
ar
X

iv
:1

61
2.

06
19

1v
1

 [c
s.

C
R

]
19

 D
ec

 2
01

6

The Authorization Policy Existence Problem

Pierre Bergé
LRI, Université Paris-Saclay

Bât 650, Rue Noetzlin, 91190
Gif-sur-Yvette

France
Pierre.Berge@supelec.fr

Jason Crampton
Royal Holloway

University of London
Egham, TW20 9QY

United Kingdom
jason.crampton@rhul.ac.uk

Gregory Gutin
Royal Holloway

University of London
Egham, TW20 9QY

United Kingdom
g.gutin@rhul.ac.uk

Rémi Watrigant
INRIA Sophia-Antipolis
2004 route des Lucioles
06902 Sophia-Antipolis,

France
remi.watrigant@inria.fr

ABSTRACT
Constraints such as separation-of-duty are widely used to
specify requirements that supplement basic authorization
policies. However, the existence of constraints (and autho-
rization policies) may mean that a user is unable to fulfill
her/his organizational duties because access to resources has
been denied. In short, there is a tension between the need
to protect resources (using policies and constraints) and the
availability of resources. Recent work on workflow satisfia-
bility and resiliency in access control asks whether this ten-
sion compromises the ability of an organization to achieve
its objectives. In this paper, we develop a new method of
specifying constraints which subsumes much related work
and allows a wider range of constraints to be specified. The
use of such constraints leads naturally to a range of ques-
tions related to “policy existence”, where a positive answer
means that an organization’s objectives can be realized. We
analyze the complexity of these policy existence questions
and, for particular sub-classes of constraints defined by our
language, develop fixed-parameter tractable algorithms to
solve them.

CCS Concepts
•Security and privacy → Access control; Security re-
quirements; •Theory of computation → Fixed param-
eter tractability;

Keywords
access control; resiliency; satisfiability; computational com-
plexity; fixed-parameter tractability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this workowned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

xxx xxx

c© xxx ACM. ISBN xxx. . . xxx

DOI: xxx

1. INTRODUCTION
Access control is a fundamental aspect of the security of

any multi-user computing system, and is typically based on
the specification and enforcement of an authorization policy.
Such a policy identifies which interactions between users and
resources are to be allowed by the system.

Over the last twenty years, access control requirements
have become increasingly complex, leading to increasingly
sophisticated authorization policies, often expressed in terms
of constraints. A separation-of-duty constraint (also known
as the “two-man rule” or “four-eyes policy”) may, for ex-
ample, require that no single user is authorized for some
particularly sensitive group of resources. Such a constraint
is typically used to prevent misuse of the system by a single
user.

The use of authorization policies and constraints, by de-
sign, limits which users may access resources. Nevertheless,
the ability to perform one’s duties requires access to particu-
lar resources, and overly prescriptive policies and constraints
may mean that some resources are inaccessible. In short,
“tension” may exist between authorization policies and op-
erational demands: too lax a policy may suit organizational
demands but lead to security violations; whereas too re-
strictive a policy may compromise an organization’s ability
to meet its business objectives.

Recent work on workflow satisfiability and access control
resiliency has recognized the importance of being able to
identify whether or not security policies prevent an organi-
zation from achieving its objectives [10, 11, 17, 18, 24]. In
this paper, we seek to generalize existing work in this area.
Specifically, we introduce the Authorization Policy Ex-

istence Problem (APEP), which may be treated as a de-
cision or optimization problem. Informally, APEP seeks to
find an authorization policy, subject to restrictions on in-
dividual authorizations (defined by a “base” authorization
relation) and restrictions on collective authorizations (de-
fined by a set of authorization constraints). We show that
a number of problems in the literature on workflow satis-
fiability and resiliency are special cases of APEP, thereby
showing that APEP is computationally hard.

http://arxiv.org/abs/1612.06191v1
xxx

The framework within which APEP is defined admits a
greater variety of constraints than is usually considered in
either the standard access control literature [5, 13, 16, 21]
or in workflow satisfiability [1, 6, 24]. In this paper we char-
acterize the constraints of interest and extend the definition
of user-independent constraints [6] to this framework. We
then establish the complexity of APEP for certain types
of constraints, using both classical and multi-variate com-
plexity analysis. In this paper, we make some progress in
this direction by establishing the complexity of APEP for
the constraints that we believe will be the most useful in
practice. In particular, we establish connections between
APEP and both the Workflow Satisfiability Problem

and resiliency in access control.
In the next section, we summarize relevant background

material and related work. We introduce the APEP in Sec-
tion 3 and elaborate on the nature of the constraints we
consider in Section 4. In Section 5, we investigate the com-
plexity of several variants of the APEP. We then discuss
further constraint types to and connections between APEP

and existing problems in the literature. We conclude the
paper with a summary of our contributions and some ideas
for future work.

2. BACKGROUND AND RELATED WORK
A number of interesting (and computationally hard) prob-

lems arise naturally in the context of authorization policies
and constraints. However, the relative sizes of the param-
eters in many of these problems mean that it is fruitful to
analyze these problems using multivariate complexity anal-
ysis. In this section, we review some of those problems and
provide a brief introduction to fixed-parameter tractability.

2.1 Fixed-parameter tractability
Many problems take multiple inputs and the complexity

of solving such problems is determined by the sizes of those
inputs. In general, a problem may be hard in terms of the
total size of the input. However, if we consider the com-
plexity of a problem under an assumption that some of the
parameters of the input are small and terms that are ex-
ponential in those parameters are acceptable, then we may
discover that relatively efficient algorithms exist to solve the
problem.

More formally, an algorithm is said to be fixed-parameter
tractable (FPT) if it solves a decision problem in time
O(f(k)p(n)), where k is some (small) parameter of the prob-
lem, n is the total size of the input, and f and p are, re-
spectively, a computable function and a polynomial. As is
customary in the literature on FPT algorithms, we will of-
ten write O(f(k)p(n)) as O∗(f(k)). (That is, O∗ suppresses
polynomial factors, as well as multiplicative constants.) If
a problem can be solved using an FPT algorithm then we
say that it is an FPT problem and that it belongs to the
class FPT [12, 19]. An FPT algorithm for a hard problem is
particularly valuable when k is significantly smaller than n
for most instances of the problem that arise in practice. In
particular, FPT algorithms of practical value have been de-
veloped for the Workflow Satisfiability Problem and
its generalizations [6, 9, 14].

2.2 Workflow satisfiability
A workflow may be modeled as a set of steps in some

automated business process. An authorization relation de-

termines which users are authorized to perform which steps,
and constraints restrict which subsets of users may perform
subsets of steps [3, 7, 24]. Given a set of users U , a set
of workflow steps S, an authorization relation A ⊆ S × U ,
and a set of constraints C, a plan π : S → U is a function
allocating users to steps. A valid plan must allocate an au-
thorized user to each step and every constraint must be sat-
isfied. The Workflow Satisfiability Problem (WSP)
asks whether there exists a valid plan for a given U , S, A
and C. Basin, Burri and Karjoth model a workflow (with
“break points”) as a process algebra and introduced the no-
tion of an enforcement process, which is analogous to a valid
plan [1]. This leads naturally to the enforcement process
existence problem, which is analogous to the workflow satis-
fiability problem and inspires the name for the problem we
study in this paper.

Wang and Li observed that fixed-parameter algorithmics
is an appropriate way to study WSP, because the number of
steps is usually small and often much smaller than the num-
ber of users.1 Wang and Li [24] proved that WSP is FPT
if we consider only separation-of-duty and binding-of-duty
constraints [24]. We will denote such constraints as (s, s′, 6=)
and (s, s′,=), respectively, where s, s′ ∈ S. A plan π satisfies
a constraint (s, s′, 6=) ((s, s′,=), respectively) if π(s) 6= π(s′)
(π(s) = π(s′), respectively). WSP with only separation-of-
duty constraints (only binding-of-duty constraints, respec-
tively) will be denoted by WSP(6=) (WSP(=), respectively).
Subsequent research has shown that WSP remains FPT even
if additional types of constraints, notably user-independent [6]
and class-independent constraints [8], are permitted in the
input to WSP. Note that WSP is not FPT in general [24]
unless a widely-accepted hypothesis in complexity theory
fails; a significant body of research suggests this is highly
unlikely [12].

2.3 Static separation-of-duty constraints
Constraints have been studied extensively in the context

of role-based access control (RBAC) [13, 16, 21, 23]. In its
simplest form, a static separation-of-duty constraint may be
defined as a pair of roles {r, r′} belonging to the set of roles
R. A user-role assignment relation UR ⊆ U ×R, where U is
the set of users, satisfies the constraint {r, r′} if there is no
user u such that (u, r) and (u, r′) belong to UR.

