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ABSTRACT 
Models of learning and performing by exploration assume 
that the semantic similarity between task descriptions and 
labels on display objects (e.g., menus, tool bars) controls 
in part the users’ search strategies. Nevertheless, none of 
the models has an objective way to compute semantic 
similarity. In this study, Latent Semantic Analysis (LSA) 
was used to compute semantic similarity between task 
descriptions and labels in an application’s menu system. 
Participants performed twelve tasks by exploration and they 
were tested for recall after a l-week delay. When the labels 
in the menu system were semantically similar to the task 
descriptions, subjects performed the tasks faster. LSA could 
be incorporated into any of the current models, and it could 
be used to automate the evaluation of computer applications 
for ease of learning and performing by exploration. 
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INTRODUCTION 
In the interaction between humans and computers, words 
are the link between users’ goals and the actions required to 
accomplish those goals. For command-based environments, 
such as UNIX, users must memorize sets of keywords that 
they type to interact with the system. Likewise, in display- 
based environments, such as Mac OS or Win 95, users 
must point at and click on display objects labeled by words 
(e.g., menu items, tool bars, or dialog boxes). The right 
choice of words can successfully lead users through novel or 
rarely used applications such as library databases [l], 
telephone menu systems [23, or graphics applications [3]. 
The experiment described in this paper provides empirical 
evidence supporting the hypothesis that users act on those 
interface labels that are semantically related to the users’ 
goals. Several cognitive models have been proposed to 
simulate the exploration and recall of the action sequences 

Copyright ACM 1999 0-201-48559-1/99/05...$5.00 

required to perform novel tasks using display-based 
computer applications. All these models emphasize the use 
of semantic information as a means to successful1.y discover 
and recall the correct action sequences. Independe:ntly of the 
details in each model, they all use some version cf 
semantic similarity as an evaluation function to predict the 
users’ searching behavior. However, as shown here, LSA 
[4] proves to be a reliable technique to compute semantic 
similarity and it can be used to automate usability testing. 

Outline of the paper 
The next section describes the searching strategies users 
employ when learning a new application by exploration. 
Later, cognitive models of exploration are summarized 
emphasizing the role of semantic similarity in these 
models. An introduction of LSA is provided showing its 
role as an objective technique to compute automatically the 
semantic similarity between pieces of text. Finally, the 
experiment is described in detail and its results are 
discussed. This study has important implications for any 
cognitive model of exploration and for the design and 
automatic testing of interfaces that support learning by 
exploration. 

