
Papers Cl-II 99 15-20 MAY 1999

Learning and Performing by Exploration: Label Quality
Measured by Latent Semantic Analysis

Rodolfo Soto
Institute of Cognitive Science

University of Colorado
Boulder, CO 80309-0344, USA

+l (303) 492-4574
Rodolfo.Soto@Colorado.edu

ABSTRACT
Models of learning and performing by exploration assume
that the semantic similarity between task descriptions and
labels on display objects (e.g., menus, tool bars) controls
in part the users’ search strategies. Nevertheless, none of
the models has an objective way to compute semantic
similarity. In this study, Latent Semantic Analysis (LSA)
was used to compute semantic similarity between task
descriptions and labels in an application’s menu system.
Participants performed twelve tasks by exploration and they
were tested for recall after a l-week delay. When the labels
in the menu system were semantically similar to the task
descriptions, subjects performed the tasks faster. LSA could
be incorporated into any of the current models, and it could
be used to automate the evaluation of computer applications
for ease of learning and performing by exploration.

Keywords
Learning by exploration, label-following strategy, cognitive
models, semantic similarity, latent semantic analysis,
usability analysis

INTRODUCTION
In the interaction between humans and computers, words
are the link between users’ goals and the actions required to
accomplish those goals. For command-based environments,
such as UNIX, users must memorize sets of keywords that
they type to interact with the system. Likewise, in display-
based environments, such as Mac OS or Win 95, users
must point at and click on display objects labeled by words
(e.g., menu items, tool bars, or dialog boxes). The right
choice of words can successfully lead users through novel or
rarely used applications such as library databases [l],
telephone menu systems [23, or graphics applications [3].
The experiment described in this paper provides empirical
evidence supporting the hypothesis that users act on those
interface labels that are semantically related to the users’
goals. Several cognitive models have been proposed to
simulate the exploration and recall of the action sequences

Copyright ACM 1999 0-201-48559-1/99/05...$5.00

required to perform novel tasks using display-based
computer applications. All these models emphasize the use
of semantic information as a means to successful1.y discover
and recall the correct action sequences. Independe:ntly of the
details in each model, they all use some version cf
semantic similarity as an evaluation function to predict the
users’ searching behavior. However, as shown here, LSA
[4] proves to be a reliable technique to compute semantic
similarity and it can be used to automate usability testing.

Outline of the paper
The next section describes the searching strategies users
employ when learning a new application by exploration.
Later, cognitive models of exploration are summarized
emphasizing the role of semantic similarity in these
models. An introduction of LSA is provided showing its
role as an objective technique to compute automatically the
semantic similarity between pieces of text. Finally, the
experiment is described in detail and its results are
discussed. This study has important implications for any
cognitive model of exploration and for the design and
automatic testing of interfaces that support learning by
exploration.

LEARNING BY EXPLORATION
Polson and Lewis [Sj analyzed the exploratory behavior of
novice users who have a goal in mind, and who have some
experience with particular types of applications or operating
systems. In this situation, users engage in search through
the interface objects for labels that will lead th.em to the
solution of their task. During this process, the application
changes Corn one state to another. For instance, a menu
item is pulled down and a pop-up menu is exposed. When
the pop-up menu items appear, the application’s state
changes to a richer one that contains more information that
eventually will help the users find the solution of the task.
The different states of the application define a problem space
[6]. Novel users should employ some domain-independent
method to guide their search through the problem space
since they cannot anticipate the state shifts that their actions
would produce. This kind of method is called a weak
method because it does not contain any specific information
about the problem, and means-ends analysis is probably its
most used variation.
Two versions of means-ends analysis are Cequently
observed in novice exploration: hill climbing, and back
chaining. In both cases, for each state one action is chosen

418

http://crossmark.crossref.org/dialog/?doi=10.1145%2F302979.303123&domain=pdf&date_stamp=1999-05-01