More generally, Li, Tripunitara and Bizri [16] introduced
the notion of a q-out-of-m static separation-of-duty con-
straint, defined as a pair (R′,m), where R′ is a subset of R of
cardinality q. A user-role assignment relation UR ⊆ U × R
satisfies the constraint (R′,m) if there is no set of t < q
users that are collectively authorized for R′. That is, for all
subsets V of U such that |V | < q,

⋃

u∈V

{r : (u, r) ∈ UR} ⊂ R′.

Note that the simple separation-of-duty constraint defined
by a pair of roles {r, r′} is a 2-out-of-2 separation-of-duty
constraint.

2.4 Resiliency

1The SMV loan origination workflow studied by Schaad et
al., for example, has 13 steps and identifies five roles [22]. It
is generally assumed that the number of users is significantly
greater than the number of roles.

Li, Wang and Tripunitara introduced the idea of resiliency
in access control [17]. Informally, a resiliency policy is a
requirement that even in absence of a limited number of
users the remaining users can be authorized for some set
of resources such that given constraints are satisfied. The
existence of both a resiliency policy and authorization con-
straints may mean that no authorization relation can satisfy
all requirements. Li et al. introduce a number of prob-
lems investigating whether an authorization relation does
exist [17].

3. THE AUTHORIZATION POLICY
EXISTENCE PROBLEM

In this paper, we extend existing work on workflow satis-
fiability, constraints and resiliency, by defining a simple yet
very expressive authorization framework. Roughly speak-
ing, we specify a problem dealing with the existence of an
appropriate authorization relation.

Given a set of users U and a set of resources R to which
access should be restricted, we may define an authorization
relation A ⊆ U × R, where (u, r) ∈ A if and only if u is
authorized to access r. Given a resource r, we will write
A(r) to denote the set of users that are authorized to ac-
cess resource r. More formally, A(r) = {u ∈ U : (u, r) ∈ A}.
Similarly, for u ∈ U , we will write A(u) to denote the set
of resources that u is authorized to access, that is A(u) =
{r ∈ R : (u, r) ∈ A}. We extend this notation to subsets of
R and U in the natural way: for R′ ⊆ R and U ′ ⊆ U ,

A(R′)
def
=

⋃

r∈R′

A(r) and A(U ′)
def
=

⋃

u∈U′

A(u).

We introduce two fundamental concepts, which will be
used to formulate the Authorization Policy Existence

Problem.

• a base authorization relation ABse ⊆ U × R such that
ABse(r) 6= ∅ for each r ∈ R;

• a set of authorization constraints C.

Informally, ABse specifies restrictions on all valid authoriza-
tion relations, while C specifies additional restrictions that
any valid authorization relation must satisfy.

An authorization constraint may be defined by enumerat-
ing the set of all authorization relations that satisfy the con-
straint. Of course, an extensional definition of this nature is
utterly impractical, and all useful constraints will be defined
in an intensional manner. A simple example would be a con-
straint requiring no user is assigned to both resources r and
r′. In other words, an authorization relation A satisfies this
constraint provided that {(u, r), (u, r′)} 6⊆ A for all u ∈ U .
We discuss constraints in more detail in Section 4.

More formally, we have the following definitions. Given a
base authorization relation ABse and a set of constraints C,
we say an authorization relation A ⊆ U ×R is

• authorized with respect to ABse if A ⊆ ABse;

• complete if A(r) 6= ∅ for every r ∈ R;

• eligible with respect to C if A satisfies c for all c ∈ C;
and

• valid with respect to ABse and C if A is authorized,
complete and eligible.

We introduce the term Authorization Policy Exis-

tence Problem (APEP) as a generic term for questions
related to finding a valid authorization relation, given ABse

and C. Then APEP comes in two “flavors”:

Decision (D-APEP): Does there exist a valid authoriza-
tion relation? If so, find a valid authorization relation.

Optimization (O-APEP): Find a “best” valid authoriza-
tion relation if one exists (where the objective function
has to be specified).

We assume that determining whether an authorization re-
lation satisfies a constraint takes polynomial time. (This is
a reasonable assumption for all constraints of relevance to
access control.) Let n denote |U |, k denote |R| and m de-
note |C|. Then a brute force approach to solving D-APEP

(by simply examining every possible authorization relation)
takes time O∗(2nk).

A few special cases of APEP are worth mentioning. For
simplicity we will write ASol to denote one of the authoriza-
tion relations that are solutions to APEP.

1. ASol is required to be a function ASol : R → U . In
this case, we allocate a unique user to each resource.
Computing a plan allocating one user to each step
in a workflow instance, subject to an authorization
policy defined by ABse and some constraints C, is an
example of this type of scenario. In this case, D-
APEP corresponds to theWorkflow Satisfiability

Problem (WSP) [24]. Moreover, the Cardinality-

Constrained Minimum User Problem [20], whose
solution is a plan using the minimum number of users,
is an instance of O-APEP.

2. ABse = U × R. In this case, ABse itself imposes no
restrictions on ASol. All restrictions on ASol are defined
by the constraints C. Defining an authorization policy
in the presence of static separation-of-duty constraints
is an example of this type of scenario. Li, Tripunitara
and Bizri have studied problems of this nature [16].

3. A constraint that requires each resource is assigned to
at least t users enables us to model problems related
to resiliency in access control [17] and workflow sys-
tems [24].

4. If we seek to maximize the cardinality of ASol, then, in-
formally, a solution to O-APEP provides a “resilient”
authorization policy. While this is different from exist-
ing notions of resiliency [17, 24], it would seem to be an
interesting way of approaching the problem of making
an authorization policy resilient to the unavailability
of users.

4. CONSTRAINTS
We now describe constraints in more detail. We generalize

the approach used in prior work on constraints for workflow
systems [11, 24].

4.1 Binding-of-duty and separation-of-duty
constraints

Binding-of-duty and separation-of-duty constraints have
received considerable attention in the access control litera-
ture, and such constraints may be static or dynamic. In-
formally, static constraints specify restrictions on policy re-
lations, whereas dynamic constraints specify constraints on

particular sequences of events within the context of an access
control system. A (static) separation-of-duty constraint, for
example, in the context of role-based access control system,
might require that no user is authorized for both roles r and
r′ [21]. In contrast, a (dynamic) separation-of-duty con-
straint, in the context of a workflow system, might simply
require that two steps s and s′ are performed by different
users in each instance of the workflow [7, 24]. (This con-
straint, however, does not prevent the same user being au-
thorized for both those steps.) Within the framework of
APEP, we seek to define a more general (and uniform) syn-
tax and semantics for constraints.

We express constraints in terms of the following logical
(binary) operators defined via their respective truth tables:

p q p↔ q p→ q p← q p l q
0 0 1 1 1 0
0 1 0 1 0 1
1 0 0 0 1 1
1 1 1 1 1 0

Let r and r′ be resources in R; let ◦ denote one of the log-
ical operators in the set {↔,←,→, l}; and let Q be one
of the first-order quantifiers ∃ or ∀. Then (r, r′, ◦, Q) is a
constraint: a constraint of the form (r, r′, ◦, ∀) is said to be
universal, while a constraint of the form (r, r′, ◦,∃) is said
to be existential. A complete relation A

• satisfies (r, r′, ◦, ∃) if there exists u ∈ A(r)∪A(r′) such
that the propositional formula (u ∈ A(r))◦(u ∈ A(r′))
evaluates to true; and

• satisfies (r, r′, ◦,∀) if for all u ∈ A(r)∪A(r′), the propo-
sitional formula (u ∈ A(r)) ◦ (u ∈ A(r′)) evaluates to
true.

Note that for any complete relation A and any r ∈ R, A(r) 6=
∅, so A(r)∪A(r′) 6= ∅. Thus constraints cannot be vacuously
satisfied by a valid relation.

Informally speaking, universal constraints are “stronger”
than existential constraints: (for any complete relation) the
satisfaction of (r, r′,∼,∀) implies the satisfaction of (r, r′,∼
,∃), but the converse does not hold.

We now expand these generic definitions for the four con-
straints defined by (r, r′, ◦, Q), where ◦ is either ↔ or l:

1. (r, r′,↔,∃) is satisfied if there exists u ∈ U such that
u ∈ A(r) and u ∈ A(r′); that is, A(r) ∩A(r′) 6= ∅.

2. (r, r′, l,∃) is satisfied if there exists u ∈ U such that
either (i) u ∈ A(r) and u 6∈ A(r′) or (ii) u 6∈ A(r) and
u ∈ A(r); that is, A(r) 6= A(r′).

