alignment× F

)

→ AlignmentAccumulator〈Ω, k〉,

(

(S, f) , s, a, v
)

7→
(

S, f ′
)

,

f ′ : (S × Alignment)→ F, ∀(x, y) ∈ (S × Alignment) :

f ′(x, y) =

{

v , if (x = s) ∧ (y = a)

f(x, y) , else
(4.157)

get :

(

AlignmentAccumulator〈Ω, k〉
× S〈Ω, k〉 × Alignment

)

⇀ F,
(

(S, f) , s, a
)

7→ f(s, a), s ∈ S

(4.158)

In addition to these basic operations on AlignmentAccumulator〈Ω, k〉, we intro-
duce three more specific algorithms: (1) fill_accumulator (defined in Alg. 14);
(2) structure_candidates (Alg. 15) and (3) unassigned_symbols (which can be
found in Alg. 16).

fill_accumulator (accu) detects for each s ∈ accu.S (that is, for all “table rows”)
the pairwise alignments a of s with its potential neighbors s′ ∈ accu.S and
marks the respective “cells” (s, a) in accu with the flag CANDIDATE. A de-
tailed description of alignment detection can be found in Alg. 17.

14

fill_accumulator :

AlignmentAccumulator〈Ω, k〉 → AlignmentAccumulator〈Ω, k〉,

accu 7→ accu′,

1: accu′ ← accu
2: for all s ∈ accu′.S do

3: A← detect_alignment
(

s, accu′.S
)

⊲ see: Alg. 17
4: for all a ∈ A do

5: accu′ ← set
(

accu′, s, a,CANDIDATE
)

⊲ see: Eq. 4.157
6: end for

7: end for

8: return accu′
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Our second operation on AlignmentAccumulator〈Ω, k〉 accepts three arguments:
(1) the accu ∈ AlignmentAccumulator〈Ω, k〉 to operate on; (2) some permuta-
tion of alignments alignOrder = (a0, . . . , an) and (3) a selected align = aj for
any j ∈ {0, 1, . . . , n}.

Given these arguments, structure_candidates (accu, alignOrder, align) collects
all s ∈ accu.S for which . . .

get (accu, s, ai) 6= STRUCTURE_ELEMENT (for 0 ≤ i < j)
∧

get
(

accu, s, aj
)

6= NO_CANDIDATE

It herewith identifies all symbols ∈ accu.S which are candidates for aj but are
not marked as structure elements for preceding alignments a0 . . . aj−1.

15

structure_candidates :
(

AlignmentAccumulator〈Ω, k〉 × List〈Alignment〉 × Alignment
)

→ PS〈Ω, k〉,

(accu, alignOrder, align) 7→ Scandidates,

1: Scandidates ← ∅
2: for all s ∈ accu.S do

3: for i = 0 to
(

size (alignOrder)− 1
)

do ⊲ see: Eq. 4.93
4: ai ← get (alignOrder, i) ⊲ see: Eq. 4.94
5: if ai = align then

6: if get (accu, s, ai) 6= NO_CANDIDATE then ⊲ see: Eq. 4.158
7: accu← set (accu, s, ai,CANDIDATE) ⊲ see: Eq. 4.157
8: Scandidates ← Scandidates ∪ {s}
9: end if

10: break

11: end if

12: if get (accu, s, ai) = STRUCTURE_ELEMENT then ⊲ Eq. 4.158
13: break

14: end if

15: end for

16: end for

17: return Scandidates

Our third and last operation on AlignmentAccumulator〈Ω, k〉 identifies “unas-
signed” symbols. That is, it collects all symbols s ∈ accu.S which are not
marked as structure elements. To achieve that, unassigned_symbols (accu)
checks for all s ∈ accu.S if there is at least one a ∈ Alignment for which
get (accu, s, a) = STRUCTURE_ELEMENT and returns all symbols that do
not have such entries. In Alg. 16 we describe that in detail.

126



4.4. Parsers

16
unassigned_symbols :

AlignmentAccumulator〈Ω, k〉 → PS〈Ω, k〉, accu 7→ Sunassigned,

1: Sunassigned ← ∅
2: for all s ∈ accu.S do

3: isStructElement← FALSE
4: for all a ∈ Alignment do ⊲ Eq. 4.154
5: if get (accu, s, a) = STRUCTURE_ELEMENT then ⊲ Eq. 4.158
6: isStructElement← TRUE
7: break

8: end if

9: end for

10: if isStructElement = FALSE then

11: Sunassigned ← Sunassigned ∪ {s}
12: end if

13: end for

14: return Sunassigned

fill_accumulator, as defined in Alg. 14, requires in line 3 the detection of pair-
wise alignments of symbols s with their neighbors s′ ∈ S. This is realized by
detect_alignment (s, S) using the following procedure: In a first step all spatial
neighbors of s are identified. These are all symbols s′ ∈ S that are close enough
to have a spatial relation with s. For this we use N ← lookup_neighbors (s, S)
which is defined in Eq. 4.159. If there are no such objects (i. e., |N | = 0) then
we regard s as being UNALIGNED. Otherwise, we determine for all neighbors
s′ ∈ N the dominating pairwise alignment between s and s′. For this we use
detect_alignment (s, s′) which is described in detail in Alg. 18 – Alg. 20.

17 detect_alignment :
(

S〈Ω, k〉 × PS〈Ω, k〉
)

→ 2Alignment, (s, S) 7→ A,

1: A← ∅
2: N ← lookup_neighbors (s, S) ⊲ see: Eq. 4.159
3: if |N | = 0 then

4: A← {UNALIGNED}
5: else

6: for all s′ ∈ N do

7: (a, β)← detect_alignment
(

s, s′
)

⊲ see: Alg. 18 – Alg. 20
8: if a 6= ε then

9: A← A ∪ {a}
10: end if

11: end for

12: end if

13: return A
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Finding Spatial Neighbors Formally we define the lookup of neighboring
parser symbols as . . .

lookup_neighbors :
(

S〈Ω, k〉 × PS〈Ω, k〉
)

→ PS〈Ω, k〉,

(s, S) 7→
(

lookup
(

neighborhood_bounds (s) , S
)

\ {s}
)

(4.159)

The included lookup (neighborhood_bounds (s), S) makes use of the bounding
volume operation intersects (b0, b1) that was introduced alread with Alg. 4:

lookup :
(

Bounds〈k〉 × PS〈Ω, k〉
)

→ PS〈Ω, k〉, (b, S) 7→ S′ ⊆ S,

∀s ∈ S′ : intersects (b, s.bounds) = TRUE (4.160)

The exact definition of this search operation highly depends on how the parser
is implemented. One obvious possibility would be to build on bounding volume
hierarchies, such as QuadTrees. In fact, this is what we did in our implemen-
tation. However, for our theoretical model Eq. 4.160 is completely sufficient.

The search area b = neighborhood_bounds (s) that is used for lookup (b, S) in
Eq. 4.159 is calculated by three Bounds〈k〉-operations: scale from Eq. 4.82,
deltamin (Alg. 2) and deltamax (Alg. 1):

neighborhood_bounds : S〈Ω, k〉 → Bounds〈k〉,

s 7→ scale

(

s.bounds,

(

1

5
× deltamax (s.bounds) +

4

5
× deltamin (s.bounds)

)

)

(4.161)

Note, that the given offset . . .

(

1

5
× deltamax (s.bounds) +

4

5
× deltamin (s.bounds)

)

. . . that is used in Eq. 4.161 for scaling s.bounds, is crucial for the overall
structure recognition procedure. The reason for this is, that the given offset
essentially determines size and dimensions of neighborhood_bounds (s), which
in turn has significant impact on the detection of spatially related objects.

It is quite obvious, that using a fixed offset value, that does not take into
account individual object proportions, would too often result in search areas
that include the wrong neighbors. With “wrong” we mean, objects which were
not intented to have a spatial relation. Consequently, although being the easiest
this was not an option for us. At the other extreme, neighborhood_bounds (s)
that totally depend on the spatial environment of s (i. e., the context) would
certainly result in highly accurate selections of neighbors, but their calculation
would also be very time consuming. Thus this was not an option either.
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With Eq. 4.161 we decided on a middle course between accuracy and efficiency.
That is, search areas are dynamically adjusted to object size and proportions
but do not require analysis of spatial context. Tests have shown, that our def-
inition of neighborhood_bounds (s) allows for reasonable selection of neighbors.

Alignment Detection Pairwise alignment detection between symbols, as
required in Alg. 17 (line 7), is realized by detect_alignment (Alg. 18 – Alg. 20).
detect_alignment accepts a pair of parser symbols s0, s1 ∈ S〈Ω, k〉 and tries to
determine their dominating (or most apparent) alignment. Results are encoded
as tuples (a, β) with a ∈ (Alignment∪{ε}) and β ∈ {0.0, . . . , 1.0}. a represents
the detected alignment. a = ε means that a clear result could not be deter-
mined. The second tuple element β is a certainty value (ranging from zero to
one-hundred percent) that indicates how obvious alignment a is. Note, that
even though β ∈ {0.0, . . . , 1.0} it should not be confused with “Probability”.

Given two symbols s0, s1, we expect for our pairwise alignment detection, that
s0.bounds and s1.bounds are not nested inside each other. “Nesting” expresses
rather explicit and formal than implicit an informal object relations and thus
contradicts spatial hypertext’s implicit and informal nature (Sect. 1.2). For
this reason, we decided that detect_alignment (s0, s1) applied on nested symbols
shall result in (ε, 1.0). This way we exclude such relations from our overall struc-
ture detection procedure. In all other cases detect_alignment (s0, s1) continues
with some analysis of symmetry. In concrete terms, detect_alignment (s0, s1)
determines numerically how well s0 and s1 are aligned to x- and y-axis. This
requires the calculation of a numerical symmetry_indicator (see Eq. 4.162):

18
detect_alignment :
(

S〈Ω, k〉 × S〈Ω, k〉
)

→
(

(

Alignment ∪ {ε}
)

× {0.0, . . . , 1.0}
)

, (s0, s1) 7→ r,

1: if

(
(

contains (s0.bounds, s1.bounds) = TRUE
)

∨
(

contains (s1.bounds, s0.bounds) = TRUE
)

)

then ⊲ see: Alg. 3

2: return (ε, 1.0) ⊲ “Nesting” is explicit relation ⇒ /∈ Alignment
3: end if

4: ah← symmetry_indicator

(

minv (s0.bounds),maxv (s0.bounds) ,

minv (s1.bounds),maxv (s1.bounds)

)

5: av ← symmetry_indicator

(

minh (s0.bounds),maxh (s0.bounds) ,

minh (s1.bounds),maxh (s1.bounds)

)

. . .

Having calculated degrees of horizontal and vertical alignment ah and av, we
can do the same for diagonal alignment ad0, ad1. For this we follow two basic
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principles: (1) “If it is neither horizontal nor vertical then it must be diagonal”
and (2) “Two objects can never be aligned from top-left to bottom-right and
from top-right to bottom-left at the same time”.

Depending on the orientation of centroid (s0.bounds) and centroid (s1.bounds)
we either get ad0 = 0.0 and ad1 = (1.0− |ah− av|) or vice versa:

19 detect_alignment (s0, s1) – part II
. . .

6: ad0← 0.0
7: ad1← 0.0
8: (x0, y0)← centroid (s0.bounds) ⊲ see: Alg. 5
9: (x1, y1)← centroid (s1.bounds)

10: ∆x← (x0 − x1)
11: ∆y ← (y0 − y1)
12: if (∆x > 0 ∧∆y < 0) ∨ (∆x < 0 ∧∆y > 0) then

13: ad1←
(

1.0− |ah− av|
)

14: else if (∆x > 0 ∧∆y > 0) ∨ (∆x < 0 ∧∆y < 0) then

15: ad0←
(

1.0− |ah− av|
)

16: end if

. . .

After that, ah, av, ad0, and ad1 are normalized to guarantee that they sum
up to 1.0. Finally amax = max ({ah, av, ad0, ad1}) identifies the “winner”
alignment. If there are several “winners”, then horzontal and vertical alignment
are preferred over diagonal alignments:

20 detect_alignment (s0, s1) – part III
. . .

17: at← (ah+ av + ad0 + ad1) ⊲ make sure that . . .
18: ah←

(

ah/at
)

⊲ . . . ah, av, ad0, ad1 sum up to 1.0

19: av ←
(

av/at
)

20: ad0←
(

ad0/at
)

21: ad1←
(

ad1/at
)

22: amax← max
(

{ah, av, ad0, ad1}
)

⊲ detect “winner”-alignment
23: if amax = ah then

24: return (HORIZONTAL, amax)
25: else if amax = av then

26: return (VERTICAL, amax)
27: else if amax = ad0 then

28: return (DIAGONAL0, amax)
29: end if

30: return (DIAGONAL1, amax)
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An integral component of detect_alignment is the function symmetry_indicator
(see lines 4 – 5 in Alg. 18). Like our definition of neighborhood_bounds in
Eq. 4.161, also our definition of symmetry_indicator is a trade-off between
performance and efficiency, which has resulted from informal studio-tests.

symmetry_indicator maps real-valued quadruples (min0,max0,min1,max1) to
strength values ranging from 0.0 to 1.0. A value of 1.0 indicates that the
two sections described by min0,max0 and min1,max1 are perfectly symmet-
rical. A return value of 0.0, on the other hand, means that both sections
are disjunct (i. e., (max1 < min0) ∨ (min1 > max0)). A detailed definition of
symmetry_indicator is given in Eq. 4.162:

symmetry_indicator : R4 ⇀ {0.0, . . . , 1.0} ,

symmetry_indicator













min0,

max0,

min1,

max1













=























































0 , if

(

(max1 < min0)

∨ (min1 > max0)

)

−
2∆

d
+ 1 , else if

(

∆ < 1
4d
)

−
3∆

d
+

5

4
, else if

(

1
4d ≤ ∆ < 3

8d
)

−
∆

d
+

1

2
, else

∆ =

∣

∣

∣

∣

min0 + max0 −min1 −max1
2

∣

∣

∣

∣

d = max0 −min0 + max1 −min1

(min0,max0,min1,max1 ∈ R) , (max0 > min0) ∧ (max1 > min1) (4.162)

Structure Detection The algorithmic “heart” of parse_list_structures (. . .)
is defined as . . .

(

Sreduction,
terminate

)

← detect_structures











SΣ

(

T ′
)

,
(a0, . . . , an) ,

accu,
minListSize











. . . which can be found in Alg. 12 in line 7.

The algorithm behind this is described formally in Alg. 21 – Alg. 25.

detect_structures (S, alignOrder, accu,minListSize) creates pairs (S′, terminate),
with S′ being a collection of newly generated structure symbols (see: Eq. 4.132)
and terminate as a boolean control flag ∈ {TRUE,FALSE} which is exclusively
used in the context of reduce (Alg. 12). In a nutshell, S′ is the latest reduction
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of accu.S and the boolean flag terminate indicates whether to continue reducing
accu.S or not. For details on usage of terminate see Alg. 12, lines 8 – 21.

More specifically, in detect_structures (S, alignOrder, accu,minListSize) we run
sequentially through alignOrder = (a0, . . . , an) from a0 to an, determine for
each ai the respective structure_candidates (accu, alignOrder, ai) (see Alg. 15)
and try to combine found candidate symbols in disjunct structures with align-
ment ai. If ai = UNALIGNED then we create for each detected candidate
a new structure symbol of type UNALIGNED and update the accumulator
accordingly (i. e., we add STRUCTURE_ELEMENT-entries). All unaligned
structure symbols generated this way are collected in a set Sunaligned. This
first stage is described in detail in Alg. 21:

21

detect_structures :












PS〈Ω, k〉

× List〈Alignment〉

× AlignmentAccumulator〈Ω, k〉

× N0













⇀
(

PS〈Ω, k〉 × {TRUE,FALSE }
)

,

(S, alignOrder, accu,minListSize) 7→
(

S′, terminate
)

,

Require: (accu.S ⊆ S) ∧ (minListSize ≥ 2)
1: Sunaligned ← ∅
2: Slist ← ∅
3: for i = 0 to

(

size (alignOrder)− 1
)

do ⊲ Eq. 4.93
4: ai ← get (alignOrder, i) ⊲ Eq. 4.94
5: Scandidates ← structure_candidates (accu, alignOrder, ai) ⊲ Alg. 15
6: if ai = UNALIGNED then

7: for all s ∈ Scandidates do

8: accu← set (accu, s,UNALIGNED,STRUCTURE_ELEMENT )

9: s′ ← create_structure

(

(

S ∪ Sunaligned ∪ Slist

)

,
UNALIGNED, add (listε, s.id)

)

⊲ Alg. 8

10: Sunaligned ← Sunaligned ∪
{

s′
}

11: end for

12: else

. . .

If ai 6= UNALIGNED then we check whether there are enough candidates for
assembling lists with at least minListSize elements. If this is not the case,
then we can skip the current alignment ai and continue with the next one
from alignOrder instead. If, however, there are enough candidate symbols
then we try to combine them to lists with alignment ai. For this we use
detect_lists (Scandidates, ai,minListSize) which is described in detail in Alg. 26.
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For each list ∈ detect_lists (Scandidates, ai,minListSize) we then create a new
structure symbol, either of type HORIZONTAL_LIST, VERTICAL_LIST,
DIAGONAL_LIST0 or DIAGONAL_LIST1 (this depends on the current ai)
and for each list element we add a STRUCTURE_ELEMENT-entry to the ac-
cumulator. All list symbols created this way are collected in Slist. See Alg. 22
for a complete formal definition:

22 detect_structures (S, alignOrder, accu,minListSize) – part II
. . .

13: if |Scandidates| < minListSize then

14: continue

15: end if

16: for all l ∈ detect_lists (Scandidates, ai,minListSize) do ⊲ Alg. 26
17: elementIds← listε
18: for j = 0 to

(

size (l)− 1
)

do ⊲ Eq. 4.93
19: sj ← get (l, j) ⊲ Eq. 4.94
20: accu← set

(

accu, sj , ai,STRUCTURE_ELEMENT
)

21: elementIds← add
(

elementIds, sj .id
)

⊲ Eq. 4.92
22: end for

23: listType← HORIZONTAL_LIST
24: if ai = VERTICAL then

25: listType← VERTICAL_LIST
26: else if ai = DIAGONAL0 then

27: listType← DIAGONAL_LIST0
28: else if ai = DIAGONAL1 then

29: listType← DIAGONAL_LIST1
30: end if

31: s′ ← create_structure

(

(

S ∪ Sunaligned ∪ Slist

)

,
listType, elementIds

)

⊲ Alg. 8

32: Slist ← Slist ∪
{

s′
}

33: end for

34: end if

35: end for

. . .

Having detected at least one list (i. e., |Slist| > 0) we copy all remaining sym-
bols into our reduction set, that is Sresult = Sunaligned ∪ Slist. Thus, they can
be reused in another structure detection run. For this, we lookup all remain-
ing symbols from accu.S which were not marked as structure elements (see:
unassigned_symbols (accu) from Alg. 16). These symbols are then “cloned”
and added to Sresult which is finally returned in form of (Sresult,FALSE ).
With terminate = FALSE we signalize to continue reducing accu.S for other
alignOrders. The exact definition can be found in Alg. 23.
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23 detect_structures (S, alignOrder, accu,minListSize) – part III
. . .

36: if |Slist| > 0 then

37: Sresult ← Sunaligned ∪ Slist

38: for all s ∈ unassigned_symbols (accu) do ⊲ Alg. 16
39: s′ ← create_symbol

(

(S ∪ Sresult) , s.type, s.bounds, ε, add (listε, s.id)
)

40: Sresult ← Sresult ∪
{

s′
}

41: end for

42: return (Sresult,FALSE )
43: end if

. . .

Note, however, that this does not automatically mean that we quit our bottom-
up procedure when we cannot form lists (i. e., when |Slist| = 0). We rather
continue reducing unaligned and unassigned symbols until only a single start-
symbol is left. This way, we still get valid parse trees, even though there are no
lists. This requires adequate reduction rules as those in Alg. 24 and Alg. 25.

