N

N

Filtering-based CPA: a successful side-channel attack
against desynchronization countermeasures
Karim Moussa Ali Abdellatif, Damien Couroussé, Olivier Potin, Philippe

Jaillon

» To cite this version:

Karim Moussa Ali Abdellatif, Damien Couroussé, Olivier Potin, Philippe Jaillon. Filtering-based
CPA: a successful side-channel attack against desynchronization countermeasures. Fourth Workshop
on Cryptography and Security in Computing Systems (CS2 '17), Jan 2017, Stockholm, Sweden. pp.29-
32, 10.1145/3031836.3031842 . emse-01490735

HAL Id: emse-01490735
https://hal-emse.ccsd.cnrs.fr/emse-01490735

Submitted on 18 Nov 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Copyright

https://hal-emse.ccsd.cnrs.fr/emse-01490735
https://hal.archives-ouvertes.fr

Filtering-Based CPA: A Successful Side-Channel Attack
Against Desynchronization Countermeasures

Karim M. Abdellatif'3, Damien Couroussé?, Olivier Potin! and Philippe Jaillon®

Ecole Nationale Suprieure des Mines de Saint-Etienne, France

2Univ. Grenoble Alpes, F-38000 Grenoble, France; CEA, LIST, MINATEC Campus, F-38054 Grenoble, France

3Electrical Engineering Department, Faculty of Engineering, Minia University, Egypt

L2firstname.lastname@emse.fr, firstname.lastname@cea.fr

ABSTRACT

Secure implementations against side channel attacks usu-
ally combine hiding and masking protections in software
implementations. In this work, we focus on desynchroniza-
tion protection which is considered as a hiding countermea-
sure. The idea of desynchronization is to obtain a non-
predictable offset of the attacking point in terms of time
dimension. For this purpose, we present exploiting pattern-
recognition methods to filter interesting points for obtaining
a successful side channel attack. Using this tool as a case
study, we completely cancel the desynchronization effect of
the CHES 2009/2010 countermeasure [2, 3]. Moreover, 25k
traces are needed for a successful key recoveries in case of
polymorphism-based countermeasure [4].

1. INTRODUCTION

Masking and hiding are two popular solutions to achieve
better resistance against side-channel attacks, which are usu-
ally used in combination in security products. Masking is
used to merge the sensitive (key dependent) data with ran-
dom data (the mask) which is unknown to the attacker.
Hiding is used to reduce the signal-to-noise ratio of leakage
information in observation traces, hence requiring a greater
number of observation (side channel traces) to recover the
secret data. A common way to achieve hiding at the soft-
ware level is to perform desynchronization between observa-
tion traces. Desynchronization countermeasures statically
insert, in the functional code, a desynchronization routine
which has unpredictable execution time from the attacker
side as shown by [2, 3]. Another hiding countermeasure
highlighted executing so-called dummy instructions: code
sequences that are similar to the behavior of the protected
code (e.g. the SubBytes routine), but on fake data was pre-
sented by [7]).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CS2 ’17, January 24 2017, Stockholm, Sweden
© 2017 ACM. ISBN 978-1-4503-4869-0/17/01... . $15.00
DOL: http://dx.doi.org/10.1145/3031836.3031842

Random dummy loops were presented by [2, 3] in order
to add random shiftings in the time dimension to be an ef-
fective countermeasure against side-channel attacks. In [4,
1], runtime code polymorphism was proposed as a generic
protection against side channel attacks. The idea is to ob-
tain new versions of the secured binary code on the device.
Each version is functionally equivalent but has a different
implementation. Hence, execution would lead to a differ-
ent observation in terms of the power consumption. The
authors of [4] invested this code transformation possibili-
ties to obtain random register allocation, random instruc-
tion selection, instruction shuffling, and insertion of noise in-
structions, as a countermeasure against side channel attacks.
The idea of running new versions which have the
same functionality but different power consumption
raise this question, is it efficient to use code poly-
morphism for inserting random delays compared to
previous work [2, 3] which was based on random
dummy loops? This open question was the motivation
for this work to find a common attack for desynchronization
countermeasures.

Our contribution: We present a channel attack on the
design proposed by [4] and compare it with the previous
work [2, 3]. Note that we use only the insertion of noise in-
structions in case of evaluating polymorphism-based coun-
termeasure presented by [4]. The proposed attack depends
on filtering interesting points in the traces before performing
side channel attacks like CPA. We consider the countermea-
sure of [2, 3] as a reference for comparison in terms of the
side channel evaluation (number of traces for a successful
attack). Our attack successfully cancels the countermeasure
proposed by [2, 3] and retrieve the secret key with a num-
ber of traces close to unprotected design (45-80 traces). In
terms of [4], our attack shows that 25k traces are needed to
break the key successfully.