3. (r, r′,↔,∀) is satisfied if for all u ∈ A(r) ∪ A(r′), u ∈
A(r) if and only if u ∈ A(r′); that is, A(r) = A(r′).

4. (r, r′, l,∀) is satisfied if for all u ∈ A(r)∪A(r′), either
(i) u ∈ A(r) and u 6∈ A(r′) or (ii) u 6∈ A(r) and u ∈
A(r′); that is, A(r) ∩A(r′) = ∅.

Thus, constraints of the form (r, r′, l, Q) correspond closely
to the idea of separation-of-duty. Indeed, the satisfaction
criterion for (r, r′, l, ∀) is identical to that for a simple static
separation-of-duty constraint. Similarly, constraints of the
form (r, r′,↔, Q) correspond to the idea of binding-of-duty.

Now consider a constraint of the form (r, r′,→,∀). Such
a constraint is satisfied if for all u ∈ A(r) ∪ A(r′), (u ∈

A(r)) → (u ∈ A(r′)). In other words, A(r) ⊆ A(r′). Thus
a global constraint of this form could be used to specify a
role hierarchy (in which role r′ is senior to r). Conversely, a
constraint of the form (r, r′,←,∀) could be used to specify
a role hierarchy in which r′ is junior to to r.2 Thus we can
use constraints to insist that a hierarchy is strict: that is,
there exists at least one user that is assigned to r′ but not r.
Specifically, a relation A simultaneously satisfies constraints
(r, r′,→,∀) and (r, r′, l,∃) only if A(r) ⊂ A(r′).

4.2 Cardinality constraints
We may also define cardinality constraints, which come in

two flavors. In the following, ⊳ is one of =, <, >, 6 or >

and t is an integer greater than 0.

• A global (cardinality) constraint has the form (⊳, t).
The constraint (⊳, t) is satisfied by relation A if for all
r ∈ R, |A(r)| ⊳ t.

• A local (cardinality) constraint has the form (R′,⊳, t),
where R′ ⊆ R. The constraint (R′,⊳, t) is satisfied by
relation A if |A(R′)| ⊳ t.

Then, for example, the global constraint (=, 1) requires
a valid relation A to be a function (since the number
of users assigned to each resource is precisely 1), while
the local constraint ({r} ,6, t) is a cardinality constraint
in the RBAC96 sense [21] (if resource r is interpreted
as a role). Finally, the p-out-of-q static separation-of-
duty constraint ssod({r1, . . . , rq} , p), introduced by Li et
al. [16], may be represented by the cardinality constraint
({r1, . . . , rq} ,>, p).

Remark 1. If we define a global constraint (=, 1), then
the universal constraint (r, r′, ◦, ∀) is equivalent to the exis-
tential constraint (r, r′, ◦, ∃) (in the sense that the former is
satisfied if and only if the latter is).

4.3 User-independent constraints
Research on the Workflow Satisfiability Problem

has shown that the notion of user-independent (UI) con-
straints is very important. First, the class of UI constraints
includes a very wide range of constraints and almost all con-
straints that are of relevance to access control. Second, WSP
is fixed-parameter tractable (FPT) if we restrict attention
to UI constraints [6]. (WSP is not FPT if we allow arbi-
trarily complex constraints [24].) Informally, a constraint
is UI in the context of workflow satisfiability if its satisfac-
tion only depends on the relationships that exist between
users assigned to steps in a workflow (and not on the spe-
cific identities of users) [6]. We now extend the definition of
user-independent used in the context of workflow satisfiabil-
ity.

Let A be an authorization relation and σ : U → U
a permutation of the user set (that is, σ is a bijection).
Then, given an authorization relation A ⊆ U ×R, we write
σ(A) ⊆ U×R to denote the relation {(σ(u), r) : (u, r) ∈ A}.
A constraint c is user-independent if for every authorization
relation A that satisfies c and every permutation σ : U → U ,
σ(A) satisfies c.

2Since A(r) and A(r′) are non-empty, the constraints
(r, r′,←,∃) and (r, r′,→,∃) are both equivalent to
(r, r′,↔,∃).

Consider, for example, a constraint of the form (r, r′,↔,∃)
and suppose that A ⊆ U ×R satisfies the constraint. Then,
by definition, there exists a user u such that (u, r), (u, r′) ∈
A. Then, for any permutation σ, (σ(u), r), (σ(u), r′) ∈ σ(A),
so σ(A) also satisfies the constraint. Similar arguments may
be used to show that constraints of the form (r, r′,↔,∀),
(r, r′, l, ∃) and (r, r′, l,∀) are all UI. Equally, it is clear that
global and local constraints, whose satisfaction is defined in
terms of the cardinality of sets of the form A(r), are UI, since
a permutation (being a bijection) will preserve the cardinal-
ity of such sets. In other words, all constraints we consider
in this paper are UI.

4.4 Bounded UI constraints
We now define an important class of UI constraints that

will be useful for establishing positive results in the remain-
der of the paper. Given a base relation ABse and a constraint
c, let A be valid with respect to ABse and c. We say A re-
quires v if {(u, r) ∈ A : u 6= v} is not valid. (Since A is valid,
this means that {(u, r) ∈ A : u 6= v} is either incomplete or
does not satisfy c.) Then we define

core(A : ABse, c)
def
= {u ∈ U : A requires u}

to be the core of A with respect to ABse and c.
Consider for instance a constraint c of the form (r, r′, l

,∀). If there exists an authorization relation A satisfying
c, then there is one whose core contains at least two users:
indeed, remove iteratively from A any couple (u, r) ∈ A such
that A does not require u. When this is no longer possible,
the obtained relation has to allocate two distinct users to r
and r′, both belonging to the core. The core could contain
as many as k users, since the relation may allocate each
resource to a different user and removing any user would
compromise the completeness of the relation. However, the
core cannot contain more than k users, since in any set of
at least k + 1 users, at least two users must be allocated
to the same resource and one of them could be removed
without compromising the completeness or the eligibility of
the relation. Conversely, for a constraint of the form (r, r′,↔
,∀) the core could contain a single user but no core contains
more than k−1 users, since r and r′ must be assigned to the
same user and any additional users may be removed without
compromising completeness or eligibility.

Proposition 2. Let I = (ABse, C) be a satisfiable in-
stance of D-APEP with a UI constraint c ∈ C. If A is
a valid solution with respect to ABse and c then

|core(A : U ×R, c)| ≥ |core(A : ABse, c)|

Proof. We prove the more general statement that
core(A : ABse, c) ⊆ core(A : Ω, c) for any Ω ⊇ ABse. Sup-
pose A requires u and let A \ u denote {(v, r) ∈ A : u 6= v}.
Then A \ u is either incomplete or violates c (since A is
authorized, so is A \ u). If A \ u is incomplete, then it is
also incomplete for the instance (Ω, c). The same argument
holds if A \ u violates c, which concludes the proof.

Definition 3. We say a UI constraint c is f(k, n)-
bounded if |core(A : U ×R, c)| 6 f(k, n) for all A valid with
respect to U ×R and c.

The definition of f(k, n)-bounded constraints and Proposi-
tion 2 impose an upper bound on the number of users we

need to consider when constructing candidate solutions to
an instance (ABse, C) of D-APEP.

We have proved several results which establish f(k, n) for
a number of constraint types. These results are summarized
in Table 1; proofs can be found in the appendix. Note that
in all cases, f(k, n) is independent of n. This is important
as we show in Section 5 that D-APEP is FPT when all
constraints are f(k)-bounded for some function f .

Constraint Type Largest Core

(r, r′, l, ∀), (r, r′, l,∃) k

(r, r′,↔,∀), (r, r′,→,∀), (r, r′,↔,∃) k − 1

(R′,≤, t) k

(R′,=, t), (R′,≥, t) 2max {k, t}

Table 1: Upper bounds on the size of the core

4.5 Notation
In the remainder of this paper, we consider versions of

APEP in which we restrict our attention to particular types
of constraints. We use the following abbreviations for fami-
lies of constraints:(i) BoD to denote the family of all existen-
tial and universal (binding-of-duty) constraints having the
form (r, r′,↔,∃) or (r, r′,↔,∀); (ii) SoD to denote the fam-
ily of all existential and universal (separation-of-duty) con-
straints having the form (r, r′, l, ∃) or (r, r′, l,∀); (iii) BoDE

and BoDU to denote, respectively the family of all existen-
tial and universal binding-of-duty constraints; (iv) SoDE and
SoDU to denote, respectively the family of all existential and
universal separation-of-duty constraints; (v) f(k)-bounded
to denote f(k)-bounded-certificate constraints; (vi) Gcard

to denote the family of all global cardinality constraints;
(vii) Lcard to denote the family of all local cardinality con-
straints. Finally, we write, for example, APEP〈BoD, Lcard〉
to restrict the set of instances of APEP in which the set of
constraints C contains only binding-of-duty and local cardi-
nality constraints.

