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Abstract

We study Fisher markets and the problem of maximizing thénasial welfare (NSW), and show
several closely related new results. In particular, weiabta

e A new integer program for the NSW maximization problem whésetional relaxation has a
bounded integrality gap. In contrast, the natural integegmm has an unbounded integrality gap.

e Animproved, and tight, factor 2 analysis of the algorithni4f in turn showing that the integrality
gap of the above relaxation is at most 2. The approximatictofashown by 7] was2e'/¢ ~ 2.89.

e Alower bound ofe!/¢ ~ 1.44 on the integrality gap of this relaxation.

e New convex programs for natural generalizations of lineéah& markets and proofs that these
markets admit rational equilibria.

These results were obtained by establishing connectidngba previously known disparate results,
and they help uncover their mathematical underpinnings.skiéav a formal connection between the
convex programs of Eisenberg and Gale and that of Shmyrewlyahat their duals are equivalent up
to a change of variables. Both programs capture equilidrimear Fisher markets. By adding suitable
constraints to Shmyrev’s program, we obtain a convex praghat captures equilibria of the spending-
restricted market model defined bg} [n the context of the NSW maximization problem. Furthediad
certain integral constraints to this program we get thegiat@rogram for the NSW mentioned above.

The basic tool we use is convex programming duality. In trecid case of convex programs with
linear constraints (but convex objectives), we show a paldily simple way of obtaining dual programs,
putting it almost at par with linear program duality. Thisngle way of finding duals has been used
subsequently for many other applications.
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1 Introduction

Recently, Cole and Gkatzelig][gave the first constant factor approximation algorithmtfa problem of
maximizing the Nash social welfare (NSW). In this problensgaof indivisible goods needs to be allocated
to agents with additive utilities, and the goal is to compmreallocation that maximizes the geometric mean
of the agents’ utilities. The natural integer program fas fhroblem is closely related to the Fisher market
model: if we relax the integrality constraint of the alldoat i.e., assume that the the goods are divisible, this
program reduces to the Eisenberg-Gale (EG) convex progidmvhose solutions correspond to market
equilibria for the linear Fisher market. Therefore, a cacarapproach for designing a NSW approximation
algorithm would be to compute a fractional allocation via G program, and then “round” it to get an
integral one. However,7] observed that this program'’s integrality gap is unbounded they were forced
to follow an unconventional approach in analyzing theiroalipm. This algorithm used an alternative
fractional allocation, thepending-restrictedSR) equilibrium, and they had to come up with an independent
upper bound of the optimal NSW in order to prove that the axipration factor is at moste!/¢ ~ 2.89.

The absence of a conventional analysis for this problemdcbel in part, to blame for the lack of
progress on important follow-up problems (e.g., see Se@joFor instance, the SR equilibrium introduces
constraints that are incompatible with the EG program,/$tdd to use a complicated algorithm for com-
puting this allocation. Generalizing such an algorithm rbaynon-trivial, and so would proving new upper
bounds for the optimal NSW. In this paper we remove this abstay uncovering the underlying structure
of the NSW problem and shedding new light on the results/pf $pecifically, we propose a new integer
program which, as we show, also computes the optimal NSWatitmn. More importantly, we prove that
the relaxation of this program computes the SR equilibriamd, quite surprisingly, we also show that the
objective of this program happens to be precisely the uppand that was used ir¥]. As a result, this
new integer program yields a convex program for computirgSR equilibrium and, unlike the standard
program, it has an integrality gap that is bounde®!39. In addition to this, we give a family of instances
showing a lower bound af!/¢ ~ 1.44 on the integrality gap, and we provide a tight analysis ofafue-
rithm of [7] to show that its approximation factor2s which also puts an upper bound2bn the integrality
gap of the new program.

Apart from the results regarding the NSW problem, we als@akinteresting connections between
seemingly disparate results, and we provide convex pragffantcomputing market equilibria in interesting
generalizations of Fisher's market model. For instancsjdes the EG program, there is another very
different convex program for the linear Fisher market, duhmyrev P2]; however, there were no known
connections between these two programs. Using our teobsigee show that one can define a dual program
for each of them, and the two duals are the same, up to a chémgeables. Furthermore, by adding suitable
constraints to Shmyrev’s program, we obtain the convexnaraghat captures the SR equilibria.

The spending-restricted market model is a generalizafidiisher's market model and has potential use
beyond its NSW application. Under this model, sellers cartadte an upper bound on the money they wish
to earn in the market (and take back their unsold good). Toyerethe total amount of money that the buyers
can spend on this seller’s good is bounded. Assume that e#lehis selling his services in the market. In
the last half century, society has seen the emergence oftéudal of very high end jobs which call for a
lot of expertise and in turn pay very large salaries. Indéselholders of such jobs do not need to work full
time to make a comfortable living and one sees numerous semblg preferring to work for shorter hours
and having a lot more time for leisure. High end dentiststatscand investors fall in this category. The
spending restricted model allows such agents to specifyiadin their earnings beyond which they do not
wish to sell their services anymore.

Another generalization of the linear Fisher model that welgtis theutility restricted (UR) model. In
this model, buyers can declare an upper bound on the amountiityf they wish to derive (and take back
the unused part of their money). This model is natural as:vielthrift, it is reasonable to assume that a



buyer would only want to buy goods that are absolutely necgsse., place an upper bound amount on
utility, and not spend all of her money right away.

Thus, in the SR model, the supply of a good is a function of theep and, in the UR model, the
amount of money a buyer spends in the market is a functionegbtices. In the presence of these additional
constraints, do equilibria exist and can they be computgzblpnomial time? We give a convex program
for the second model as well, this time by generalizing thegg@ram. Existence of equilibria for both
models follows from these convex programs. We further shaat both models admit rational equilibria,
i.e., prices and allocations are rational numbers if alapaaters specified in the instance are rational. As a
consequence, the ellipsoid algorithm will find a solutionhte convex programs in polynomial time.