CHI 99 15-20 MAY 1999 Papers

among the available alternatives using “perceptual
similarity as a measure of distance” [5, p. 2051. Since novel
users do not have complete information about the available
actions in each application state, they have to rely on their
previous knowledge about the operating system or about
display-based applications to select a particular action. In
modern display-based applications, the most common
actions are pulling down menu items, clicking on tool
bars, “dragging and dropping” objects, or using “hot
keys”.
To accomplish a task, users need to estimate the distance
between the current state and the desired state (i.e., the
solution of the task). Engelbeck [7] observed that novice
users tend to explore those menu labels that share one or
more words with the experimenter-supplied description of
the tasks (or with the user’s goal). Muncher [8] also found
this behavior in novice users learning Lotus l-2-3. This
heuristic has been called the label-following strategy [5],
and it can be classified as a hill-climbing technique that
uses semantics to compute distance. Considerable evidence
confirms that label following is an effective method for
discovering the solution to novel computer tasks [3,5,9].
Ideally, the application interface would have a set of labels
that maximizes the semantic similarity between the users’
goals, or the task descriptions, and the object labels that
have to be followed to perform the tasks. However, given
the hierarchical structure of the menu systems, some labels
are very general because they have to describe several
different tasks at the same time. For instance, many modern
applications have a menu item labeled Tools. If the users’
goal is to perform a mail merge, the semantic similarity
between the terms “mail merge” and “tools” is so low that
it is unlikely that novice users will pull down the Tools
menu in their first attempt. In this case users try other more
promising labels or, if they are unsuccessful, they backtrack
and try other options [5]. This back-chaining procedure
allows them to uncover new labels that might be
semantically more similar to their goals than the ones they
attempted first.
The interaction of the hill-climbing strategy (label
following) and back chaining strategy (backtracking to try
less promising labels) constitutes the basic searching
mechanism that most cognitive models include to explain
exploratory behavior. Note that either strategy assumes that
users estimate semantic similarity between labels and goals
(or task descriptions). The review of the cognitive models
of exploration reveals that each model implements semantic
similarity very informally, an approach that is both
unreliable and time consuming. Researchers have to include
manually the necessary semantic information based on their
own intuitions. Unless an objective measure of semantic
similarity is available, choosing the right semantic features
may vary considerably from one person to another [lo].

COGNITVE MODELS OF EXPLORATION
SOAR Models
The Task-Action Learning (TAL) model [I l] simulates
users who are familiar with basic operations of the mouse
and keyboard, but unfamiliar with a particular menu

structure, object labels, and actions required to accomplish
a task. TAL emphasizes the role of semantics, since it
assumes that users analyze the experimenter instructions,
the semantic features of the tasks, and the labels on the
screen, hoping to fmd a link between them. “Interpreting
instructions involves matching the task description to the
instruction using a rule base of semantic links [italics
added] between features of the task and items on the
display” [l 1, p. 3 131. The semantic associations ate
implemented via a function that takes semantic features of
the tasks (defined by the experimenter) and lexical items as
parameters, and returns a Boolean expression indicating
semantic matching.
The IDXL model [12] simulates learning by exploration.
Rieman [13] analyzed searching in menu systems and
concluded that an effective search algorithm would be a
combination of label-following and a hybrid between depth-
and breadth-first search called depth-first iterative deepening
(DFID). Rieman suggested that this combination of label
following and DFID should be called “guided DFID”, or
gDFID. Rather than using brute force, as in pure DFID,
gDFID “heuristically limits its search to items semantically
[italics added] related to the current task” [12, p. 7471. The
IDXL model implements gDFID searching and assumes
that the user’s attention mechanism focuses on one object
at a time.
The model is supplied with a task description in working
memory and it has knowledge about Macintosh
conventions and about the correct and legal actions that can
be taken in the menu system. Scanning is the main
operator used during exploration. It allows the visual focus
to shift right, left, up, down, and to jump from place to
place. Another operator comprehends the items that have
been under attention and “may note that the scanned item is
a label that matches [italics added] some key word in the
task” [12, p. 7581. The model considers that a direct match
costs less than an indirect match (e.g., a synonym). Thus,
it tries those items that have a direct match with the
experimenter-supplied task description before trying
anything else. All the knowledge about synonyms has to
be explicitly given to the model.

A Comprehension-Based Model of Exploration
The LICAI+ model [14,15] simulates the user’s
comprehension of task instructions and hints, the
generation of goals, and the use of these goals to discover
correct actions by exploration. This model is based on the
CI architecture [161, that was originally developed as a
model for text comprehension and extended to action
planning by Marines and Kintsch [171. LICAI+ predicts
that successful exploration and recall require semantic
matching between the goal representation (or task
description) and the labels on the display objects.
The CI architecture combines propositional knowledge
with connectionist spreading activation mechanisms. CI
assumes that two propositions are related if they share one
or more arguments. For LICAI+, this means that a menu
label and the description of a task (or a hint, or a piece of
instruction, or the user’s goal) are related if there is concept
overlap between them. The semantic similarity notion of

419

Papers CHI 99 15-20 MAY 1999 -

this model is very crude. If the labels and the task
descriptions do not share words, additional knowledge can
be provided by long-term memory to establish a link.