LEARNING BY EXPLORATION 
Polson and Lewis [Sj analyzed the exploratory behavior of 
novice users who have a goal in mind, and who have some 
experience with particular types of applications or operating 
systems. In this situation, users engage in search through 
the interface objects for labels that will lead th.em to the 
solution of their task. During this process, the application 
changes Corn one state to another. For instance, a menu 
item is pulled down and a pop-up menu is exposed. When 
the pop-up menu items appear, the application’s state 
changes to a richer one that contains more information that 
eventually will help the users find the solution of the task. 
The different states of the application define a problem space 
[6]. Novel users should employ some domain-independent 
method to guide their search through the problem space 
since they cannot anticipate the state shifts that their actions 
would produce. This kind of method is called a weak 
method because it does not contain any specific information 
about the problem, and means-ends analysis is probably its 
most used variation. 
Two versions of means-ends analysis are Cequently 
observed in novice exploration: hill climbing, and back 
chaining. In both cases, for each state one action is chosen 
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among the available alternatives using “perceptual 
similarity as a measure of distance” [5, p. 2051. Since novel 
users do not have complete information about the available 
actions in each application state, they have to rely on their 
previous knowledge about the operating system or about 
display-based applications to select a particular action. In 
modern display-based applications, the most common 
actions are pulling down menu items, clicking on tool 
bars, “dragging and dropping” objects, or using “hot 
keys”. 
To accomplish a task, users need to estimate the distance 
between the current state and the desired state (i.e., the 
solution of the task). Engelbeck [7] observed that novice 
users tend to explore those menu labels that share one or 
more words with the experimenter-supplied description of 
the tasks (or with the user’s goal). Muncher [8] also found 
this behavior in novice users learning Lotus l-2-3. This 
heuristic has been called the label-following strategy [5], 
and it can be classified as a hill-climbing technique that 
uses semantics to compute distance. Considerable evidence 
confirms that label following is an effective method for 
discovering the solution to novel computer tasks [3,5,9]. 
Ideally, the application interface would have a set of labels 
that maximizes the semantic similarity between the users’ 
goals, or the task descriptions, and the object labels that 
have to be followed to perform the tasks. However, given 
the hierarchical structure of the menu systems, some labels 
are very general because they have to describe several 
different tasks at the same time. For instance, many modern 
applications have a menu item labeled Tools. If the users’ 
goal is to perform a mail merge, the semantic similarity 
between the terms “mail merge” and “tools” is so low that 
it is unlikely that novice users will pull down the Tools 
menu in their first attempt. In this case users try other more 
promising labels or, if they are unsuccessful, they backtrack 
and try other options [5]. This back-chaining procedure 
allows them to uncover new labels that might be 
semantically more similar to their goals than the ones they 
attempted first. 
The interaction of the hill-climbing strategy (label 
following) and back chaining strategy (backtracking to try 
less promising labels) constitutes the basic searching 
mechanism that most cognitive models include to explain 
exploratory behavior. Note that either strategy assumes that 
users estimate semantic similarity between labels and goals 
(or task descriptions). The review of the cognitive models 
of exploration reveals that each model implements semantic 
similarity very informally, an approach that is both 
unreliable and time consuming. Researchers have to include 
manually the necessary semantic information based on their 
own intuitions. Unless an objective measure of semantic 
similarity is available, choosing the right semantic features 
may vary considerably from one person to another [lo]. 

COGNITVE MODELS OF EXPLORATION 
SOAR Models 
The Task-Action Learning (TAL) model [I l] simulates 
users who are familiar with basic operations of the mouse 
and keyboard, but unfamiliar with a particular menu 

structure, object labels, and actions required to accomplish 
a task. TAL emphasizes the role of semantics, since it 
assumes that users analyze the experimenter instructions, 
the semantic features of the tasks, and the labels on the 
screen, hoping to fmd a link between them. “Interpreting 
instructions involves matching the task description to the 
instruction using a rule base of semantic links [italics 
added] between features of the task and items on the 
display” [l 1, p. 3 131. The semantic associations ate 
implemented via a function that takes semantic features of 
the tasks (defined by the experimenter) and lexical items as 
parameters, and returns a Boolean expression indicating 
semantic matching. 
The IDXL model [12] simulates learning by exploration. 
Rieman [13] analyzed searching in menu systems and 
concluded that an effective search algorithm would be a 
combination of label-following and a hybrid between depth- 
and breadth-first search called depth-first iterative deepening 
(DFID). Rieman suggested that this combination of label 
following and DFID should be called “guided DFID”, or 
gDFID. Rather than using brute force, as in pure DFID, 
gDFID “heuristically limits its search to items semantically 
[italics added] related to the current task” [ 12, p. 7471. The 
IDXL model implements gDFID searching and assumes 
that the user’s attention mechanism focuses on one object 
at a time. 
The model is supplied with a task description in working 
memory and it has knowledge about Macintosh 
conventions and about the correct and legal actions that can 
be taken in the menu system. Scanning is the main 
operator used during exploration. It allows the visual focus 
to shift right, left, up, down, and to jump from place to 
place. Another operator comprehends the items that have 
been under attention and “may note that the scanned item is 
a label that matches [italics added] some key word in the 
task” [12, p. 7581. The model considers that a direct match 
costs less than an indirect match (e.g., a synonym). Thus, 
it tries those items that have a direct match with the 
experimenter-supplied task description before trying 
anything else. All the knowledge about synonyms has to 
be explicitly given to the model. 