Alg. 24 handles the case of
∣

∣unassigned_symbols (accu)
∣

∣ =
∣

∣Sunaligned

∣

∣ = 1. In
this crucial case we manually perform a “dummy”-reduction to ε. That means,
we reduce both unaligned and unassigned symbol to a single start-symbol of
type ε and signalize terminate = TRUE:

24 detect_structures (S, alignOrder, accu,minListSize) – part IV
. . .

44: if
(

∣

∣Sunaligned

∣

∣ = 1
)

∧
(

∣

∣unassigned_symbols (accu)
∣

∣ = 1
)

then ⊲ Alg. 16
45: ids← listε
46: for all s ∈ Sunaligned do

47: ids← add
(

ids, get (s.child_ids, 0)
)

⊲ Eq. 4.92, Eq. 4.94
48: end for

49: for all s ∈ unassigned_symbols (accu) do ⊲ Alg. 16
50: ids← add (ids, s.id) ⊲ Eq. 4.92
51: end for

52: return
(

{

create_structure (S, ε, ids)
}

,TRUE
)

⊲ Alg. 8
53: end if

. . .

In all remaining cases we manually reduce unaligned symbols to a single parent
symbol of type UNALIGNED and unassigned symbols to a single non-terminal
with type ε. You could also say that we group unaligned symbols together under
the label UNALIGNED and unassigned symbols under ε. Both are combined in
Sresult and are finally returned together with terminate = TRUE. See Alg. 25.
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25 detect_structures (S, alignOrder, accu,minListSize) – part V
. . .

54: Sresult ← ∅
55: if

∣

∣Sunaligned

∣

∣ > 0 then

56: ids← listε
57: for all s ∈ Sunaligned do

58: ids← add
(

ids, get (s.child_ids, 0)
)

⊲ Eq. 4.92, Eq. 4.94
59: end for

60: Sresult ← Sresult ∪
{

create_structure (S,UNALIGNED, ids)
}

⊲ Alg. 8
61: end if

62: if
∣

∣unassigned_symbols (accu)
∣

∣ > 0 then ⊲ Alg. 16
63: ids← listε
64: for all s ∈ unassigned_symbols (accu) do ⊲ Alg. 16
65: ids← add (ids, s.id) ⊲ Eq. 4.92
66: end for

67: Sresult ← Sresult ∪
{

create_structure
(

(S ∪ Sresult) , ε, ids
)

}

⊲ Alg. 8
68: end if

69: return (Sresult,TRUE )
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List Detection The core list detection algorithm that is described in Alg. 26
requires an adequate data structure for representing lists of symbols. For this
we use the following derivative of List〈S〈Ω, k〉〉 (see Eq. 4.91 for a generic
definition of lists):

SymbolList〈Ω, k〉 ⊂ List〈S〈Ω, k〉〉 :

SymbolList〈Ω, k〉 =


















list

∣

∣

∣

∣

∣

∣

∣

∣

∣

list = (s0, s1, . . . , sn) ∈
(

List〈S〈Ω, k〉〉 \ {listε}
)

,
∄
{

si, sj
}

:
(

si 6= sj
)

∧
(

si.id = sj .id
)

,
0 ≤ i < j ≤ n,

n ∈ N0



















∪ {listε} (4.163)

What makes such lists (s0, s1, . . . , sn) ∈ SymbolList〈Ω, k〉 special is not only
the fact that they include only symbols s ∈ S〈Ω, k〉 as list elements, but also
that there may be no pair of symbols si, sj for which si.id = sj .id but si 6= sj .
In a nutshell, list elements with same ids must also have the same attributes.

Subsets of SymbolList〈Ω, k〉 are used as return values for our list detection
algorithm. detect_lists, as defined in Alg. 26, accepts a triple of arguments
(S, a,minListSize), with potential list elements S ∈ PS〈Ω, k〉, the required
list alignment a ∈ (Alignment \ {UNALIGNED }) and minListSize ∈ N0.
These three arguments are mapped to a (potentially empty) set of lists L ⊂
SymbolList〈Ω, k〉. Here it shall be ensured, that all detected lists ∈ L are not
empty and include at least minListSize elements. In order to achieve that,
detect_lists (S, a,minListSize) basically proceeds as follows:

In a first step all symbols s ∈ S get sorted in ascending order and according
to their lower horizontal, vertical or diagonal bounds. This depends on the
given alignment argument a. See Eq. 4.164 for a detailed description of this
sort operation.

In a second step, we run sequentially through that sorted list (s0, s1, . . . , sn)
from s0 to sn and check for each si which list ∈ L fits best. In concrete
terms, given that slast denotes the last element of a list candidate, we filter
out those lists from L for which, (1) si and slast have the same type (i. e.,
slast.type = si.type); (2) si and slast are close enough to have a spatial relation
(i. e., intersects (neighborhood_bounds (slast), si.bounds)) (see: Alg. 4, Eq. 4.161)
and (3) the pairwise alignment a′ between si and slast that is determined by
(a′, β)← detect_alignment (slast, si) fits the required alignment given by argu-
ment a (i. e., a′ = a).

From those list candidates that fulfill these three conditions we then select
the one with a maximal β. This “winner”-list gets extended by si. When no
“winner” can be found (for instance, because this was our first run and hence
L was still empty) then we extend L by a new list which includes only si.
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Having repeated that for each si from our sorted list (s0, s1, . . . , sn), we finally
remove all list candidates from L which include less than minListSize elements.
A detailed formal description is given in Alg. 26.

26

detect_lists :
(

PS〈Ω, k〉 ×
(

Alignment \ {UNALIGNED }
)

× N0

)

→ 2SymbolList〈Ω,k〉,

(S, a,minListSize) 7→ L,

Ensure: ∀l ∈ L :
(

empty (l) = FALSE
)

∧
(

size (l) ≥ minListSize
)

1: L← ∅
2: sortedSymbols← sort (S, a) ⊲ Eq. 4.164
3: for i = 0 to

(

size (sortedSymbols)− 1
)

do ⊲ Eq. 4.93
4: si ← get (sortedSymbols, i) ⊲ Eq. 4.94
5: γ ← 0.0
6: listwinner ← ε
7: for all listcandidate ∈ L do

8: slast ← last (listcandidate) ⊲ Eq. 4.97
9: if slast.type = si.type then

10: if intersects
(

neighborhood_bounds (slast) , si.bounds
)

then

11:
(

a′, β
)

← detect_alignment (slast, si) ⊲ Alg. 18
12: if

(

a′ = a
)

∧ (β > γ) then

13: γ ← β
14: listwinner ← listcandidate

15: end if

16: end if

17: end if

18: end for

19: if listwinner 6= ε then

20: L←
(

L ∪
{

add (listwinner, si)
}

)

\ {listwinner} ⊲ Eq. 4.92
21: else

22: L← L ∪
{

add (listε, si)
}

⊲ Eq. 4.92
23: end if

24: end for

25: for all listcandidate ∈ L do

26: if size (listcandidate) < minListSize then ⊲ Eq. 4.93
27: L← L \ {listcandidate}
28: end if

29: end for

30: return L

In line 2 Alg. 26 requires sorting of symbols by sortedSymbols ← sort (S, a).
sort (S, a) is supposed to sort S in ascending order using the comparator func-
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tion compare (s0, s1, a) which is described in Alg. 27. The exact definition of
sort highly depends on the selected sorting algorithm and hence on concrete
system implementation. For our theoretical model, however, it does not matter
what algorithm we choose. Therefore it is sufficient to define sort as follows:

sort :
(

PS〈Ω, k〉 ×
(

Alignment \ {UNALIGNED }
)

)

→ SymbolList〈Ω, k〉,

(S, a) 7→ l :

(

size (l) = |S|
)

∧





size(l)−1
⋃

i=0

{

get (l, i)
}



 = S

compare
(

get (l, i) , get (l, i+ 1) , a
)

∈ {LESS,EQUAL} ,

i ∈
{

0, 1, . . . ,
(

size (l)− 2
)

}

(4.164)

Depending on the given alignment a, comparator function compare (s0, s1, a)
selects for s0, s1 lower horizontal, vertical or diagonal bounds min0,min1 and
checks whether min0 is LESS than, GREATER than or EQUAL to min1:

27

compare :

(

S〈Ω, k〉 × S〈Ω, k〉
×
(

Alignment \ {UNALIGNED }
)

)

→











LESS,
EQUAL,

GREATER











, (s0, s1, a) 7→ r,

1: r ← EQUAL
2: if a = HORIZONTAL then

3: min0 ← minh (s0.bounds) ⊲ Eq. 4.77
4: min1 ← minh (s1.bounds)
5: else if a = VERTICAL then

6: min0 ← minv (s0.bounds) ⊲ Eq. 4.78
7: min1 ← minv (s1.bounds)
8: else if a = DIAGONAL0 then

9: min0 ← mind0 (s0.bounds) ⊲ Eq. 4.79
10: min1 ← mind0 (s1.bounds)
11: else if a = DIAGONAL1 then

12: min0 ← mind1 (s0.bounds) ⊲ Eq. 4.80
13: min1 ← mind1 (s1.bounds)
14: end if

15: if min0 < min1 then

16: r ← LESS
17: else if min0 > min1 then

18: r ← GREATER
19: end if

20: return r

138



4.4. Parsers

The following snapshots from diverse interpretation trees will give you an im-
pression of the power of the previously described list detection mechanism.
(Note, that these snapshots were chosen randomly)
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Spatial Parsing Algorithm – Stage 3 – Normalization

The last step in our three-stage spatial parsing algorithm, besides creating ter-
minal symbols (Alg. 9) and detecting list structures (Eq. 4.153), is normalizing
interpretation trees returned by parse_list_structures (create_terminals (. . .)).
For this we define . . .

normalize : T ′
I〈Ω, k〉 → I〈Ω〉

normalize (T ) is supposed to transform ingoing interpretation trees T ∈ T ′
I〈Ω, k〉

into weighted, “flat” graphs ∈ I〈Ω〉, as we defined them in Eq. 4.90. This map-
ping builds on the following considerations:

First, let us define simple Paths from root to leaf in interpretation trees T ′
I〈Ω, k〉

as elements of the following generic set:

TP〈Ω, k〉 =

{

P

∣

∣

∣

∣

∣

P ∈ T ′
I〈Ω, k〉,

∀v ∈ V (P ) : d+P (v) ∈ {0, 1}

}

⊂ T ′
I〈Ω, k〉 (4.165)

Thus, (simple) root-to-leaf paths in interpretation trees are interpretation trees
themselves.

In addition to operations that are defined on any T ∈ T ′
I〈Ω, k〉, such as leafs

(Eq. 4.139), children (Eq. 4.140), level (Eq. 4.141), . . . etc., we introduce two ad-
ditional operations for navigating paths P ∈ TP〈Ω, k〉: (1) has_next (Eq. 4.166)
and (2) next (Eq. 4.167).

has_next (P, S) takes a path P ∈ TP〈Ω, k〉 and a vertex S ∈ PS〈Ω, k〉 and
checks whether S has a successor on P (i. e., if children (P, S) 6= ∅). If this is
the case then TRUE is returned. Otherwise has_next (P, S) = FALSE. This
also includes the case that S /∈ V (P ). Thus, has_next (P, S) is totally defined:

has_next :
(

TP〈Ω, k〉 × PS〈Ω, k〉
)

→ {TRUE,FALSE } ,

has_next (P, S) =

{

TRUE , if children (P, S) 6= ∅

FALSE , else
(4.166)

The second required operation for iterating through paths P ∈ TP〈Ω, k〉 is a
single jump from one path-node to its successor. For this we use the function
next. next (P, S) accepts a path P ∈ TP〈Ω, k〉 and a vertex S ∈ PS〈Ω, k〉 and
returns the child (or rather the successor) of S in P . This is only defined if
children (P, S) 6= ∅. Thus, for navigating P we need both operations has_next
and next.

next :
(

TP〈Ω, k〉 × PS〈Ω, k〉
)

⇀ PS〈Ω, k〉,

(P, S) 7→ S′ ∈ children (P, S) , children (P, S) 6= ∅ (4.167)
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Additionally, let PT (T ) be a function, that can split trees T ∈ T ′
I〈Ω, k〉 up into

collections of root-to-leaf paths {P0, P1, . . . , Pn}, where n =
∣

∣leafs(T )
∣

∣− 1:

PT : T ′
I〈Ω, k〉 → 2TP〈Ω,k〉, T 7→

{

P0, P1, . . . , P(|leafs(T )|−1
)

}

,









(

|leafs(T )|−1
)

⋃

i=0

V (Pi)









= V (T ) ∧









(

|leafs(T )|−1
)

⋃

i=0

E(Pi)









= E(T )

(4.168)

From parse_list_structures (Eq. 4.153) we can conclude, that each . . .

{P0, P1, . . . , Pn} ∈ PT

(

T ′
I〈Ω, k〉

)

. . . encodes a set of alternative interpretations . . .

{I0, I1, . . . , In} ∈ 2(I〈Ω〉) ; (n ∈ N0)

Thus, there is a total mapping . . .

PT

(

T ′
I〈Ω, k〉

)

→ 2(I〈Ω〉) , PT (T ) 7→ IP
(

PT (T )
)

. . . where function IP is defined as:

IP : TP〈Ω, k〉 → I〈Ω〉, P 7→ I = (U,A,w) (4.169)

Here, U shall be the set of all information unit identifiers s.info_unit that can
be found in the root node of P . A is the set of all binary subsets of U :

U =





⋃

s∈r(P )

{s.info_unit}



 ; A =

(

U

2

)

(4.170)

The total weighting function w is defined as a binary relation:

w : A→ {ε, 0.0, . . . , 1.0} , w = Rw

(

P, r(P )
)

(4.171)

For this we introduce the recursive function Rw (P, S):

Rw(P, S) =















(

R′
w(P, S)

∪Rw

(

P,next(P, S)
)

)

, if has_next(P, S) = TRUE

R′
w(P, S) , else

(4.172)
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Illustrated with an example, if P is a simple path from root node r(P ) = S0

to leaf node Sn then Rw (P, r(P )) from Eq. 4.172 would result in:

Rw

(

P, r(P )
)

= R′
w (P, S0) ∪R′

w (P, S1) ∪ . . . ∪R′
w (P, Sn)

Thus, Rw (P, r(P )) simply reapplies R′
w (P, S) on all nodes from root to leaf

and calculates their union. The result is a binary relation that can be used as
weighting function w, as defined in Eq. 4.171.

In this context, it shall be noted that . . .





⋂

S∈V (P )

R′
w(P, S)



 = ∅; P ∈ TP〈Ω, k〉

R′
w (P, S) takes each s ∈ S and calculates for all pairwise combinations of

child symbols {child (P, s, i), child (P, s, j)} the relation R′′
w(P, S, s, i, j); which

is defined in Eq. 4.174. The union of all these binary relations forms the
function value of R′

w (P, S):

R′
w(P, S) =

⋃

s∈S







(child_count(s)−2)
⋃

i=0

(child_count(s)−1)
⋃

j=i+1

R′′
w(P, S, s, i, j)






(4.173)

The relation R′′
w (P, S, s, i, j) assigns values weight (s.type, level (P, S), i, j) to

unordered pairs {a.info_unit, b.info_unit}. Here, a is required to be a leaf node
beneath child (P, s, i) and b shall be a leaf node under child (P, s, j):

R′′
w(P, S, s, i, j) =


























{

a.info_unit,
b.info_unit

}

,weight







s.type,
level(P, S),

i, j















∣

∣

∣

∣

∣

∣

∣

∣

∣

a ∈ leafs
(

P, child(P, s, i)
)

∧
b ∈ leafs

(

P, child(P, s, j)
)



















(4.174)

Due to Eq. 4.171, weight (s.type, level (P, S), i, j), as we use it in Eq. 4.174,
has to provide function values ∈ {ε, 0.0, . . . , 1.0}. Only then R′′

w (P, S, s, i, j),
R′

w(P, S) and finally also Rw (P, S) form valid weighting relations. Parameters
that must be included in this calculation are: (1) the structure type s.type of a
parent symbol s; (2) the (structure-)level of node S in P (provided that s ∈ S)
and (3) child symbol indices i, j ∈ N0.
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In more detail, function weight looks as follows:

weight :
(

(

StructureType ∪ {ε}
)

× N0 × N0 × N0

)

⇀ {ε, 0.0, . . . , 1.0} ,







structType,
structLevel,

i, j






7→ v =



































weighttype (structType)

× weightlevel (structLevel)

× weightdistance (i, j)









, if structType 6= ε

ε , else
(4.175)

Provided that structType 6= ε we define weight (structType, structLevel, i, j) as
a product of three factors: (1) weighttype (Eq. 4.176); (2) weightlevel (Eq. 4.177)
and (3) weightdistance (Eq. 4.178).

weighttype maps structure types ∈ StructureType to weightings ∈ {0.0, . . . , 1.0}.
It herewith represents an indicator for the general strength of object-relations in
structures of certain types (such as horizontal, vertical lists etc.). Since function
weight from Eq. 4.175 and thus also weighttype is never used on root-node-
level, we do not need to provide a definition of weighttype (ATOM). Therefore
weighttype is partially defined:

weighttype : StructureType ⇀ {0.0, . . . , 1.0} ,

weighttype =



























(UNALIGNED, 0.0) ,
(HORIZONTAL_LIST, 1.0) ,

(VERTICAL_LIST, 1.0) ,
(DIAGONAL_LIST0, 1.0) ,
(DIAGONAL_LIST1, 1.0)



























(4.176)

In Eq. 4.176 we do not make any specific assumptions about the different
strengths of object-relationships in horizontal, vertical or diagonal lists. The
alignment of a list has no specific impact on the dependencies between its
elements. Therefore weighttype of a list is always 1.0. For structure type
UNALIGNED we use a weight of 0.0 instead, since unaligned objects are cer-
tainly not associated with each other.

The second weighting factor we use for quantifying the strength of object rela-
tions is weightlevel. Clearly it makes a significant difference whether two objects
have a direct spatial relation or not. It makes a difference whether two objects
are direct members of the same list or they rather lie in spatially separated
structures and are related on a higher level of abstraction only. Objects with a
direct spatial relation must have a stronger dependency than objects that are
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only associated indirectly. This gets reflected by the following formula:

weightlevel : N0 ⇀ {0.0, . . . , 1.0} , ∀x ∈ N+ :

weightlevel(x) =
1

2(x−1)
(4.177)

According to this definition, interpretation tree levels (or rather structure-
levels) x = 1, 2, 3, . . . , n get weighted as . . .

weightlevel(x) = 1,
1

2
,
1

4
,
1

8
, . . . ,

1

2(n−1)

As we are working with ordered sequences of objects (i. e., lists), the strength
of object relations is not only determined by structure type (Eq. 4.176) and
structure level (Eq. 4.177) but also by the distance between objects inside a
sorted structure. It is quite obvious, that consecutive list elements have a
stronger spatial relation than list elements that are spatially separated by a
sub-list. This is taken into consideration by the following weighting function:

weightdistance : (N0 × N0) ⇀ {0.0, . . . , 1.0} ,

(i, j) 7→ 2(i−j+1), j > i (4.178)

Here, arguments i and j represent positive indices ∈ N0 of two objects in a
sequentially ordered structure, where j > i. Using the formula above, two
consecutive structure elements (i. e., j − i = 1) get a weighting of 1.0, for
j − i = 2 we get 0.5, for j − i = 3 the weight will be 0.25 and so forth.

With all these definitions at hand it finally becomes possible to retrieve implic-
itly encoded interpretations {I0, I1, . . . , In} ⊂ I〈Ω〉 from interpretation trees
T ∈ T ′

I〈Ω, k〉. The only thing that remains to be done in order to realize the
desired function normalize : T ′

I〈Ω, k〉 → I〈Ω〉 is merging I0, I1, . . . , In together
to a single result interpretation ∈ I〈Ω〉. Since we cannot know in general which
of these interpretations to prefer we have rather decided on a maximal weight-
ing strategy than mixing I0, I1, . . . , In in specific proportions. A desirable side-
effect of taking over only maximal weightings into the final interpretation graph
is that smaller structures dissolve in bigger ones.