The STM32VLDISCOVERY [8] evaluation kit was used
in our setup. The board contains a Cortex-M3 core run-
ning at 24 MHz. It is not equipped with hardware security
protections. The side-channel traces were obtained with a
2208A PicoScope, which features a 200 MHz bandwidth and
a vertical resolution of 8 bits. An EM probe RF-U5-2 from
Langer was used, and a PA 303 amplifier from Langer.

Section 2 and Section 3 show the background of the
countermeasures presented in [3, 4], respectively. Section 4
proposes using interesting points for a successful CPA. Sec-

tion 5 presents the side channel evaluation of the two de-
signs using interesting points. Section 6 concludes this
work.

2. CHES 2009/2010 COUNTERMEASURE

In this section, we present the countermeasure introduced
at CHES 2009 (and improved at CHES 2010) by Coron and
Kizhvatov [2, 3]. The random delays were inserted at 10
places per AES round (before AddRoundKey, before each
32-bit SubBytes block, before each 32-bit MixColumn block,
and after the last MixColumn block).

The two proposals (CHES 2009/2010 countermeasures)
highlight finding a good statistical distribution for the ran-
dom lengths of the delays. CHES 2009 paper [2] analyzes
floating point method. Its goal is to decrease the average
length of random delays and increasing the variance. In the
CHES 2010 paper [3], the authors noted a bad choice of pa-
rameters for the floating mean method can lead to security
weaknesses. Therefore, they proposed an improved solution
with a new criterion to evaluate the security of Random De-
lay Interrupt (RDI). In both cases, their implementations
ran on an 8-bit Atmel AVR platform. The common be-
tween the two designs is using random dummy loops as a
random delay.

Our implementation of CHES 2009/2010 countermeasure
followed the same guidelines as in [2, 3] and was based on the
AES-128 design [6]. We are interested in how the delays are
inserted in the normal operation of AES instructions, and
we don’t focus on how much delay is inserted (we describe
later that the proposed attack doesn’t depend on the length
of the random delay).

Algorithm 1 describes the execution of the SubBytes
stage. The random delay, which is a random number
of dummy loops, is inserted before/after each 4 s-boxes
calculation (see [2]).

Algorithm 1 Calculation of SubBytes
1: for i=0;i<16;i+4 do
2: Random()
: state(i + 0) = Sbox(state(i + 0));

3

4: state(i + 1) = Sbox(state(i + 1));
5: state(i + 2) = Sbox(state(i + 2));
6: state(i + 3) = Sbox(state(i + 4));
7: end for

Two side channel attacks based on removing this random
delay were reported in the literature [5, 9]. In [9], the au-
thors identified the patterns of dummy operations by string
matching and then removed the random delay from the ob-
tained traces. Their attack was applied on Atmel AVR AT-
mega8 using power consumption. Hidden Markov Models
(HMM) was presented by [5] as another attack. We can
conclude that the two attacks [5, 9] were based on identi-
fying the pattern of the random delay by correlation or by
string matching, respectively.

3. POLYMORPHISM COUNTERMEASURE

The framework named COGITO [4] aims at providing a
realistic solution to achieve code polymorphism in embedded
systems. The capabilities are currently as follows: (1) Drive
runtime code generation by a source of random numbers
to produce polymorphic application components, (2) Use

2 Loads Store Clck
>

{ Trigger
c" \ |
o bttt

Figure 1: 16 s-box calculation of AES

semantic equivalences at the instruction level to produce
different (but functionally equivalent) instances of code se-
quences, (3) Shuffle the machine instructions and use register
renaming during runtime code generation (4) Introduce use-
less instructions that do not interfere with the functionality
of the generated code, so called noise instructions,(5) With
limited memory consumption and fast code generation, so
that it is applicable to very small computing units such as
secure elements.

For the sake of conciseness, we forward the reader to [4],
which details the code generation framework and the poly-
morphic implementation of the AES design. As compared
to [4], we attack here a polymorphic version that only uses
the insertion of noise instructions, and none of the other
polymorphic transformations. In our understanding, the in-
sertion of noise instructions will have the greatest impact
on the desynchronization of a leakage point in observation
traces. Other polymorphic transformations, such as random
register allocation and semantic equivalences, also have an
effect on desynchronization, but to a lesser degree.

We emphasize on the fact that code polymorphism with
runtime code generation is fundamentally different: the main
source of temporal desynchronization comes from the inser-
tion of so-called noise instructions. Noise instructions can
be identical to real code instructions (e.g. memory loads and
stores during the execution of the SubBytes, xor instructions
during AddRoundKey), and are tightly weaved with the real
code instructions thanks to runtime code generation. Hence,
it is difficult to distinguish real and noise instructions As a
result, the protected code presents better resistance to resyn-
chronization attacks compared to [2, 3] as we will see later.