For some of the results listed above, the techniques thasevane based on convex program duality. We
consider a special class of convex programs, those withesoolijective functions anlinear constraints,
and show that the duals can be constructed using a simple sefes,’ which are almost as simple as
those for linear programs. We note that convex programmirgity is usually stated in its most general
form, with convex objective functions and convex constigire.g., see the excellent references by Boyd
and Vandenberghe’] and Rockafellar 21]. At this level of generality the process of constructing ttual
of a convex program is quite tedious. Following an earliasiom of this papet, these rules have found
serveral additional applications in deriving convex peogs: for Fisher markets under spending constraint
utilities [1], Fisher markets with transaction costg, [Arrow-Debreu market with linear utilitiesLD], and
Fisher markets with reserve priced.[ They have also been used in the design of algorithms: foplsix-
like algorithms for spending constraint utilities and etfprice discrimination market4J], in analyzing
the convergence of the tatonnement procéksri designing online algorithms for scheduling P, 15], and
online algorithms for welfare maximization with productioosts [4]. Finally, they have also been used in
bounding the price of anarchy of certain gam&d.[

2 Preliminaries

Fisher's market model is the following: |ét/ be a set ofn divisible goods andV be a set of: buyers.
Each buyer comes to the market with a budget Bf and we may assume w.l.0.g. that the market has one
unit of each good. Each buyerhas a utility function,u; : R — R, giving the utility thati derives
from each bundle of goods. The utility of buyers said to beinear if there are parameterg; < R.,
specifying the value derived biyfrom one unit of good;. Her utility for the entire bundle is additive,
ie., u(x) = ZJEM vijxi;. Utility function u; is said to bequasi-linearif, agents have utility for the
money spent as well, i.eu; () = EJEM (vij — pj)i;. Utility function v; is said to beleontiefif, given
parameters;; € Ry U {0} for each goodj € M, u;(x) = minjcps xi;/a;5. Finally, u; is said to be
constant elasticity of substitution (CES) with parametef given parametersy; for each goodj € M,
1

ui(x) = <Z;—n:1 aj;ng?);. Throughout the main body of the paper we assume that thegtibre linear
unless we note otherwise.

Market equilibrium: Letp; € Ry be the price of goodg andz;; € R, denote the amount of gogd
allocated to buyei. (We usep andz to denote the vectors of all prices and allocations, resmdg) These
are said to form aequilibriumif the following conditions hold.

1. The allocation of each buyémaximizes his utility, subject to her budget constraﬁtj piTi; < B;.

The dual is obtained using the usual Lagrangian relaxatichrtique. We show a “short-cut” for applying this technique
making it especially easy to derive the dual for the speciakave consider.

2The part of the current paper about convex programming tyuzdid been made available online since 2010 as the following
unpublished manuscript: N. R. Devanur, Fisher Markets amil/€x Programs. The manuscript is now incorporated intogaper.



2. Each good that has a pricg; > 0 is allocated fully, i.e.) . z;; = 1. A good is allowed to have
pricep; = 0aslongas _, z;; < 1.

Two natural generalizations of Fisher’s model that we abersare the following. In the first model
which we callSpending-Restricte¢6R) model, each sellgrhas an upper boung on the amount of money
J wants to earn in the market. Once he eafpsselling the least amount of his good, he wants to take
back the unsold portion of his good. In other words, the arhoftimoney spent on the good of sellgrs
restricted bye;. In equilibrium, buyers spend all their money and get annegkibundle of goods. Formally,
the second equilibrium condition above is modified/oc M, . z;; < 1, and) ", pjz;; < ¢;, and either

Zi Tij = 1, or Zipjwij = ¢y, Ol’pj =0.

In the second model which we caltility-Restricted(UR) model, buyers have upper bounti®n the utility
they want to derive in the market. Once buyeterives utility d;, spending the least amount of money at
pricesp, she wants to keep the left-over money. In other words, tiigywif buyer i is restricted byd;. In
equilibrium, each good with a positive price should be fgbld. Formally, the first equilibrium condition
is modified tovi € N, u;(x) < d;, andzj pjri; < Bj, and either

x minimizes 3, p;xi; s.t.u;(x) = d;, or maximizesu;(z) s.t. 3 pjzi; < B;.

Given an equilibrium(p, =), we denote the total money spent on itg¢toy ¢;, and the money that agent
i spends on iter by b;;. Thespending graphQ(b), of a given spending vectady is a bipartite graph where
the set of agents corresponds to vertices of one side of dh@nd the set of items corresponds to vertices
of the other side. Each agents connected to the items that she spends money on, i.eg, ithan edge
between: andy if and only if b;; > 0. Note that each agent only spends money on the set of her maxim
“bang per buck” items, i.e., the set of items that maximizgp;. Therefore, by assuming some unique tie
breaking rule among goods we can rearrange the spendingtoeethat the spending graph is a forest of
trees. Throughout this paper we assume that the spendiph gralways a forest of trees.

Nash Sacial Welfare:  Given a sefM of m indivisible items and a seY of n agents, aintegral allocation
of items to agents restricts the allocatioy) to lie in the set{0, 1}. TheNash social welfargNSW) (also
known as Bernoulli-Nash social welfare) of an integral editton x is defined as the geometric mean of
the agents utilities, i.e([[;cx ug(x))/" [17, 20]. The NSW maximization problem is to find an integral
allocation that maximizes the NSW. (We may assume w.l.dxgt+t < m for this problem.) Cole and
Gkatzelis [] considered this problem when agents have linear utilitesl gave &¢!/¢ ~ 2.89 factor
approximation for it. We now state the upper bound on thenmutn value that is used in their result.
Consider an SR market with the same items and agents arikstiSuppose the items are divisible and
have spending restriction of 1 on all items, i¥j,c M, ¢; = 1. Letz andp be an equilibrium allocation
and price vector of the market. Note that multiplying all thhe values of a given agentby the same
positive number does not change the optimal solution or ppecximation factor for the problem. In an
equilibrium allocation all goods allocated to an agent niaste the same “bang per buck” ratig /p; (as
was shown inT]). We can therefore normalize each agent’s valuations &wth = p; if z;; > 0, without
loss of generality. We henceforth assume that the valustios normalized this way in every NSW problem
instance. Given such a scaling, we define the following dtyamhich was used inq] as an upper bound
on the optimal NSW value.

A\ 1/n
SR-UB := (HjeM:ﬁjZij) .

We now state the following lemma that is proved Gy [

Lemma 1 ([7]). Forlinear utilities, max,, co01} (IT;en ui(az))l/n < SR-UB.



3 Convex programming duality

3.1 Fenchel Conjugate

We now define thé-enchel conjugat®f a function, and note some of its properties; see Rocleaf§lll]

for a detailed treatment. This will be the key ingredient xteading the simple set of rules for LP duality
to convex programs. Suppose thfat R™ — R is a function. The conjugate ¢fis f* : R® — R and is
defined asf*(p) := sup, {u” = — f(x)}. Although the conjugate is defined for any functipnfor the rest
of the article we will assume that is strictly convex and differentiablesince this is the case that is most
interesting to the applications we discuss.

Properties of f*: We note some useful properties here. See Appeadir more properties.

e If y andx are such thaf (z) + f*(u) = p'z thenVf(z) = pandVf*(u) = z.
e Vice versa, itV f(z) = pthenV f*(u) = z and f(z) + f*(u) = p’ z.

We say tha{z, 1) form a complementary pair w.r.f.if they satisfy either one of these two conditions.

3.2 Convex programswith linear constraints

Suppose that we have a convex program with a convex/condgeetive function and linear constraints.
We can derive another convex program that isdbal of this, using Lagrangian duality. This is usually a
long calculation. The goal of this section is to identify aghut for the same.