5. COMPLEXITY OF APEP
Before exploring the fine-grained complexity of D-APEP

with respect to the different types of constraints, we first
state general properties about some special cases.

Firstly, note that adding the function constraint (=, 1)
to any D-APEP instance having only SoD or BoD con-
straints forces any solution ASol of D-APEP to be a func-
tion. In this case, D-APEP becomes equivalent to WSP.
More formally, we say that a parameterized problem A is
parameter-reducible to a parameterized problem B (and we
write A ≤fpt B) if there is a polynomial algorithm which
transforms an instance (I, k) of A into an instance (I ′, k′) of
B such that (I, k) is positive for A iff (I ′, k′) is positive for
B, and k′ ≤ f(k) for some computable function f . Clearly,
if A is parameter-reducible to B and B is FPT, then A is
FPT. We say that A is parameter-equivalent to B (and we
write A =fpt B) if A ≤fpt B and B ≤fpt A. The proof of the
following result is straightforward, by the definition of the
function constraint (=, 1).

Theorem 4. If D-APEP and WSP are parameterized by
the number of resources and steps, respectively, we have the
following:

• D-APEP〈SoD, (=, 1)〉 =fpt WSP(6=);

• D-APEP〈BoD, (=, 1)〉 =fpt WSP(=); and

• D-APEP〈BoD,SoD, (=, 1)〉 =fpt WSP(=, 6=).

Moreover, the following result asserts that adding BoDU

constraints to any instance of D-APEP does not change its
(parameterized) complexity.

Theorem 5. Given any instance (U,R,ABse, C) of
D-APEP〈BoD,SoD〉, one can obtain in polynomial time
an instance (U,R′, A′

Bse, C
′) of D-APEP such that: (i) C′

does not contain any BoDU constraint, (ii) |A′
Bse| ≤ |ABse|,

(iii) |R′| ≤ |R|, and (iv) |C′| ≤ |C|.

Proof. Let C∗ be the set of BoDU constraints from C.
The idea is to consider BoDU constraints as an equivalence
relation: for r, r′ ∈ R, r ∼b r

′ if and only if (r, r′,↔,∀) ∈ C∗.
Now, let R′ = {R1, . . . , Rq} be the equivalence classes of
∼b. Obviously, |R′| ≤ |R|. For all i ∈ [q] and all r ∈ Ri, set
A′

Bse(r) =
⋂

r′∈Ri
ABse(r

′). Once again, it holds that |A′
Bse| ≤

|ABse|. Finally, for every constraint c = (r, r′,∼, Q) ∈ C \C∗

with ∼∈ {=, 6=} and Q ∈ {∀,∃}, we distinguish two cases:

• if r ∈ Ri and r′ ∈ Rj with i 6= j, then add the con-
straint (Ri, Rj ,∼, Q) (notice that in this case c is not
a BoDU constraint);

• if r, r′ ∈ Ri for some i ∈ [k], then if c is a SoDU or
SoDE constraint, obviously the instance is unsatisfi-
able (and we can output a trivially negative instance
of D-APEP).

Clearly |C′| ≤ |C|, and C′ does not contain any BoDU con-
straint. Finally, one can check that the output instance is
satisfiable if and only if the input instance is satisfiable.

Remark 6. A corollary of Theorem 5 is that we may ex-
clude BoDU constraints from consideration when establishing
FPT results.

In the remainder of this section, we establish that D-

APEP with bounded constraints is FPT. We also propose
extra algorithms for some mixed policies composed of BoD
and SoD constraints in order to improve the execution time
of the main algorithm for these subcases. Figure 1 summa-
rizes our results for D-APEP with BoD and SoD constraints.

BoDE,SoDU,SoDE

FPT: 22
kk2

BoDE

P
SoDU

FPT: 2k
SoDE

FPT: 2k

BoDE,SoDU

FPT: 2k
2 log k2

BoDE,SoDE

FPT: 22
kk2

SoDU,SoDE

FPT: 22
kk2

Figure 1: Complexity of specific cases of D-APEP (polyno-
mial factors are ignored)

5.1 Instances with constraints of a single type
As a direct application of Theorem 5, we are able to show

that D-APEP〈BoDU〉 is polynomial-time solvable: indeed,
after using the reduction of the previous result, it is clear
that the instance is satisfiable if and only if A′

Bse is complete.

Theorem 7. D-APEP〈BoDU〉 is solvable in polynomial
time.

We now consider the complexity of D-APEP〈SoDU〉 and
D-APEP〈BoDE〉.

Theorem 8. D-APEP〈SoDU〉 =fpt D-APEP〈SoDU, (=, 1)〉.

Proof. It is sufficient to prove that there always exists a
feasible solution of D-APEP〈SoDU〉 which satisfies the func-
tion constraint (=, 1).

Let us suppose (U,R,ABse, C) is satisfiable, so there ex-
ists a valid solution ASol for this instance. We define an-
other relation A′ which is a function. For any r ∈ R, we
have |ASol(r)| ≥ 1, thus we can pick an arbitrary user ur

in ASol(r) and set A′(r) = {ur}. One can observe that
A′ ⊆ ASol ⊆ ABse, and thus A′ is indeed a function. For a
constraint (r, r′, l,∀) ∈ C, we have ASol(r)∩ASol(r

′) = ∅, but
since A′(r) ⊆ ASol(r) and A(r′) ⊆ ASol(r

′), we have A′(r) ∩
A′(r′) = ∅ as well. Thus, A′ is valid for (U,R,ABse, C

′) and
is clearly a function.

Since, by Theorem 4, D-APEP〈SoDU, (=, 1)〉 =fpt WSP(6=
), and since WSP(6=) is NP-hard and FPT parameterized by
the number of steps [11], we obtain the following corollary:

Corollary 9. D-APEP〈SoDU〉 is NP-hard and FPT pa-
rameterized by k.

In fact, it follows from [11] that D-APEP〈SoDU〉 can be
solved in time O∗(2k). We now consider BoDE constraints.

Theorem 10. D-APEP〈BoDE〉 is polynomial-time solv-
able.

Proof. We show that an instance (U,R,ABse, C) is sat-
isfiable iff ABse is valid. Obviously, if ABse is valid, the
D-APEP〈BoDE〉 instance is satisfiable. Conversely observe
first that ABse is obviously authorized and complete. Then,
if D-APEP〈BoDE〉 is satisfiable, there exists ASol ⊆ ABse,
which is valid. However, since ASol(r) ⊆ ABse(r) for any
r ∈ R, any constraint (r, r′,↔,∃) satisfied by ASol is also
satisfied by ABse. In other words, ABse is eligible.

5.2 Complexity ofD-APEP〈f(k)− bounded〉

Let f be an arbitrary function in k and let I =
(U,R,ABse, C) be a D-APEP instance composed of f(k)-
bounded constraints. Without loss of generality, we assume
that f(k) ≥ k (observe that all constraints considered in
this paper are never better than (k − 1)-bounded). In this
section, we introduce a method to decide whether I is sat-

isfiable or not in time O∗
(

22
kf(k)k

)

.
Given a set of resources T ⊆ R, we define

UT = {u ∈ U : ABse(u) = T}

We call UT the (user) family associated with T . Note that
for T 6= T ′, we have UT∩UT ′ = ∅. Moreover, U =

⋃

T⊆R UT .

Thus {UT }T⊆R is a partition of U containing at most 2k sets.
The intuition behind this definition is that when considering

UI constraints (in particular, f(k)-bounded constraints), all
users in a set UT play the same role. The idea of the algo-
rithm is thus to eliminate users in “large” families to upper-
bound the number of users by a function of k. To eliminate
users, we apply the following reduction rule:

if there exists T ⊆ R such that |UT | > f(k), then
remove an arbitrary user u∗ from UT .

Successive applications of this rule will result in an instance
in which the number of users is at most f(k)2k, a function
of k only.