4. INTERESTING POINTS

In this section, we present the meaning of interesting points
and how such points are very critical in terms of side chan-
nel attacks. We implemented AES-128 without any coun-
termeasure as a case study to help us presenting interesting
points. Fig. 1 shows the electromagnetic signal taken under
executing the first SubBytes stage (16 s-boxes calculations)
in the first round of AES.

The basic idea of CPA is : the key assumed is correct
when the correlation is maximum between the model of the
hamming weight/distance under this assumed key, and the
real power consumption of the design. Therefore, interesting
points are these points which give the maximum correlation
in the trace.

We can realize that executing one s-box takes 5 clock cy-
cles (2 load instructions and one store instruction as shown
in Fig. 1). Note that pipelining allows executing 2 load in-

RDI Header

3
>»

V W\ V NN\ a4 W\ j

Figure 2:
2009/2010

An electromagnetic trace of CHES

structions in 3 clock cycles but store instruction is executed
in the last two cycles because of data dependency. Hence,
applying CPA using the pattern of the last 2 clock cycles
(during store instruction) will give the maximum correla-
tion. This pattern indicates the power consumption while
the new value of the s-box output is stored and this is ex-
actly what a successful CPA looks for. We call this window
("store” instruction) as ”interesting points”.

S. SIDE CHANNEL ANALYSIS

In this section, we present the side channel analysis of
the polymorphism-based countermeasure [4] compared to
the countermeasure presented in [2, 3]. Our methodology
uses correlation to detect interesting points inside the traces
and not to remove the random delay like previous attacks.

5.1 CHES 2009/2010 Countermeasure [2, 3]

This countermeasure was targeting the random delay out-
side the interesting points in the trace (outside s-box calcu-
lation). Fig. 2 shows one trace from the countermeasure pre-
sented in [2, 3]. Note that the trigger starts with the begin-
ning of SubBytes and terminates with the end of SubBytes
calculation. We can conclude that the interesting points are
inside (during) the calculation of 4 s-boxes and also before
the Random Delay Interrupt (RDI) header.

We can filter interesting points by using the pattern of 4
s-boxes or RDI header. This is achieved by scanning the
pattern of the 4 s-boxes or the RDI header on the trace (till
the trigger position) by using cross correlation to assign the
positions of the RDI header and the 4 s-boxes (see Algo-
rithm 2). Fig. 3 shows the result of the cross correlation
using the pattern of the 4 s-boxes (Note: the same will be
in case of using the pattern of RDI header). It is clear that
there are four maximum points, which means the existence
of 4 grouped s-boxes.

After selecting interesting points that include the ”store”
instructions of the s-box, we can then perform CPA directly
using these points as shown in Fig. 4. Fig. 5 shows the result
of the CPA using the two cases of filtering. We can see that
85 and 45 traces are needed to detect the key in case of using
the pattern of RDI headers and SubButes, respectively.

Algorithm 2 Selecting interesting points of [2, 3]

. Input Positionrrigger, Lengthpattern, Ref, Trace

. Output Pointsinterest

for i=1: PositionTrigger — Lengthpattern do
Partrrace=Trace(i : i + (Lengthpattern — 1));
X (i) = Correlation(Ref, Partrrace);

end for

Pointsinterest = Max(X,4);

: Return Pointsrnierest

AN R A

Correlation Score

Positions

Figure 3: Cross Correlation score

Interesting points

¥ # “*

Sbox Pattern

Al

RDI header
r«‘\""\v‘[) |

Selection Function

\ "
[faepefapieiarynonT

c
i
ks
2
Q
O
R*

Figure 4: CPA-based selection function

e
o
2
12}
c |
=3
=
e
3

%

_Correlation Score

W W W &0 s a0
No. Traces
(b)

No.v Traces
(a)
Figure 5: CPA result using interesting points, (a)
with the RDI header pattern, (b) with the pattern
of 4-sboxes

Repeated Pattern
‘«"M\ "'"‘)‘"\:""|’.I‘\‘f\" Veaw|

V
Store instruction

Trigger

Figure 6: Electromagnetic trace of [4]

Correlation Score

/

No. Traces o No. Traces
(a) (b)

Figure 7: CPA result using interesting points of [4],
(a) Using interesting points, (b) direct CPA

5.2 Polymorphism countermeasure [4]

In this part, we evaluate the countermeasure involving
desynchronization with code polymorphism [4]. Fig. 6 shows
an example of the electromagnetic traces during the execu-
tion of the first SubBytes stage. It presents the execution
of 16 s-boxes separately under the countermeasure of noise.
This figure illustrates that the electromagnetic trace is not
clear like Fig. 2 to identify the calculation of the s-box (inter-
esting points). To apply the methodology shown in Section
5.1 (Fig. 4) that filters interesting points, we have to do
simple power analysis with more than one trace. The idea
is to find a pattern which is repeated 16 times indicating 16
s-boxes calculation.