In summary, the available models of learning by
exploration share the same intuition about the role of
semantic similarity: users tend to act on objects with labels
that “seem” to be semantically related to their goals.
Additionally, some of the models explain how the label-
following strategy is frequently combined with other
exploratory mechanisms. Although all the simulations
confirm the reliability of the label-following strategy, they
do not include an objective measure of semantic similarity.
This paper proposes that a mathematical model of
semantics, such as Latent Semantic Analysis, is a good
candidate for computing semantic similarity estimates.

LATENT SEMANTIC ANALYSIS AS A MODEL FOR
SEMANTICS
LSA is both a model and a technique to extract semantic
information corn large bodies of text. LSA was originally
conceived as an information retrieval technique [181 that
makes use of statistical procedures to capture the similarity
of words and documents in a high-dimensional space
[4,19]. Once LSA is trained on a corpus of data (consisting
of several thousands of documents), it is able to compute
similarity estimates that go beyond simple co-occurrence or
contiguity fi-equencies. Although LSA does not have any
knowledge about grammar, morphology, or syntax, it
mimics humans’ use of language in several areas ranging
from the rates of vocabulary acquisition by schoolchildren,
to word and passage priming effects, to evaluating the
performance of students on essay tests.

The collection of documents used to train LSA is arranged
in a matrix where the columns correspond to the
documents, and the rows correspond to unique word types.
An entry in the matrix indicates the number of times the
word appears in the document. Using a linear algebra
technique called singular value decomposition it is possible
to represent each document and each word as a vector of
high dimensionality (e.g., 400) that captures the underlying
relations of the words and their contexts. To determine how
similar two words are, LSA computes the cosine between
the vectors that represent the words. A cosine, like a
correlation coefficient, ranges between -1 and 1, where 1
represents a perfect match (i.e., the same word), and 0
represents no relationship between the words.

The available evidence suggests that LSA is a plausible
theory of learning, memory, and knowledge [191. All the
tests that LSA has performed successfully have been solved
using semantic similarity as the main predictor of fitness.
For instance, LSA does well on the synonym portion of the
Test of English as a Foreign Language (Educational
Testing Service) [20,21]. It computes the semantic
similarity between the stem word in each item and each of
the four alternatives, choosing the one with the highest
cosine. Using this method, LSA performed virtually
identically to the average of a large sample of non-English
speaking students. Since the HCI literature stresses the role
of semantics as a measure of distance during hill-climbing-
like strategies, LSA should be able to account for the

“good-labels effect” observed during exploration. In other
words, LSA could be extended to action planning;.

Since LSA learns about language exclusively from the
training texts, it is very important to choose the right
corpus for the specific situation to be modeled. Several
corpora have been used to train LSA. One of the most
versatile is the TASA (Touchstone Applied Science
Associates, Inc.) corpus (see http://lsa.colorado.edu). This
group of documents uses a variety of text sources, such as
newspaper articles and novels that represent the kind of
material students read during the school years. The TASA
corpus is broken into grade levels, from third grade to
college, using a readability score (DRP-Degrees of Reading
Power Scale) that is assigned to each of its 37,651
documents. TASA is a good training corpus to model
ndive or inexperienced users, especially because it is
assumed that these kinds of users are forced to adapt their
“everyday” knowledge about common words to the new
context that is imposed by a computer application [111.

THE EXPERIMENT
The main limitation of both the theoretical and the
empirical research on the label-following strategy is the lack
of a well-defmed measure for semantic similarity. In most
cases, semantic relationships are established exclusively via
some form of literal word overlap. Hence, the only well-
defmed similarity metric is, in LSA terms, a cosine of 1
(i.e., an exact match). Unless informal intuitive est.imates of
semantic similarity are included in the models, it is
difficult to study situations where there are intermediate
degrees of semantic similarity.

This experiment systematically manipulates the i;nterface of
Microsoft Excel to show that the semantic similarity
(estimated by LSA) between the labels in the menus and
the task descriptions predicts the ease of discovering the
solution of the tasks. Additionally, a few different degrees
and patterns of semantic similarity are used to explore the
interaction between label-following and back.-chaining
strategies.