Based on these considerations we define normalize as:

normalize : T ′
I〈Ω, k〉 → I〈Ω〉, T 7→ I = (U,A,w),

U =





⋃

s∈r(T )

{s.info_unit}





A =
(

U

2

)

w = collect_weights
(

T, r(T )
)

(4.179)
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collect_weights (T, S) generalizes Rw (P, S) from Eq. 4.172 for usage on full
interpretation trees T ∈ T ′

I〈Ω, k〉. This is achieved by selecting only maximal
weightings for the final interpretation graph (see: max_weight from Eq. 4.180).

28

collect_weights :

(

T ′
I〈Ω, k〉 × PS〈Ω, k〉

)

⇀ 2

(

(

Ω

2

)

×{ε,0.0,...,1.0}

)

, (T, S) 7→ Rw

Require: S ∈ V (T )
1: R← ∅
2: for all S′ ∈ children(T, S) do ⊲ Eq. 4.140
3: if R = ∅ then

4: R← collect_weights
(

T, S′
)

5: else

6: Rmerge ← ∅
7: for all (a, v) ∈ collect_weights

(

T, S′
)

do

8: Rmerge ← Rmerge ∪

{

(

a,max_weight
(

R(a), v
)

)

}

⊲ Eq. 4.180

9: end for

10: R← Rmerge

11: end if

12: end for

13: R′ ← ∅
14: for all s ∈ S do

15: for i = 0 to
(

child_count(s)− 2
)

do ⊲ Eq. 4.129
16: for j = i+ 1 to

(

child_count(s)− 1
)

do

17: v ← ε
18: if s.type = UNALIGNED then

19: v ← 0.0
20: else if s.type 6= ε then

21: v ← 2(i−j−level(T,S)+2) ⊲ Eq. 4.141
22: end if

23: for all s0 ∈ leafs
(

T, child(T, s, i)
)

do ⊲ Alg. 10, Eq. 4.152
24: for all s1 ∈ leafs

(

T, child(T, s, j)
)

do

25: R′ ← R′ ∪















{

s0.info_unit,
s1.info_unit

}

, v















26: end for

27: end for

28: end for

29: end for

30: end for

31: return R ∪R′
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max_weight :
(

{ε, 0.0, . . . , 1.0} × {ε, 0.0, . . . , 1.0}
)

→ {ε, 0.0, . . . , 1.0} ,

(w0, w1) 7→ wmax =























ε , if (w0 = ε) ∧ (w1 = ε)

w0 , else if (w0 6= ε) ∧ (w1 = ε)

w1 , else if (w0 = ε) ∧ (w1 6= ε)

max (w0, w1) , else
(4.180)

For a better understanding, let us finally apply normalize on our introductory
list-detection example from pages 115 – 121.

The resulting interpretation tree we got on page 121 was defined as . . .

T =



















S3, S4,
S1, S2,
S0











,

{

(S0, S1) , (S1, S3) ,
(S0, S2) , (S2, S4)

}

, S0









∈ T ′
I〈N0, 16〉

. . . where the root set of terminal symbols S0 was given as . . .

S0 =



















(0,ATOM, b0, 0, listε) ,
(1,ATOM, b1, 1, listε) ,
(2,ATOM, b2, 2, listε) ,
(3,ATOM, b3, 3, listε)



















∈ Pterminal〈N0, 16〉

When we calculate now normalize (T ), using our definitions from Eq. 4.179,
then we get a triple (U,A,w) ∈ I〈Ω〉 with . . .

U =





⋃

s∈S0

{s.info_unit}



 = {0, 1, 2, 3}

A =
(

U

2

)

=











{0, 1} , {0, 2} , {0, 3} ,
{1, 2} , {1, 3} ,
{2, 3}











. . . and a weighting function w which is calculated by . . .

w = collect_weights (T, S0)

Essentially, collect_weights (T, S0), as we defined it in Alg. 28, generates two
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binary relations, which are . . .

collect_weights (T, S1) =

{

(

{0, 3}, 1.0
)

,
(

{1, 2}, 1.0
)

}

∪ collect_weights (T, S3)

=

{

(

{0, 3}, 1.0
)

,
(

{1, 2}, 1.0
)

}

∪



















(

{0, 1}, 0.5
)

,
(

{0, 2}, 0.5
)

,
(

{3, 1}, 0.5
)

,
(

{3, 2}, 0.5
)



















=



































(

{0, 1}, 0.5
)

,
(

{0, 2}, 0.5
)

,
(

{3, 1}, 0.5
)

,
(

{3, 2}, 0.5
)

,
(

{0, 3}, 1.0
)

,
(

{1, 2}, 1.0
)



































. . . and . . .

collect_weights (T, S2) =

{

(

{0, 1}, 1.0
)

,
(

{3, 2}, 1.0
)

}

∪ collect_weights (T, S4)

=

{

(

{0, 1}, 1.0
)

,
(

{3, 2}, 1.0
)

}

∪



















(

{0, 3}, 0.5
)

,
(

{0, 2}, 0.5
)

,
(

{1, 3}, 0.5
)

,
(

{1, 2}, 0.5
)



















=



































(

{0, 3}, 0.5
)

,
(

{0, 2}, 0.5
)

,
(

{1, 3}, 0.5
)

,
(

{1, 2}, 0.5
)

,
(

{0, 1}, 1.0
)

,
(

{3, 2}, 1.0
)



































Both alternatives are merged together choosing maximal weightings:

collect_weights (T, S0) =



































(

{0, 3},max_weight (1.0, 0.5)
)

,
(

{0, 2},max_weight (0.5, 0.5)
)

,
(

{1, 3},max_weight (0.5, 0.5)
)

,
(

{1, 2},max_weight (1.0, 0.5)
)

,
(

{0, 1},max_weight (0.5, 1.0)
)

,
(

{3, 2},max_weight (0.5, 1.0)
)



































=



































(

{0, 3}, 1.0
)

,
(

{0, 2}, 0.5
)

,
(

{1, 3}, 0.5
)

,
(

{1, 2}, 1.0
)

,
(

{0, 1}, 1.0
)

,
(

{3, 2}, 1.0
)



































Illustrated as an overlay on Fig. 4.19, where weightings are drawn as black lines
with varying brightness, thickness and opacity:
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4.4.3 Visual Parser

Dynamic parser systems, as we defined them in Sect. 4.4.1 (Eq. 4.106), ana-
lyze the strength of pairwise object relations and generate output in form of
weighted graphs ∈ I〈Ω〉. To achieve that parsers focus on different structural
aspects. A good example for this could be seen in previous Sect. 4.4.2 where we
discussed a spatial parsing algorithm. However, spatial dependency is not the
only crucial factor for successful structure detection. As pointed out already
in Sect. 1.4 (on page 8) visual structure is not only determined by position,
alignment etc. but also by visual (dis-)similarities. Parsers that take this into
account in their analysis are called “visual parsers”.

Let ΦV be a set of event categories that indicate when to perform a full visual
parse. For this see our definitions of parse in Eq. 4.110 and Φ in Eq. 4.107.

ΦV =



















CREATE,
MODIFY_SPATIAL,
MODIFY_VISUAL,

DELETE



















(4.181)

In direct comparison, ΦV extends ΦS from Eq. 4.119 by an additional flag
MODIFY_VISUAL. Thus, a full reparse is triggered not only when new infor-
mation units were created or deleted or when spatial properties got modified
(e. g., shape, proportions, dimensions etc.) but also when purely visual at-
tributes have changed, such as color.

Provided that our visual parsing algorithm is defined by a function parseV :
(I〈Ω〉 × E〈Ω〉 × D〈Ω, k〉) → I〈Ω〉, we can use ΦV from Eq. 4.181 to partially
refine our generic parser model from Eq. 4.106 into a parameterized model for
visual parsers AV〈Ω, n, α, β〉:

AV〈Ω, n, α, β〉 := AP〈Ω, n, α, β,ΦV, parseV〉

TV〈Ω, n, α, β〉 := TP〈Ω, n, α, β,ΦV, parseV〉

GV〈Ω, n, α, β〉 := GP〈Ω, n, α, β,ΦV, parseV〉 (4.182)

When using the same default configuration as given in Eq. 4.121 we get:

AV := AV〈N0, 16, 0.95, 0.05〉

TV := TV〈N0, 16, 0.95, 0.05〉

GV := GV〈N0, 16, 0.95, 0.05〉 (4.183)

Following the blockdiagram in Fig. 4.15 visual parsers AV can be illustrated as
seen in Fig. 4.26.
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Figure 4.26: Blockdiagram of visual parser model AV as defined in Eq. 4.183

parseV follows the definition of ϕ from Eq. 4.107 and maps triples (I, e,D) to
interpretation graphs I ′. Here, I, I ′ ∈ I〈Ω〉, e ∈ E〈Ω〉 and D ∈ D〈Ω, k〉.

Unlike the previously defined spatial parser (see: Eq. 4.122) our visual parser
includes all three arguments I, e and D into the structure analysis process.
That is, parseV utilizes not only spatial and visual properties D, but also the
preceding edit event e and the latest visual parse result I:

parseV :
(

I〈Ω〉 × E〈Ω〉 ×D〈Ω, k〉
)

→ I〈Ω〉,
(

(U,A,w), e,D
)

7→
(

U ′, A′, w′
)

(4.184)

When an ingoing event e indicates that new information units e.objects were
added to the workspace (i. e., e.operation = CREATE) then U has to be ex-
tended to U ′ = (U ∪ e.objects). If, however, e.objects have been removed (i. e.,
e.operation = DELETE) then U must be reduced to U ′ = (U \e.objects). In all
other cases, such as MODIFY_SPATIAL, MODIFY_VISUAL etc., U remains
unchanged, that is U ′ = U . Expressed as piecewise function:

U ′ =















U ∪ e.objects , if e.operation = CREATE

U \ e.objects , if e.operation = DELETE

U , else

(4.185)

Both cases e.operation = CREATE and e.operation = DELETE require not
only to adjust U , as described in Eq. 4.185, but also to update A, which builds
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on U . For this we use the following rules: If e.operation = CREATE then the
previous A must be extended by new associations {u, u′} /∈ A for which either
u, u′ ∈ e.objects or u ∈ U ∧ u′ ∈ e.objects holds. In the opposite case, that is
e.operation = DELETE, we remove all {u, u′} from A where u or u′ are not
included in U ′ anymore, which makes them redundant. Otherwise A′ = A:

A′ =











































A ∪

(

e.objects

2

)

∪











{

u, u′
}

∣

∣

∣

∣

∣

∣

∣

u ∈ U
∧

u′ ∈ e.objects











, if e.operation = CREATE

(

U ′

2

)

, if e.operation = DELETE

A , else
(4.186)

Note, that in Eq. 4.185 and Eq. 4.186 we check only whether e.operation =
CREATE or e.operation = DELETE. Flags, such as MODIFY_SPATIAL,
MODIFY_VISUAL etc., are not included explicitely. The advantage of this
is, that we can easily extend E〈Ω〉 from Eq. 4.71 by additional (and possibly
more specific) operation flags without the need to adjust our visual parsing
algorithm. This is especially beneficial in application development.

The last element in result triples (U ′, A′, w′) ∈ I〈Ω〉, besides U ′ (Eq. 4.185)
and A′ (Eq. 4.186), is the weighting function w′:

w′ : A′ → {ε, 0.0, . . . , 1.0} , ∀a ∈ A′ :

w′(a) =

{

detect_visual_relation(a,D) , if a ∈ Arecalc

w(a) , else
(4.187)

(Re-)calculation of weights w′(a) = detect_visual_relation (a,D) is only re-
quired for associations a ∈ Arecalc. These are defined as follows:

Arecalc =

(

e.objects

2

)

∪











{

u, u′
}

∣

∣

∣

∣

∣

∣

∣

u ∈ e.objects
∧

u′ ∈
(

U \ e.objects
)











(4.188)

According to this, (re-)calculation happens only for (1) associations with at
least one modified object and (2) for associations which are completely new .
In case of DELETE, however, weights w(a) do not need to be updated, since
for no remaining a ∈ A′ : a ∈ Arecalc. Therefore ∀a ∈ A′ : w′(a) = w(a); which
results in w′ ⊂ w.

Note that if e is an empty event (i. e., e = (∅, ε) ∈ E〈Ω〉 ; see Eq. 4.71), then we
set U ′ = U , A′ = A and thus also w′ = w. Consequently, parseV (I, (∅, ε), D)
returns an unchanged I = (U,A,w). When combined with fading of interpre-
tations (see Sect. 4.4.1; pages 93–94) this allows to simulate passing of discrete
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time and hence continuous aging of structure; even without active involvement
of human users. That is, theoretically empty events e = (∅, ε) could be used as
fixed system clock. Currently we do not make use of this option.

The most crucial part of our visual parsing algorithm is detection of visual
object relations. In the current version of our algorithm the strength of visual
relations equates with the degree of visual similarity. This means, how strong
the visual relation between two objects is, is only determined by how optically
similar they are (regarding color, shape, proportions etc.). Other notions of
visual relation are not considered in our visual parser.

In order to detect the strength of visual connections between information units,
detect_visual_relation ({u, u′}, (V, p)) takes two units u, u′ ∈ Ω and a set of
properties (V, p) ∈ D〈Ω, k〉 and calculates detect_visual_similarity (p(u), p(u′)).
This requires that u, u′ ∈ V . Otherwise ε is returned:

detect_visual_relation :

(

(

Ω

2

)

×D〈Ω, k〉

)

→ {ε, 0.0, . . . , 1.0} ,

(

{

u, u′
}

, (V, p)
)

7→ y =















detect_visual_similarity

(

p(u),
p
(

u′
)

)

, if u, u′ ∈ V

ε , else
(4.189)

We express the degree of visual similarity between two information units as
numerical values ∈ {0.0, . . . , 1.0}. A value of 1.0 indicates that both objects
are optically identical, whereas 0.0 means that they have nothing in common
visually. Informal laboratory tests resulted in the following weighted formula:

detect_visual_similarity :
(

InfoUnitData〈k〉
)2
→ {0.0, . . . , 1.0} ,

(d0, d1) 7→

(

α× wp × wd + β × ws + γ × wc

α+ β + γ

)

,

α = 8, β = 2, γ = 4 (4.190)

wp is a numerical indicator for how similar proportions of d0.bounds and d1.bounds
are. Here, proportions are defined by width and height from Eq. 4.81.

wp = proportion_similarity











width (d0.bounds) ,
height (d0.bounds) ,
width (d1.bounds) ,
height (d1.bounds)











(4.191)
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The respective formula is:

proportion_similarity (w0, h0, w1, h1) = 1−
|w0h1 − w1h0|

w0h1 + w1h0
(4.192)

As an example, when two objects have exactly the same proportions and hence
w0 = w1 = w and h0 = h1 = h then proportion_similarity (w, h,w, h) gets:

(

1−
|wh− wh|

wh+ wh

)

=

(

1−
0

2wh

)

= (1− 0) = 1.0

In a similar fashion we determine wd which is a numerical indicator for how
similar two objects are regarding their dimensions (or sizes):

wd = dimension_similarity











width (d0.bounds) ,
height (d0.bounds) ,
width (d1.bounds) ,
height (d1.bounds)











(4.193)

For this calculation we approximate object dimensions by rectangular surface
areas width × height (Eq. 4.81). Hence, the respective formula looks slightly
different than the one in Eq. 4.192:

dimension_similarity (w0, h0, w1, h1) = 1−
|w0h0 − w1h1|

w0h0 + w1h1
(4.194)

Illustrated with an example, when two objects have the same approximated
surface areas (i. e., w0h0 = w1h1) then dimension_similarity (w0, h0, w1, h1)
will result in:

(

1−
|w0h0 − w1h1|

w0h0 + w1h1

)

=

(

1−
0

w0h0 + w1h1

)

= (1− 0) = 1.0

Another factor that can play an essential role for calculating visual similarities
is the similarity of geometrical shapes ws:

ws = shape_similarity (d0.shape, d1.shape) (4.195)

As only rectangular and ellipsoidal shapes are used (see: Eq. 4.84) we restrict
our definition of shape_similarity on equality checks for shapes. In concrete
terms, if two shapes s0, s1 ∈ Shape are equal then shape_similarity (s0, s1)
returns a similarity value of 1.0. Otherwise shape_similarity (s0, s1) = 0.0:

shape_similarity : (Shape× Shape)→ {0.0, . . . , 1.0} , ∀s0, s1 ∈ Shape :

shape_similarity (s0, s1) =

{

1 , if s0 = s1

0 , else
(4.196)
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The last factor included in detect_visual_similarity (Eq. 4.190), besides wp

(Eq. 4.191), wd(Eq. 4.193) and ws(Eq. 4.195), is wc, where c stands for color:

wc = color_similarity (d0.color, d1.color) (4.197)

After having conducted several informal experiments with different color spaces
and weighted formulas we finally developed the following piecewise definition
of color_similarity:

color_similarity : (Color× Color)→ {0.0, . . . , 1.0} , ∀c0, c1 ∈ Color :

color_similarity (c0, c1) =






















1 , if 0 ≤ ∆E (c0, c1) < 5
(

−
1

95
×∆E (c0, c1) +

100

95

)

, if 5 ≤ ∆E (c0, c1) < 100

0 , else

(4.198)

∆E (c0, c1), as we use it in Eq. 4.198, is defined as the Euclidean distance be-
tween two colors Lab (c0) ,Lab (c1) in multidimensional L*a*b* color space [38].
L*a*b* colors were designed to approximate human vision and are therefore
perfectly suited for detecting perceivable color similarities. Since there are no
simple formulas for conversion between Color (i. e., RGB) and L*a*b* we do
not provide a full definition of Lab here. We rather limit ourselves to . . .

∆E (c0, c1) =
∥

∥Lab (c0)− Lab (c1)
∥

∥

2

Lab : Color→









{0, . . . , 100}

× {−170, . . . , 100}

× {−100, . . . , 150}









, (r, g, b) 7→ (L∗, a∗, b∗) (4.199)

As an example, let us assume that there are two RGB-colors given:

c0 = (255, 255, 255) and c1 = (0, 0, 0)

Transformed into L*a*b* c0 becomes Lab (c0) = (100, 0, 0) and c1 turns into
Lab (c1) = (0, 0, 0). The Euclidean distance between Lab (c0) and Lab (c1) is . . .

∆E (c0, c1) =
∥

∥(100, 0, 0)− (0, 0, 0)
∥

∥

2
= 100

∆E = 100 falls in section number three in Eq. 4.198. Thus the color_similarity
of black and white is 0.0. For our purposes this makes perfect sense.

Finally, let us illustrate the effects of combining these similarity values in an
example. Here we follow our definition from Eq. 4.190.
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Figure 4.27: Visual parse result illustrated as a network of objects with varying size,
proportions, shape and fill color connected by black lines with varying brightness, thickness
and opacity. The more similar two objects are the thicker the connecting line and the stronger
the line color.

Let us assume that eight visual objects are given, seven of type ELLIPSE and
one of type RECTANGLE. Elliptical objects shall be arranged in a bow shape
gradually morphing from left to right from small, red, horizontal ellipses to big
green circles. In contrast to this, object number eight shall be a narrow upright
rectangle with light blue fill color. The visual interpretation graph we would
get back by applying parseV on these objects is illustrated in Fig. 4.27.

In Fig. 4.27 weightings are drawn as black lines with varying brightness, thick-
ness and opacity. The bigger the weight the thicker the line and the stronger
the color. Weights of 1.0, for instance, would be drawn as opaque black bars.
Smaller weights are illustrated as thin lines with weak color. This has the op-
tical effect of vanishing edges when weights converge towards zero. This also
explains why there are no visible connections between the blue rectangle in the
middle and the elliptical objects arranged around: Our visual parser recognizes
that rectangle and ellipses have nothing in common visually.

4.4.4 Content Parser

Normally spatial parsers do not deal with content of information units. They
rather infer object relations from spatial and visual properties than from the
(non-)verbal information included in hypertext nodes (Sect. 1.3). This, how-
ever, does not necessarily mean that it makes no sense or that there is no need
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for evaluating an information unit’s payload. In fact, this was considered al-
ready in one of the first publications on spatial parsing, in [12]. But it has
never been implemented.