Lemma 2. The following pairs of convex programs are duals of eachmthee, the optimum of the primal
is at most the optimum of the dual (weak duality). If the pfimanfeasible, then the dual is unbounded
(and vice versa).

Dual: min}>;b;A; + f*(u) s.t.
VZ,ZCLZ)\ = C; — My,
Vi, >, air < by, ;j])\7>0
sy N\g = U

If the primal constraints are strictly feasible, i.e., teegxistst such that for allj . a;;2; < bj;, then the
two optima are the same (strong duality) and the followingegalized complementary slackness conditions
characterize them:

Primal: max ), c;z; — f(x) S.t.

o xi>O:>Zjaij/\j:ci—,ui, /\j>0:>2iaijxi:Biand
e x andy form a complementary pair wit, i.e.,u = Vf(z),z = Vf*(u) and f(z) + f*(n) = p’ .

The proofs of all lemmas in this section are in AppenélibXNote the similarity to LP duality. When an
LP is infeasible the dual becomes unbounded. The same hapgénthese convex programs as well. The
differences are as follows. Suppose the concave part ofrihapobjective is— f(x). There is an extra
variabley; for every variabler; that occurs inf. In the constraint corresponding g, the term—pu; appears
on the RHS along with the constant term. Finally the dualabje hasf* (1) in addition to the linear terms.
In other words, weelax the constraint corresponding 1¢ by allowing a slack of:;, andcharge f*(u) to
the objective function.

Similarly, the primal program with non-negativity constits on variables and the corresponding dual
program take the following form.



Primal: max ), ¢;z; — f(z) s.t. Dual: min}_; b;A; + f*(u) s.t.

V4, > aigzi < by, Vi, > aijAj > ¢ — i
Vi, z; > 0. Y j, A\ > 0.
The dual of a minimization program has the following form.
Primal: min ), ¢;z; + f(z) s.t. Dual: max _, bjA; — f*(u) s.t.
V4> aijmi > by, Vi, 325 aijA; < ¢+ i,
V’i,l’izo. Vj,AjZO.

4 Convex programsfor Fisher markets

We now use the technology developed in the previous seabighaow a formal connection between the
Eisenberg-Gale and Shmyrev convex programs, both of whietkaown to capture equilibria of linear
Fisher markets as their optima. As a first step we constreaiitial of the Eisenberg-Gale convex program.

Lemma 3. The following pairs of convex programs are duals of each otfiée dual variableg; of an

optimal solution are equilibrium prices of the correspamgliinear Fisher market.
EG Program: max ) ; B; log u; S.t. min Y. p; — >, Bilog(Bi) s.t. (1)
Vi,ui S Zjvijw,-j, Vi,j,pj Z'Uz'jﬁi'

In fact, we can even eliminate th’s by observing that in an optimal solutioft; = min; {p; /v;;}.
This gives a convex (but not strictly convex) function of ghés that is minimized at equilibrium. Note that
this is an unconstrainédninimization. The function i$~; p; — 3=, B; log(min; {p; /vi;}). An interesting
property of this function is that the (sub)gradient of thisid¢tion at any price vector corresponds to the
(set of) excess supply of the market with the given priceorecthis implies that a tattonement style price
update, where the price is increased if the excess supplggatwve and is decreased if it is positive, is
actually equivalent to gradient descent. This fact was tgethalyze the convergence of the tatonnement
process inf]. A convex program that is very similar td)was also discovered independently by Gdrg.[
However it is not clear how they arrived at it, or if they realithat this is the dual of the Eisenberg-Gale
convex program. Going back to Convex Progrdt)) (ve write an equivalent program by taking tlegs in
each of the constraints.

min Zj pj — >_; Bilog(5;) s.t
Vi,j,logp; > logv;; + log f;.

Replacingg; = log p; and~y; = —log 3; as the variables, we get the following convex prograijn &nd its
dual CP).

3Although with some analysis, one can derive that the optiraahation satisfies that; > 0, andzj pj = >, Bi, the program
itself has no constraints.



Lemma 4. The following convex programs are duals of each other.

min Zj el 4+, Bivist.  (2) max Z” bij log vi; — Zj (pjlogp; —pj)st.  (CP)
Vi, j, v + q; > logvgj. Y 4, > bij = pjs
A i, Zj bij = BZ',
Vi, 7,05 > 0.

By abuse of notation, we ugg for the variables inCP) since it turns out that these once again corre-
spond to equilibrium prices. We can remove the; at the end of the objective irCE) since the constraints
imply that Zj pj = >, Bi, which is a constant. On removing these terms, we get theesoprogram of
Shmyrev P2]. Thus CP) and EG convex programs have the same dual, modulo a changealfles!

Quas-linear utilities: For some markets, it is not clear how to generalize the EegpBale convex
program, but the dual generalizes easily, and the optiynadibditions can be easily seen to be equivalent to
equilibrium conditions. We now show an example of this. Rebat a buyeri has a quasi-linear utility if it

is of the form}_ . (vi; — p;)z;;. In particular, if all the prices are such that > v;;, then the buyer prefers
to not be allocated any good and go back with his budget uhsjiéneasy to see that the following convex
program B8) captures equilibrium prices for such utilities. In fadien this convex program, one could take
its dual to get an EG-type convex program as well. Althoughitha small modification of the EG program,
it is not clear how one would arrive at this directly withowtiigg through the dual.

Lemma 5. The following pairs of convex programs are duals of eachm#ed capture the equilibria of
Fisher markets with quasi-linear utilities as their optima

min Y2, p; — 3, Bilog(8) s.t. (3) max y . B;logu; — v; S.t.
Vi, up < 305 vijTig + v,

Viaj7 Tij, Ui > 0.

VZJ,%p] > Uijﬁia

Summary and Extensions. In this section we showed two applications of the convex pagning du-
ality in Section3, the relation between the EG and Shmyrev convex prograntsaamonvex program for
Quasi-linear utilities. We mention other applications lubttool in the introduction, some of which are in
AppendixA. We give a convex program that captures SR equilibrium, &undl/sexistence, uniqueness and
rationality of equilibrium in Appendix3. Further, the same analysis can be extended to what arel calle
spending constraint utilities (Append®). We do the same (convex programs, existence, unigueness an
rationality) for UR markets with linear, Leontief and CEdities in AppendixD. The convex program for
the SR model is closely related to NSW maximization, as wedistuss in the next section.