We found that the pattern shown in Fig. 6 is repeated 16
times. A part of this pattern is similar to ’store’ instruc-
tion which identifies the interesting points in the calculation
of the s-box. Therefore, we filter these patterns from the
traces using the selection function (see Fig. 4 and Algo-
rithm 2). Note that Algorithm 2 selects four maximum
peaks of correlation but in this case it should select sixteen
peaks because of executing 16 s-boxes separately.

After selecting interesting points, CPA is then performed
to detect the secret key. We computed the correlation coeffi-
cient on raw power traces using the Hamming weight power
model to attack the first s-box. We found that 25k traces

Table 1: Comparison between attacks

Countermeasure Attack No. Traces
2,3 direct CPA [2] 35000
2,3 MM [5] 100
2,3 String matching [9 50
2,3 RDI header detection 85
2,3 S-box pattern detection 45
4 direct CPA >100000
4 S-box pattern detection 25000

are sufficient to detect this key (see Fig. 7(a)). On the other
hand, if direct CPA is performed on the design of [4], 100k
traces are not sufficient to detect the key (see Fig. 7(b)).

It is clear that the presented design by [4] needs more
traces compared to [2, 3] in order to obtain the secret key in
case of applying CPA with/without filtering (see Table 1).
On the other hand, Table 1 also shows the comparison be-
tween our presented attack and previous attacks in terms of
the number of traces required for a successful attack.

6. CONCLUSION

In this paper, we presented the side channel attack on
the designs proposed by [4] and [2, 3]. Filtering interest-
ing points that indicate "store” instructions in the calcula-
tion of SubBytes was presented. The importance of such
points was clear to perform a successful attack with more
than 25k traces on the countermeasure of [4] and removing
completely the countermeasure of [2, 3]. Compared to [2,
3], the polymorphism-based countermeasure required more
traces in case of performing normal CPA or filtering-based
CPA.

7. ACKNOWLEDGMENTS

This work was partially funded by the COGITO project,
funded by the French National Research Agency (ANR) as
part of the program Digital Engineering and Security (INS-
2013), under grant agreement ANR-13-INSE-0006-01.

8. REFERENCES

[1] AcosTa, G., BARENGHI, A., AND PELOSI, G. A code
Morphing Methodology to Automate Power Analysis
Countermeasures. In Proceedings of the 49th Annual Design
Automation Conference (2012), ACM, pp. 77-82.

[2] Coron, J.-S., aND KizuvaTtov, I. An Efficient Method for
Random Delay Generation in Embedded Software. In
Cryptographic Hardware and Embedded Systems-CHES
2009. Springer, 2009, pp. 156—-170.

[3] CoroN, J.-S., AND KizHVATOV, I. Analysis and Improvement
of the Random Delay Countermeasure of CHES 2009. In
International Workshop on Cryptographic Hardware and
Embedded Systems (2010), Springer, pp. 95-109.

[4] CouroussE, D., BARRY, T., ROBISSON, B., JAILLON, P.,
PotiN, O., AND LANET, J.-L. Runtime Code Polymorphism
as a Protection Against Side Channel Attacks. In IFIP
International Conference on Information Security Theory
and Practice (2016), Springer, pp. 136-152.

[5] DurvAux, F., RENAULD, M., STANDAERT, F.-X., TOT
OLDENZEEL, L. v. O., AND VEYRAT-CHARVILLON, N.
Cryptanalysis of the CHES 2009/2010 Random Delay
Countermeasure. JACR Cryptology ePrint Archive 2012
(2012), 38.

[6] HERON, S. Advanced Encryption Standard (AES). Network
Security 2009, 12 (2009), 8-12.

[7] RivaIN, M., PrROUFF, E., AND DOGET, J. Higher-Order
Masking and Shuffling for Software Implementations of
Block Ciphers. In Cryptographic Hardware and Embedded
Systems-CHES 2009. Springer, 2009, pp. 171-188.

[8] STMICROELECTRONICS. UM0919 User Manual.
http://www.st.com/content/ccc/resource/technical/
document/user_manual/f3/16/fb/63/d6/3d/45/aa/
CD00267113.pdf/files/CD00267113.pdf/jcr:
content /translations/en.CD00267113.pdf.

[9] STROBEL, D., AND PAAR, C. An Efficient Method for
Eliminating Random Delays in Power Traces of Embedded
Software. In International Conference on Information
Security and Cryptology (2011), Springer, pp. 48—60.