Consider, for example, an instance comprising the base
authorization relation ABse shown in Figure 2 (k = 3 and
n = 8) and a single constraint (r1, r2, l,∃). The constraint
(r1, r2, l,∃) is 3-bounded. There are three families of users,
of which U{r1,r2} has cardinality greater than 3. Applying
the reduction rule, we may remove users u3 and u4 from
U{r1,r2}.

r1 r2 r3
u1, u2 1 1

✚✚u3,✚✚u4, u5, u6, u7 1 1
u8 1 1 1

Figure 2: Use of the reduction rule

Lemma 11. I is satisfiable iff I′ is satisfiable, where I′

is the instance obtained by applying the reduction rule to I.

Proof. Obviously, if I′ is satisfiable, then so is I.
Assume I satisfiable and I′ unsatisfiable, and let A be

a solution for I. Then there exists T ⊆ R such that
|UT | ≥ f(k) + 1 ≥ k + 1, which means that A violates
some constraint c ∈ C (i.e. unsatisfiability of I′ does not
come from incompleteness). Since c is f(k)-bounded, we
have |core(A : I)| ≤ f(k) and thus |core(A : I)∩UT | ≤ f(k).
But, since |UT | ≥ f(k) + 1, and since c is user independent,
we may assume, without loss of generality, that there is a
user u∗ ∈ UT such that u∗ /∈ core(A : I). However, u∗

is a user whose removal makes the instance unsatisfiable, a
contradiction.

Theorem 12. For any computable function f depending
only on k, D-APEP〈f(k)− bounded〉 is FPT parameterized
by k.

Proof. Whenever the reduction rule can be applied, we
remove one user from the instance. If the rule cannot be ap-
plied, then we have an instance with at most 2kf(k) users.
Applying a brute force algorithm (by checking every pos-
sible relation for the reduced user set), one can check the

satisfiability in time O∗
(

22
kf(k)k

)

.

Corollary 13. D-APEP〈SoD,BoD〉 is FPT parameter-
ized by k.

Proof. The result follows from Propositions 20, 21, and
Theorem 12.

More generally, as we proved in Section 4.4 that cardi-
nality constraints with symbol ≤ or < are k-bounded, such
constraints can be added to any D-APEP〈SoD,BoD〉 in-
stance without degrading the execution time. Concerning
cardinality constraints with symbols ≥, > or =, we have the
following corollary of Proposition 23.

Corollary 14. For any computable function f depend-
ing only on k, D-APEP〈f(k) − bounded,Gcard, Lcard〉 is
FPT parameterized by k plus the maximum cardinality of
all cardinality constraints.

5.3 Complexity ofD-APEP〈BoDE, SoDU〉

We now prove that a better running time can be obtained
when considering only BoDE and SoDU constraints.

Theorem 15. D-APEP〈BoDE,SoDU〉 can be solved in

time O
(

2k
2 log k2

)

.

Proof. We reduce to WSP(=, 6=). Let R = {r1, . . . , rk}.
We build a WSP(=, 6=) instance, denoted by (S′, U ′, A′, C′).
We set U ′ = U . Then, for any i ∈ [k], let

Γ(ri) = {j ∈ [k] : (ri, rj ,↔,∃) ∈ C}.

For each resource ri ∈ R, we introduce a set of steps Si. If
Γ(ri) = ∅, then Si = {si}. Otherwise, Si = {sij : j ∈ Γ(ri)}.
Then define S′ =

⋃

i∈[k] S
i. Observe that |S′| ≤ k(k − 1).

We then define the following constraints:

• For any i ∈ [k], if Γ(ri) 6= ∅, then for all j ∈ Γ(ri), we
add the constraint (sij , s

j
i ,=).

• For any i, j ∈ [k], if (ri, rj , l, ∀) ∈ C, then, for ev-
ery s ∈ Si and every s′ ∈ Sj , we add the constraint
(s, s′, 6=).

Finally, we define the authorization policy A′. For every
i ∈ [k] and every u ∈ U :

• If Γ(ri) = ∅, then (u, si) ∈ A′ iff (u, ri) ∈ ABse.

• If Γ(ri) 6= ∅, then ∀j ∈ Γ(ri), (u, sij) ∈ A′ iff
(u, ri), (u, rj) ∈ ABse.

The construction is illustrated in Figure 3 for a small exam-
ple. Clearly this construction can be carried out in polyno-
mial time.

r1

r2

r3

r4

↔

↔

l

l

(a) C

s12

s21

s13 s31

s4

= 6=

=

6=

6=

(b) C′

ABse r1 r2 r3 r4
u1 1 1 1
u2 1 1
u3 1 1
u4 1 1
u5 1 1

(c) ABse

A′ s12 s13 s21 s31 s4

u1 1 1 1 1
u2 1
u3 1 1
u4 1 1
u5 1

(d) A′

Figure 3: Reducing D-APEP〈BoDE,SoDU〉 to WSP(=, 6=)

Let us suppose there is a valid plan π : S′ → U ′ for
(S′, U ′, A′, C′). We set Aπ = {(u, ri) : i ∈ [k], π(s) = u for
some s ∈ Si}. One can observe that Aπ is authorized and
complete. Then, for any i, j ∈ [k] such that (ri, rj ,↔,∃) ∈

C, we must have π(sij) = π(sji) = u for some u ∈ U , which
implies that u ∈ Aπ(ri) ∩Aπ(rj). Then, if (ri, rj , l, ∀) ∈ C,
we know that π(s) 6= π(s′) for any s ∈ Si and any s′ ∈ Sj ,
which implies that Aπ(ri) ∩ Aπ(rj) = ∅. This proves that
Aπ is valid.

Conversely, we suppose (U,R,ABse, C) is satisfiable, and
let ASol be a valid solution. For any i ∈ [k], we have the
following:

• If Γ(ri) = ∅, then define π(si) to be an arbitrary user
in ASol(ri).

• If Γ(ri) 6= ∅, then, for every j ∈ Γ(ri), define π(sij)
as an arbitrary user in ASol(ri)∩ASol(rj), and set also
π(sij) = π(sji).

One can observe that π is authorized and complete. By
construction, every constraint

(

sij , s
j
i ,=

)

∈ C′ is satisfied.
Finally, for every s, s′ ∈ S′ such that (s, s′, 6=), it must be
the case that s ∈ Si and s′ ∈ Sj such that (ri, rj , l,∀) ∈ C,
which implies that ASol(ri) ∩ ASol(rj) = ∅. Hence we must
have π(s) 6= π(s′), and π is a valid plan.

5.4 Complexity ofmaxAPEP〈SoDU〉

We now introduce a particular version of O-APEP, which
seeks to find a valid authorization relation of maximum car-
dinality. We write MSol to denote the cardinality of such a
relation. Such a relation is, in some sense, a most resilient
authorization relation possible, given the authorization con-
straints. We call this problem maxAPEP. (We may also
define a decision version APEP to find resilient authoriza-
tion relations. We may, for example, introduce a global con-
straint (>, t), which requires that at least t users are autho-
rized for each resource. These types of problems are related
to notions of resiliency in workflow systems [24].)

In this section, (ABse, C) is an APEP〈SoDU〉 instance. In
Theorem 8, we established that D-APEP〈SoDU〉 could be
reduced to D-APEP〈SoDU, (=, 1)〉. Let Π denote the set of
valid solutions to instance (ABse, C ∪ {(=, 1)}) (that is, func-
tions π : R→ U). Given a function π ∈ Π, we say A ⊆ U×R
contains π if and only if for every r ∈ R, (π(r), r) ∈ A. Let
Mπ denote the maximum size of a valid authorization rela-
tions containing π. Theorem 8 established that any solution
ASol of APEP〈SoDU〉 contains at least one function π ∈ Π.
We write MSol to denote max {Mπ : π ∈ Π}.

5.4.1 Patterns
A function π : R → U defines an equivalence relation
∼π on R, where r ∼π r′ iff π(r) = π(r′). The equiva-
lence classes defined by this relation form a partition of R
which we call the pattern associated with π and denote it
by P (π). We say two functions π and π′ are equivalent if
P (π) = P (π′). For UI constraints and any two functions π
and π′ such that P (π) = P (π′), π is eligible iff π′ is eligible.
Hence, we will say P is eligible if and only if, there exists
π such that P = P (π) and π is eligible for C. Henceforth,
we only consider eligible patterns. We write MP to denote
max {Mπ : P (π) = P}. There exists an eligible pattern P
such that MSol = MP .

Let us suppose that we are able, given a pattern P , to
construct a valid A, such that |A| = MP , in FPT time

f(k)nO(1). There are at most Bk eligible patterns, where
Bk is the Bell number and Bk = O(2k log k) [2].3 Then,

3All logarithms in this paper are of base 2.

maxAPEP〈SoDU〉 would be FPT: exploring all the eligible
patterns and applying the FPT algorithm to compute MP

for each P is executed in time O∗(2k log kf(k)). As a conse-
quence, our objective now is to design a FPT algorithm to
compute AP such that |AP | = MP .