A Comprehension-Based Model of Exploration 
The LICAI+ model [14,15] simulates the user’s 
comprehension of task instructions and hints, the 
generation of goals, and the use of these goals to discover 
correct actions by exploration. This model is based on the 
CI architecture [ 161, that was originally developed as a 
model for text comprehension and extended to action 
planning by Marines and Kintsch [ 171. LICAI+ predicts 
that successful exploration and recall require semantic 
matching between the goal representation (or task 
description) and the labels on the display objects. 
The CI architecture combines propositional knowledge 
with connectionist spreading activation mechanisms. CI 
assumes that two propositions are related if they share one 
or more arguments. For LICAI+, this means that a menu 
label and the description of a task (or a hint, or a piece of 
instruction, or the user’s goal) are related if there is concept 
overlap between them. The semantic similarity notion of 

419 



Papers CHI 99 15-20 MAY 1999 - 

this model is very crude. If the labels and the task 
descriptions do not share words, additional knowledge can 
be provided by long-term memory to establish a link. 

In summary, the available models of learning by 
exploration share the same intuition about the role of 
semantic similarity: users tend to act on objects with labels 
that “seem” to be semantically related to their goals. 
Additionally, some of the models explain how the label- 
following strategy is frequently combined with other 
exploratory mechanisms. Although all the simulations 
confirm the reliability of the label-following strategy, they 
do not include an objective measure of semantic similarity. 
This paper proposes that a mathematical model of 
semantics, such as Latent Semantic Analysis, is a good 
candidate for computing semantic similarity estimates. 

LATENT SEMANTIC ANALYSIS AS A MODEL FOR 
SEMANTICS 
LSA is both a model and a technique to extract semantic 
information corn large bodies of text. LSA was originally 
conceived as an information retrieval technique [ 181 that 
makes use of statistical procedures to capture the similarity 
of words and documents in a high-dimensional space 
[4,19]. Once LSA is trained on a corpus of data (consisting 
of several thousands of documents), it is able to compute 
similarity estimates that go beyond simple co-occurrence or 
contiguity fi-equencies. Although LSA does not have any 
knowledge about grammar, morphology, or syntax, it 
mimics humans’ use of language in several areas ranging 
from the rates of vocabulary acquisition by schoolchildren, 
to word and passage priming effects, to evaluating the 
performance of students on essay tests. 

The collection of documents used to train LSA is arranged 
in a matrix where the columns correspond to the 
documents, and the rows correspond to unique word types. 
An entry in the matrix indicates the number of times the 
word appears in the document. Using a linear algebra 
technique called singular value decomposition it is possible 
to represent each document and each word as a vector of 
high dimensionality (e.g., 400) that captures the underlying 
relations of the words and their contexts. To determine how 
similar two words are, LSA computes the cosine between 
the vectors that represent the words. A cosine, like a 
correlation coefficient, ranges between -1 and 1, where 1 
represents a perfect match (i.e., the same word), and 0 
represents no relationship between the words. 

The available evidence suggests that LSA is a plausible 
theory of learning, memory, and knowledge [ 191. All the 
tests that LSA has performed successfully have been solved 
using semantic similarity as the main predictor of fitness. 
For instance, LSA does well on the synonym portion of the 
Test of English as a Foreign Language (Educational 
Testing Service) [20,21]. It computes the semantic 
similarity between the stem word in each item and each of 
the four alternatives, choosing the one with the highest 
cosine. Using this method, LSA performed virtually 
identically to the average of a large sample of non-English 
speaking students. Since the HCI literature stresses the role 
of semantics as a measure of distance during hill-climbing- 
like strategies, LSA should be able to account for the 

“good-labels effect” observed during exploration. In other 
words, LSA could be extended to action planning;. 