Methods
Participants
Fifty-five undergraduate students participated in the
experiment. Twenty-eight received class credit and twenty-
seven received $10 for their participation. The data from
seven participants, four from the group that received class
credit and three from the group that received 9; 10 were
discard& two of them were not able to follow the
instructions correctly, and in the five other cases, technical
errors invalidated the results. The remaining forty-eight
participants had at least four years of experience with either
the Macintosh or the IBM-PC computer, or both. The
group that received class credit had significantly more
experience than the other group (on average 5.8 vs. 4.3
years, F(1,47) = 5.21, p < .03). However, the groups did
not differ significantly in their years of experie,nce with
Microsoft Word, Microsoft Excel (without creating
graphics), Mac Draw, and WWW Browsers. Likewise, they
did not differ significantly in the number of graphs they had
created by hand in their life. None of the participants had

420

CHI 99 15-20 MAY 1999 Papers

experience with graphics applications such as Cricket Graph
or with the graphics capabilities of Microsoft Excel.

Materials
Twelve computer tasks were designed manipulating the
semantic similarity between the labels of the menu system
and the task descriptions. Microsoft Excel was used to
administer the tasks, running in a Macintosh Centris 650
with 16 MB in RAM, 500 MB in hard disk, and a page-size
grayscale monitor. An Excel Add-in was developed to
reconfigure Excel’s interface. This made it possible to have
a fully functional graphics application in which the tasks
had the features required by the experiment, and which
guaranteed that the application was novel for the
participants.

An S-VHS camera and a clip-on microphone were used to
record the computer screen and the participant’s voice. Each
participant received a package containing an informed
consent form, a blue pen, and a notebook with the
instructions and the task descriptions.

Tasks
There were four warm-up and eight experimental tasks. All
consisted of editing a bar graph using a graphics
application. Participants received detailed descriptions of the
tasks, but no information about how to perform them
(Table 1 shows the experimental tasks descriptions). The
eight experimental tasks consisted of five steps. (1) Choose
a top-level menu item. (2) Choose a submenu item. (3)
Choose a sub-submenu item. (4) Click on a radio button or
check box (in a dialog box). (5) Click on a button labeled
“Ok” to close the dialog and end the task.

Task 1 Change the graph type to column

Task 2 Apply the default format to the graph

Task 3 Hide the graph title

Task 4 Add a third dimension to the graph

Task 5 Change the graph font to bold

Task 6 Delete the values from the bar graph

Task 7 Change the graph background color to green

Task 8 Apply a logarithmic scale to the graph axes

Table 1. Description of the experimental tasks

The labels for the second and third steps were manipulated
so that their semantic similarity with respect to the task
descriptions varied. These labels were selected using LSA
working under the TASA space. The closest 1000 terms to
the description of the tasks were computed. From this pool,
words were selected and two-word phrases were created for
each menu item. Four degrees of semantic similarity were
chosen based on the LSA cosines between the labels and the
task descriptions. Good (G) labels had an average cosine of
.69 (SD .17) with the task descriptions. The other three
degrees of similarity had significantly lower cosines than
the G labels had. Therefore, they were classified as three
degrees of badness (B). B, labels had an average cosine of

.25 (SD = .08), B, labels had an average cosine of .15 (SD
= .02), and B, labels had an average cosine of -.05 (SD =
.Ol) with the task description.

For example, a G label for task 1 (Change the graph type to
column) was Change Type (cosine = .64), a B, label was
Correct Presentation (cosine = .22), a B, label was
Rendering Practice (cosine = .18), and a B, label was
Troubleshooter Route (cosine = -.04). Depending on the
condition (as explained in the next section) these labels
were assigned to either the second or the third step of the
task. That is to say, there were four different patterns of
semantic similarity for the second and third steps of each
task: a G label followed by a G label (G, G), (G, B), (B,
G), and (B, B). In the last case, when both the second and
the third steps had bad labels, the degree of badness for both
labels remains constant: (B,, B,), (B,, B,), or (B3, B3).

Only the labels for the second and third steps were
manipulated because they appear in similar contexts:
submenus (pop-up menus). The labels for the other three
steps had a fixed semantic similarity. The first step (top-
level menu item) had a semantic similarity between B, and
B, with respect to the description of the tasks under that
menu. The fourth step (radio button or check box in a
dialog box) had a semantic similarity of G. Finally, the
fifth step (“Ok” button) had a semantic similarity between
B, and B, with respect to any of the task descriptions.

Design
A menu structure template was created having eight top-
level items: File, Edit, General, Rssign. Transformation,
Appearance, and Tools. Figure 1 shows the menu structure
template under the Gssign menu. Tasks 1 and 3 were under
the General menu, tasks 2 and 8 were under the Assign
menu, tasks 5 and 6 were under the Transformation menu,
and tasks 4 and 7 were under the Gppearance menu.