5.4.2 Exploring patterns to solve maxAPEP〈SoDU〉

Lemma 16. Let P = {T1, T2, . . . , Td} be a pattern. An
authorization relation AP , such that |AP | = MP , can be
computed in FPT time O∗(2k).

Proof. Clearly d ≤ n. We extend P into P ∗ in order to
have |P ∗| = n. We set P ∗ = {T1, . . . , Td, ∅1, . . . , ∅n−d} =
{T1, . . . , Tn} . We build a weighted bipartite graph GP =
(P ∗ ∪ U,E, ω), where (Ti, u) ∈ E if and only if Ti ⊆ ABse(u)
and for any i ∈ [n− d] and u ∈ U , (∅i, u) ∈ E. Assign to
(Ti, u) ∈ E weight ω(Ti, u) which is the cardinality of the
maximum independent set in ABse(u) containing Ti:

ω(Ti, u) = max
∀(r,r′)∈X2, (r,r′,l,∀)/∈C

Ti⊆X⊆ABse(u)

|X|

There are at most n2 weights to compute. For any e ∈ E,
calculation of every ω(e) can be performed in time O(2k) by
enumerating all subsets of ABse(u). Thus the bipartite graph
GP can be built in time O∗(2k). We solve the assignment

problem on GP and obtain a maximum weighted match-
ing (MWM), M, in polynomial time using the Hungarian
algorithm [15].

For every edge e ∈ M we compute an independent set Xe

as follows. For each (Ti, u) ∈ M, choose a maximum inde-
pendent set X(Ti,u) such that Ti ⊆ X(Ti,u) ⊆ ABse(u) and,

therefore,
∣

∣X(Ti,u)

∣

∣ = ω(Ti, u). We define the authorization
relation AM such that AM(u) = X(Ti,u).

For any u ∈ U , AM(u) ⊆ ABse(u). Furthermore, for any
u ∈ U , AM(u) contains resources which are pairwise inde-
pendent, so AM is valid. We define the function π̃ such that
π̃(r) = u if and only if r ∈ Ti and (Ti, u) ∈M. AM contains
π̃ whose pattern is P . Thus, |AM| ≤MP .

We know that there exists a valid function π such that
MP = Mπ and P (π) = P = P (π̃). There exists a matching
M′ representing π in GP . If π(Ti) = u, then (Ti, u) ∈ M

′.
If π−1(u) is empty, we associate u with an arbitrary vertex
∅i. Since |AM| is equal to the weight of the MWM M of
GP , we have Mπ ≤ |AM|. Hence, MP = |AM|.

In Figure 4, we use a simple example to illustrate the
matching process described in the proof of Lemma 16. We
consider the pattern P = {{r1, r4} , {r2} , {r3}} and merge
∅1 and ∅2 into a single node to keep the bipartite graph
readable. The figure shows GP (derived from ABse) and the
resulting MWM (where the matching is indicated by the
thick lines). Then, for example, ω({r3} , u3) = 2 because
X = {r1, r3} is the largest independent subset of ABse(u3)
containing r3.

Theorem 17. maxAPEP〈SoDU〉 (and thus
D-APEP〈SoDU〉) can be solved in FPT time O∗(2k+k log k).

Proof. We explore all eligible patterns P . For each one,
we construct AP using Lemma 16, and keep the largest
one. The time complexity of this algorithm is O∗

(

2k+k log k
)

.
Hence, it is FPT parameterized by k.

r1 r2

r3r4

(a) Constraints

r1 r2 r3 r4
u1 1
u2 1 1
u3 1 1 1
u4 1 1
u5 1

(b) Base relation ABse

{r1, r4}

{r2}

{r3}

∅1, ∅2

u1

u2

u3

u4

u5

(c) GP

{r1, r4}

{r2}

{r3}

∅1, ∅2

u1

u2

u3

u4

u5

(d) MWM

Figure 4: Computing a maximum weighted matching for an
instance of maxAPEP〈SoDU〉

5.5 Complexity ofD-APEP〈SoDE〉

In this section, we solve the maxAPEP〈SoDE〉 problem
by reducing to the max weighted partition problem [4]:
that is, given a ground set K and p functions f1, . . . , fp
from 2K to integers from the range [−M,M], M ≥ 1, find
a partition {K1, . . . , Kp} of K that maximizes

∑p
i=1 fi(Ki).

The following result is a corollary of the main theorem on
max weighted partition in [4].

Lemma 18. max weighted partition can be solved in
time O∗(2kp2M).

Theorem 19. D-APEP〈SoDE〉 and maxAPEP〈SoDE〉
can be solved in time O∗(2k).

Proof. We reduce to the Max Weighted Partition

problem. The ground set is R, and we construct weight
functions indexed by sets, which are elements of a family χ
of subsets of U . We say that two resources r, r′ ∈ R are
independent if and only if (r, r′, l, ∃) /∈ C. Moreover, the
degree d(r) of a resource r ∈ R is the number of resources
r′ such that (r, r′, l,∃) ∈ C. The index set χ is defined
as

⋃

r∈R χr, where χr consists of all subsets of ABse(r) if
|ABse(r)| ≤ log k, or d(r) + 1 largest subsets of ABse(r) if
|ABse| > log k (breaking ties arbitrarily). For every X ∈ χ,
we define a weight function fX : 2R → [−|ABse| − 1, |ABse|]
as follows: for every T ⊆ R, fX(T) is set to |T ||X| if T is
an independent set and X ⊆ ABse(r) for every r ∈ T , and
fX(T) = −|ABse|−1 otherwise. Now, we show that any valid
authorization relation ASol of D-APEP〈SoDE〉 corresponds
to a partition of R of cost |ASol|, and vice versa.

Let T = {TX : X ∈ χ} be a partition of R of nonneg-
ative weight. Note that if fX(TX) ≥ 0 for every X ∈ χ
then

∑

X∈χ fX(TX) ≤ |ABse|. Thus, since T is of nonneg-

ative weight, fX(TX) ≥ 0 for every X ∈ χ. Construct an
authorization relation ASol such that for any X ∈ χ, for

any r ∈ TX , we have ASol(r) = X. Obviously, since T is a
partition of R, ASol is complete. Then, by definition of χ,
we have ASol(r) ⊆ ABse(r) and thus ASol is authorized. Fi-
nally, for any r, r′ ∈ R such that ASol(r) = ASol(r

′), it must
hold that r, r′ ∈ TASol(r), and since TASol(r) is independent,
(r, r′, l,∃) /∈ C, and ASol is eligible. In other words, ASol is a
valid authorization relation, and its weight is

∑

X∈χ fX(TX).

For any valid authorization relation ASol, let P (ASol) be
the partition of R into equivalence classes with respect to the
following equivalence relation: r, r′ ∈ R are equivalent if and
only if ASol(r) = ASol(r

′). We now prove that there always
exists a valid authorization relation A′

Sol of size at least |ASol|
such that A′

Sol(r) ∈ χ for every r ∈ R. If this is true, then
it will mean that we may assume that P (ASol) = {TX : X ∈
χ}, and since ASol is valid,

∑

X∈χ fX(TX) = |ASol|. For

r ∈ R, if |ABse(r)| ≤ log k, then since χ contains all subsets
of ABse(r), it holds that ASol(r) ∈ χ. If |ABse(r)| > log k
and ASol(r) /∈ χr, recall that χr consists of d(r) + 1 largest
subsets of ABse(r). Hence, there must existX ∈ χr such that
ASol(r

′) 6= X for every r′ such that (r, r′, l,∃) ∈ C. Hence,
replacing ASol(r) by X creates another valid authorization
relation A′

Sol of size at least |ASol| and such that A′
Sol(r) ∈

χr. Repeating this modification for every r ∈ R such that
ASol(r) /∈ χ, we end up with a valid authorization having the
desired property.

Using the reduction above together with Lemma 18, we
prove the claimed statement.

6. DISCUSSION

6.1 Constraint types
In Section 4.1 we identified a number of constraint types

of the form (r, r′, ◦, Q), where r and r′ are resources, ◦ is a
logical binary operator, and Q is a quantifier. For ease of
reference we summarize these constraints and the respective
conditions for satisfaction in Table 2.