5 A new program for the Nash social welfare problem

In this section we focus on the APX-hard problem of maxindzihe NSW with indivisible items7, 19].
When the agents have linear valuations, this problem hatusahaepresentation as a convex program (see
program on the left below). In this program, there is a vdeial; for each agent and item; and its value

is either 0 or 1, depending on whether the agent is allocéedem or not. An appealing property of this



program is that, if we relax the constraint thgy < {0,1}, then the program reduces to the Eisenberg-
Gale prograrh, which can be solved in polynomial time. This opens the wayafstandard approach for
designing an approximation algorithm: compute the fraci@llocation using the EG program and then use
a rounding algorithm to get a good integral allocation. UWnfoately, as was shown ifT]| the integrality
gap of this program is unbounded, so this approach is doomfzdl .t

Facing the unbounded integrality gap obstacigtdke a non-standard approach in designing an approx-
imation algorithm. Motivated by the market equilibriumenpretation of the EG program, they propose the
spending-restricted equilibrium, and they then indepatigerove an upper bound for the optimal NSW
value (which we callsr-uB, see Lemmad.). They then “round” the fractional allocation implied byeth
SR equilibrium, and compare the NSW of the rounded solutioerR-UB. In this section, we propose a
new integer program, which we refer to as #pending-restrictedSR) program (see program on the right
belowy, and show the following results.

e The optimal solution of th&R program corresponds to the NSW maximizing integral aliocatand
the optimal objective function value of this program is ddaahe optimal NSW value.

e The fractional relaxation of this program computes the Silibgium.
e The objective value of the fractional relaxation is equahi® upper boundr-uB.

e This relaxation therefore has an integrality gap of at mieste ~ 2.89. We also show a lower bound
of e!/¢ ~ 1.44 on this integrality gap.

max ([, w)"/™ s.t. max (%)Un st.  (SR)
Vi, u; = Zj TijVij Vi, JZ;Z_ bi; = 4

Vi, 2w =1 Vi, Y by =1
Vi, g, x5 € {0,1}. Vi, j, q; <1,b; € {O,Qj}

Unlike the standard program for the NSW problem, #iéprogram uses variables andb;; € {0, ¢;}.
Any solution to this program, corresponds to an allocatibmdivisible items to agents. In particular, an
agent; is allocated an itemi if and only if b;; = qj.G If we relax the constraint that; € {0, ¢;} and apply
a logarithmic transformation of the objective function, ge&t a convex program, which we can compute in
polynomial time. We call this relaxation the f-SR progranotélthat the spending constraipt (< 1) is not
binding in the SR program, but this is not true for f-SR.

The following lemma shows that the two programs above dadh fompute the same allocation.

Lemma 6. The optimal solution of thERprogram corresponds to the NSW maximizing allocation af ind
visible items to agents. The objective function value afsgbiution is equal to the optimal NSW value.

Proof. Suppose that we fix the integral choices, i.e., for ezahdj we fix whethe;; = 0 orb;; = ¢;. For
all j, due to the constraint that , b;; = ¢;, there can only be onesuch thab;; = ¢;. Hence determining the
integral choices is equivalent to determining an integlatation. LetS; denote the set of items allocated

to 7 in this integral allocation. We show that given these indéghoices, setting;; = #SJW makes the
€5; 7t

“To verify this fact, apply a logarithmic transformation tetobjective.

*The SR program is not, strictly speaking, presented as an integgram, but we could introduce a new variablefor each
item j and replace the constraity; € {0, ¢;} with the constraint$;; = a;;¢; anda;; € {0, 1} to make it an integer program.

®Note that we can assunvg, g; > 0 in an equilibrium w.l.0.g. becausef = 0 then the equilibrium conditions imply the
value of itemyj is zero for all agents.



objective function equal to the NSW of the allocation, and thindeed the optimal (objective maximizing)
choice of these variables. The first part follows from thigusnce of equalities.

o\ 1/n b\ 1/n
I, I, v;? by \ /7 1n
< I1; :ljjj > N <1_[Z HjESi ﬁ) - <HZ HjESi (zk’esi Uik) J) = (Hz Zk’ESi ,Uik) /

For the rest of the proof, we work with tHeg transformation of the objective. Given the integral
choices, thesR program decomposes into a sum of separate mathematicabprsgone for each buyer

max Zjési (bij IOg Vij — bij log b”) S.t.

Vi, Y ics, bij = 1,and Vi, j € S;, bi; > 0.

This is the same as minimizing the relative entropy, or Kedgence, between two probability distributions,
where theb;;s form one probability distribution, and the other disttibn is given by<——= —. By Gibbs’

Lj
Zkesi Ui
inequality, it is known that this is minimized when the twatiiibutions are the same, i.e., whef =

Zk”;f e (We give an alternate proof of Gibbs’ inequality using aaxyprogram duality in AppendiR.)
€s; ik
O

5.1 Relaxation of the SR program

In designing their approximation algorithm for the NSW desb in [7], they used, as an intermediate step,
a fractional allocation, which was the equilibrium of a sgieig-restricted market with; = 1 for all 5. If
the price of an iteny is p;, then this constraint could be expressedasr;;p; < 1. But, they could not
introduce this constraint into the EG program, since it cored both the primal variables;; and the dual
variablep;. In the absence of a program that could compute this fraaktisolution, they instead had to
propose a complicated market equilibrium computationritlgm. Lemmar shows that in th&R program,
once we drop the constraint thigt € {0, ¢;}, the relaxed program, f-SR, computes the SR equilibrium.
Unlike the EG program, the constraint that the total spemdim any given item is at modtinvolves only
the primal variableg;. If we also apply a logarithmic transformation to the ohijeefunction, then we get
the convex programdP) of Section4, with the additional constraint that < 1. As a result, we provide a
simple convex program that can compute the SR equilibriune groof of the following lemma essentially
shows that the complementary slackness conditions argaeni to market equilibrium conditions.

Lemma7. The f-SR program computes the SR equilibrium. The varidghjespture the amount of money
spent by buyei on goodj, and the variableg; capture the total spending on gogdThe pricegp; can be
recovered from the optimal dual variables.

Existence and uniqueness of the SR equilibrium: We study existence and uniqueness of the SR equilib-
rium in AppendixB. We show an SR equilibrium exists if and onIij ¢; > >, Bi. On the uniqueness
side, we show that the spending veajot (q1, ..., gm), Whereg; is the money spent on gogdis unique.
Although in the Fisher model we have the uniqueness of paecdibrium, it is easy to see that this is not
true for the SR equilibrium. Consider a market with only ongér with utility functionu(xz) = x; and one
seller. LetB; = 1 andc; = 1. Itis easy to see every price bigger than 1 is an SR equilibpuce.

Relation to sR-UB:  Quite surprisingly, we also show that the optimal objectigkie of the f-SR program
is the same, up to scaling of the valuations, as the upperdoasied by 7], which we calledsr-uUB.

Lemma 8. The optimal value of the f-SR program is equastouB.



Proof. Let b;; andg; be an optimum solution to the f-SR program, ahdndp be equilibrium allocation
and price vectors resp. From Lemmgthe relation between these is thgt = p;7;; andg; = min{1, p;}.
Recall that, from the definition ;§rR-UB, we normalize each agent’s valuations so that= p; if z;; > 0.
With this scaling of the valuations, the objective functifrthe f-SR program becomes

o\ =i\ " 7\ " Ln
)~ ) o (Wen) T = ([an)
J

Jj1j J 1

where in the last equality, we used the fact that= g; if p; < 1 andg; = 1 otherwise. O

The SR program integrality gap: Given Lemmas, 7, and8, a lower bound on the integrality gap of the
SR program also implies a lower bound on the best approximdéotor that one can show by rounding a
solution to f-SR, and comparing the objective obtainedreus. The next lemma provides such a lower
bound for the integrality gap.