Headings t
Layout uiew

Bullet list
Number List

It: 2. s: 2) b
Blockquote...
(1: 8, s: 2) ,
a bc,fWiT i;rrfrrrr,c.rr~,..

Publishing b

Figure I. Menu structure template tar me Rssign menu.
_ __ . ^.

Data in parenthesis refer to task and step numbers. For
instance, (t:2, s:3) is the slot for the third step of task 2.

Different conditions were created so the slots for the second
and third steps could be filled out in a balanced way. Four
patterns of similarity (G, G), (G, B), (B, G), and (B, B)
were equally distributed across tasks, and across conditions.
Since the degree of badness (B,, B,, and BJ was fixed for

421

Papers CHI 99 155;!I1 MAY 1999

each subject, it was considered a between factor. As an extra
experimental factor, four of the eight experimental tasks
were explicitly instructed, whereas the other four were
explored (see next section). This factor was also balanced
across tasks and across conditions. In total, 24 different
conditions were created for this experiment.

Procedure
The experiment consisted of two 30-minute sessions: a
training session followed by recall 7 days later. Participants
were interviewed individually, their responses were recorded,
and the computer screen was videotaped. In the training
session, participants read and signed a consent form and
received a written version of the instructions. During the
first 3 minutes, a verbal protocol practice task was
administered consisting of a “think aloud” description of the
participant parent’s house, as recommended by [22]. During
both sessions, participants had to think aloud while
performing the experiment. The experimenter reminded the
participants that they had to think aloud if they remained
silent for more than 15 s.

After signing the consent form, participants opened the
notebook and mad the instructions. At this point, the
experimenter answered any question the participants had.
Participants were instructed to pay close attention to what
they did because they had to repeat it in one week. They
were also informed that they would be explicitly instructed
in 4 of the 12 tasks. When a task was explicitly instructed,
the experimenter gave step-by-step instructions on how to
perform the task. When the task was not explicitly
instructed, the participant could explore the interface to
“figure out” how to perform the task. During this process,
users could undo or cancel any incorrect action. If after 60 s
the participant did not show progress, the experimenter gave
a hint that consisted in revealing the corresponding step of
the sequence. The hints were the same as the ones used in
the explicitly instructed version. The experimenter gave as
many hints as needed in order from the first step to the last
step, and allowed 60 s for exploration at each step.

For the recall session, participants had to perform the same
training tasks and in the same order. During the recall
session, none of the tasks was explicitly instructed, but
hints were given if necessary following the same procedure
used in the training session. At the end of the recall
session, a survey was administered to obtain information
about the participants’ computer experience. After the
questionnaire, the experimenter turned off the computer
screen and handed the participants a piece of paper with the
task descriptions used during the experiment. Participants
were asked to write down as many labels as they could
recall from the menus and other screen objects that had to
be manipulated to perform each of the tasks.

Scoring and Data Measurement
During the explored part of the training session and during
the whole recall session two measures were recorded for
each task step: elapsed time, and number of hints. The
experimenter recorded the number of hints whereas the
VCR’s counter was used to measure the time per step from
the videotapes of the sessions.

Results
ANOVA tests were conducted for both dependent variables
(time and number of hints) to determine the effect of the
design factors. On average, no significant differences in
performance were found between the group that received $10
for the experiment and the group that did not teceive any
payment. Additionally, there were no effects related to the
configuration of the 24 menu structures that were used.
None of these factors was included in further analyses. In
this paper, the effects of type of learning: explicit instructed
versus explored, and the results from the verbal protocols
are not analyzed.

Task Data
The total elapsed time for each task was computed as the
sum of the elapsed time for each of the 5 steps. Likewise,
the number of hints was computed as the numb,er of steps
that could not be performed in less than 60 s and, therefore,
required a hint. On average, each task was performed in
87.36 s during training (SD = 15.1), and in 68.1 s during
recall (SD = 20.1). This difference was significant, F(1, 47)
= 51.35, p < .OOOl. Similarily, 0.96 hints per task were
given on average during training (SD = .35), and 0.67
during recall (SD = .22). This difference ‘was also
significant, F(1,47) = 29.12, p < .OOOl.