(r, r′,↔,∀) A(r) = A(r′)

(r, r′,↔,∃) A(r) ∩A(r′) 6= ∅

(r, r′, l, ∀) A(r) ∩A(r′) = ∅

(r, r′, l, ∃) A(r) 6= A(r′)

(r, r′,→,∀) A(r) ⊆ A(r′)

Table 2: Constraint types defined in Section 4.1

We chose to introduce the constraints in Table 2 because
of their obvious connections to known constraints in the lit-
erature and to simplify the exposition of the technical mate-
rial. We now discuss ways in which these constraints could
be extended. Notice that the satisfaction of each constraint
may be defined in terms of A(r) and A(r′).

One obvious extension, then, is to define constraints of
the form ((r1, . . . , rm), ◦, Q), and to define constraint sat-
isfaction in terms of A(ri), 1 6 i 6 m. We may de-
fine constraint satisfaction in a number of ways, includ-
ing (but not limited to) the following: (i) for all i and j,
1 6 i < j 6 m, (ri, rj , ◦, Q) is satisfied; or (ii) for some i
and j, 1 6 i < j 6 m, (ri, rj , ◦, Q) is satisfied. Note, how-
ever, that the first of these choices can be realized simply by
defining a set of constraints {(ri, rj , ◦, Q) : 1 6 i < j 6 m}.

Consider the constraint ((r1, . . . , rm), l,∀), and suppose,
as another alternative for constraint satisfaction, we require

that
⋂m

i=1 A(ri) = ∅. In other words, there is no user that
is assigned to all resources in the set {r1, . . . , rm}. It is easy
to see that such a constraint is k-bounded (since removing
a user from a valid relation can only affect completeness,
not the eligibility, of the relation). Thus, with this inter-
pretation, ((r1, . . . , rm), l,∀) represents a canonical SMER
constraint [16] (if the set of resources is interpreted as a set
of mutually exclusive roles). We return to SMER constraints
in Section 6.3.

Another possible extension is to define constraints of the
form (R′, R′′, ◦, Q) and to define constraint satisfaction in
terms of A(R′) and A(R′′). For example, the constraint
(R′, R′′, l,∀) requires that A(R′) ∩A(R′′) = ∅. Again, con-
straints of this form are k-bounded. In other words, the users
assigned to resources in R′ are different from the users as-
signed to resources in R′′. This constraint, therefore, allows
us to specify that resources should be allocated to disjoint
teams of users (rather than just individual users). Of course
such constraints could be nested: we might define a further
constraint (R′′

1 , R
′′
2 , l, ∀) where R

′′
1 and R′′

2 are subsets of R′′.

6.2 Resiliency in access control
Suppose we are given an authorization relation A ⊆ U×R

and a set of resources Q ⊆ R. Then a resiliency policy is
defined by a tuple (Q, s, d, t), where s, d and t are inte-
gers [17]. The policy is satisfied if, following the removal of
any s users from U , there exist d disjoint teams of users,
U1, . . . , Ud, such that A(Ui) ⊇ Q and |Ui| 6 t for each i.

The resiliency checking problem [17] asks whether a re-
siliency policy is satisfiable or not. It has been shown that
the hard part of the problem is finding the teams (since we
can enumerate all possible user sets that are missing s users),
so research has focused on solving the problem for instances
in which s = 0 [10, 17].

Informally, a solution of the resiliency checking problem
may be viewed as a function mapping (different copies of
the set of) resources to users. Thus we can transform an
instance of the resiliency checking problem (where s = 0)
into an instance of D-APEP. We define d copies of each
resource in Q; we write r(i) to denote the ith copy of resource
r in Q. We then define

ABse =
{

(u, r(i)) : (u, r) ∈ A, 1 6 i 6 d
}

.

Finally, we define the global constraint (=, 1) and, for all
r1, r2 ∈ Q and all i and j such that 1 6 i < j 6 d, we define

a constraint (r
(i)
1 , r

(j)
2 , l,∀). The authorization relation ABse

ensures that each user is authorized according to the original
relation A. The global constraint ensures that each resource
is assigned to a single user. The other constraints ensure
that a user is only assigned to resources in one copy of Q.

The results in Section 5.2 assert that the resulting problem
is FPT. Hence, the resiliency checking problem is also FPT
(confirming an earlier result of Crampton et al. [10]).

Note, finally, that we can simplify the above construction,
using the constraints introduced in Section 6.1: we use Q(i)

to denote the ith copy of the set of resources Q and define
the set of constraints

{

(

Q(i), Q(j), l, ∀
)

: 1 6 i < j 6 d
}

.

6.3 Resiliency and separation of duty
The RBAC96 standard discusses constraints based on mu-

tually exclusive roles [21]. Such a constraint is defined by a

set of roles Rmutex and is satisfied by the user-role assignment
relation provided no user is assigned to more than one role
in Rmutex.

Li, Tripunitara and Bizri introduced the more general
static mutually exclusive role (SMER) constraints [16],
which have the form (Rmutex, t), where t 6 |Rmutex|. (A
canonical SMER constraint has t = |Rmutex|.) Such a con-
straint is satisfied provided every user is assigned fewer than
t of the roles in Rmutex. We can check whether a user-role
assignment relation satisfies a SMER constraint in polyno-
mial time [16], informally because we only need to consider
each user once.

Li et al. went on to distinguish SMER constraints from
static separation of duty (SSoD) policies [16], which are de-
fined by a set of permissions P and an integer t 6 |P |. Such
a constraint is satisfied if no subset of fewer than t users is
collectively authorized for the permissions in P . Checking
whether a SSoD policy is satisfied by a given user-role assign-
ment relation is computationally hard, informally because
we need to consider every possible subset of users having
cardinality less than t.

Li, Wang and Tripunitara studied the complexity of de-
termining whether it was possible to simultaneously satisfy
static separation of duty constraints and a resiliency pol-
icy [17]. Unsurprisingly, it is computationally hard to de-
cide this question, given that it is hard to decide whether an
authorization relation satisfies a static separation of duty
policy [16]. However, they did not consider the possibil-
ity of simultaneously satisfying SMER constraints and re-
siliency policies. Now observe that a SMER constraint is
user-independent and is k-bounded. Thus, for example, it is
possible to develop an FPT algorithm to determine whether
there exists an authorization relation A ⊆ U × R such that
a resiliency policy and a set of SMER constraints are simul-
taneously satisfied.

7. CONCLUSION
In this paper we have introduced a more general frame-

work for articulating problems of finding authorization re-
lations (“policies”) that must satisfy certain kinds of con-
straints. We have shown that there exist FPT algorithms
to solve the authorization policy existence problem when all
constraints are user-independent and are bounded in an ap-
propriate way. We have also shown that many constraints of
practical interest are indeed user-independent and bounded.

We have chosen to consider user-independent constraints,
not least because such constraints have been studied exten-
sively in the literature on workflow satisfiability. In fact, we
could equally well consider resource-independent constraints
because our framework is symmetric in a way that workflow
satisfiability questions are not. So, for example, we could
define a constraint of the form (u, u′, l, ∀) which would be
satisfied provided the set of resources assigned to u is dis-
tinct to the set of resources assigned to u′. In this way,
we search for authorization relations that guarantee certain
users do not have access to the same resources. Moreover,
if the number of users is small relative to the number of
resources, which may well be the case in some multi-user
systems (such as file systems), then n will be the small pa-
rameter and the symmetry of our framework admits FPT
algorithms for solving problem instances of this form.

We believe there are many opportunities for future work,
not least exploring what types of authorization constraints

might be useful in practice and determining whether those
constraints are user-independent and bounded.

8. REFERENCES
[1] Basin, D. A., Burri, S. J., and Karjoth, G.

Obstruction-free authorization enforcement: Aligning
security and business objectives. Journal of Computer
Security 22, 5 (2014), 661–698.

[2] Berend, D., and Tassa, T. Improved bounds on Bell
numbers and on moments of sums of random variables.
Probability and Math. Statistics 30, 2 (2010), 185–205.

[3] Bertino, E., Ferrari, E., and Atluri, V. The
specification and enforcement of authorization
constraints in workflow management systems. ACM
Trans. Inf. Syst. Secur. 2, 1 (1999), 65–104.

[4] Björklund, A., Husfeldt, T., and Koivisto, M.

Set partitioning via inclusion-exclusion. SIAM J.
Comput. 39, 2 (2009), 546–563.

[5] Brewer, D. F. C., and Nash, M. J. The Chinese
wall security policy. In Proceedings of the 1989 IEEE
Symposium on Security and Privacy (1989),
pp. 206–214.

[6] Cohen, D., Crampton, J., Gagarin, A., Gutin,

G., and Jones, M. Iterative plan construction for the
workflow satisfiability problem. J. Artif. Intell. Res.
(JAIR) 51 (2014), 555–577.