Lemma 9. The integrality gap of the program above is at leaSf ~ 1.44.

Proof. Consider an instance with bidders andn = (1 + f)n items, wheref € (0, 1) is a constant. Each
agent; has a value of O for the first items, except iten, for which his value ig1 — f). The value of every
agent for items + 1 to m, hence referred to as the “valuable” items, is equdl'tavhich is much higher
than 1. In the SR equilibrium for this instance, the pricebloa (1 — f) for the firstn items andV for the
rest. Each agentwill be spending(1 — f) of his budget on item and the remaining budget gfon the
valuable items.

The objective value for this fractional solution would tbfere be equal t& . On the other hand, any
integral allocation would have to assign each one of thealdé@items to a distinct agent, so the optimal
NSW would be(1 — f)'=/ . (1 — f + V)/. If we let V go to infinity, this leads to an integrality gap of

. v/ = 1
limy oo ((1_f)1—f.(1_f+\/)f) - a=-pnH7

which, for f = (e — 1) /e, yields the desired!/¢ integrality gap. O

6 A Tight Analysis of the Spending-Restricted Rounding Algorithm

Using the SR equilibrium as a starting point] proposed the a rounding algorithm called ®Bpending-
Restricted Roundin(SRR) algorithm. UsingRr-UB as an upper bound, they showed that the approximation
factor of this algorithm is at moe!/¢ ~ 2.89. The first step of the SRR algorithm is to compute the SR
equilibrium which, in light of the previous section’s rejlwe can now do using the f-SR convex program.
Then, for each tree of the spending gra&pfb), it chooses an arbitrary agent as the root and assignsral ite
that are either leaves or haye < 1/2 to their parent-agent. The remaining items are matched ¢atag
using the matching with the optimal NSW value, given the jmes assignments. This matching can be
computed in polynomial using a maximum weight matching atgm andlog v;; as weights instead af;;
(see [7] for more details). The (full) proofs of this section are eleéd to AppendiE.

Using a careful analysis, we now show that the approximdtator of the SRR algorithm is, in fact,
better thar2.89 by proving an upper bound of 2. We conclude this section witiaéching lower bound.

Theorem 1. The approximation factor of the SRR algorithm is at most 2.

"To be precise, to make sure thatis an integer,f»n would also have to be an integer. Therefore, we as we kst arbitrarily
large, f can take values arbitrarily close e — 1) /e while fn remains an integer.



Algorithm 1: Spending-Restricted Rounding (SRR).[

1 Compute a spending-restricted equilibrigmg).

2 Choose a root-agent for each tree in the spending giEph

3 Assign any leaf-item in the trees to its parent-agent.

4 Assign any itery with ¢; < 1/2 to its parent-agent.

5 Compute the optimal matching of the remaining items to adjhagents.

Proof Sketch.For each iteny that has more than one child-agent in the spending géxph, remove the
edges connecting it to all but the one child-agent that spéinel most money o, i.e., the one with the
largestb;; value. This yields a pruned spending graB(b) that is also a forest of trees. We refer to the
trees of the pruned graph(b) as thematching-trees In every matching-tre§” with £ > 2 agents, when
the algorithm reaches its last step, every remaining itesnetxactly one parent-agent and one child-agent,
so all but one agent can be matched to one of these items. Guirgitows that there exists a matching of
the remaining items such that the agents withiihave a “high” NSW.

A naive way to match the agents in the last step of the algorittould be to match all of them, except
the one that has accrued the highest value during the pregieps. It was already observed i} fhat,
for any matching-tred” of k agents, there exists an agent who was assigned value at 2k} during
Steps 3 and 4 of the algorithm, so we could match every agéntéxcept him. But, what is the worst case
distribution of value that can arise in this matching? Wensktwat the worst case arises for matching-trees
that contain a single agent and no items wifh> 1/2. But, even in this case, such an agent got all the items
that he was spending on in the SR equilibrium, except oneharabuld not be spending more than half of
his budget on the one he lost. To verify this fact, note thagitieer lost this item because the total money
spent on the item was less than half, igg.< 1/2, and it was assigned to its parent at Step 4, or because the
edge connecting him to this item was pruned in the transftiom Q) (b) to P(b). But, in both of these cases,
he could not be spending more thif2 on that item, so he got at least half of his SR equilibrium galu

The more demanding part of the proof is to show that the wase @rises for matching-trees of size
1. In contrast to the analysis of]} we use the vital observation that, if the agent of some hiagetreeT
who does not get matched to an item has valuehen every other agentc 7" gets value at most;; + v,
wherej is the item that he was matched to in the last step. Le@nees this fact to prove that in the worst

case distribution of value, at IeaF%ﬁzJ agents get value greater than, or equalltoJn other words,

this new lemma shows that, if the unmatched agent were te ladot of value on the table, then this value
would not end up with just a few agents but, rather, it wouldehta be well distributed among the remaining
agents. Building further on this observation, Lemagshows that, for any matching-trdewith k£ agents,
the allocationz” induced by the naive matching algorithm satisfies

HieTUi(ml) 2 Q%HjET:ijIPj‘

Since the allocation that the SRR algorithm outputs is at least as good as the atie lnaive matching,
we can combine this inequality with tlsR-uB upper bound to get the desired approximation factor bound:

n 1/n 1/n
(L wi@)Y™ = ([T [liepvi(@) ™ > 4 (Hj:pjzl pﬂ') '
Lemma 10. The approximation factor of the SRR algorithm is exa2tly
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7 Discussion

Regarding additional Fisher market extensions, an obvipgs question is to obtain a convex program for
the common generalization of the spending-restricted aititywestricted markets, in which buyers have
utility bounds and sellers have earning bounds, for the cbleear utilities.

Regarding the NSW problem, we have addressed the symmes& af NSW, which assumes that
all agents have equal budget (or clout). While introducimg Wash bargaining problen@(], Nash only
considered the symmetric case but, soon after that, Kadgigsed the non-symmetric case as well, which

is also well-studied. Hence a natrual open problem is toimlaaonstant factor approximation algorithm

. o L - \1/B
for the non-symmetric case of NSW. The objective in this galmetion is to maX|m|ze( Zuf)

where B; is the budget of agentand B = ), B;. Another important generalization of NSW would be
to consider utilities that are subadditive instead of adelit In particular, the case of submodular utilities
would definitely deserve more attention.