Even though analysing contentual relationships contradicts the basic operating
principle of spatial parsers, it still can be useful for resolving ambiguities. The
importance of disambiguation for successful spatial parsing was pointed out al-
ready in Chapter 3. In order to make use of content to support disambiguation,
and hence structure detection, we need an appropriate way to combine visual
and contentual analysis. Interpretation systems, as described in Sect. 4.2, to-
gether with their linked parsers (Sect. 4.2.4) are ideally suited for this purpose.
All that needs to be done, is to introduce an additional parsing component
which is able to detect contentual instead of spatial or visual relations. Such
a “content parser” is then coupled with spatial and visual parser by weighted
merging, as described in Sect. 4.2.4.

Except for ΦC and the weighting formula for object relations, content parsers
correspond to visual parsers from Sect. 4.4.3. Therefore Eq. 4.203 to Eq. 4.208
are almost identical to our previous definitions from Eq. 4.184 to Eq. 4.189.

Provided that content relations shall be detected only when new objects were
created, when the content of information units has changed or when objects
got deleted . . .

ΦC =











CREATE,
MODIFY_CONTENT,

DELETE











(4.200)

. . . and assuming, analogous to Eq. 4.120 and Eq. 4.182, that our content pars-
ing algorithm is defined by a function parseC : (I〈Ω〉×E〈Ω〉×D〈Ω, k〉)→ I〈Ω〉
we can partially refine Eq. 4.106 into a content parser model AC〈Ω, n, α, β〉:

AC〈Ω, n, α, β〉 := AP〈Ω, n, α, β,ΦC, parseC〉

TC〈Ω, n, α, β〉 := TP〈Ω, n, α, β,ΦC, parseC〉

GC〈Ω, n, α, β〉 := GP〈Ω, n, α, β,ΦC, parseC〉 (4.201)

When applying the same default model parameters as we used in Eq. 4.121 and
Eq. 4.183 we get:

AC := AC〈N0, 16, 0.95, 0.05〉

TC := TC〈N0, 16, 0.95, 0.05〉

GC := GC〈N0, 16, 0.95, 0.05〉 (4.202)

Illustrated as a blockdiagram, system components AC, TC and GC become
what can be seen in Fig. 4.28.
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Figure 4.28: Blockdiagram of content parser model AC as defined in Eq. 4.202

Just like parseV in Eq. 4.184, also parseC maps triples (I, e,D) to interpreta-
tions I ′ and therefore matches the definition of ϕ from Eq. 4.107:

parseC :
(

I〈Ω〉 × E〈Ω〉 ×D〈Ω, k〉
)

→ I〈Ω〉,
(

(U,A,w), e,D
)

7→
(

U ′, A′, w′
)

(4.203)

With Eq. 4.204 we ensure that the resulting interpretation graph (U ′, A′, w′)
always includes the latest collection of information units (or rather their iden-
tifiers ∈ Ω):

U ′ =















U ∪ e.objects , if e.operation = CREATE

U \ e.objects , if e.operation = DELETE

U , else

(4.204)

Eq. 4.205 keeps A′ consistent with U ′:

A′ =











































A ∪

(

e.objects

2

)

∪











{

u, u′
}

∣

∣

∣

∣

∣

∣

∣

u ∈ U
∧

u′ ∈ e.objects











, if e.operation = CREATE

(

U ′

2

)

, if e.operation = DELETE

A , else
(4.205)
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Apparently, both mappings from U to U ′ (Eq. 4.204) and from A to A′ (Eq. 4.205)
are identical to those defined in Eq. 4.185 and Eq. 4.186.

The same applies to the mapping of w to w′. Also w′ together with the included
set Arecalc can be found again in Eq. 4.187 and Eq. 4.188. The only difference
between w′ of the visual parser and the content parser’s w′ lies in the function
that is used for detecting object relations, now called detect_content_relation:

w′ : A′ → {ε, 0.0, . . . , 1.0} , ∀a ∈ A′ :

w′(a) =

{

detect_content_relation(a,D) , if a ∈ Arecalc

w(a) , else
(4.206)

Arecalc =

(

e.objects

2

)

∪











{

u, u′
}

∣

∣

∣

∣

∣

∣

∣

u ∈ e.objects
∧

u′ ∈
(

U \ e.objects
)











(4.207)

Just like the strength of visual relations equated with the degree of visual
similarity (in Eq. 4.189) also contentual relationships shall depend only on
content-related proximity. In concrete terms, only the similarity of content
should determine how strong the relation between two information units is.
Thus, when two carriers of information include exactly the same content they
must have a stronger connection than objects with completely different infor-
mation payload. Other notions of contentual relation are not considered for
our parsing algorithm.

In Sect. 4.1.4 we specified to use string-based content (i. e., text) in our pro-
totypical spatial hypermedia system. According to Eq. 4.87 in Sect. 4.2.2 and
Eq. 4.103 in Sect. 4.3 this is available via d.text, for any d ∈ InfoUnitData〈k〉.

In order to detect the strength of contentual relationships between two carriers
of information u, u′, detect_content_relation ({u, u′}, (V, p)) accepts informa-
tion units u, u′ ∈ Ω and their assigned properties (V, p) ∈ D〈Ω, k〉 and calcu-
lates the degree of topic related similarity between p(u).text and p (u′).text using
detect_topic_similarity (p(u).text, p (u′).text). Like the previous calculation of
detect_visual_similarity (p(u), p(u′)) in Eq. 4.189 this requires that u, u′ ∈ V .
Otherwise ε is used as return value:

detect_content_relation :

(

(

Ω

2

)

×D〈Ω, k〉

)

→ {ε, 0.0, . . . , 1.0} ,

(

{

u, u′
}

, (V, p)
)

7→ y =















detect_topic_similarity

(

p(u).text,
p
(

u′
)

.text

)

, if u, u′ ∈ V

ε , else
(4.208)
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What really sets the content parser apart from the visual parser is the pairwise
detection of thematic similarities, defined by detect_topic_similarity.

The approach we have chosen for inferring topic-related similarities builds on
probabilistic inference and information theory. In detail, generative topic mod-
els are used for computing topic distributions over content and divergence func-
tions calculate how close such distributions come to each other. The model
we have selected for statistical inference is the Latent Dirichlet Allocation
(LDA) [39]. For measuring the difference, or rather divergence, between topic
distributions we use the well-known Kullback Leibler (KL) divergence [40].

With both tools at hand, we compute topic distributions for u and u′ . . .

θ0 = topic_distribution
(

p(u).text
)

θ1 = topic_distribution
(

p(u′).text
)

. . . use them as input for a symmetrized KL (since original KL is asymmetric)

KLsymmetric (θ0, θ1) =
1

2

(

KL (θ0, θ1) + KL (θ1, θ0)
)

(4.209)

. . . and finally we map the result (which is ≥ 0) to value range ]0, 1]:

e−KLsymmetric(θ0,θ1) = e−
1
2 (KL(θ0,θ1)+KL(θ1,θ0))

Note, that this value converges towards zero for an increasing divergence.

This gives us a numerical indicator for topic distribution similarity and hence
an indicator for similarity of text-based content. Thus we can define:

detect_topic_similarity : (String× String)→ {0.0, . . . , 1.0} ,

(s0, s1) 7→ e
− 1

2

(

KL((θ0,θ1)+KL(θ1,θ0)
)

,
θ0 = topic_distribution (s0)
θ1 = topic_distribution (s1)

(4.210)

In a nutshell, our content parser takes a set of information units with text-based
content (i. e., documents) as input, creates a thematic profile for each document,
measures the pairwise degree of topic-related similarities between them and
finally delivers that result in form of a complete, undirected, weighted graph,
where weights assigned to edges indicate the strength of thematic relationships.
A weight of 0.0 refers to “documents have nothing in common” whereas a value
of 1.0 means that “with respect to covered topics both documents are identical”.

Initial tests suggest, that the content parser’s performance strongly depends on
settings used for LDA model estimation and inference. We assume that quality
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of parser output is mainly determined by (1) quality and quantity of training
corpus; (2) number of sampling iterations and (3) number of topics. From this
we conclude, that there is no default configuration which can always provide us
with reasonable parse results. Consequently, in order to use the content parser
in a productive system it must be tailored to individual user-requirements.

4.4.5 Temporal Parser

In Chapter 3 we identified three categories of structures that cannot be detected
properly by conventional spatial parsers: (1) ambiguous structures (Sect. 3.1);
(2) destroyed structures (Sect. 3.2) and (3) temporal structures (Sect. 3.3).

For solving the “destroyed structures problem” from Sect. 3.2 we suggested in
Sect. 4.4.1 to extend our generic parser model by some short-term memory.
For this see our considerations on the subject “fading” on pages 93–94.

For the detection of ambiguous (Sect. 3.1) and temporal structures (Sect. 3.3),
however, it is not sufficient to simply extend existing parser models by addi-
tional temporal parsing functionality. Instead we need a separate parsing sys-
tem with a different system architecture than the one described in Sect. 4.4.1.
We need a parser which can process temporal dependencies, a Temporal Parser.

Like spatial and visual parser, also temporal parsers measure the strength of re-
lationships between information objects. What differentiates such new parsing
systems from their spatial and visual counterparts is, that they do not operate
in geometrical 2d-space or in color space, but in time. Temporal parsers do not
parse a canvas or a workspace. They rather analyze streams of edit events in or-
der to detect how strongly related objects are. In doing so, however, they do not
search for pre-defined activity patterns. Just like our spatial and visual parser,
also temporal parsers do not perform pattern matching. Since there is no one
natural order in which people create spatial hypertext, it is simply not possible
to predict user behaviour. We therefore cannot specify default-activities which
were universally valid (such as, for instance, constructor or destructor patterns
for lists, tables etc.). Thus, we must limit ourselves to temporal heuristics. In
a nutshell, our algorithm design was driven by the following simple rule:

Pairs of objects frequently modified at short time intervals have a stronger tem-
poral connection than objects touched infrequently or in long time intervals.

Following this principle it becomes possible to recognize temporal dependencies
between information objects, even without considering knowledge about system
users or context of application. A complete formal definition of our temporal
parsing algorithm can be found on the following pages 160–168. An example
is presented on pages 168–176.
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��  

��  

                                           Temporal Parser

normalize

push

update_temporal_relations ��+1 

��  

Figure 4.29: temporal parsers are dynamic systems determined by three core functions:
push (Eq. 4.213), update_temporal_relations (Eq. 4.214) and normalize (Eq. 4.230)

Our temporal parser transforms ingoing sequences of events ek ∈ E〈Ω〉 (Eq. 4.71)
into outgoing sequences of interpretations Ik ∈ I〈Ω〉 (Eq. 4.90):

 �0 , �1,… , ���  Temporal Parser  �0 , �1 ,… , ���  

As illustrated in Fig. 4.29 the core of such dynamic systems is determined by
three functions: (1) push (Eq. 4.213); (2) update_temporal_relations (Eq. 4.214)
and (3) normalize (Eq. 4.230).

In a nutshell, push adds ingoing events ek ∈ E〈Ω〉 to an internal buffer, from
which update_temporal_relations infers temporal dependencies that are finally
brought into form Ik ∈ I〈Ω〉 by normalize.

The buffers used for this are defined by the following set of event tuples:

B〈Ω,∆k〉 =











(e∆k, . . . , e1, e0)

∣

∣

∣

∣

∣

∣

∣

ek ∈ E〈Ω〉,
k = 0, 1, . . . ,∆k,

∆k ∈ N0











= (E〈Ω〉)∆k+1 (4.211)

In simple terms B〈Ω,∆k〉 can be understood as the set of all non-empty buffers
of length ∆k+1 whose elements are ∈ E〈Ω〉. Mathematically this corresponds
to the (∆k+1)-ary cartesian product (E〈Ω〉)∆k+1. Buffers (e∆k, . . . , e1, e0) that
include only empty events ek = (∅, ε) (for k = 0, 1, . . . ,∆k) can be identified
by the following subset of B〈Ω,∆k〉:

Bε〈∆k〉 =











(e∆k, . . . , e1, e0)

∣

∣

∣

∣

∣

∣

∣

ek = (∅, ε),
k = 0, 1, . . . ,∆k,

∆k ∈ N0











⊂ B〈Ω,∆k〉 (4.212)
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The reason why we explicitly separate these empty buffers Bε〈∆k〉 from their
superset B〈Ω,∆k〉 is, that we will later on use them as default settings. For
the following definition of push 〈Ω,∆k〉, however, only B〈Ω,∆k〉 is relevant.

push 〈Ω,∆k〉 accepts an event buffer (e∆k, . . . , e1, e0) ∈ B〈Ω,∆k〉 and an ingo-
ing event e ∈ E〈Ω〉 and maps both to a new buffer (e′∆k, . . . , e

′
1, e) ∈ B〈Ω,∆k〉,

with e′k = ek−1, for k = 1, 2, . . . ,∆k:

push 〈Ω,∆k〉 : (B〈Ω,∆k〉 × E〈Ω〉)→ B〈Ω,∆k〉,
(

(e∆k, . . . , e1, e0), e
)

7→
(

e′∆k, . . . , e
′
1, e
)

,

e′k = ek−1, k = 1, 2, . . . ,∆k (4.213)

In a nutshell, push 〈Ω,∆k〉 performs a left-shift. That is, we insert a new
element at the right end of of the event tuple and remove one from the left.
Hence, the buffer length remains unchanged. This way push 〈Ω,∆k〉 turns
simple event tuples (e∆k, . . . , e1, e0) into ring buffers of capacity ∆k + 1.

Such buffers are processed by update_temporal_relations 〈Ω,∆k, α〉 (Eq. 4.214).

update_temporal_relations (J,B) accepts two arguments: J ∈ I〈Ω,R+
0 〉 and

B ∈ B〈Ω,∆k〉. J is an interpretation graph with weightings ∈ R+
0 . Note, that

this should not be confused with the parser’s final result interpretation (which is
∈ I〈Ω, {ε, 0.0, . . . , 1.0}〉 instead). J is rather meant to be an internal structure
that is used to keep track of how frequently pairs of objects are modified. We
will see afterwards how that works in detail. The second argument B shall be
the latest event buffer generated by push 〈Ω,∆k〉. That is, we expect B to be
an event tuple (e∆k, . . . , e1, e0) ∈ B〈Ω,∆k〉 with e0 being the latest edit event.
We define update_temporal_relations 〈Ω,∆k, α〉 as follows:

update_temporal_relations 〈Ω,∆k, α〉 :
(

I〈Ω,R+
0 〉 ×B〈Ω,∆k〉

)

→ I〈Ω,R+
0 〉,

(J,B) 7→ trim
(

add_weights(J,B)
)

(4.214)

To put it briefly, what happens in Eq. 4.214 is, that we infer the latest temporal
weightings from buffer B, add them to the weights in J (via add_weights (J,B))
and finally cut the resulting values down in order to prevent them from becom-
ing arbitrarily large. The latter is achieved by trim which is defined as . . .

trim : I〈Ω,R+
0 〉 → I〈Ω,R+

0 〉, I = (U,A,w) 7→ I ′ =
(

U,A,w′
)

,

w′ : A→ R+
0 , ∀a ∈ A :

w′(a) =







w(a)− w+
min(I) + 1.0 , if

(

w+
min(I) > 1.0

)

∧
(

w(a) > 0.0
)

w(a) , else
(4.215)
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In short, when the smallest positive weight in I has exceeded a threshold of 1.0
(i. e., w+

min(I) > 1.0) then trim (I) reduces all w(a) > 0.0 by (w+
min(I)− 1.0).

The smallest positive weight w(a) in (U,A,w) ∈ I〈Ω,R+
0 〉 can be identified by:

w+
min : I〈Ω,R+

0 〉 → R+
0 ,

w+
min

(

(U,A,w)
)

=







min
(

w (A) \ {0.0}
)

, if
(

w (A) \ {0.0}
)

6= ∅

0.0 , else
(4.216)

The second operation our definition of update_temporal_relations 〈Ω,∆k, α〉
builds on, is add_weights 〈Ω,∆k, α〉. add_weights (J,B) takes an interpreta-
tion graph J = (U,A,w) ∈ I〈Ω,R+

0 〉, analyses the temporal dependencies
arising from a given event buffer B ∈ B〈Ω,∆k〉 and generates a new graph
(U ′, A′, w′) ∈ I〈Ω,R+

0 〉 with (possibly) increased temporal weightings:

add_weights 〈Ω,∆k, α〉 :
(

I〈Ω,R+
0 〉 ×B〈Ω,∆k〉

)

→ I〈Ω,R+
0 〉,

(

(U,A,w), (e∆k, . . . , e1, e0)
)

7→
(

U ′, A′, w′
)

(4.217)

Provided that e0 represents the latest edit event, we define U ′ as . . .

U ′ =















U ∪ e0.objects , if e0.operation = CREATE

U \ e0.objects , if e0.operation = DELETE

U , else

(4.218)

With this definition we ensure, that graphs (U ′, A′, w′) ∈ I〈Ω,R+
0 〉 that were

generated by add_weights 〈Ω,∆k, α〉 always include the latest collection of in-
formation units U ′. Since graphs ∈ I〈Ω,R+

0 〉 are required to be complete, any
modification of U must be accompanied by the following update of A:

A′ =











































A ∪

(

e0.objects

2

)

∪











{

u, u′
}

∣

∣

∣

∣

∣

∣

∣

u ∈ U
∧

u′ ∈ e0.objects











, if e0.operation
=CREATE

(

U ′

2

) , if e0.operation
=DELETE

A , else

(4.219)

Apparently, aside from the fact that both U ′ and A′ depend on the latest event
buffer entry e0, their definitions are identical to Eq. 4.185 and Eq. 4.186 or
Eq. 4.204 and Eq. 4.205 respectively.
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This is not the case for w′. Unlike U ′ and A′ the definition of w′ differs funda-
mentally from Eq. 4.187 and Eq. 4.206, not least because of a different target
set R+

0 but also because of different semantics. In contrary to Eq. 4.187 and
Eq. 4.206 the weighting function w′, as we define it here, assigns to associations
a ∈ A′ absolute rather than relative values. More precisely, temporal weight-
ings w′(a) are rather counters for how frequently pairs of objects a = {u, u′}
were modified than relative strength values ∈ {0.0, . . . , 1.0}. Relative values
are first generated by function normalize which will be described afterwards on
page 166 (Eq. 4.230).

We define w′ as follows:

w′ : A′ → R+
0 , ∀a ∈ A′ :

w′(a) =



























































w(a) , if







(e0.operation = DELETE)
∨

(e0.operation = CREATE ∧ a ∈ A)







∆w(a) , if









(e0.operation = CREATE)
∧

(

a ∈
(

A′ \A
)

)









w(a) + ∆w(a) , else

(4.220)

In Eq. 4.220 we map associations a ∈ A′ either to w(a), ∆w(a) or w(a)+∆w(a).
Which term we choose depends on the value of e0.operation and whether a ∈ A.
There are three specific cases:

In case of e0.operation = CREATE (when A′ ⊇ A) an explicit distinction
should be made between new associations a ∈ (A′ \ A) and a ∈ A. New
associations a ∈ (A′ \ A) do not have an assigned value w(a) since w is only
defined on A. This is why we “initialize” a with w′(a) = ∆w(a). If, otherwise,
a ∈ A then assigned weights remain unchanged, that is w′(a) = w(a). The
reason for this is, that the creation of new objects should not have a direct
impact on relations between objects that already existed.

The same applies in case of e0.operation = DELETE. When objects were
removed, and hence A′ ⊆ A, weights of remaining associations a ∈ A′ should
not change. Therefore, ∀a ∈ A′ : w′(a) = w(a) which results in w′ ⊆ w.

In all other cases, when U ′ = U and thus also A′ = A, temporal weightings
w(a) get increased by ∆w(a), more precisely: ∀a ∈ A′ : w′(a) = w(a)+∆w(a).
This has the effect of strengthening temporal connections.
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We define this weighting delta ∆w(a) as . . .

∆w(a) =

{

∆w′(a) , a ∈ Def
(

∆w′
)

0 , else
(4.221)

Essentially, ∆w′(a) assigns to each association a = {u, u′} for which we can
find at least one unordered pair of events {e0, ek} (0 ≤ k ≤ ∆k) in the event
buffer, with u ∈ e0.objects and u′ ∈ ek.objects, a weight inferred from the
temporal distance between e0 and ek (that is, from k). We will see afterwards
how such weightings are calculated. For all other associations the weighting
delta becomes zero, hence ∆w(a) = 0.