Time and number of hints were collapsed over the
individual tasks, over sessions, and over degree of badness
to analyze the effect of similarity pattern: (G, G), (G, B),
(B, G), and (B, B). As expected, the pattern (G, G) was
performed much faster and required fewer hints than the
other three patterns (F(l, 47) = 195.3, p c .OOOl, F(1,47) =
189.8, p < .OOOl, for time and for hints, respectively).
Likewise, the (B, B) pattern was performed much more
slowly and required more hints than the other three patterns
(F(l, 47) = 183.9, p < .OOOl, F(1,47) = 156.1, 13 < .OOOl,
for time and for hints, respectively). Finally, there was no
significant difference between the (G, B), and the (B, G)
patterns (F(1,47) = 1.71, p = .19, F(l, 47) = 2.19, p = .14,
for time and for hints, respectively). Figure 2 shows the
effect of similarity pattern and the effect of degree of
badness on task performance time. The interaction between
task configuration and degree of badness was not
significant.

140

(GOOd,Good) (GoOdBad) @ad.Good)

Similarity Pattern

Figure 2. Effects of similarity pattern and degree of badness
on task performance time. (3rd degree of badness represents
the worst semantic similarity)

422

CHI 99 15-20 MAY 1999 Papers

Step Data
Since only the semantic similarity of the second and third
steps was manipulated, the data from those two steps were
used to analyze the effects of semantic similarity and degree
of badness. Collapsing over task configuration, sessions,
and step number (second and third), the more semantically
similar the label and the task description were, the faster the
step was performed and the fewer hints were required. Good
steps (average cosine of .67) were performed, on average, in
7.97 s (SD = 4.56) and required .05 hints (SD = .06). On
average, bad steps (average cosine of. 11) were performed in
20.83 s (SD = 7.71) and required .17 hints (SD = .l).
Broken down by degree of badness, bad steps (first degree of
badness, cosine of .25) were performed, on average, in 18 s
(SD = 7.75) and required .13 hints (SD = .l). Bad steps
(second degree of badness, cosine of .15) were performed, on
average, in 20.67 s (SD = 8.13) and required .17 hints (SD
= .09). Bad steps (third degree of badness, cosine of -.05)
were performed, on average, in 23.83 s (SD = 6.47) and
required .22 hints (SD = .09).

Figure 3 shows a linear trend in the effect of semantic
similarity on performance time. As expected, good steps
were performed faster than the average bad step, F(1,47) =
127.47, p c .OOOl. Likewise, there was a reliable linear
effect of degree of badness on the bad steps performance
time, F(1,47) = 4.86, p < .05. When moving from one
degree of badness to another (i.e., moving from more
similar to less similar), the performance time increases, on
average, by 2.9 s. Good steps required fewer hints than the
average bad step, F(1,47) = 60.69, p < .OOOl. Additionally,
for the bad steps, there was a reliable linear effect of degree
of badness, F(1,47) = 7.5, p < .05. When moving from one
degree of badness to another (i.e., moving from more
similar to less similar), on average, .04 more hints were
required per step.

30
?
1
8 25

g

.g zo-
e:
E 15. /

E

2 IO-

&

p s-

f

0,

Good Bad (1st degree) Bad (2nd degree) Bad (3rd degree)

Semantic Similarity

Figure 3. Effect of semantic similarity on step petiormance
time. (3rd degree of badness represents the worst semantic
similarity)

Free Recall Data
Replicating the literature [23], the correct action sequences
necessary to perform the tasks were very poorly recalled
when participants did not have access to the application
interface. None of the subjects was able to recall a complete
sequence of steps, and although 46 out of the 48
participants were able to recall at least one label, on

average, only .ll labels were correctly recalled for each
task.

DISCUSSION
Semantic similarity between task descriptions and menu
labels reliably predicted the ease of discovering and recalling
the experimental tasks. The semantic similarity, estimated
by LSA cosines, predicted users’ performance not only at
the task level, but also at the individual step level. Different
similarity patterns showed different reaction times: (G, G)
was the fastest pattern, whereas (B, B) was the slowest.
Additionally, it was shown that all subjects had very poor
recall when they were away from the application interface.

Several models of learning by exploration have been
reviewed here, all of which describe an attention mechanism
that is driven by semantics. They agree that users select
actions based on the semantic similarity between the task
descriptions (or goals) and the display labels. These models
assume that the display can be represented as a collection of
objects and labels, and that other information about the
objects (e.g., what action can be carried out on them) is
stored in long-term memory. Therefore, to decide what
object to act on, users semantically match object labels,
task descriptions, and long-term memory knowledge. LSA
can thus be applied appropriately to any of these models to
estimate semantic similarity. Certainly, LSA cannot replace
any of the models because there are other issues in
exploration and action planning (e.g., backtracking) that
could not be explained by a purely semantics based model.
However, LSA can be a valuable addition to any of the
models and provides a powerful tool to test the usability of
applications.