[7] Crampton, J. A reference monitor for workflow
systems with constrained task execution. In SACMAT
(2005), E. Ferrari and G.-J. Ahn, Eds., ACM,
pp. 38–47.

[8] Crampton, J., Gagarin, A. V., Gutin, G., and

Jones, M. On the workflow satisfiability problem
with class-independent constraints. In 10th
International Symposium on Parameterized and Exact
Computation, IPEC 2015, September 16-18, 2015,
Patras, Greece (2015), T. Husfeldt and I. A. Kanj,
Eds., vol. 43 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, pp. 66–77.

[9] Crampton, J., Gutin, G., and Karapetyan, D.

Valued workflow satisfiability problem. In Proceedings
of the 20th ACM Symposium on Access Control
Models and Technologies (2015), pp. 3–13.

[10] Crampton, J., Gutin, G., and Watrigant, R.

Resiliency policies in access control revisited. In
Proceedings of the 21st ACM on Symposium on Access
Control Models and Technologies (2016), ACM,
pp. 101–111.

[11] Crampton, J., Gutin, G., and Yeo, A. On the
parameterized complexity and kernelization of the
workflow satisfiability problem. ACM Trans. Inf. Syst.
Secur. 16, 1 (2013), 4.

[12] Downey, R. G., and Fellows, M. R. Fundamentals
of Parameterized Complexity. Springer Verlag, 2013.

[13] Gligor, V. D., Gavrila, S. I., and Ferraiolo,

D. F. On the formal definition of separation-of-duty
policies and their composition. In Security and
Privacy - 1998 IEEE Symposium on Security and
Privacy, Proceedings (1998), IEEE Computer Society,
pp. 172–183.

[14] Karapetyan, D., Gagarin, A., and Gutin, G.

Pattern backtracking algorithm for the workflow
satisfiability problem with user-independent

constraints. In Frontiers in Algorithmics - 9th
International Workshop, Proceedings (2015),
pp. 138–149.

[15] Kuhn, H. W. The Hungarian method for the
assignment problem. In 50 Years of Integer
Programming 1958-2008 - From the Early Years to the
State-of-the-Art. 2010, pp. 29–47.

[16] Li, N., Tripunitara, M. V., and Bizri, Z. On
mutually exclusive roles and separation-of-duty. ACM
Trans. Inf. Syst. Secur. 10, 2 (2007).

[17] Li, N., Wang, Q., and Tripunitara, M. V.

Resiliency policies in access control. ACM Trans. Inf.
Syst. Secur. 12, 4 (2009).

[18] Mace, J. C., Morisset, C., and van Moorsel, A.

P. A. Quantitative workflow resiliency. In Computer
Security - ESORICS 2014 - 19th European Symposium
on Research in Computer Security, Wroclaw, Poland,
September 7-11, 2014. Proceedings, Part I (2014),
M. Kutylowski and J. Vaidya, Eds., vol. 8712 of
Lecture Notes in Computer Science, Springer,
pp. 344–361.

[19] Niedermeier, R. Invitation to fixed-parameter
algorithms. Oxford University Press, 2006.

[20] Roy, A., Sural, S., Majumdar, A. K., Vaidya, J.,

and Atluri, V. Minimizing organizational user
requirement while meeting security constraints. ACM
Trans. Management Inf. Syst. 6, 3 (2015), 12.

[21] Sandhu, R. S., Coyne, E. J., Feinstein, H. L.,

and Youman, C. E. Role-based access control
models. IEEE Computer 29, 2 (1996), 38–47.

[22] Schaad, A., Lotz, V., and Sohr, K. A
model-checking approach to analysing organisational
controls in a loan origination process. In SACMAT
2006,11th ACM Symposium on Access Control Models
and Technologies, Lake Tahoe, California, USA, June
7-9, 2006, Proceedings (2006), D. F. Ferraiolo and
I. Ray, Eds., ACM, pp. 139–149.

[23] Simon, R. T., and Zurko, M. E. Separation of duty
in role-based environments. In 10th Computer Security
Foundations Workshop (CSFW ’97), June 10-12,
1997, Rockport, Massachusetts, USA (1997), IEEE
Computer Society, pp. 183–194.

[24] Wang, Q., and Li, N. Satisfiability and resiliency in
workflow authorization systems. ACM Trans. Inf.
Syst. Secur. 13, 4 (2010), 40.

APPENDIX

A. RESULTS FOR BOUNDED CON-
STRAINTS

Proposition 20. Constraints (r′, r′′,→,∀),
(r′, r′′,↔,∀) and (r′, r′′,↔,∃) are (k − 1)-bounded.

Proof. Let c be one of (r′, r′′,→,∀), (r′, r′′,↔,∀) or
(r′, r′′,↔,∃). Let V be a set of k − 1 distinct users and
consider A, where A(r′) = A(r′′) = {u} for some u ∈ V
and, for any r1, r2 ∈ R\{r′, r′′}, |A(r1)| = 1, A(r1) 6= A(r′),
and A(r1) 6= A(r2). Then core(A : U × R, c) = V and
|core(A : U ×R, c)| = k − 1. Moreover, for any relation A′

valid with respect to U×R and c, any subset of A′(R) of size
at least k must contain two users who are both assigned to

the same resource; thus one of them can be removed without
affecting completeness or satisfiability. Hence, the constraint
is (k − 1)-bounded.

Proposition 21. Constraints (r′, r′′, l,∀) and
(r′, r′′, l,∃) are k-bounded.

Proof. Let V be a set of k distinct users and consider
A where |A(r)| = 1 for each r ∈ R and A(R) = V . Then
core(A : U × R, c) = V and |core(A : U ×R, c)| = k. Now,
for any for any relation A′ valid with respect to U × R
and c, any subset of A′(R) of size at least k + 1 must con-
tain two users who are both assigned to the same resource,
and thus one of them can be removed without violating
completeness or satisfiability. Thus |core(A′ : U ×R, c)| 6
|core(A : U ×R, c)|, from which the result follows.

Proposition 22. Constraint (R′,≤, t) is k-bounded.

Proof. Given any valid solution A, the removal of
any user cannot make A non-eligible with respect to
c = (R′,≤, t), but may violate completeness. Hence,
core(A : U × R, c) is largest when |A(r)| = 1
for all r and A(R) = k, in which case we have
|core(A : U ×R, c)| = k.

Similarly, the global cardinality constraint c = (≤, t) is
k-bounded because, in this case too, any removal does not
affect the eligibility of the relation; it can only affect the
completeness. Obviously, these results remain true with <
instead of ≤. However, as we will see, they do not hold if
we replace ≤ by = or ≥. Indeed, a constraint such as (=, t)
requires that some set of t users cannot be removed. Hence,
if t is not bounded by a function of k only, the constraint is
not f(k)-bounded for any computable function f .

Proposition 23. Constraints (R′,=, t) and (R′,≥, t) are
2max{k, t}-bounded, but not (max{k, t} − 1)-bounded.

Proof. We only give the proof for (R′,=, t), the other
one being similar. One can observe that core(A : U × R, c)
is largest when |A(r)| = 1 for any r ∈ R \R′, |A(R \ R′)| =
|R \ R′|, and A(R′) ∩ A(R \ R′) = ∅. In this case we have
|core(A : U ×R, c)| ≤ |R \R′|+ t ≤ 2max{k, t}.

Concerning the negative result, observe that if
max{k, t} = t, then no user of A(R′) can be removed
from any valid solution, and if max{k, t} = k, then there
exists solutions in which A(R) ≥ k and the removal of
any user from A(R) either violates a constraint or breaks
completeness.

	1 Introduction
	2 Background and related work
	2.1 Fixed-parameter tractability
	2.2 Workflow satisfiability
	2.3 Static separation-of-duty constraints
	2.4 Resiliency

	3 The authorization policy existence problem
	4 Constraints
	4.1 Binding-of-duty and separation-of-duty constraints
	4.2 Cardinality constraints
	4.3 User-independent constraints
	4.4 Bounded UI constraints
	4.5 Notation

	5 Complexity of APEP
	5.1 Instances with constraints of a single type
	5.2 Complexity of D-APEP "426830A f(k)-bounded "526930B
	5.3 Complexity of D-APEP "426830A BoDE,SoDU "526930B
	5.4 Complexity of maxAPEP "426830A SoDU "526930B
	5.4.1 Patterns
	5.4.2 Exploring patterns to solve maxAPEP "426830A SoDU "526930B

	5.5 Complexity of D-APEP "426830A SoDE "526930B

	6 Discussion
	6.1 Constraint types
	6.2 Resiliency in access control
	6.3 Resiliency and separation of duty

	7 Conclusion
	8 References
	A Results for bounded constraints