We define ∆w′ as a binary relation R∆w that assigns weighting deltas ∈ R+
0 to

associations a ∈ ΣA∆
(∆k) (see Eq. 4.228):

∆w′ :
(

ΣA∆
(∆k)

)

→ R+
0 , ∆w′ = R∆w (4.222)

For assembling R∆w we determine for each event buffer entry ek (for k = 0
to k = ∆k) the latest temporal connections between e0.objects and ek.objects,
collect them in binary relations R′

∆w(k) and finally calculate . . .

R′
∆w(0) ∪R′

∆w(1) ∪ . . . ∪R′
∆w (∆k)

Hence, R∆w can be defined as:

R∆w =

∆k
⋃

k=0

(

R′
∆w(k)

)

(4.223)

Such binary relations R′
∆w(k) assign to all a ∈ A′

∆(k) (see Eq. 4.226) positive
real-valued weights; hence A′

∆(k) → R+
0 . The weighting formula used for this

depends on two parameters α and k. It is defined as:

2−αk (4.224)

Here, α is a real-valued tuning parameter that determines how temporal weights
evolve for an increasing k ≥ 0. With this determining factor it can be controlled
whether object events occurring in long time intervals get more (α < 0), less
(α > 0) or the same weight (α = 0) as events happening at short time intervals.
Here we refer to events in discrete time. That is, our temporal weightings are
determined by logical order only. The time that really ellapsed between pairs
of events is not taken into consideration. This is intended to avoid temporal
over-interpretation.
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Thus, when we go back from “present time” (k = 0) to the earliest event the
temporal parser can “remember” (k = ∆k) our weighting formula will turn
discrete time steps k = 0, 1, 2, . . . ,∆k into weighting deltas:

1,
1

2α
,

1

22α
, . . . ,

1

2∆kα
(for any α ∈ R)

Binary relations formed by R′
∆w(k) assign such weighting deltas 2−αk to all

a ∈ A′
∆(k) (see Eq. 4.226). Thus, they can be defined as:

R′
∆w(k) =

⋃

a∈A′

∆
(k)

{(

a, 2−αk
)}

(4.225)

A′
∆(k) determines all associations a = {u, u′} between objects u ∈ e0.objects

and u′ ∈ ek.objects (i. e., a ∈ A∆(k)) for which there is no more recent event ej
in the event buffer (with j < k) where u′ ∈ ej .objects (i. e., a /∈ ΣA∆

(k − 1)):

A′
∆(k) =











a

∣

∣

∣

∣

∣

∣

∣

a ∈ A∆(k)
∧

a /∈ ΣA∆
(k − 1)











=
(

A∆(k) \ ΣA∆
(k − 1)

)

⊆ A∆(k) (4.226)

With A∆(k) we identify all {u, u′} between objects u that are affected by the
latest event in the event buffer (i. e., u ∈ e0.objects) and objects u′ for which
an event occurred k discrete time steps in the past (i. e., u′ ∈ ek.objects):

A∆(k) =



























{

u, u′
}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u ∈ e0.objects
∧

u′ ∈ ek.objects
∧

u 6= u′



























(4.227)

When we generalize A∆(k) from Eq. 4.227 for full ranges of discrete time steps
0 ≤ k ≤ n so that A∆(0) ∪A∆(1) ∪ . . . ∪A∆(n) then we get for n ≤ ∆k:

ΣA∆
(n) =























n
⋃

k=0

A∆(k)



 , n ≥ 0

∅ , else

(4.228)

Eq. 4.222 to Eq. 4.228 allow to simplify our original definition of ∆w(a) from
Eq. 4.221 to:

∆w(a) =
∆k
∑

k=0

(

∣

∣

∣
{a} ∩

(

A∆(k) \ ΣA∆
(k − 1)

)

∣

∣

∣
× 2−αk

)

(4.229)
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Expressed in simple terms, update_temporal_relations 〈Ω,∆k, α〉, as we defined
it in Eq. 4.214, counts how frequently pairs of objects {u, u′} are modified and
stores these values in a complete graph ∈ I〈Ω,R+

0 〉.

Even though the temporal parser does not build on the generic parser model
we defined in Sect. 4.4.1, it still has to be compatible with our parser definition
from Sect. 4.2.4. Otherwise, it would not be possible to integrate it into our
prototype system. Consequently, the temporal parser must accept (parts of)
ingoing edit steps (e,D) ∈ (E〈Ω〉 ×D〈Ω, k〉) (see Eq. 4.71; Eq. 4.85) and has
to generate temporal interpretations I ∈ I〈Ω〉 (Eq. 4.90) as output. The first
condition is met by our definition of push 〈Ω,∆k〉 in Eq. 4.213. The second one
is guaranteed to be satisfied by the following definition of normalize:

normalize (I) accepts interpretation graphs I ∈ I〈Ω,R+
0 〉, as generated by

update_temporal_relations 〈Ω,∆k, α〉, transforms included temporal weight-
ings (or rather frequency values) into relative strength values ∈ {0.0, . . . , 1.0}
and provides that result in form of an interpretation I ′ ∈ I〈Ω〉:

normalize : I〈Ω,R+
0 〉 → I〈Ω〉, (U,A,w) 7→

(

U,A,w′
)

,

w′ : A→ {0.0 . . . 1.0} , ∀a ∈ A :

w′(a) =















w(a)

max
(

w (A)
) , if max

(

w (A)
)

> 0

0 , else

(4.230)

The rationale behind this weight transformation is, that temporal dependen-
cies are something relative. This means, unlike spatial, visual and content
parsing, where it is (theoretically) sufficient to view pairs of objects in isola-
tion, temporal parsing cannot be performed without considering the context
(i. e. the relations between all objects in U). Only when we know which (of
all) u, u′ ∈ U were touched most frequently we can infer reasonable strength
values ∈ {0.0 . . . 1.0} for all pairs of objects. This is why in Eq. 4.230 we map
max (w(A)) to 1.0 and w(a) < max (w(A)) to weightings < 1.0.

Provided that push 〈Ω,∆k〉 (Eq. 4.213), update_temporal_relations 〈Ω,∆k, α〉
(Eq. 4.214) and normalize (Eq. 4.230) are sequentially connected, sharing the
same event buffer B ∈ B〈Ω,∆k〉 and frequency graph J ∈ I〈Ω,R+

0 〉, we can un-
derstand temporal parsers as dynamic systems, that accept ingoing sequences
of events ek ∈ E〈Ω〉 and generate (depending on latest buffer entries in B and
collected weights in J) outgoing sequences of interpretations Ik ∈ I〈Ω〉. As
with spatial parser (Eq. 4.120), visual parser (Eq. 4.182) and content parser
(Eq. 4.201) also such temporal parsing systems can be described using deter-
ministic automata. Such a model with initial state (B, Iε), for B ∈ Bε〈∆k〉
(Eq. 4.212), is given in the following Eq. 4.231. For a definition of the empty
interpretation Iε see Eq. 4.89.
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AT 〈Ω,∆k, α〉 =



















ST 〈Ω,∆k〉,
ET 〈Ω〉,
OT 〈Ω〉,

TT 〈Ω,∆k, α〉,
GT 〈Ω,∆k, α〉,

sinit〈∆k〉



















,∆k ∈ N0, α ∈ R

ST 〈Ω,∆k〉 = B〈Ω,∆k〉 × I〈Ω,R+
0 〉

ET 〈Ω〉 = E〈Ω〉

OT 〈Ω〉 = I〈Ω〉

TT 〈Ω,∆k, α〉 :
(

ST 〈Ω,∆k〉 × ET 〈Ω〉
)

→ ST 〈Ω,∆k〉,
(

(B, J) , e
)

7→
(

B′, J ′
)

,

B′ = push 〈Ω,∆k〉 (B, e)

J ′ = update_temporal_relations 〈Ω,∆k, α〉
(

J,B′
)

GT 〈Ω,∆k, α〉 :
(

ST 〈Ω,∆k〉 × ET 〈Ω〉
)

→ OT 〈Ω〉,
(

(B, J) , e
)

7→ I,

I = normalize
(

J ′
)

,
(

B′, J ′
)

= TT 〈Ω,∆k, α〉
(

(B, J) , e
)

sinit〈∆k〉 = (B, Iε) ∈ ST 〈Ω,∆k〉, B ∈ Bε〈∆k〉 (4.231)

Illustrated as a block diagram:��  

��  

                                                      Temporal Parser

 ��  
 ��  

 ��  

�ܤ �ܬ 1+�ܤ   1+�ܬ 

normalize

push

update_temporal_relations
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We can conclusively summarize the behaviour of temporal parsers as follows:

Temporal parsers AT 〈Ω,∆k, α〉, as they are defined by Eq. 4.231, accept ingoing
sequences of edit events E(0 . . . ke),

E (0 . . . ke) =
(

e0, e1, . . . , eke

)

,

ek ∈ ET 〈Ω〉, k = 0, 1, . . . , ke

Driven by E(0 . . . ke) they pass through states S(0 . . . ke + 1),

S (0 . . . ke + 1) =
(

s0, s1, . . . , ske+1

)

=

(

(

B0

J0

)

,
(

B1

J1

)

, . . . ,
(

Bke+1

Jke+1

)

)

,

s0 = sinit〈∆k〉

sk+1 = TT 〈Ω,∆k, α〉 (sk, ek) , k = 0, 1, . . . , ke

Sequences of interpretations I(0 . . . ke) are provided as output:

I (0 . . . ke) =
(

I0, I1, . . . , Ike

)

,

Ik = GT 〈Ω,∆k, α〉 (sk, ek) , k = 0, 1, . . . , ke

For a better understanding of Eq. 4.231, let us finally go through an example.

As with spatial and visual parser, default parameter settings have emerged also
from our practical experience with the temporal parser. Those settings allow
us to refine the generic temporal parser model from Eq. 4.231 as follows:

AT := AT〈N0, 6, 0.5〉

TT := TT〈N0, 6, 0.5〉

GT := GT〈N0, 6, 0.5〉 (4.232)

However, for the sake of simplicity, we do not use this configuration for the
following demonstration. In order to simplify calculation and thus to keep
mathematical expressions as short as possible we rather set . . .

Ω = N0 ; ∆k = 3 ; α = 1.0

Hence, for our sample run the temporal parser becomes . . .

AT〈N0, 3, 1.0〉

In brief, this means that (1) information units are identified by integers ≥ 0;
(2) the parser keeps a maximum of ∆k + 1 = 4 edit events in “memory”
(Eq. 4.211) and (3) pairs of events {e0, ek} get weighted with 2−k (see Eq. 4.224).
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According to Eq. 4.231 the initial state s0 of AT〈N0, 3, 1.0〉 becomes:

s0 =

(

B0

J0

)

= sinit〈3〉 =





(

(

∅, ε
)

,
(

∅, ε
)

,
(

∅, ε
)

,
(

∅, ε
)

)

(

∅, ∅, ∅
)





So we start out with two components, an event buffer B0 with capacity 4 that
includes only empty events . . .

B0 =
(

(

∅, ε
)

,
(

∅, ε
)

,
(

∅, ε
)

,
(

∅, ε
)

)

∈ Bε〈3〉

. . . and an empty frequency graph J0:

J0 = Iε =
(

∅, ∅, ∅
)

∈ I〈N0,R
+
0 〉

Let us now assume the following scenario: Three rectangular information units
are generated in sequential steps one after the other. For the sake of simplicity,
we number them consecutively as 0, 1, 2. Position, alignment, color etc. are of
no importance in this example. When all three rectangles exist the shape of
objects 1 und 2 shall change from RECTANGLE to ELLIPSE (that is, both
objects are modified spatially; for details on this see Eq. 4.101 and Eq. 4.65).
Finally object 1 is deleted. This simple five-stage editing process can be ap-
proximately described with the following sequence of events:

E (0 . . . 4) = (e0, e1, e2, e3, e4) =















(

{0} ,CREATE
)

,
(

{1} ,CREATE
)

,
(

{2} ,CREATE
)

,
(

{1, 2} ,MODIFY_SPATIAL
)

,
(

{1} ,DELETE
)















Let us now demonstrate how AT〈N0, 3, 1.0〉 reacts to this ingoing sequence of
events. We begin by generating the first rectangular information unit 0 . . .

. . . which is represented symbolically by e0 = ({0},CREATE ).

As we know already, single temporal parser runs always take place in three
sequential steps: (1) buffering the latest input event ek: Bk+1 = push (Bk, ek);
(2) updating frequency graph Jk: Jk+1 = update_temporal_relations (Jk, Bk+1)
and (3) transforming Jk+1 into Ik ∈ I〈Ω〉: Ik = normalize (Jk+1).
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In our example, the first two steps (buffering e0 and updating J0) result in:

B1 = push (B0, e0) =
(

(

∅, ε
)

,
(

∅, ε
)

,
(

∅, ε
)

,
(

{0} ,CREATE
)

)

J1 = update_temporal_relations (J0, B1) =
(

{0} , ∅, ∅
)

Therefore, driven by e0 = ({0},CREATE ), the temporal parser AT〈N0, 3, 1.0〉
switches from it’s initial state . . .

(

B0

J0

)

=





(

(

∅, ε
)

,
(

∅, ε
)

,
(

∅, ε
)

,
(

∅, ε
)

)

(

∅, ∅, ∅
)





. . . to a first successor state:

(

B1

J1

)

=





(

(

∅, ε
)

,
(

∅, ε
)

,
(

∅, ε
)

,
(

{0} ,CREATE
)

)

(

{0} , ∅, ∅
)





Normalizing J1 = ({0}, ∅, ∅) results in an identical I0:

I0 = normalize (J1) =
(

{0} , ∅, ∅
)

From U(I0) = {0} it becomes obvious, that all the temporal parser has recog-
nized so far is a single information unit labeled with 0. Weighted associations
are not included yet in I0; thus A(I0) = ∅.

This changes with the second edit step when we introduce another rectangular
information unit 1 and hence complete the first pair of objects {0, 1}. Let us
assume the following updated workspace:

When we add the creation event for object 1 (i. e., e1 = ({1},CREATE )) to
our event buffer B1 we get (similar to the first edit step e0):

B2 = push (B1, e1) =
(

(

∅, ε
)

,
(

∅, ε
)

,
(

{0} ,CREATE
)

,
(

{1} ,CREATE
)

)
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Thus, the first two cells of B2 are now assigned with non-empty events. Using
this updated event buffer, previous frequency graph J1 = ({0}, ∅, ∅) becomes:

J2 = update_temporal_relations (J1, B2)

=

(

{0, 1} ,
{

{0, 1}
}

,

{

(

{0, 1} ,∆w
(

{0, 1}
)

)

}

)

=

(

{0, 1} ,
{

{0, 1}
}

,

{

(

{0, 1} , 2−1
)

}

)

=

(

{0, 1} ,
{

{0, 1}
}

,
{

(

{0, 1} , 0.5
)

}

)

Here, the temporal parser has assigned the first pair of objects a weighting:
{0, 1} is initialized with ∆w ({0, 1}). Since 1 ∈ e0.objects, 0 ∈ e1.objects and
α = 1.0 this initial temporal weight becomes 2−αk = 2−k = 2−1 = 0.5. For
details see Eq. 4.220 and Eq. 4.229.

Therefore, AT〈N0, 3, 1.0〉 switches from . . .

(

B1

J1

)

=





(

(

∅, ε
)

,
(

∅, ε
)

,
(

∅, ε
)

,
(

{0} ,CREATE
)

)

(

{0} , ∅, ∅
)





. . . to consecutive state:

(

B2

J2

)

=









(

(

∅, ε
)

,
(

∅, ε
)

,
(

{0} ,CREATE
)

,
(

{1} ,CREATE
)

)

(

{0, 1} ,
{

{0, 1}
}

,
{

(

{0, 1} , 0.5
)

}

)









Because ∆w ({0, 1}) = 0.5 is the first and only weight in J2, it is necessarily
also the biggest one. Therefore, the strongest temporal connection in J2 exists
between object 0 und object 1. Consequently normalize transforms J2 into the
following I1:

I1 = normalize (J2) =

(

{0, 1} ,
{

{0, 1}
}

,
{

(

{0, 1} , 1.0
)

}

)

Illustrated graphically I1 becomes:
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Like in previous illustrations of interpretation graphs, also here weightings are
drawn as black lines with varying brightness, thickness and opacity. The higher
weightings are the thicker the connecting line and the stronger the line color.
In this simple example weight 1.0 is drawn as an opaque black bar.

In a similar fashion AT〈N0, 3, 1.0〉 reacts to the creation of the third and last
object, symbolized by ({2},CREATE ). For this let us assume the following
updated information space:

Now, the event buffer includes all three creation events (for 0, 1 and 2):

B3 = push (B2, e2)

=
(

(

∅, ε
)

,
(

{0} ,CREATE
)

,
(

{1} ,CREATE
)

,
(

{2} ,CREATE
)

)

update_temporal_relations (J2, B3) leaves the weighting of {0, 1} unchanged
and initializes new associations {0, 2} with ∆w ({0, 2}) = 2−2 = 0.25 and
{1, 2} with ∆w ({1, 2}) = 2−1 = 0.5:

J3 = update_temporal_relations (J2, B3)

=















{0, 1, 2} ,











{0, 1} ,
{0, 2} ,
{1, 2}











,























(

{0, 1} , w
(

{0, 1}
)

)

,
(

{0, 2} ,∆w
(

{0, 2}
)

)

,
(

{1, 2} ,∆w
(

{1, 2}
)

)





































=









{0, 1, 2} ,











{0, 1} ,
{0, 2} ,
{1, 2}











,











(

{0, 1} , 0.5
)

,
(

{0, 2} , 2−2
)

,
(

{1, 2} , 2−1
)



















=









{0, 1, 2} ,











{0, 1} ,
{0, 2} ,
{1, 2}











,











(

{0, 1} , 0.50
)

,
(

{0, 2} , 0.25
)

,
(

{1, 2} , 0.50
)


















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Thus, AT〈N0, 3, 1.0〉 switches from . . .

(

B2

J2

)

=









(

(

∅, ε
)

,
(

∅, ε
)

,
(

{0} ,CREATE
)

,
(

{1} ,CREATE
)

)

(

{0, 1} ,
{

{0, 1}
}

,
{

(

{0, 1} , 0.5
)

}

)









. . . to successor state:

(

B3

J3

)

=

















(

(

∅, ε
)

,
(

{0} ,CREATE
)

,
(

{1} ,CREATE
)

,
(

{2} ,CREATE
)

)









{0, 1, 2} ,











{0, 1} ,
{0, 2} ,
{1, 2}











,











(

{0, 1} , 0.50
)

,
(

{0, 2} , 0.25
)

,
(

{1, 2} , 0.50
)



































Now the strongest temporal connections can be found between 0, 1 and 1, 2.
Both pairs of objects {0, 1} and {1, 2} have the same maximal weight 0.5.
Objects 0 and 2, however, were not created immediately one after the other
but with event ({1},CREATE ) in between. For this reason, the temporal
connection between 0 and 2 is only half as strong as between 0, 1 and 1, 2. This
gets also reflected by the strength values calculated by normalize (J3):

I2 = normalize (J3) =









{0, 1, 2} ,











{0, 1} ,
{0, 2} ,
{1, 2}











,











(

{0, 1} , 1.0
)

,
(

{0, 2} , 0.5
)

,
(

{1, 2} , 1.0
)



















Illustrated graphically:

As now all three information units exist (0, 1 and 2) they can be modified. Ac-
cording to our editing process described at the beginning, there should be only
a single MODIFY-operation: that is, the last two objects 1 and 2 shall change
their shape from RECTANGLE to ELLIPSE. Position, size, proportions etc.
should remain unaltered.
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This might look as follows:

As defined in Eq. 4.101 and Eq. 4.65, altering shapes is treated as spatial mod-
ification (i. e., MODIFY_SPATIAL). Thus e3 = ({1, 2},MODIFY_SPATIAL ).
The updated event buffer B4 no longer contains empty events:

B4 = push (B3, e3)

=

(

(

{0} ,CREATE
)

,
(

{1} ,CREATE
)

,
(

{2} ,CREATE
)

,
(

{1, 2} ,MODIFY_SPATIAL
)

)

Spatially modifying units 1 and 2 affects all three pairs of objects in J3,
{0, 1}, {0, 2} and {1, 2}. According to our definitions from Eq. 4.220 their
temporal connections must be strengthened as follows:

J4 = update_temporal_relations (J3, B4)

=















{0, 1, 2} ,











{0, 1} ,
{0, 2} ,
{1, 2}











,























(

{0, 1} , w
(

{0, 1}
)

+∆w
(

{0, 1}
)

)

,
(

{0, 2} , w
(

{0, 2}
)

+∆w
(

{0, 2}
)

)

,
(

{1, 2} , w
(

{1, 2}
)

+∆w
(

{1, 2}
)

)





































=









{0, 1, 2} ,











{0, 1} ,
{0, 2} ,
{1, 2}











,











(

{0, 1} , 0.50 + 2−3
)

,
(

{0, 2} , 0.25 + 2−3
)

,
(

{1, 2} , 0.50 + 2−0
)



















=









{0, 1, 2} ,











{0, 1} ,
{0, 2} ,
{1, 2}











,











(

{0, 1} , 0.50 + 0.125
)

,
(

{0, 2} , 0.25 + 0.125
)

,
(

{1, 2} , 0.50 + 1.000
)



















=









{0, 1, 2} ,











{0, 1} ,
{0, 2} ,
{1, 2}











,











(

{0, 1} , 0.625
)

,
(

{0, 2} , 0.375
)

,
(

{1, 2} , 1.500
)


















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AT〈N0, 3, 1.0〉 switches from . . .