Usability testing
It is impossible to design an application in which, for each
task description, only highly semantically related labels are
used in the action sequence. The hierarchical structure of the
menu forces the designer to select very broad and sometime
ambiguous labels at the top of the hierarchy. However, a
good interface should guarantee that the correct label is
always the one with the highest semantic similarity among
the available labels. In order to evaluate the differences in
semantic similarity between labels and task descriptions, an
objective method, such as LSA, is desirable. So far,
theorists and designers have used very informal estimates of
semantic similarity. This study suggests that this may not
be necessary.

LSA could be used in addition as an “automated” cognitive
walkthrough [2]. This is a method for assessing the
usability of a system, focusing on ease of learning. It
involves hand simulation of the cognitive processes by
which users, with no formal instruction, learn an
application by exploration. The method takes into account
users’ elaboration of goals and users’ interpretation of the
application’s feedback. The cognitive walkthrough is very
labor intensive, and for this reason it is impractical for large
modem applications. However, with LSA it would be
possible to construct an automated system to evaluate large
applications.

423

Papers CHI 99 15-20 MAY 1999

An alternative method is to hire expert designers to evaluate
each of the labels of the application and their semantic
similarity to the task descriptions. However, this method
may be disadvantageous for various reasons. First, it may
be highly unreliable because of the variance in opinion
between one expert and another [24]. Second, it may be
very time consuming, especially when tasks can be
described in different ways, or when the application labels
suffer minor changes during the design process. Finally,
hiring expert evaluators can be very expensive.
LSA offers a more convenient method because it can rapidly
estimate the semantic similarity of several alternative task
descriptions and labels. When the application interface
changes or when tasks are &led or reformulated, the re-
computation of the similarity estimates can be done very
efficiently. Additionally, the estimation of semantic
similarity can even be performed over the Internet
(http://lsa.colorado.edu).
As stated above, LSA can be trained in any written
language and with different corpora of texts. This makes it
possible to model users with different backgrounds and skill
levels. In the present study, a corpus of very broad and
general knowledge was used to train LSA because the
participants were mostly college freshmen, and there was no
reason to believe they had any advanced technical
knowledge. During the construction of the stimuli, it was
discovered that one of the closest words to the phrase “hide
the legend’ (referring to a graph legend) was “dragons”, with
a cosine value of .41. This result is due to the fact that all
the knowledge that the TASA space has about the word
“legend” comes from epic novels, rather than from
computer manuals (“map” and “heroes“ are among the top 5
closest terms to “legend”). LSA has no way of knowing
that “legend” also refers to part of a graph. The word
“legend’ was not used in the present experiment because it
does not seem to be a good way to describe a graph legend
to a novice user. Using computer manuals or other more
technical materials to train LSA may result in better and
more accurate models.

Conclusions
This study showed that semantic similarity accurately
predicts the ease of learning new computer tasks. The degree
of similarity between the object labels to be acted on and
the task descriptions drives the exploratory behavior of
novel users. LSA proved to be a reliable way to estimate
semantic similarity and, therefore, can be applied to any of
the cognitive models that has been developed to explain
users’ exploratory behavior. Eventually, LSA could be used
in conjunction with other already available techniques (e.g.,
the cognitive walkthrough method) to automatically test the
usability of computer applications.

ACKNOWLEDGMENTS
Partial support was provided by NASA Grant NCC 2-904.
This paper is based on the author’s master thesis [25]. The
author thanks his thesis committee members, Professor
Peter G. Polson (chair), Professor Tomas K. Landauer, and
Professor Walter Kintsch, for their help and support in
developing this project. Dr. Eileen Kintsch and three

anonymous reviewers provided very helpful comments on
earlier versions of this manuscript.