Since LSA learns about language exclusively from the 
training texts, it is very important to choose the right 
corpus for the specific situation to be modeled. Several 
corpora have been used to train LSA. One of the most 
versatile is the TASA (Touchstone Applied Science 
Associates, Inc.) corpus (see http://lsa.colorado.edu). This 
group of documents uses a variety of text sources, such as 
newspaper articles and novels that represent the kind of 
material students read during the school years. The TASA 
corpus is broken into grade levels, from third grade to 
college, using a readability score (DRP-Degrees of Reading 
Power Scale) that is assigned to each of its 37,651 
documents. TASA is a good training corpus to model 
ndive or inexperienced users, especially because it is 
assumed that these kinds of users are forced to adapt their 
“everyday” knowledge about common words to the new 
context that is imposed by a computer application [ 111. 

THE EXPERIMENT 
The main limitation of both the theoretical and the 
empirical research on the label-following strategy is the lack 
of a well-defmed measure for semantic similarity. In most 
cases, semantic relationships are established exclusively via 
some form of literal word overlap. Hence, the only well- 
defmed similarity metric is, in LSA terms, a cosine of 1 
(i.e., an exact match). Unless informal intuitive est.imates of 
semantic similarity are included in the models, it is 
difficult to study situations where there are intermediate 
degrees of semantic similarity. 

This experiment systematically manipulates the i;nterface of 
Microsoft Excel to show that the semantic similarity 
(estimated by LSA) between the labels in the menus and 
the task descriptions predicts the ease of discovering the 
solution of the tasks. Additionally, a few different degrees 
and patterns of semantic similarity are used to explore the 
interaction between label-following and back.-chaining 
strategies. 

Methods 
Participants 
Fifty-five undergraduate students participated in the 
experiment. Twenty-eight received class credit and twenty- 
seven received $10 for their participation. The data from 
seven participants, four from the group that received class 
credit and three from the group that received 9; 10 were 
discard& two of them were not able to follow the 
instructions correctly, and in the five other cases, technical 
errors invalidated the results. The remaining forty-eight 
participants had at least four years of experience with either 
the Macintosh or the IBM-PC computer, or both. The 
group that received class credit had significantly more 
experience than the other group (on average 5.8 vs. 4.3 
years, F( 1,47) = 5.21, p < .03). However, the groups did 
not differ significantly in their years of experie,nce with 
Microsoft Word, Microsoft Excel (without creating 
graphics), Mac Draw, and WWW Browsers. Likewise, they 
did not differ significantly in the number of graphs they had 
created by hand in their life. None of the participants had 
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experience with graphics applications such as Cricket Graph 
or with the graphics capabilities of Microsoft Excel. 

Materials 
Twelve computer tasks were designed manipulating the 
semantic similarity between the labels of the menu system 
and the task descriptions. Microsoft Excel was used to 
administer the tasks, running in a Macintosh Centris 650 
with 16 MB in RAM, 500 MB in hard disk, and a page-size 
grayscale monitor. An Excel Add-in was developed to 
reconfigure Excel’s interface. This made it possible to have 
a fully functional graphics application in which the tasks 
had the features required by the experiment, and which 
guaranteed that the application was novel for the 
participants. 

An S-VHS camera and a clip-on microphone were used to 
record the computer screen and the participant’s voice. Each 
participant received a package containing an informed 
consent form, a blue pen, and a notebook with the 
instructions and the task descriptions. 

Tasks 
There were four warm-up and eight experimental tasks. All 
consisted of editing a bar graph using a graphics 
application. Participants received detailed descriptions of the 
tasks, but no information about how to perform them 
(Table 1 shows the experimental tasks descriptions). The 
eight experimental tasks consisted of five steps. (1) Choose 
a top-level menu item. (2) Choose a submenu item. (3) 
Choose a sub-submenu item. (4) Click on a radio button or 
check box (in a dialog box). (5) Click on a button labeled 
“Ok” to close the dialog and end the task. 