(

B3

J3

)

=

















(

(

∅, ε
)

,
(

{0} ,CREATE
)

,
(

{1} ,CREATE
)

,
(

{2} ,CREATE
)

)









{0, 1, 2} ,











{0, 1} ,
{0, 2} ,
{1, 2}











,











(

{0, 1} , 0.50
)

,
(

{0, 2} , 0.25
)

,
(

{1, 2} , 0.50
)



































. . . to:

(

B4

J4

)

=





















(

(

{0} ,CREATE
)

,
(

{1} ,CREATE
)

,
(

{2} ,CREATE
)

,
(

{1, 2} ,MODIFY_SPATIAL
)

)









{0, 1, 2} ,











{0, 1} ,
{0, 2} ,
{1, 2}











,











(

{0, 1} , 0.625
)

,
(

{0, 2} , 0.375
)

,
(

{1, 2} , 1.500
)







































Now the strongest temporal connection exists between modified objects 1, 2:

I3 = normalize (J4) =









{0, 1, 2} ,











{0, 1} ,
{0, 2} ,
{1, 2}











,











(

{0, 1} , 0.4167
)

,
(

{0, 2} , 0.2500
)

,
(

{1, 2} , 1.0000
)



















Illustrated graphically:

The fifth and last step in our sample editing process is deleting object 1:
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Pushing the respective event e4 = ({1},DELETE ) to our current event buffer
B4 results in an overflow. This means, the oldest event ({0},CREATE ) is
removed from the buffer. Thus B4 turns into:

B5 = push (B4, e4)

=

(

(

{1} ,CREATE
)

,
(

{2} ,CREATE
)

,
(

{1, 2} ,MODIFY_SPATIAL
)

,
(

{1} ,DELETE
)

)

According to Eq. 4.220 DELETE-operations leave the weightings of remaining
associations unchanged. This means in our case:

J5 = update_temporal_relations (J4, B5)

=

(

{0, 2} ,
{

{0, 2}
}

,
{

(

{0, 2} , 0.375
)

}

)

Thus, AT〈N0, 3, 1.0〉 switches with the last event of our five-stage editing pro-
cess from state . . .

(

B4

J4

)

=





















(

(

{0} ,CREATE
)

,
(

{1} ,CREATE
)

,
(

{2} ,CREATE
)

,
(

{1, 2} ,MODIFY_SPATIAL
)

)









{0, 1, 2} ,











{0, 1} ,
{0, 2} ,
{1, 2}











,











(

{0, 1} , 0.625
)

,
(

{0, 2} , 0.375
)

,
(

{1, 2} , 1.500
)







































. . . to final state:

(

B5

J5

)

=













(

(

{1} ,CREATE
)

,
(

{2} ,CREATE
)

,
(

{1, 2} ,MODIFY_SPATIAL
)

,
(

{1} ,DELETE
)

)

(

{0, 2} ,
{

{0, 2}
}

,
{

(

{0, 2} , 0.375
)

}

)













Since J5 includes only a single pair of objects {0, 2} normalize (J5) results in:

I4 = normalize (J5) =

(

{0, 2} ,
{

{0, 2}
}

,
{

(

{0, 2} , 1.0
)

}

)

Illustrated graphically I4 becomes:
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As we know from Sect. 1.2 lack of clarity is inherently part of spatial hypertext.
This makes disambiguation an important core feature of spatial parsers. How-
ever, resolving ambiguities in spatial hypertext requires knowledge which only
hypertext authors can have. Typically, such knowledge is not encoded in sin-
gle spatial hypertext artifacts. Therefore, conventional (non-adaptive) parsers
cannot include such information into their analysis. Due to this conceptional
limitation there are several types of structures that cannot be recognized prop-
erly, including: (1) ambiguous structures (Sect. 3.1); (2) destroyed structures
(Sect. 3.2) and (3) temporal structures (Sect. 3.3).

In order to overcome this issue we suggested in Sect. 3.4 to consider not only
spatial and visual properties, but also temporal aspects in spatial parser de-
signs. A spatial parser that is “aware” of previous structures (see “fading” in
Sect. 4.4.1 ; pages 93–94) and “knows” about temporal dependencies between
information units (see temporal parser in Sect. 4.4.5) could (a) filter out discrete
structures most likely seen by human users; (b) complete corrupted structures
and (c) detect associations that are purly temporal.

Both, temporal parser as well as fading-feature were implemented in a pro-
totypical spatial hypermedia system, strictly following our theoretical system
model from Chapter 4. According to that model, spatial hypermedia systems
are compositions of editing systems supporting in the creation of spatial hy-
pertext (Sect. 4.1) and interpretation systems performing structural analysis
(Sect. 4.2). Editing systems are mainly determined by workspace models as
described in Sect. 4.1.3, whereas interpretation systems are primarily defined
by parsing algorithms (Sect. 4.4).
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For our research prototype we specified in Sect. 4.1.4 several refinements re-
garding visual language, object keys, content etc. This has led to default con-
figurations for both workspace model AW (Eq. 4.66) as well as for parsers AS

(Eq. 4.121), AV (Eq. 4.183), AC (Eq. 4.202) and AT (Eq. 4.232). A full block-
diagram of our prototypical spatial hypermedia system can be found in the
appendix on page 216. A screenshot of the user interface is given on page 217.
This freely configurable reference implementation could be used for researching
diverse topics, such as parser performance, optimal system configuration, user
behaviour etc.

In this thesis we focus on a single aspect only, namely, parser performance.
More specifically, we examine synergies between spatial parser (Sect. 4.4.2),
visual parser (Sect. 4.4.3) and temporal parser (Sect. 4.4.5).

Content parsers are not included in our analysis. Initial tests with the content
parser from Sect. 4.4.4 suggested, that using it in a productive system would
require adaption to user-requirements. For our investigations of parsing perfor-
mance, however, we expect that tuning of parser settings is not required. For
this reason we decided to exclude the content parser from our test.

A second restriction concerns our previously mentioned implementation of
structure fading (Sect. 4.4.1 ; pages 93–94). Just like the content parser also
fading is not included in our performance analysis. The reason for this is as
follows: The longer you are restructuring a spatial hypertext the higher the risk
of accidentally or unnoticeably destroying structure. Only then it makes sense
to include previous object relations into the analysis (or to reject them if they
do not get refreshed). Only then it makes sense to include the fading-effect.
Or in other words, the fading-feature will show its real added value only after
long time use. Thus, for validation, long-term studies should be preferred over
short-term tests. In our analysis, however, we build on short surveys.

In principle this limitation also applies to the evolution of temporal dependen-
cies and therefore on the temporal parser. Most likely, many structures will
emerge only after a certain period of time. Nevertheless, there were reasons
to believe that the temporal parser would show its benefit also in short-term
tests. Perhaps not as obvious as it might be possible after really long working
sessions in a productive environment, but still verifiable.

In Sect. 3.4 we claimed, that considering not only spatial and visual properties
but also temporal aspects in spatial parser design can lead to a significant in-
crease in parsing accuracy, detection of richer structures and herewith higher
parser performance. What still remains to be done, however, is delivering the
proof that such a spatio-temporal parser really performs better than a conven-
tional spatial parser. This chapter is intended to change that.

178



5.1. Reference Data Collection

We want to show, that spatial parser performance (i. e., accuracy) can be sig-
nificantly increased when taking into account not only spatial and visual but
also temporal object relations.

We expect that the addition of a temporal parser (as defined in Sect. 4.4.5)
will shift machine detected structures (encoded in interpretations ; Sect. 4.2.3)
significantly closer to what target users (knowledge workers with technical back-
ground) intend to express.

5.1 Reference Data Collection

Parsers as we defined them in Sect. 4.4.1 and Sect. 4.4.5 generate formal inter-
pretations I ∈ I〈Ω〉 (Sect. 4.2.3). Technically, such parse results are complete,
weighted graphs of connected information objects. This makes it possible to
compare them numerically. However, interpretations generated by parsers do
not include information about their accuracy. Therefore, putting them in di-
rect relation allows no conclusions regarding differences in parser performance.
This required us to collect reference data.

Whether something is structure or not is highly subjective, hence reference
interpretations cannot be generated artificially. There is also no set of standard
structures that could be used as a basis for comparison. For this reason we
decided to collect our reference data by surveys in a laboratory. This, however,
required an adaption of our research prototype.

5.1.1 Adapted Prototype

When linked together, editing systems and interpretation systems realise in-
teractive structure creation loops that are driven by user activities. This rep-
resents the functional core of spatial hypermedia systems and thus formed the
basis for our theoretical system model from Chapter 4. We mentioned that
already on page 47.

Fig. 5.1 illustrates that for our prototype. According to that, editing systems
accept user interface activities (such as keyboard or mouse events etc.) and
transform them into edit events ek ∈ EW and workspaces Wk ∈ OW (Eq. 4.66).
Both ek and Wk are then converted into “edit steps” (e′k, Dk), with e′k ∈ E〈N0〉
and Dk ∈ D〈N0, 16〉 (Eq. 4.71, Eq. 4.85). Interpretation systems react on such
ingoing (e′k, Dk) by generating interpretations Ik ∈ I〈N0〉 (Eq. 4.90). These
parse results are finally transmitted back to presentation level as I ′k where they
are displayed as graphical overlays on the workspace.
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Spatial Hypermedia System

Interpretation System

�′�  

��  ��  �′�  

��  ��  

Editing System

conversion

Figure 5.1: When linked together, editing systems and interpretation systems realise inter-
active structure creation loops, or visual feedback loops, that are initiated by system users.
This is the expected behaviour in productive working environments.

This forms a visual feedback-loop where human and machine “interact” to grad-
ually develop meaningful visual structure. Although this is the expected be-
haviour in a productive working environment it is not what we want when
collecting reference data. For this reason, two essential modifications to our
research prototype were needed.

Firstly, we enhanced our system with logging-functionality. This is why the
adjusted system model illustrated in Fig. 5.2 includes, in addition to the already
known components, another module labeled with “log”. Plugged in between
conversion layer and interpretation system this logging module records ingoing
streams of edit steps (e′k, Dk). This mechanism can be used to store full working
sessions in persistent memory (e. g., in a log-file). Loading and “replaying”
recorded editing processes finally allows to “simulate” user behaviour in a virtual
test environment. This makes it possible to repeat one an the same user session
with different parser configurations.

Secondly, we had to make sure that test persons were not influenced by machine
generated feedback. This was achieved by deactivating or rather by excluding
the interpretation system from the test prototype. Thus, the prototype ap-
plication we used in our surveys included no parser functionality. The system
model given in Fig. 5.3 illustrated that. For the sake of completeness, it should
be noted that this stripped-down version of our system model rather describes
visual editors with integrated logging functionality than full-fledged spatial hy-
permedia systems. For this see also our considerations in Chapter 3 or Sect. 4.2.
However, for our survey this was of no importance.
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Spatial Hypermedia System

Interpretation System

�′�  

��  ��  �′�  

��  

��  

Editing System

conversion

�′�  

log��  

  �′0�0 ,  �′1�1 ,… , �′�����   

Figure 5.2: Spatial hypermedia system model extended by logging functionality. Streams of
edit steps (e′

k
, Dk) passing the logging system on their way from conversion to interpretation

system are recorded in persistent memory. Our prototype application writes them to log-files.

Spatial Hypermedia System

�′�  

��  ��  

Editing System

log

  �′0�0 ,  �′1�1 ,… , �′�����   

conversion ��  

Figure 5.3: Stripped-down version of our system model from Fig. 5.2 without interpretation
system. This is rather an advanced visual editor with integrated logging functionality than
a fully-fledged spatial hypermedia system.
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5.1.2 Survey

The second challenge, besides adapting our research prototype, was to estab-
lish realistic test conditions. This required to find persons who were willing
to participate in a laboratory test. Only if probands participate voluntarily in
a survey, there is a chance to get realistic and therefore useful results. When
subjects, however, feel unwell in a given test situation, then free development
of thoughts is excluded right from the start, which inevitably falsifies test re-
sults. This is especially true for creative processes, such as developing spatial
hypertexts. Thus, particular attention had to be paid to ensuring that subjects
had, right from the beginning, a positive attitude to their task. There are lots
of factors which can have a negative impact on a test person’s motivation, in-
cluding biorhythm, stress or test duration. This makes the creation of optimal
test conditions a challenge.

For our survey we proceeded as follows: Firstly, potential test candidates were
asked to attend a small experiment, on a voluntary basis. We did that only on
working days with low time pressure and at a biorhythmically optimal time. It
turned out that our estimated test duration seemed to play an essential role for
probands, when deciding whether to participate or not. An average duration
of 20 minutes was accepted by most test persons. Longer tests, however, had
a rather deterrent effect. For this reason, and because we believed that such a
short timeframe still would be enough for showing the desired temporal effects,
we decided to adhere to an average test duration of 20 minutes and an upper
time limit of half an hour.

In total, we were able to convince 50 persons to join our survey. All participants
had a technical background in computer sciences, ranging from Bachelor- to
PhD-level. Therefore, it could be assumed that they knew how to use a visual
modelling tool. However, it should be pointed out that none of these 50 people
had used a spatial hypermedia system before.

Once a person had agreed to participate, he was asked to take a seat in a
special laboratory room prepared for the test run. Fig. 5.4 shows a photo of
the setup. The participant sat down in front of a 65-inches computer monitor
(that was still switched off at that point in time), and was then informed
about the basic test conditions. After that, we had to make sure that the test
person was familiar with the prototype’s user interface. Simply playing around
with or (even worse) incorrect usage of the prototype’s visual tools would have
unnecessarily falsified our test results. Even though we had implemented only a
small number of common GUI-features in our test application (such as zooming,
panning, scaling etc.), we decided to still demonstrate each of those features
to every single test person. For these purposes we prepared a simple demo
hypertext that was formed from random objects only. These objects neither had
any visual nor semantic relation with the hypertext used for the test. During
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Figure 5.4: experimental setup – core hardware components: wireless keyboard/mouse,
mini-PC (Dual-Core Processor 1.65 GHz; 2GB DDR3; HDMI), OS: Windows 7 (32 Bit),
65-inches LCD-monitor (diagonal 163cm) with an optimal resolution of 1920× 1080 at 60Hz

demonstration, subjects were requested to actively use each interface feature
to ensure that they had really understood its functionality. After probands
had explicitly confirmed that there were no open questions regarding interface
usage, the actual test hypertext was loaded into the prototype application.
Fig. 5.5 shows the initial display as seen by our subjects.

Each test person was presented 24 rectangular objects, each labeled with a term
related to a common subject area. Participants were then asked to re-structure
those objects so that the resulting diagram reflected their basic comprehension
of the given terms and their relations. This means, subjects should re-arrange,

Figure 5.5: initial display as seen by subjects
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scale, color etc. the given terms to express their individual, structural un-
derstanding of the given topic area. Here, participants were explicitly told to
continue with their work until the result would make most sense to them.

Main design decisions for the sample hypertext in Fig. 5.5 included the following
considerations:

Firstly, we intended to avoid unnecessary cognitive overhead and tried to keep
up motivation of test candidates. For these reasons we selected only a relatively
small number of terms (only 24) from a common and, to our understanding,
easy to understand subject area (“flora and fauna”) and translated them into the
participant’s native language (here: German). In concrete terms, we took the
first random Wikipedia-article which included only general, basic knowledge
and selected 24 characteristic terms.

Another essential design criterion refers to the task’s level of difficulty. The
given structuring problem should not have a common solution (in form of clus-
ters, trees or tables, for instance). Otherwise there would have been the danger
of getting results of a single type only. This is why we selected partly ambigu-
ous terms which allowed for alternative interpretations. A good example is the
term “Bestimmung”, which could mean both “measurement” but also “destiny”.

In addition we intended to make sure, that test persons only started interacting
with the visual medium when they had already established a first structural un-
derstanding of the given “flora/fauna”-topic. Interface activities without a real
(structural) meaning would have led to wrong results (at least in the specified
timeslot of at maximum half an hour). This is why all 24 terms were initially
arranged in a two-dimensional, rectangular grid. That grid of terms touched
both left and right border of the display, but still left enough space in the top
and the bottom region of the screen (see Fig. 5.4). Thus, users did not need
to zoom out to view all 24 terms or to create empty workspace. Therefore, we
could assume with high probability that test persons would begin structuring
right from the start. So, except for purely “cosmetic” changes made to the
display (in order to make it look “nice”), most of our participant’s activities
must have implied structural meaning.

Finally it was intended to avoid, that the initial display suggests a potential
solution to the term-structuring problem. To achieve that, object shape and
color were chosen as neutral as possible. Thus our grey rectangles should not
have any semantic association with the subject “flora/fauna”. In addition, all
24 terms were arranged such that none of them had an immediate semantic
relationship with its surrounding neighbors. Thus, the initial spatial layout
should not allow for drawing any conclusions about semantic relationships.
With this we tried to maximize the visual difference between initial display
and potential solution-hypertexts.
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Figure 5.6: sample feedback provided by one of our participants

Having finished their structuring task, test persons were finally asked to tell
the researcher explicitly what they intended to express. For this purpose they
received a printout of their work and a pen. They were then asked to highlight
where they can see associations between objects (by drawing lines, circles etc.).
Fig. 5.6 shows an example of such a marked printout. Note, that Fig. 5.6 in-
cludes no explicit numerical information about the strength of object relations.
The drawing only describes general connections between (groups of) objects.
The reason for this lies in spatial hypertext’s implicit nature (Sect. 1.2). Unlike
our parsers, humans may find it cognitively difficult to express implicit struc-
ture as explicit numbers. Thus, precision of human user feedback is necessarily
lower than precision of machine-generated feedback. This had significant im-
pact on our evaluation algorithm that will be discussed in Sect. 5.2.

User feedback that we received in this graphical form had to be quantified. For
these purposes we wrote a small visual analysis tool that allowed us to manually
transform handwritten user feedback into digital, weighted graphs; that is, into
interpretations I〈N0〉. In these graphs we used numerical weightings > 0.0 to
express object connections and hence structures. Different weightings indicated
different levels of abstraction. That is, the higher the abstraction-level the
smaller the assigned weighting and vice versa. When required, this allowed us
to encode multi-level structures. Note, that our spatial parser does the same.
This formed the reference data for our automated analysis.