)
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A Convex Programming Duality
Propertiesof f*: We note some useful properties ff here.
e f*is strictly convex and differentiable. (evenfifis not strictly convex and differentiable)

e f** = f. (using the assumption thdtis strictly convex and differentiable)

If f is separable, that if(x) = 37, fi(x:), thenf*(s) = 3, f7 (1s).

e If g(x) = cf(x) for some constant, theng* (1) = cf*(u/c).
o If g(x) = f(cx) for some constant, theng*(u) = f*(u/c).
e If g(x) = f(x + a) for some constant, theng* (1) = f*(u) — p*a.

e If yandz are such thaf (z) + f*(u) = p’ 'z thenVf(z) = pandV f*(u) = .

e Vice versa, ifV f(x) = uthenV £*(u) = z and f(x) + f*(u) = p’ =.

Conjugates of some simple strictly convex and differentiable functions
o If f(z) = 322 thenV f(z) = z. Lettingp = z in pTz — f(z), leads tof* (1) = $42.
o If f(z) = —log(z), thenV f(z) = =L. Sety = =L to getf*(u) = —1 + log(z) = —1 — log(—p).

o If f(x) = zlogx, thenVf(z) = logz +1 = p. Sox = 'L, f*(u) = px — f(z) = z(logz +
1) —xlogx = x = e#~ 1. Thatis, f*(u) = e#~ L.

Lemma 2. The following pairs of convex programs are duals of eachmthee, the optimum of the primal
is at most the optimum of the dual (weak duality). If the pfimanfeasible, then the dual is unbounded
(and vice versa).

Dual: min}>;b;A; + f*(u) s.t.
VZ,ZCLZ)\ = C; — My,
V5, > aijzi < by, ;j])\7>0
s N = U

If the primal constraints are strictly feasible, i.e., teegxistst such that for allj . a;;2; < bj;, then the
two optima are the same (strong duality) and the followingegalized complementary slackness conditions
characterize them:

Primal: max ), c;z; — f(x) S.t.

o xi>O:>Zjaij/\j:ci—,ui, /\j>0:>2iaijazi:Biand
e x andy form a complementary pair wit, i.e.,u = Vf(z),z = Vf*(u) and f(z) + f*(p) = p’ .

Proof. Suppose first that the set of linear constraints is itsedfanible, that is, there is no solution to the set
of inequalities
vjazaijfﬂi < b;. (4)
7

Then by Farkas’ lemma, we know that there exists numbgrs 0 for all j such that

Vi,Zaij)\j = O,andz )\jbj < 0.
J J
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Now consider the dual solution with theses andy; = ¢;. This is feasible, and the dual objective is
f*(e) + Zj Ajb;. By multiplying all the \;s by a large positive number, the dual objective can be made
arbitrarily small (goes te-00).

Now suppose that the feasible region defined by the inetslit) and the domain off defined as
dom(f) = {x : f(z) < oo} are disjoint. Further assume for now thfdtc) < oo and that there is a strict
separation between the two, meaning that forreftasible and; € dom(f), d(x,y) > e for somee > 0.
Then once again by Farkas’ lemma we have that there &xist 0 for all 7 andé > 0 such that

Vy € dom(f), Z @ijAjyi > Z Ajbj(1+9).
2% J

This implies that the dual objective is f*(c) — 52]. Ajb;, and as before, by multiplying all the; by a
large positive number can be made arbitrarily small.
Now we may assume that the primal is feasible. Define the lnggma function

L(l’, )\) = Z CiT; — f(:L') + Z /\j(bj — Z aija:i).

We say thatr is feasible if it satisfies all the constraints of the primadigem. Note that for al\ > 0 and
x feasible,L(z,\) > >, ¢;z; — f(x). Define the dual function

g(A) = max L(z, \).

T

So for all\, z, g(A\) > L(x, ). Thusminy>o g()) is an upper bound on the optimum value for the primal
program. The dual program is essentialyny>o g(A). We further simplify it as follows. Letting:; =
ci — )_; ai;Aj, We can rewrite the expression féras

( J

Now note thaig(A\) = max, L(z,\) = max,{>_; pixi — f(z)} +3°;b;A; = f*(n) + 3, b;A;. Thus we
get the dual optimization problem:
min ), bjA; + f*(u) s.t.

Vi, >, aigAj = ¢ — pui,
¥ > 0.
O

Lemma 3. The following pairs of convex programs are duals of each otfiée dual variableg; of an

optimal solution are equilibrium prices of the correspamgliinear Fisher market.
EG Program: max ) ; B; log u; S.t. min Zj p; — »_; Bilog(B;) s.t. (1)
Vi, ug < 30505, Vi, j,pj = vijBi-
l’ij 2 0.
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Proof. We let the dual variable corresponding to the constrajnt Zj u;jz;; be B; and the dual variable
corresponding to the constraint, z;; < 1 bep;. We also need a variablg that corresponds to the variable
u; in the primal program since it appears in the objective inftme of a concave functiony; log u;. We
now calculate the conjugate of this function. Recall thgt(if) = — log = thenf*(u) = —1—log(—p), and

if g(x) = cf(x) theng*(u) = cf*(u/c). Therefore ifg(x) = —clog x theng*(u) = —c¢ — clog(—p/c) =
clogc — ¢ — clog(—u). In the dual objective, we can ignore the constant terhsgy c — c¢. We are now
ready to write down the dual program which is as follows.

min ), pj — >, m;log(—u;) s.t.

v i, ﬁl = — ;.
We can easily eliminatg,; from the above to get the program as stated in the lemma. O
Lemma 4. The following convex programs are duals of each other.
min} ;€% + 3, Biyist. (2) max ;5 bijlogvi; — 3 ;(pjlogp; —pj) st (CP)
Vi, j, v + q; > log vgj. Y 4, > bij = pjs
\V/ i, Zj bij = BZ',
Vi,j,bi; > 0.

Proof. We construct the dual oR] as outlined in the Sectiod Again, we need to calculate the conjugate
of the convex function that appears in the objective, nara&lyWe could calculate it from scratch, or derive
it from the ones we have already calculated. Recall that(if) = e*~!, then f*(u) = plogu, and if
g(x) = f(z + a) theng*(u) = f*(n) — p"a. Thusifg(z) = e* = f(z + 1) theng*(n) = f*(u) — p =
plog p — p. The dual variable corresponding to the constraint- ¢; > log u;; is b;; and the dual variable
corresponding te? is p;. The structure of the dual program now follows from Lemina O

A.1l Extensions

The Eisenberg-Gale convex program can be generalized toreahe equilibrium of many other markets,
such as markets with Leontief utilities, or network flow metsk In fact, 6] identify a whole class of such
markets whose equilibrium is captured by convex programmslai to that of Eisenberg and Gale (called
EG markets We can take the dual of all such programs to get correspgrgineralizations for the convex
program (). For instance, a Leontief utility is of the forf}; = min; {x;;/¢;;} for some given values;;.
The Eisenberg-Gale-type convex program for Fisher markigtsleontief utilities is as follows, along with
its dual (after some simplification as before).