Task 1 Change the graph type to column 

Task 2 Apply the default format to the graph 

Task 3 Hide the graph title 

Task 4 Add a third dimension to the graph 

Task 5 Change the graph font to bold 

Task 6 Delete the values from the bar graph 

Task 7 Change the graph background color to green 

Task 8 Apply a logarithmic scale to the graph axes 

Table 1. Description of the experimental tasks 

The labels for the second and third steps were manipulated 
so that their semantic similarity with respect to the task 
descriptions varied. These labels were selected using LSA 
working under the TASA space. The closest 1000 terms to 
the description of the tasks were computed. From this pool, 
words were selected and two-word phrases were created for 
each menu item. Four degrees of semantic similarity were 
chosen based on the LSA cosines between the labels and the 
task descriptions. Good (G) labels had an average cosine of 
.69 (SD .17) with the task descriptions. The other three 
degrees of similarity had significantly lower cosines than 
the G labels had. Therefore, they were classified as three 
degrees of badness (B). B, labels had an average cosine of 

.25 (SD = .08), B, labels had an average cosine of .15 (SD 
= .02), and B, labels had an average cosine of -.05 (SD = 
.Ol) with the task description. 

For example, a G label for task 1 (Change the graph type to 
column) was Change Type (cosine = .64), a B, label was 
Correct Presentation (cosine = .22), a B, label was 
Rendering Practice (cosine = .18), and a B, label was 
Troubleshooter Route (cosine = -.04). Depending on the 
condition (as explained in the next section) these labels 
were assigned to either the second or the third step of the 
task. That is to say, there were four different patterns of 
semantic similarity for the second and third steps of each 
task: a G label followed by a G label (G, G), (G, B), (B, 
G), and (B, B). In the last case, when both the second and 
the third steps had bad labels, the degree of badness for both 
labels remains constant: (B,, B,), (B,, B,), or (B3, B3). 

Only the labels for the second and third steps were 
manipulated because they appear in similar contexts: 
submenus (pop-up menus). The labels for the other three 
steps had a fixed semantic similarity. The first step (top- 
level menu item) had a semantic similarity between B, and 
B, with respect to the description of the tasks under that 
menu. The fourth step (radio button or check box in a 
dialog box) had a semantic similarity of G. Finally, the 
fifth step (“Ok” button) had a semantic similarity between 
B, and B, with respect to any of the task descriptions. 

Design 
A menu structure template was created having eight top- 
level items: File, Edit, General, Rssign. Transformation, 
Appearance, and Tools. Figure 1 shows the menu structure 
template under the Gssign menu. Tasks 1 and 3 were under 
the General menu, tasks 2 and 8 were under the Assign 
menu, tasks 5 and 6 were under the Transformation menu, 
and tasks 4 and 7 were under the Gppearance menu. 

Headings t 
Layout uiew 

Bullet list 
Number List 

It: 2. s: 2) b 
Blockquote... 
(1: 8, s: 2) , 
a bc,fWiT i;rrfrrrr,c.rr~,.. 

Publishing b 

Figure I. Menu structure template tar me Rssign menu. 
_ __ . ^. 

Data in parenthesis refer to task and step numbers. For 
instance, (t:2, s:3) is the slot for the third step of task 2. 

Different conditions were created so the slots for the second 
and third steps could be filled out in a balanced way. Four 
patterns of similarity (G, G), (G, B), (B, G), and (B, B) 
were equally distributed across tasks, and across conditions. 
Since the degree of badness (B,, B,, and BJ was fixed for 
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each subject, it was considered a between factor. As an extra 
experimental factor, four of the eight experimental tasks 
were explicitly instructed, whereas the other four were 
explored (see next section). This factor was also balanced 
across tasks and across conditions. In total, 24 different 
conditions were created for this experiment. 