Finally, we can summarize the survey-process as follows: First, test persons in-
teract with our adapted prototype from Sect. 5.1.1 to solve a term-structuring
task. Corresponding streams of edit steps (e′k, Dk) are recorded in log-files.
Having finished their assignment participants provide explicit graphical feed-
back on their intended structures. This handwritten user feedback is finally
quantified as reference interpretations Iref. Fig. 5.7 illustrates that graphically.
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Spatial Hypermedia System
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Figure 5.7: Survey-process overview

5.2 Virtual Test Run

Once we had collected both from a test person, logged edit process (i. e., what
the participant did) and reference interpretation (i. e., what the participant
intended to express), we proceeded as follows:

Firstly, an interpreter was instantiated that was build from only temporal, spa-
tial and visual parser. Fading and implicit merging were deactiated, since those
features were not needed for the test run. Once we had a runnable interpreta-
tion system, both, reference interpretation graph as well as the recorded stream
of edit steps were loaded into memory. The stream was then passed through
all three parser components. Expressed formally . . .

29 Virtual Test Studio - main procedure

1: Iref ← load reference interpretation from file

2:





(

e0
D0

)

,

(

e1
D1

)

, . . . ,

(

en
Dn

)



← load edit process from file

3: IT , IS , IV ← Iε
4: for i = 0 to n do

5: IT ← interprete
(

AT , (ei, Di)
)

⊲ Eq. 4.232
6: IS ← interprete

(

AS〈N0, 16, 0.0, 1.0〉, (ei, Di)
)

⊲ Eq. 4.120
7: IV ← interprete

(

AV 〈N0, 16, 0.0, 1.0〉, (ei, Di)
)

⊲ Eq. 4.182
8: end for

9:





(

(T0, S0, V0) ,
d0

)

,

(

(T1, S1, V1) ,
d1

)

, . . . ,

(

(T230, S230, V230) ,
d230

)



← test











Iref,
IT ,
IS ,
IV










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In Alg. 29 single parser runs are symbolized by I ← interprete (A, (ei, Di)).
Here, A is a parser instance and (ei, Di) is the (i+1)-th step in an edit process.

Resulting temporal, spatial and visual interpretations IT , IS , IV were merged
together in varying ratios (T, S, V ) ∈ ∆2 with an increment of five percent.
This means, weighting factors T, S, V were multiples of 0.05 and summed up
to 1.0. Each merge result Imerge was then compared with the given reference
interpretation Iref. For this comparison we used a statistical divergence function
which could tell us numerically how close a merged interpretation graph Imerge

(i. e., the model) came to the respective reference interpretation graph Iref
(i. e., our observation). The smaller such numerical divergence values were, the
closer the parse result came to what a user intended to express. For example,
an optimal value of 0.0 indicated that model and observation were identical;
that is, our merge result represented exactly what the user had in mind.

30 test :
(

I〈Ω〉
)4

⇀ List〈∆2 × R+
0 〉,

(

Iref, IT , IS , IV
)

7→ listresult

1: listresult ← listε
2: for i = 0 to 100 step 5 do

3: for j = 0 to (100− i) step 5 do

4: k ← 100− i− j

5: Imerge ← merge
(

(IT , IS , IV ) ,
(

i/100, j/100, k/100
)

)

⊲ Alg. 7

6: d← compare
(

Iref, Imerge

)

⊲ Alg. 31

7: listresult ← add

(

listresult,
(

(

i/100, j/100, k/100
)

, d
)

)

⊲ Eq. 4.92

8: end for

9: end for

10: return listresult

Our definition of I〈Ω〉 from Eq. 4.90 allows us to identify different structure
levels, that is, we can distinguish between collections of structures with different
weight ranges. This makes it possible to iterate through interpretations from
the strongest to the weakest associations and to step-by-step extract collections
of structures with increasing extension level. We denote the number of such
levels as struct_level_count and formally define it as follows:

struct_level_count : I〈Ω〉 → R+
0 ,

(U,A,w) 7→
∣

∣

∣

{

w(a)
∣

∣a ∈ A ∧ w(a) /∈ {0, ε}
}

∣

∣

∣ (5.1)

Essentially, struct_level_count accepts an interpretation-graph (U,A,w) ∈ I〈Ω〉
and determines the number of different weightings w(a) /∈ {0, ε} assigned to
association a ∈ A. Thus, each weight > 0 identifies an extension level of
structure.
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As an example, for an Isample = (U,A,w) ∈ I〈{u0, u1, u2}〉 defined as . . .

U = {u0, u1, u2} ; A =
(

U

2

)

=











{u0, u1} ,
{u0, u2} ,
{u1, u2}











; w =











(

{u0, u1} , 0.50
)

,
(

{u0, u2} , 0.00
)

,
(

{u1, u2} , 1.00
)











(5.2)

. . . struct_level_count (Isample) would identify 2 levels of weightings /∈ {0, ε}.
These are: a top-level with weight 1.00 and a bottom-level with weight 0.50.

Index-based access on these levels can be achieved via struct (Isample, i):

struct :
(

I〈Ω〉 × R+
0

)

→ I〈Ω, {0, 1}〉,
(

(U,A,w) , i
)

7→
(

U,A,w′
)

,

w′ : A→ {0, 1} ,

∀a ∈ A : w′(a) =







































0 , if w (a) ∈ {0, ε}

1 , else if

∣

∣

∣

∣

∣

∣

∣

∣











w
(

a′
)

∣

∣

∣

∣

∣

∣

∣

a′ ∈ A
∧ w

(

a′
)

/∈ {0, ε}
∧ w

(

a′
)

< w(a)











∣

∣

∣

∣

∣

∣

∣

∣

≥ i

0 , else

(5.3)

Essentially, struct (I, i) takes an interpretation I ∈ I〈Ω〉 and a structure level
index i ≥ 0 and filters out connected sub-graphs with weights that are among
the (struct_level_count (I) − i) - biggest weightings in I. Results are encoded
as binary I〈Ω, {0, 1}〉.

Let us also illustrate this with an example: when we take Isample from Eq. 5.2
again, then for structure level indices . . .

0 ≤ i < struct_level_count (Isample) = 2

. . . struct
(

Isample, i
)

will return:

struct
(

Isample, 0
)

=









{u0, u1, u2} ,











{u0, u1} ,
{u0, u2} ,
{u1, u2}











,











(

{u0, u1} , 1
)

,
(

{u0, u2} , 0
)

,
(

{u1, u2} , 1
)



















struct
(

Isample, 1
)

=









{u0, u1, u2} ,











{u0, u1} ,
{u0, u2} ,
{u1, u2}











,











(

{u0, u1} , 0
)

,
(

{u0, u2} , 0
)

,
(

{u1, u2} , 1
)



















For structure indices i ≥ struct_level_count (Isample) function struct
(

Isample, i
)

would return graphs with zero-weightings only (i. e., ∀a ∈ A : w′(a) = 0). This
case, however is of no relevance for our following definition of compare.
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Based on struct_level_count (Eq. 5.1) and struct (Eq. 5.3) we can define the
compare-algorithm used in Alg. 30 (line 6) as follows:

31 compare :
(

I〈Ω〉 × I〈Ω〉
)

⇀ R+
0 ,
(

Iref, Icompare

)

7→ div

Require: struct_level_count
(

Iref
)

> 0 ∧ struct_level_count
(

Icompare

)

> 0
1: dsum ← 0
2: i← struct_level_count

(

Icompare

)

− 1 ⊲ Eq. 5.1

3: for j =
(

struct_level_count
(

Iref
)

− 1
)

to 0 step −1 do

4: dmin ← divergence
(

struct
(

Iref, j
)

, struct
(

Icompare, i
)

)

⊲ Alg. 32

5: for k = (i− 1) to 0 step −1 do ⊲ Eq. 5.3

6: d← divergence
(

struct
(

Iref, j
)

, struct
(

Icompare, k
)

)

7: if d < dmin then

8: dmin ← d
9: i← k

10: end if

11: end for

12: dsum ← dsum + dmin

13: end for

14: return
(

dsum/struct_level_count
(

Iref
)

)

⊲ Eq. 5.1

This is best explained with an example. Let our previous Isample from Eq. 5.2
be our reference interpretation. Let us also assume, that Icompare = (U,A,w)
is defined by . . .

U = {u0, u1, u2} ; A =
(

U

2

)

=











{u0, u1} ,
{u0, u2} ,
{u1, u2}











; w =











(

{u0, u1} , 0.25
)

,
(

{u0, u2} , 0.00
)

,
(

{u1, u2} , 0.75
)











(5.4)

compare (Isample, Icompare) traverses both Isample and Icompare in a top-down
fashion from structures with the strongest associations down to an extension
level where all associations are included (i. e., all associations a : w(a) /∈ {0, ε}).
It identifies: (a) struct (Icompare, 1) as the expansion stage which comes the
closest to struct (Isample, 1) and (b) struct (Icompare, 0) as the one coming the
closest to struct (Isample, 0). The resulting divergence value is calculated as . . .






divergence
(

struct
(

Isample, 1
)

, struct
(

Icompare, 1
)

)

+divergence
(

struct
(

Isample, 0
)

, struct
(

Icompare, 0
)

)







struct_level_count
(

Isample

) =

(

0
+0

)

2
=

0

2
= 0

compare (Isample, Icompare) = 0 indicates that Eq. 5.4 allows to filter out all
discrete structures that are also encoded in Eq. 5.2.
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Our routine for divergence calculation, as we use it in Alg. 31 (in lines 4, 6),
builds on the Kullback Leibler (KL) divergence [40] and works for any I〈Ω〉,
not only for binary I〈Ω, {0, 1}〉:

32 divergence :
(

I〈Ω〉 × I〈Ω〉
)

⇀
(

R+
0 ∪ {ε}

)

,
(

(U,A,w0) , (U,A,w1)
)

7→ d

1: distribution0, distribution1 ← listε
2: weightSum0,weightSum1 ← 0.0
3: for all a ∈ A do

4: if w0(a), w1(a) 6= ε then

5: distribution0 ← add
(

distribution0, w0(a)
)

⊲ Eq. 4.92
6: distribution1 ← add

(

distribution1, w1(a)
)

7: weightSum0 ← weightSum0 + w0(a)
8: weightSum1 ← weightSum1 + w1(a)
9: end if

10: end for

11: if empty (distribution0) = TRUE then ⊲ Eq. 4.95
12: return ε
13: end if

14: if weightSum0 = 0.0 then

15: if weightSum1 = 0.0 then

16: return 0.0
17: end if

18: return ε
19: else if weightSum1 = 0.0 then

20: return ε
21: end if

22: p0, p1 ← listε
23: for i = 0 to

(

size (distribution0)− 1
)

do ⊲ Eq. 4.93
24: p0 ← add

(

p0, get (distribution0, i) /weightSum0

)

⊲ Eq. 4.92, Eq. 4.94
25: p1 ← add

(

p1, get (distribution1, i) /weightSum1

)

26: end for

27: return
(

KLsymmetric

(

smoothen (p0) , smoothen (p1)
)

)

⊲ Eq. 4.209

The trick here is to treat weighting functions w0, w1 as distributions of weights
w0(a), w1(a) over associations a ∈ A. When transformed into (discrete) prob-
ability distributions p0, p1 they allow for calculating the divergence between
(U,A,w0) and (U,A,w1) as . . .

KLsymmetric

(

smoothen (p0) , smoothen (p1)
)

Here, KLsymmetric represents the symmetrized Kullback Leibler divergence from
Eq. 4.209. smoothen (p) ensures that p includes no zeros.
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5.2. Virtual Test Run

The following example will give you an impression of the power of Alg. 32.

0.0794

1.4083

3.7625

7.6625

I0 I1 I2 I3 I4

d
iv
e
rg
e
n
c
e

Figure 5.8: Five sample interpretation graphs I0, . . . , I4 and their divergence values. Vary-
ing brightness of line colors symbolizes different weightings. Divergences were calculated
between interpretation I0 on the left and I1, I2, I3, I4 on the right.

Fig. 5.8 illustrates five sample interpretation graphs I0, . . . , I4, each a network
of eight white rectangles. Like in previous illustrations of interpretation graphs,
also here varying weights are expressed with visual line properties. The stronger
the connection between two rectangles the higher the assigned weighting and
the darker the painted line. Line thickness and opacity are the same for all five
illustrations. Right below these graphs, you can see the divergences Alg. 32
calculates between I0 and Ii (for i ∈ {1, . . . , 4}). According to that, . . .

divergence (I0, I1) = 0.0794

divergence (I0, I2) = 1.4083

divergence (I0, I3) = 3.7625

divergence (I0, I4) = 7.6625

Note, that these values were rounded to four places after the decimal point.
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Virtual Test Studio

Temporal

Parser

Visual

Parser

���݂  

������  

S

T

V

Spatial

Parser

merge

  "T",   "S",   "V",    "d"

0.05, 0.95, 0.00, 7.0511

0.10, 0.90, 0.00, 7.0511

0.15, 0.85, 0.00, 7.0511

                  .

                  .

                  .

0.00, 0.25, 0.75, 9.1955

compare

  �0�0 ,  �1�1 ,… ,  ��݊݊   

 
Figure 5.9: Overview of the virtual test run

In conclusion, the overall test run can be summarized as follows:

Firstly, both logged edit process (i. e., what the participant did) and reference
interpretation (i. e., what the participant intended to express) are loaded into
memory. The recorded sequence of edit steps is then passed through temporal,
spatial and visual parser. Resulting interpretations are merged together in
varying ratios and with an increment of five percent. Comparing these mixtures
with the given reference interpretation results in numerical divergence values.
These values indicate how close merged parse results come to user intention
and therefore can be used for evaluation purposes. A graphical overview of the
virtual test run can be found in Fig. 5.9.

5.3 Analysis

Our virtual test run resulted in 50 CSV-lists (one per test person). Each of
those lists included 231 tuples of weighting factors for temporal, spatial and
visual parser together with the respective divergence value (the number 231
comes from our chosen weighting factor increment of five percent).
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Figure 5.10: sample ternary plot

Demonstrated with an example, each of those 50 tabular listings was of the
following form:

#0 "T" , "S" , "V" , "d"

#1 0.05, 0.95, 0.00, 7.05113242479466400000

#2 0.10, 0.90, 0.00, 7.20835108739322600000

#3 0.15, 0.85, 0.00, 7.32986400847126800000

. . .

#231 0.00, 0.25, 0.75, 9.19552448851569300000

“T”, “S”, and “V” label the weighting factors for temporal, spatial and visual
parser by mixed ratios. The divergence of each ratio is labeled as “d”.

As an initial step, we illustrated our results as colored ternary diagrams. In
ternary plots the ratios of three variables correspond to positions within a tri-
angle. As such, they are well suited for visualizing the given triples of weighting
factors. Figure 5.10 shows an example of such a colored ternary diagram. The
colored circles in the triangle represent different parser combinations or triples
(T, S, V ) ∈ ∆2 and therefore are evenly distributed over the simplex. The
triangle’s vertices ((1, 0, 0), (0, 1, 0), and (0, 0, 1)) are special cases where only
spatial, temporal, or visual parser are included. The divergence values d as-
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signed to the ratios throughout the triangle are expressed as colors with a color
scale ranging from yellow to red. Pure yellow indicates the smallest divergence
value whereas pure red the biggest one in a sample; brighter colors indicate
better results.

Drawing ternary plots for each of the 50 sample cases has not shown a uniform
picture. We could not spot a single connected area of optimal ratios of parser
configurations throughout all 50 diagrams. In contrary, we have indicated
various patterns in analyzing the ternary plots. Nevertheless this analysis has
provided some important insights regarding the relationship of spatial, visual,
and temporal parsers:

The more explicit a spatial structure was (e. g., in form of lists, trees, mind maps
etc.) the more the optimum has moved towards (T, S, V ) = (0.0, 1.0, 0.0) and
thus put the focus on the spatial parser. The more dominant visual attributes
have been used in a meaningful manner (e. g., for highlighting different object
categories etc.) the more the optimum has been shifted towards (T, S, V ) =
(0.0, 0.0, 1.0) and hence towards the visual parser. In other words, the easier
it was for the spatial and visual parsers to detect clear structures, the more
weight they have got in the optimal solution. The better visual or spatial
heuristics fitted a test person’s individual way of visual expression the lower
the required support by the temporal parser. This is the expected behaviour
and hence not surprising. It is interesting to note though, that even in such
extreme cases pure spatial and visual parser could not outperform the spatio-
temporal parser; that is, there always was at least one temporal mixture which
performed at least as good as the best without temporal component.

Furthermore, we made the important observation that the impact of the tem-
poral parser was higher for more ambiguous and “uncommon” structures. We
assume the reason to be in the spatial and visual parser’s limitations and lack
of heuristic definitions. Thus, the temporal parser became important in cases
when spatial and visual parser failed to recognize accurate structure. One could
argue that the temporal parser complemented spatial and visual parser beyond
their limits. To some extent this could eliminate the need for manually tuning
parsers to specific users. Instead, limited precision caused by inadequate parser
configurations or heuristics could be partly compensated by adding our tempo-
ral parser. Even though this could not reach the same high level of accuracy as
it might be possible with highly customized parsers, the addition of our tempo-
ral parser still provided better results than pure spatial or visual parser; while
being completely independent of user preferences and context of application.

Although this is the most promising finding related to our temporal parser it
still does not proof our hypothesis from page 179. Ternary plots are good for
initial assessment but do not allow for reliable conclusions about significance.
A statistical approach is required instead.
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5.3.1 Statistical Method

To compare spatio-visual and spatio-temporal parser statistically we had to
determine optimal merging ratios, with and without temporal component.

We regard combinations of temporal, spatial and visual parser as being optimal
if they generate results at consistently high level of accuracy. It is neither
optimal to constantly produce output of low quality nor to generate perfect
results for a single person only. Divergence values rather should be as low as
possible while not varying between different users. Ideally they are always zero.

Since our ternary plots did not show a uniform picture it was not possible to
identify single connected areas of optimal ratios. Thus, we had to determine
temporal and non-temporal optima numerically rather than visually.

Our 50 CSV-lists contained 231 data sets of the following form:

(

(T, S, V ) , (d0, d1, . . . , d49)
)

∈

(

∆2 ×
(

R+
0

)50
)

Here, (T, S, V ) is a merging ratio and (d0, d1, . . . , d49) is a sequence of 50 di-
vergence values. Let us denote such binary tuples as configuration Candidates.

21 of these 231 candidates include no temporal component (i. e., T = 0):

CNT00 =
(

(0.00, 1.00, 0.00) , (d0000, d0001, . . . , d0049)
)

CNT01 =
(

(0.00, 0.95, 0.05) , (d0100, d0101, . . . , d0149)
)

...
CNT20 =

(

(0.00, 0.00, 1.00) , (d2000, d2001, . . . , d2049)
)

For 210 candidates, on the other hand, T is greater than zero:

CT000 =
(

(1.00, 0.00, 0.00) , (d00000, d00001, . . . , d00049)
)

CT001 =
(

(0.95, 0.05, 0.00) , (d00100, d00101, . . . , d00149)
)

...
CT209 =

(

(0.05, 0.00, 0.95) , (d20900, d20901, . . . , d20949)
)

In order to identify temporal and non-temporal “winner”-configurations we had
to make these candidates comparable. For this we used the following trick:

We calculated for each CNT ∈ {CNT00, ..., CNT20} and CT ∈ {CT000, ..., CT209}
Median and Standard Deviation of their assigned divergence values and mapped
them to value range [0, 1]. For this we used the following equations:

medianmapped = (mediancandidate −medianmin) / (medianmax −medianmin)

stddevmapped = (stddevcandidate − stddevmin) / (stddevmax − stddevmin)
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This allowed us to represent both {CNT00, ..., CNT20} and {CT000, ..., CT209}
as points in {0.0, . . . , 1.0}2. Sorting these two-dimensional vectors in ascending
order according to their Euclidean norm resulted in two ranking lists: one for
temporal and one for non-temporal configuration candidates. The first entries
in these lists represented optimal merging ratios. These were . . .

non-temporal: (0.00, 0.45, 0.55)with median: 9.552966 and stddev: 0.964822
and

temporal: (0.75, 0.25, 0.00)with median: 8.821289 and stddev: 0.998641

Note, that in the latter ratio the temporal parser has made the visual parser ob-
solete (i. e., V = 0.00). We assume the reason to be visual over-interpretation
of our visual parser. Such over-interpretation can lead to redundancies re-
garding correct results but also decreased accuracy due to unintended visual
relations. This connection between temporal and visual parser, however, is
target of future work; so we shall not go into any more detail.