Primal: max ), m;logu; S.t.
Vi, 5w < 20 /i, Dual: min ), p;—>_; m; log(53;) s.t.
Vi i <1, Vi, > ijpi = Bi.

In general for an EG-type convex program, the dual has thectibg functionzj pj — >, milog(B;)
where 3; is the minimum cost buyet has to pay in order to get one unit of utility. For instance, tfee
network flow market, where the goods are edge capacities étveonk and the buyers are source-sink pairs
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looking to maximize the flow routed through the network, thigms the cost of the cheapest path between
the source and the sink given the prices on the edges.

However, for some markets, it is not clear how to generalimeHisenberg-Gale convex program, but
the dual generalizes easily. In each of the cases, the djtimanditions can be easily seen to be equivalent
to equilibrium conditions. We now show some examples of this

Quasi-linear utilities

Suppose the utility of buyeris Zj(uij — pj)xij. In particular, if all the prices are such that > w;;, then
the buyer prefers to not be allocated any good and go backhigtbudget unspent. It is easy to see that
the following convex program captures the equilibrium @si¢or such utilities. In fact, given this convex
program, one could take its dual to get an EG-type convexraro@s well.

) Dual: max ), m;logu; — v; S.t.
Primal: min } 3, p;—>; m;log(8;) s.t.

(5) Vi, u; < Zj Ui jTij + Vi,
Via .7 ) 2 Ugj 5, .
Jp; 2 wigh Vi, iz <1,
Vi, B; < 1.
P xij,v; = 0.

Although this is a small modification of the Eisenberg-Gabavex program, it is not clear how one
would arrive at this directly without going through the dual
Transaction costs

Suppose that we are given, for every pair, buyand goodj, a transaction cost;; that the buyer has to
pay per unit of the good in addition to the price of the good.uSkhe total money spent by buyérs
> j(pj + ¢;j)x;;. Chakraborty et al.g] show that the following convex program captures the elopiilim
prices for such markets.

min zj pj — >, milog(B;) s.t. (6)
Vl,j,pj + Cij > ’Uijﬁiv

Alternate proof of Gibbs' inequality
Consider the following convex program.
max ZjESi (bU log Vij — bij log bzg) s.t.

>jes; bij =1,
bij >0 VjeS,.
Using the duality techniques developed in this paper, weewiie following dual of this program.

mina; + g, etii1st.

VieS;,a; > logvij — s
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Suppose that we fix the value @f. Given this, we want to set;; to be as small as possible s.t. the constraint
a; > log v;j — ;5 is satisfied, which gives ys; = log v;; —a;. Thenet ~1 = v;;e=17%, and the objective
can be written as a function of;, as

o; + Z ’Ul'je_l_ai.

JES;
This can be minimized by setting the derivative to zero, Wigiwves

1= Y e —0

JES;

o et = Z vij & o+ 1= log(z Vij)-
JES; JES;
The minimum value of the objective is then + 1 = IOg(szSi v;;), Which is also obtained in the primal
by settingb;; =

Vij

ZkESZ’ Vik

B Convex Program, Existence and Uniqueness for the SR equilibrium

In this section, we give the proof of LemnYa that the f-SR program captures the SR equilibrium. We
then study the existence and the uniqueness of the SR emuililand we show a necessary and sufficient
condition for its existence. On the uniqueness side, we ghaivthe spending vectaer = (q1,...,qm),
whereg; is the money spent on gogdis unique. Although in the Fisher model we have the unigsemé
price equilibrium, it is easy to see that this is not true foe SR equilibrium. Consider a market with only
one buyer with utility functionu(z) = z; and one seller. LeB; = 1 andc; = 1. Itis easy to see that every
price bigger than 1 is an SR equilibrium price.

We first state the f-SR program, with a log transformationhaf tbjective function, and generalized
for arbitrary spending limits for each good, as in the dabinitof the general SR equilibrium model. This
convex program is a natural extension of progr@ presented in Sectiod, with an additional set of
constraints for sellers having earning limits:

max ), bijlogvi; — > (gjlog q; — ;) st. (f-SR)
Vi 22 bij = 45, ()

Vi, bij = Bi, (8)

Vi, 4 < ¢, ©)

Vi, j, by > 0. (10)

Hereb;; is the amount of money buyéispends on good, andg; is the total amount of spending on good
j. Constrain®9 makes sure that the spending on ggatbes not exceed the earning limit of seljer

Lemma7. The f-SR program computes the SR equilibrium. The varidgbjespture the amount of money
spent by buyei on goodj, and the variableg; capture the total spending on gogdThe pricep; can be
recovered from the optimal dual variables.
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Proof. Let \;, u;,n; be the dual variables corresponding to the first three cainsérof the SR program. By
the KKT conditions, optimal solutions must satisfy the daling:

1.VieB,jeA: loguvij—Aj—n; <0
2.VieB,jeA: bjj>0=logvij —A\j—1; =0
3.VjeA: —loggi+Aj—pj=0

4.VjcA: p; >0

5.VjeA: /Lj>02>q]':Cj

From the first 3 conditions, we hawg € B,j € A : qj”;’{;j < e and ifb;; > 0 then qj”;’{;j = ¢,
Let p; = g;ets. We will show thatp is an equilibrium price with spending From the above observation,
it is easy to see that each buyeonly spends money on his maximum bang-per-buck (MBB) godds a
price p, i.e., goods that give her maximum utility per unit moneyrgpeWe also have to check that an
optimal solution given by the convex program satisfies thekataclearing conditions. The constraint that
Zj b;; = 1 guarantees that each buyenust spend all his money. Therefore, we only have to showthieat
amount selley earns is the minimum between andc;. If ¢; = ¢; andg; < g;et7 = p;. If ¢; < ¢; then
p; = 0andp; = g; < ¢j. Thus, in both caseg,; = min(p;, c;) as desired. O

Lemma 11. An SR equilibrium price exists if and only)f ; ¢; > >, B;.

Proof. An equilibrium price exists if and only if the feasible regiof the f-SR convex program is not
empty. We first prove that for the case of linear utility fuoot the program is feasible if and only if
2.6 = > Bio If 30, ¢; < 32, B; then the feasible region is empty because the set of comstiaio

and8 can not be satisfied together. 3, c; > >, B; theny;; = % gives a feasible solution because
>iBi _ 2256 _
Zi Yij = Cj Zj py < Cj andzj Yij = BZ—Z; c; = Bi- ]

Lemma 12. The spending vectarof the SR equilibrium is unique.