Procedure 
The experiment consisted of two 30-minute sessions: a 
training session followed by recall 7 days later. Participants 
were interviewed individually, their responses were recorded, 
and the computer screen was videotaped. In the training 
session, participants read and signed a consent form and 
received a written version of the instructions. During the 
first 3 minutes, a verbal protocol practice task was 
administered consisting of a “think aloud” description of the 
participant parent’s house, as recommended by [22]. During 
both sessions, participants had to think aloud while 
performing the experiment. The experimenter reminded the 
participants that they had to think aloud if they remained 
silent for more than 15 s. 

After signing the consent form, participants opened the 
notebook and mad the instructions. At this point, the 
experimenter answered any question the participants had. 
Participants were instructed to pay close attention to what 
they did because they had to repeat it in one week. They 
were also informed that they would be explicitly instructed 
in 4 of the 12 tasks. When a task was explicitly instructed, 
the experimenter gave step-by-step instructions on how to 
perform the task. When the task was not explicitly 
instructed, the participant could explore the interface to 
“figure out” how to perform the task. During this process, 
users could undo or cancel any incorrect action. If after 60 s 
the participant did not show progress, the experimenter gave 
a hint that consisted in revealing the corresponding step of 
the sequence. The hints were the same as the ones used in 
the explicitly instructed version. The experimenter gave as 
many hints as needed in order from the first step to the last 
step, and allowed 60 s for exploration at each step. 

For the recall session, participants had to perform the same 
training tasks and in the same order. During the recall 
session, none of the tasks was explicitly instructed, but 
hints were given if necessary following the same procedure 
used in the training session. At the end of the recall 
session, a survey was administered to obtain information 
about the participants’ computer experience. After the 
questionnaire, the experimenter turned off the computer 
screen and handed the participants a piece of paper with the 
task descriptions used during the experiment. Participants 
were asked to write down as many labels as they could 
recall from the menus and other screen objects that had to 
be manipulated to perform each of the tasks. 

Scoring and Data Measurement 
During the explored part of the training session and during 
the whole recall session two measures were recorded for 
each task step: elapsed time, and number of hints. The 
experimenter recorded the number of hints whereas the 
VCR’s counter was used to measure the time per step from 
the videotapes of the sessions. 

Results 
ANOVA tests were conducted for both dependent variables 
(time and number of hints) to determine the effect of the 
design factors. On average, no significant differences in 
performance were found between the group that received $10 
for the experiment and the group that did not teceive any 
payment. Additionally, there were no effects related to the 
configuration of the 24 menu structures that were used. 
None of these factors was included in further analyses. In 
this paper, the effects of type of learning: explicit instructed 
versus explored, and the results from the verbal protocols 
are not analyzed. 

Task Data 
The total elapsed time for each task was computed as the 
sum of the elapsed time for each of the 5 steps. Likewise, 
the number of hints was computed as the numb,er of steps 
that could not be performed in less than 60 s and, therefore, 
required a hint. On average, each task was performed in 
87.36 s during training (SD = 15.1), and in 68.1 s during 
recall (SD = 20.1). This difference was significant, F( 1, 47) 
= 51.35, p < .OOOl. Similarily, 0.96 hints per task were 
given on average during training (SD = .35), and 0.67 
during recall (SD = .22). This difference ‘was also 
significant, F(1,47) = 29.12, p < .OOOl. 

Time and number of hints were collapsed over the 
individual tasks, over sessions, and over degree of badness 
to analyze the effect of similarity pattern: (G, G), (G, B), 
(B, G), and (B, B). As expected, the pattern (G, G) was 
performed much faster and required fewer hints than the 
other three patterns (F(l, 47) = 195.3, p c .OOOl, F(1,47) = 
189.8, p < .OOOl, for time and for hints, respectively). 
Likewise, the (B, B) pattern was performed much more 
slowly and required more hints than the other three patterns 
(F(l, 47) = 183.9, p < .OOOl, F(1,47) = 156.1, 13 < .OOOl, 
for time and for hints, respectively). Finally, there was no 
significant difference between the (G, B), and the (B, G) 
patterns (F(1,47) = 1.71, p = .19, F(l, 47) = 2.19, p = .14, 
for time and for hints, respectively). Figure 2 shows the 
effect of similarity pattern and the effect of degree of 
badness on task performance time. The interaction between 
task configuration and degree of badness was not 
significant. 