REFERENCES
1. Rieman, J., et al. (1991). An automated walkthrough.
Proceedings of CHI’91 Conference on Human F’actors in
Computer Systems, pp. 427-428. New York, NY: ACM
Press.
2. Polson, P.G., et al. (1992). Cognitive walkthroughs: A
method for theory-based evaluation of user interfaces.
International Journal of Man-Machine Studies, :!6(5), 741-
773.
3. Franzke, M. (1995). Turning research into practice:
Characteristics of display-based interaction. Proceedings of
CHI’95 Conference on Human Factors in Computing
Systems, pp. 421-428. New York, NY: ACM Press.
4. Landauer, T.K., Foltz, P., and Laham, D. (1998). An
Introduction to Latent Semantic Analysis. Discourse
Processes, 24,259-284.
5. Polson, P.G. and Lewis, C.H. (1990). Theory-based
design for easily learned interfaces. Human-Computer
Interaction, 5(2-3), 191-220.
6. Newell, A. and Simon, H.A. (1972). Human’ Problem
Solving. Englewoods Cliffs, NJ: Prentice-Hall.
7. Engelbeck, G.E. (1986). Exceptions to generalizations:
implications for formal models of human-computer
interaction. Unpublished masters thesis, Un:iversity af
Colorado, Boulder, CO.
8. Muncher, E. (1989). The acquisition of spreadsheet
skills. Unpublished masters thesis, University of Colorado,
Boulder, CO.
9. Kitajima, M. and Polson, P.G. (1997). LICAI+: A
Comprehension-Based Model of Learning for Display-
Based Human-Computer Interaction. Proceedings of
CHI’97 Conference on Human Factors in Computing
Systems, pp. 333-334. New York, NY: ACM Press.
10. Landauer, T.K., Galotti, K.M., and Hartwell, S .
(1983). Natural Command Names and Initial Learning: A
study of Text-Editing Terms. Communications of the
ACM, 26(7), 495-503.
11. Howes, A. and Young, R.M. (1996). Learning
consistent, interactive and meaningful device methods: A
computational model. Cognitive Science, 20, 3011-356.
12. Rieman, J., Young, R.M., and Howes, A. (1996). A
dual-space model of iteratively deepening exploratory
learning. International Journal of Human-Computer
Studies, 44(6), 743-775.
13. Rieman, J.F. (1994). Learning Strategies and
Exploratory Behavior of Interactive Computer Users.
Unpublished Doctoral Dissertation, University of Colorado,
Boulder, CO.
14. Kitajima, M. and Poison, P.G. (1997). A
Comprehension-Based Model of Exploration. Humun-
Computer Interaction, 12,439-462.
15. Kitajima, M., Soto, R., and Polson, P.G. (1998).
LICAI+: A Comprehension-Based Model of The Recall of

424

CHI 99 15-20 MAY 1999 Papers

Action Sequences. In F. Ritter and R.M. Young (Eds.),
Proceedings of the Second European Conference on
Cognitive Modelling (Nottingham, April 1-4, 1998) (pp.
82-89). Nottingham, UK: Nottingham University Press.
16. Kintsch, W. (1998). Comprehension: A paradigm for
cognition. New York, NY: Cambridge University Press.
17. Mannes, S.M. and Kintsch, W. (1991). Routine
Computing Tasks: Planning as Understanding. Cognitive
Science, 15, 305-342.
18. Deerwester, S., et al. (1990). Indexing by Latent
Semantic Analysis. Journal of the American Society For
Information Science, 41(6), 391-407.
19. Landauer, T.K. and Dumais, S.T. (1997). A solution
to Plato’s problem: The latent semantic analysis theory of
acquisition, induction, and representation of knowledge.
Psychological Review, 104(2), 21 l-240.
20. Landauer, T.K. and Dumais, S.T. (1996). How come
you know so much? From practical problem to theory. In
D. Hermann, et al. (Eds.), Basic and applied memory:
Memory in context (pp. 105-126). Mahwah, NJ: Erlbaum.

21. Landauer, T.K. and Dumais, S.T. (1994). Latent
semantic analysis and the measurement of knowledge. In
R.M. Kaplan and J.C. Burstein (Eds.), Educational testing
service conference on natural language processing
techniques and technology in assessment and education .
Princeton, N.J.: Educational Testing Service.
22. Ericsson, A.K. and Simon, H.A. (1980). Verbal
Reports as Data. Psychological Review, 87(3), 2 15-25 1.
23. Payne, S.J. (1991). Display-based action at the user
interface. International Journal of Man-Machine Studies,
35, 275-289.
24. Nielsen, J. (1992). Applying Heuristjc Evaluation to a
Highly Domain-Specific User Interface. Technical
memorandum. Morristown, NJ: Bellcore.
25. Soto, R. (1998). Learning and Performing by
Exploration: Label Quality Measured by Latent Semantic
Analysis. Unpublished master thesis, University of
Colorado, Boulder, CO.

425