Let us denote the two “winner”-configurations as . . .

CNT =
(

(0.00, 0.45, 0.55) , DNT

)

∈ {CNT00, ..., CNT20}
and

CT =
(

(0.75, 0.25, 0.00) , DT

)

∈ {CT000, ..., CT209}

For both divergence samples DNT and DT we can assume the following:

Assumption 1: DNT and DT are at least interval-scaled. Divergences be-
tween interpretation graphs (see Alg. 31, 32) are measured in computer bits
on a continuous scale. Thus, they are metric data. Note, that our divergence
builds on Eq. 4.209 which has some of the properties of a metric on the space of
probability distributions: KLsymmetric (P,Q) is non-negative, it becomes zero
if and only if the two distributions P,Q are equal and it is symmetric; that
is, KLsymmetric (P,Q) = KLsymmetric (Q,P ). However, it does not satisfy the
triangle inequality. Hence it is rather a semi-metric than a distance-metric on
the space of probability distributions. Such divergences are typically (though
not exclusively) measured in computer bits.

Assumption 2: DNT and DT are dependent. For each of our 50 test persons
we collected (or rather we measured) samples under two experimental condi-
tions: (0.00, 0.45, 0.55) and (0.75, 0.25, 0.00). Thus, one could argue that each
participant contributed a pair of related scores. Therefore DNT and DT can
be regarded as being dependent.

Assumption 3: homogeneity of variance. Having applied Levene’s test (for
Homogeneity of Variance) on DNT and DT resulted in a p-value = 0.7218,
which is non-significant for a significance level α = 0.05. From this we can
conclude that the variances in both experimental conditions are roughly equal.
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Assumption 4: The distribution of the differences between DNT and DT is
approximately normally distributed. The Shapiro-Wilk test was used to prove
this assumption. Considering a significance level of α = 0.05, the test was
non-significant for both DNT (with a p-value = 0.0804695) and DT (where the
p-value was 0.8747074). This tells us that the distributions of both samples
DNT and DT are not significantly different from a normal distribution. Thus
they are probably normally distributed and so are their differences.

Provided that DNT and DT are normally distributed, dependent, metric sam-
ples with equal variances, we can analyse them with the paired Student’s t-test.
This can be performed either one- or two-tailed.

Before collecting our reference data we could not state with certainty that the
direction of a (possible) difference in parser performance would only go one way.
We could not be sure that the spatio-temporal parser would always perform at
least as good as the spatio-visual parser. For this reason, and because we were
looking for a more conservative test of significance, we decided to perform a
two-tailed rather than a one-sided test. Thus, our method of choice was:

the two-tailed paired Student’s t-test.

With the two-tailed paired (Student’s) t-test one can evaluate whether the
mean difference between paired observations is significantly different from zero.
That is, you can determine whether there is a significant difference between the
arithmetic means of two variables, such as in our case DNT and DT .

5.3.2 Result

Our null hypothesis H0 stated that there was no effective difference between
the non-temporal sample mean and the temporal sample mean; that is, any
measured difference in divergence was only due to chance and thus including
the temporal parser had no effect:

H0 : µNT = µT or H0 : µNT − µT = 0

Here, µNT stands for the mean of DNT and µT represents the mean of DT .

The opposite of our null hypothesis H0 was our experimental (or alternative)
hypothesis H1, which assumed that the means of DNT and DT were not equal;
that is, that including the temporal parser changed the mean.

H1 : µNT 6= µT or H1 : µNT − µT 6= 0

As a level of significance we selected the widely adopted α = 0.05.
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Applying the two-tailed paired Student’s t-test on DNT as first and DT as
second condition resulted in:

t = 3.0635, df = 49, p-value = 0.00355

with a 95 percent confidence interval ranging
from 0.1325554 to 0.6380730

From p < α or rather from 0.00355 < 0.05 we can conclude, that there is a
significant difference between the means of DNT and DT (i. e., we reject H0).

This gets also reflected by the confidence interval. Both, upper bound 0.6380730
and lower bound 0.1325554 have the same sign, which means that the null find-
ing of zero difference lies outside of the confidence interval. From this we can
conclude that the difference is statistically significant.

The fact that the t-value (t = 3.0635) is positive tells us that DNT had a bigger
mean than DT and so divergences were lower when using the temporal parser.

Even though the result is statistically significant, it tells us nothing of whether
the effect is substantive; that is, if it is important in practical terms.

For this reason we converted our t-statistics into a standard effect size. Some
widely used effect size for the paired-samples t-test is Cohen’s d [41] or rather
dz [42], which is calculated from the difference scores from matched pairs.
In order to avoid overestimation of effect sizes we used a more conservative
adaption of dz which is known as drm [42, 43]. For our t-statistics we got:

|drm| = 0.39

Preferably, effect sizes should be interpreted by comparing them to related
effects in literature. Since, however, in our special case there are no such
references we decided to use the benchmarks defined in [41] instead. In [41]
effect sizes are classified as small (|d| = 0.2), medium (|d| = 0.5), and large
(|d| = 0.8). Thus, a |d|-value between 0.0 to 0.3 could be interpreted as small,
if it is between 0.3 and 0.6 it would be moderate, and an effect size bigger
than 0.6 could be regarded as a large effect size. According to [44] medium |d|
represents an effect visible to the naked eye, small |d| is noticeably smaller than
medium but not trivial, and a large |d| has the same distance above medium
as small has below.

Our (conservative) effect size |drm| = 0.39 lies between 0.2 and 0.5 and therefore
between the thresholds for small and medium effects (with a slight tendency
towards moderate). Therefore, as well as being statistically significant, our
detected effect is non-trivial and recognizable by humans.
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Finally, we can summarise our findings as follows:

On average, divergence from user intention when adding our temporal parser
(M = 8.9335, SE = 0.1412) was significantly lower than when using only
spatial and visual parser (M = 9.318871, SE = 0.136446436); t(49) = 3.0635
and p < 0.05. The 95 percent confidence interval for the mean difference
between the two conditions was 0.1325 to 0.6380. The effect size estimate
|drm| = 0.39 indicates a non-trivial effect that is recognizable by humans.

From this we conclude, that the addition of a temporal parser (as defined in
Sect. 4.4.5) shifts machine detected structures (encoded in interpretations ;
Sect. 4.2.3) significantly closer to what target users (knowledge workers with
technical background) intend to express (see our initial hypothesis on page 179).

Thus, spatial parser performance (i. e., accuracy) can be significantly increased
when taking into account not only spatial and visual but also temporal object
relations.

199



Chapter 5. Test

200



Chapter 6

Summary, Conclusion and

Future Work

6.1 Summary and Conclusion

We started our discussion of spatio-temporal parsing with a general introduc-
tion into the field of spatial hypermedia and provided an overview of relevant
literature (Chapter 1). It was shown how spatial hypertext and spatial pars-
ing are informally defined (Sect. 1.2 and Sect. 1.3), which default-categories of
spatial and visual structures have been identified in literature (Sect. 1.4) and
what practical implementations of spatial parsers were developed (Sect. 1.5).

Chapter 2 provided a formal view on spatial hypertext. According to Sect. 2.1,
spatial hypertext languages are sets of spatial hypertext artifacts, which are
flat collections of spatial hypertext symbols. This forms our “syntactic view”.
Semantics are defined by interpretations (Sect. 2.2). Interpretations are encod-
ings of how spatial hypertext can be understood and thus form the semantic
complement to spatial hypertext artifacts. Spatial parsers are the linking ele-
ment between spatial hypertext artifacts and interpretations.

Conventional (non-adaptive) parsers are conceptually limited by their under-
lying source of information (i. e., the spatial hypertext). Due to this limitation
there are several types of structures that cannot be recognized properly. In
Chapter 3 we identified three categories: (1) ambiguous structures (Sect. 3.1);
(2) destroyed structures (Sect. 3.2) and (3) temporal structures (Sect. 3.3).
Not recognizing these types of structures limits both quality of parser output
and parser performance.
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In order to overcome this issue we suggested in Sect. 3.4 to consider not only
spatial and visual properties, but also temporal aspects in spatial parser de-
signs. For the detection of destroyed structures we suggested in Sect. 4.4.1 to
equip parsers with short-term memory (see “fading” on pages 93–94). Detection
of ambiguous and temporal structures required a temporal parser (Sect. 4.4.5).
We claimed that considering not only spatial and visual properties but also tem-
poral aspects in spatial parser design can lead to significant increase in parsing
accuracy, detection of richer structures and thus higher parser performance.

Both, temporal parser as well as fading-feature were implemented in a proto-
typical spatial hypermedia system, following a theoretical system model which
is described in Chapter 4. According to that model, spatial hypermedia sys-
tems are compositions of editing systems supporting in the creation of spatial
hypertext (Sect. 4.1) and interpretation systems performing structural analysis
(Sect. 4.2). Editing systems are mainly determined by workspace models as
described in Sect. 4.1.3, whereas interpretation systems are primarily defined
by parsing algorithms (Sect. 4.4). We designed and implemented algorithms
for the detection of spatial (Sect. 4.4.2), visual (Sect. 4.4.3), content-related
(Sect. 4.4.4) and temporal (Sect. 4.4.5) object relations. A full blockdiagram
of our prototypical spatial hypermedia system can be found in the appendix
on page 216. A screenshot of the user interface is given on page 217.

Under laboratory conditions only synergies between spatial, visual and tempo-
ral parser have been examined. Content parser and fading-functionality were
not included in our analysis (for details see page 178).

In order to compare spatio-temporal with spatial or visual parser performance
reference data were collected by surveys in a laboratory (Sect. 5.1.2). In our
studies 50 participants were asked to solve a simple term-structuring task using
an adapted version of our prototypical spatial hypermedia system (Sect. 5.1.1).
User activities during a session were recorded in log-files. Having finished their
assignment subjects were asked to indicate explicitly what they intended to
express. That qualitative feedback was then quantified in order to make it
comparable by a machine. With this data at hand we could finally determine
to what extent our spatio-temporal parser performed better than pure spatial
or visual parser (Sect. 5.2). To this end, the logged edit process (i. e., what
the participant did) was passed through temporal, spatial and visual parser
and results were merged together in varying ratios. Comparing these mixtures
with the given reference data (i. e., what the participant intended to express) re-
sulted in numerical divergence values. These values indicated how close merged
parse results came to user intention and therefore could be used for evaluation
purposes. Fig. 6.1 summarizes that again.

It turned out, that in none of the test cases pure spatial or visual parser could
outperform the spatio-temporal parser. Instead the spatio-temporal parser
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Figure 6.1: overview of survey-process (Sect. 5.1.2) + virtual test run (Sect. 5.2)

rather compensated limitations of conventional parsers and hence provided
better results. In order to show that this was not only due to chance, differ-
ences between spatio-visual and spatio-temporal parsing accuracy were tested
for statistical significance. To this end the two-tailed paired Student’s t-test
was applied on selected merging ratios, with and without temporal component
(Sect. 5.3.1). The result was statistically significant (Sect. 5.3.2). Converted
into a standard effect size our statistics indicated a non-trivial effect that is
recognizable by humans.

Thus, for our target group we have shown that adaption of parsers is not abso-
lutely necessary to increase quality of parser output. Instead, limited accuracy
caused by inadequate parser configurations or heuristics can be partly com-
pensated by adding a temporal parser. This finding is especially helpful in
cases when spatial or visual parser would fail to recognize accurate structure,
but tuning of parsers to individual user profiles or context of application is
undesirable or even impossible.

A good application example includes interfaces for navigating through large
and (possibly) unknown information spaces, such as the World Wide Web.
A widespread practice of navigating the web is text-based search. That is,
web-surfers use the output of conventional search engines as shortcuts to doc-
uments, possibly continuing their search by further traversing links. Relevant
documents are then read and notes are taken on paper or via appropriate ap-
plications. Thus, searching and taking notes becomes an iterative process of
the user juggling two distinct media or applications. Searching the web for

203



Chapter 6. Summary, Conclusion and Future Work

information and taking notes are nowadays integral components of our daily
office work. Nevertheless, there is nearly no machine support for integrat-
ing both tasks, though there are interfaces for explicit text-based search (e. g.,
web-interfaces of search engines) and tools that support in note-taking (such as
text editors, digital post-its etc.). Consequently, the user is forced to frequently
translate between formal search terms and informal note taking without com-
puter support. This produces cognitive overhead that could be avoided by using
appropriate tools: Spatial hypermedia systems including specialized parsers.

As mentioned earlier in Chapter 4 (on page 47) and in Sect. 5.1.1, spatial hyper-
media systems realise visual structure creation loops where human and machine
“interact” to gradually develop meaningful visual structure. Provided that web-
surfers take their notes in a visual information space (e. g., as post-its in a web
browser) we could apply this principle to the aforementioned navigation task.
The only difference to our generic system model would lie in the presentation of
system feedback; that is, how returned parse results are processed on applica-
tion level. In our prototypical spatial hypermedia system, interpretations were
displayed as graphical overlays on the workspace (see our considerations on
page 91). For demonstration purposes this is completely sufficient. However,
for more advanced applications, such as the described information navigation
service, internal post-processing of parse results is required.

For an intelligent browser interface this might work as follows: structures de-
tected by the system are not simply displayed as they are (i. e., as connecting
lines between objects). Instead they are used for auto-generating search queries.
That is, interpretation graphs are treated as networks of search terms. These
pattern-based queries are executed in the background (e. g., by some semantic
data basis). Search results are then added as new elements to the information
space (e. g., as geometrical objects that are labeled with key terms). The user
could then select relevant objects and re-arrange, scale, color etc. them to
implicitly express another (refined) “query-structure”. Obsolete elements are
deleted. Once the user has decided on which objects to incorporate into the
spatial hypertext and which objects to ignore another interpretation–search–
evaluation–cycle starts. Fig. 6.2 illustrates that conceptually.

This realises natural and intuitively to handle information navigation loops
where searching and note-taking are no separate tasks anymore. Users rather
gradually discover an information space by “playing around” with text snippets
on a 2d-screen. This decreases cognitive load for knowledge workers and hence
improves productivity. In a long run this could increase the average quality of
collected knowledge while still reducing manpower costs for online research.

This apparently requires efficient spatial parsers that do not need to be tuned
to users or context of application. Otherwise there is no chance to reach out
to a broad audience. Our findings from this thesis suggest that this is feasible.
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Figure 6.2: Enhanced spatial hypermedia system realising information navigation loops

Another requirement relates to the computer devices such an information nav-
igation service should operate on. Since gesture-based interaction with com-
puters has become the de-facto standard way of working with portable devices
(e. g., smart phones, tablets etc.) users increasingly tend to organize informa-
tion in an intuitive rather than a standardized way. This, however, is more
or less ignored by “apps” available for such platforms. Gestures are detected,
translated into system commands and forwarded to application-level without
undergoing an advanced (structural) analysis. Due to this, information regard-
ing user intention is inevitably getting lost. Thus spatial parsers might fill a gap
between multi-touch interfaces and “app-layer”. Limitied 2d-space and sloppy
interface handling by users, however, might limit a conventional spatial parser’s
performance. Again, a spatio-temporal parser could solve that problem.

6.2 Future Work

There are enough reasons to further investigate in parsers, as described in this
thesis. The following considerations are intended to provide information about
our subsequent plan of action and will give inspiration for further research.

Long-Term Studies So far we have analyzed synergy effects between pure
spatial, visual and temporal parser only in short-term tests and under controlled
conditions. Content parser and fading-functionality were not included in our
analysis. As a next step we are planning to integrate all four parsers (with
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activated fading) into a domain-specific application for document triage; that
is, for computer-supported examination of documents. This is where we expect
the content parser to show its real added value. Such a productive system will
finally make it possible to perform long-term studies outside of the laboratory.
This will provide us information about long-term effects of content parser,
temporal parser and (particularly) fading under real working conditions and
thus will reveal our algorithm’s potential of supporting document management
tools. If results are positive, we are planning further test runs with probands
of different cultural backgrounds. This will give us information about our
heuristic’s and hence our algorithm’s validity across cultural boundaries.

Redundancies Even though spatial, visual and temporal parser analyse dif-
ferent attributes with different heuristics, they do not necessarily generate re-
sults that are disjunct. Our findings from Sect. 5.3.1, for instance, let us
assume that there are partial overlaps and hence redundancies between the
output of visual and temporal parser. We suspect that, to a certain extent,
this also applies to the relation between spatial and temporal or spatial and
visual parser. As an example, when users create spatially separated groups
of visually uniform objects to express categorical relationships, they inevitably
introduce redundancies: on the one hand by putting members of the same
category close together and on the other hand by providing them with clear
visual identity. The first can be exploited by spatial and the latter by visual
parsers. When such groupings also change as a whole (for instance because the
user moves or scales them en bloc) then category membership can not only be
inferred from spatial proximity and visual similarity but also from temporal de-
pendencies. Thus, there are clear redundancies between the output of spatial,
visual and temporal parser. The effects of theses overlappings on parser per-
formance, however, still need to be investigated. Furthermore, studies should
be conducted (1) whether there are significant differences in pairwise intersec-
tions of spatial, visual and temporal parse results and (2) what the determining
(heuristic) parameters are.

Granularity Practical experience with our prototypical spatial hypermedia
system suggests, that spatial, visual and temporal interpretations vary in their
granularity. That is, we assume that there are systematic differences in struc-
tural nuances. Spatial parsing, as we defined and implemented it, can be
imagined as the process of “information sculpting”, where hidden information
structure is made “visible” by “carving” (i. e., removing unwanted associations)
and “modelling” (i. e., adding meaningful object connections). Depending on
how much emphasis you put on different structural aspects (such as spatial,
visual, temporal etc.) complete interpretation-graphs (i. e., the “rough mate-
rial”) is sculptured into structures with varying granularity. Our spatial parser,
for instance, delivers rather coarsely structured output, whereas visual and

206



6.2. Future Work

(particularly) temporal parser provide comparatively finely structured results.
Apart from our initial thoughts concerning primary vs. secondary structures
in Sect. 1.4 (on page 10) this has not been considered yet in our work. Thus,
assuming that differences in structural granularity are significant, it is still
unknown how great these differences are.

Performance As we know already from Chapter 3, good spatial parsers do
not only generate interpretations of high accuracy and hence produce results
of high quality, but they also perform as resource-saving and as fast as possi-
ble. Thus, there are two aspects which play an important role in spatial parser
design: effectiveness and efficiency. In this thesis the focus was put solely on
parsing accuracy and therefore on effectiveness. Aspects, such as processing
speed and resource consumption were not considered. Even though our proto-
typical implementation has been proven to be functional under test conditions
(i. e., in all test cases parsers terminated in reasonable time), their general
performance has not been analysed. Although not required for our proof of hy-
pothesis, a theoretical analysis of parser performance would be highly beneficial
though. Knowing the differences in efficiency between parsers or heuristics al-
lows to identify performance bottlenecks. This, in turn, will reveal optimization
potentials that were not considered in our original parser designs.

Extension We designed and implemented algorithms for the detection of spa-
tial (Sect. 4.4.2), visual (Sect. 4.4.3), content-related (Sect. 4.4.4) and temporal
(Sect. 4.4.5) object relations. Thus, our parser design covers the recognition
of primary spatial structures and secondary visual nuances (as discussed in
Sect. 1.4 on page 10), combined with topic-related similarities and temporal
dependencies. Although these mixtures cover already a great range of general
structures, there is still room for improvement. We suspect that spatial, visual,
content-related and temporal properties of spatial hypertext are not the only
determining factors for intended information structure. Instead we assume that
there are additional indicators for user intention, which may not be as apparent
as proximity, similarity etc., but still contribute significantly to a spatial hyper-
text’s structural meaning. We expect that exploiting these (currently unknown)
properties via additional heuristics will not only result in richer structures but
also further support disambiguation and therefore enhance structure detection.
This, however, requires that potential inconsistencies between individual parse
results are compensable. Note, that adding further heuristics automatically
increases the risk of logical inconsistencies. What is still unknown is whether
there are mutually contradictory heuristics where compensation of inconsisten-
cies is not possible. Therefore, both needs to be investigated, (1) properties of
spatial hypertexts that are still unexploited by parsers and (2) the effects of
combining them with spatial, visual, content and temporal object relations.
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