140 

(GOOd,Good) (GoOdBad) @ad.Good) 

Similarity Pattern 

Figure 2. Effects of similarity pattern and degree of badness 
on task performance time. (3rd degree of badness represents 
the worst semantic similarity) 
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Step Data 
Since only the semantic similarity of the second and third 
steps was manipulated, the data from those two steps were 
used to analyze the effects of semantic similarity and degree 
of badness. Collapsing over task configuration, sessions, 
and step number (second and third), the more semantically 
similar the label and the task description were, the faster the 
step was performed and the fewer hints were required. Good 
steps (average cosine of .67) were performed, on average, in 
7.97 s (SD = 4.56) and required .05 hints (SD = .06). On 
average, bad steps (average cosine of. 11) were performed in 
20.83 s (SD = 7.71) and required .17 hints (SD = .l). 
Broken down by degree of badness, bad steps (first degree of 
badness, cosine of .25) were performed, on average, in 18 s 
(SD = 7.75) and required .13 hints (SD = .l). Bad steps 
(second degree of badness, cosine of .15) were performed, on 
average, in 20.67 s (SD = 8.13) and required .17 hints (SD 
= .09). Bad steps (third degree of badness, cosine of -.05) 
were performed, on average, in 23.83 s (SD = 6.47) and 
required .22 hints (SD = .09). 

Figure 3 shows a linear trend in the effect of semantic 
similarity on performance time. As expected, good steps 
were performed faster than the average bad step, F( 1,47) = 
127.47, p c .OOOl. Likewise, there was a reliable linear 
effect of degree of badness on the bad steps performance 
time, F(1,47) = 4.86, p < .05. When moving from one 
degree of badness to another (i.e., moving from more 
similar to less similar), the performance time increases, on 
average, by 2.9 s. Good steps required fewer hints than the 
average bad step, F( 1,47) = 60.69, p < .OOOl. Additionally, 
for the bad steps, there was a reliable linear effect of degree 
of badness, F( 1,47) = 7.5, p < .05. When moving from one 
degree of badness to another (i.e., moving from more 
similar to less similar), on average, .04 more hints were 
required per step. 
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Figure 3. Effect of semantic similarity on step petiormance 
time. (3rd degree of badness represents the worst semantic 
similarity) 

Free Recall Data 
Replicating the literature [23], the correct action sequences 
necessary to perform the tasks were very poorly recalled 
when participants did not have access to the application 
interface. None of the subjects was able to recall a complete 
sequence of steps, and although 46 out of the 48 
participants were able to recall at least one label, on 

average, only .ll labels were correctly recalled for each 
task. 

DISCUSSION 
Semantic similarity between task descriptions and menu 
labels reliably predicted the ease of discovering and recalling 
the experimental tasks. The semantic similarity, estimated 
by LSA cosines, predicted users’ performance not only at 
the task level, but also at the individual step level. Different 
similarity patterns showed different reaction times: (G, G) 
was the fastest pattern, whereas (B, B) was the slowest. 
Additionally, it was shown that all subjects had very poor 
recall when they were away from the application interface. 

Several models of learning by exploration have been 
reviewed here, all of which describe an attention mechanism 
that is driven by semantics. They agree that users select 
actions based on the semantic similarity between the task 
descriptions (or goals) and the display labels. These models 
assume that the display can be represented as a collection of 
objects and labels, and that other information about the 
objects (e.g., what action can be carried out on them) is 
stored in long-term memory. Therefore, to decide what 
object to act on, users semantically match object labels, 
task descriptions, and long-term memory knowledge. LSA 
can thus be applied appropriately to any of these models to 
estimate semantic similarity. Certainly, LSA cannot replace 
any of the models because there are other issues in 
exploration and action planning (e.g., backtracking) that 
could not be explained by a purely semantics based model. 
However, LSA can be a valuable addition to any of the 
models and provides a powerful tool to test the usability of 
applications. 

Usability testing 
It is impossible to design an application in which, for each 
task description, only highly semantically related labels are 
used in the action sequence. The hierarchical structure of the 
menu forces the designer to select very broad and sometime 
ambiguous labels at the top of the hierarchy. However, a 
good interface should guarantee that the correct label is 
always the one with the highest semantic similarity among 
the available labels. In order to evaluate the differences in 
semantic similarity between labels and task descriptions, an 
objective method, such as LSA, is desirable. So far, 
theorists and designers have used very informal estimates of 
semantic similarity. This study suggests that this may not 
be necessary. 

LSA could be used in addition as an “automated” cognitive 
walkthrough [2]. This is a method for assessing the 
usability of a system, focusing on ease of learning. It 
involves hand simulation of the cognitive processes by 
which users, with no formal instruction, learn an 
application by exploration. The method takes into account 
users’ elaboration of goals and users’ interpretation of the 
application’s feedback. The cognitive walkthrough is very 
labor intensive, and for this reason it is impractical for large 
modem applications. However, with LSA it would be 
possible to construct an automated system to evaluate large 
applications. 
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An alternative method is to hire expert designers to evaluate 
each of the labels of the application and their semantic 
similarity to the task descriptions. However, this method 
may be disadvantageous for various reasons. First, it may 
be highly unreliable because of the variance in opinion 
between one expert and another [24]. Second, it may be 
very time consuming, especially when tasks can be 
described in different ways, or when the application labels 
suffer minor changes during the design process. Finally, 
hiring expert evaluators can be very expensive. 
LSA offers a more convenient method because it can rapidly 
estimate the semantic similarity of several alternative task 
descriptions and labels. When the application interface 
changes or when tasks are &led or reformulated, the re- 
computation of the similarity estimates can be done very 
efficiently. Additionally, the estimation of semantic 
similarity can even be performed over the Internet 
(http://lsa.colorado.edu). 
As stated above, LSA can be trained in any written 
language and with different corpora of texts. This makes it 
possible to model users with different backgrounds and skill 
levels. In the present study, a corpus of very broad and 
general knowledge was used to train LSA because the 
participants were mostly college freshmen, and there was no 
reason to believe they had any advanced technical 
knowledge. During the construction of the stimuli, it was 
discovered that one of the closest words to the phrase “hide 
the legend’ (referring to a graph legend) was “dragons”, with 
a cosine value of .41. This result is due to the fact that all 
the knowledge that the TASA space has about the word 
“legend” comes from epic novels, rather than from 
computer manuals (“map” and “heroes“ are among the top 5 
closest terms to “legend”). LSA has no way of knowing 
that “legend” also refers to part of a graph. The word 
“legend’ was not used in the present experiment because it 
does not seem to be a good way to describe a graph legend 
to a novice user. Using computer manuals or other more 
technical materials to train LSA may result in better and 
more accurate models. 

Conclusions 
This study showed that semantic similarity accurately 
predicts the ease of learning new computer tasks. The degree 
of similarity between the object labels to be acted on and 
the task descriptions drives the exploratory behavior of 
novel users. LSA proved to be a reliable way to estimate 
semantic similarity and, therefore, can be applied to any of 
the cognitive models that has been developed to explain 
users’ exploratory behavior. Eventually, LSA could be used 
in conjunction with other already available techniques (e.g., 
the cognitive walkthrough method) to automatically test the 
usability of computer applications. 
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