Proof. Consider two distinct price equilibria andp’, their corresponding spending vectgraind ¢’ and
their corresponding demand vectarsand 2. Note thatp; > pi = ¢; > ¢} becausey; = z;p; =
min(1, ;—;)pj > min(1, ;—z)pg = qg-. Consider price vectar = (rq,...,y) whereVk, ry = max(pg, p}.),
its corresponding spending vectgrand its corresponding demand vectofs Note that by changing prices
from p to » we may only increasing the prices. Therefore, it is easy ¢ouseler linear utility functions the
demand of goodi going from pricesp to » would not decrease 'yﬁ;- < p; = r;. Therefore, we have
q; = xirj = 2p; > x;p; = ¢; > ¢;. We can do the same for giland showvj, g; = max(q;,q;). For
the sake of a contradiction suppasg ¢; > qg. then using the later it is easy to sh@j q > Zj qj =
> y qg- = ), B; which is contradiction because the money spent on goodsotdenmore than the total
budget. Thereforeyj , ¢; = q} and the lemma follows. O

B.1 Rationality of the SR equilibrium

In this section, we prove rationality results for the spegdiestricted outcome. Specifically, we show that
for those market models, a rational equilibrium exists ifeguilibrium exists and all the parameters are
rational numbers.

Lemma 13. In spending-restricted market model under linear utiliipétions, a rational equilibrium exists
if >, c; > >, B; and all the parameters specified are rational numbers.
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Proof. Let A; be the set of goods that buyespends money o4 be the family ofA;’s, andL be the set of
sellers reaching their earning limits. An equilibrium @ijg the corresponding spendihgnd inverse MBB
valueq, if existed, must be a point inside the polyhedi®(A4, L) bounded by the following constraints:

Vie N,Vj € A; Vij Qi = Pj
VjeM vijoy < pj
Vie N,Vj & A, b”:O

Vi € N, ZbU:Bl

J
VjeL Zbijzcj Dj = Cj
VigL > by=p; pi<g

Vie NjeM bijZO
If an equilibrium price exists, ther and L such thatP(.A, L) is non-empty must also exist. Every point
inside that non-empty polyhedron must also correspond teoailibrium price. Sincey;;’s, B;’s andc;’s
are rational numbers, a vertex Bf.A, L) gives a rational equilibrium price. It then follows from Lema
11that a rational equilibrium exists if and only}f; c¢; > >, B;. O

C SR equilibrium with Spending Constraint Utilities

We next define the spending constraint model. As beforellldie a set of divisible goods and a set of
buyers,|M| = m, |N| = n. Assume that the goods are numbered from-/htand the buyers are numbered
from 1 ton. Each buyeii € N comes to the market with a specified amount of money,Bag Q*, and
we are specified the quantity; € Q™ of each goodi € M. Fori € N andj € M, let f} : [0, B;] = Ry

be therate functionof buyer: for goodj; it specifies the rate at whichderives utility per unit ofj received,

as a function of the amount of her budget spenyofff the price of; is fixed atp; per unit amount ofj,
then the functiorjf;f/pj gives the rate at whichderives utility per dollar spent, as a function of the amount
of her budget spent on Defineg’ : [0, B;] — R as follows:

gj(x) = /Ox %f)dy-

This function gives the utility derived byon spending: dollars on good at pricep;.

In this paper, we will deal with the case thafs are decreasing step functions. If g, will be a
piecewise-linear and concave function. The linear versibRisher's problem J] is the special case in
which eachy} is the constant function so thgf is a linear function. Given pricgs = (p1, .. ., ps) of all
goods, each buyer wants a utility maximizing bundle of godttcesp are equilibrium prices if each good
with a positive price is fully sold.

The convex program for spending restricted model underdipgnconstraint utility functions is as
follows:

max Z bi-j log vﬁj — Z(qj log ¢; — g;) s.t. (P2)

2,7, J

7,0
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7l

Vi, j,1 € S,b,; > 0. (15)

Herebﬁj is the amount of money buyeérspends on good under segmert, ij is length of the segmerit
andg; is the total amount of spending on gopd

Lemma 14. Convex progranP?2 captures SR equilibrium prices of SR market model underdipgrcon-
straint utility function.

Proof. Let \;, iu5,m:,7:5 be the dual variables for constrairits, 14, 12, 13 respectively. By the KKT
conditions, optimal solutions must satisfy the following:

1.VieN,jeMileS: loguv,—X\—ni—7i<0
VieN,jeM,leS: b;>0=logvl—X —ni—j =0
VieM: —loggj+ X —puj =0

VieM: pj=>0

VieM: p;>0=q;=c;

Vie NjeM,leS: ’}/Z'leO

N g M 0w DN

VieN,jeMleS: ~y>0=1b,=B

Letp; = gjeti. We will prove thatp is an equilibrium price with spendirtg The second KKT condition

says that for a fixed pair of buyeéland good;, bﬁj > 0 implies
l
Yij i
A

Therefore, the ratimﬁj/e%‘ﬂ is the same for every segmeninder whichi spends money o From KKT
condition 7,y;5; > 0 impliesbﬁj = ij. It follows that for each good, ¢ must finish spending money on a
segment with higher rate before starting spending moneysagment with lower rate.

From the first 3 KKT conditions, we have:

o

W o
qje“/ijle,uj -

and equality happens Whéb > 0. For every segment thatan still spend money obéj must be less than

Bl;, and thusy;;; = 0. Therefore, for every and! such thatB!; > b}, > 0, we have
v v
pj qje/»‘j



and this ratro % is maximized among all segments thatan spend money on, i.e. segments such that

bﬁ] < Bl Therefore we can conclude that each buyisrspending according to his best spending strategy.
By complementary slackness conditiongjf< c; thenyu; = 0 andg; = p;. Otherwise, ifp; = c; then
q; < pj. Therefore, in this model, the amount seljezarns is the minimum between andp;. O

Existence and Uniqueness We first show that the same condition that works for linedities also works
for spending constraint utilities.

Lemma 15. For spending constraint utility functions, an equilibriupnice exists if and only igj ¢ >
> Bi.

Proof. An equilibrium price exists if and only if the feasible regiof the convex program is not empty.
Similarly to the proof of Lemma.l, we can prove that the program is feasible if and onEijf c; > > Bi.
If Zj ¢; < Y, B; then the feasible region is empty because the set of comistrgl, 14 and 12 can not
be satisfied together. Using a similar argument as in theqars\part, we can show that if the amount of
money thati spends ory is B;c;/ Zj c; then constraintd 1, 14 and 12 are all satisfied. We only need to

guarantee that contraint3 is satisfied as well. This can be done by choosing appropgie’tesuch that

B
Sk = > CCJJ and  yl, < B O

Then, following the same steps as those in the proof of Letitnae also show that the spending vector
for spending constraint utilities is unique as well.

Lemma 16. For spending constraint utility functions the spendingteeq is unique.

C.1 Rationality of SR equilibria under spending constraint utility

Lemma 17. In spending restricted market model under spending comstraility functions, a rational
equilibrium exists hzj ¢; > >, B; and all the parameters specified are rational numbers.

Proof. For a buyeri and goodj, let 5; be the set of segmentssuch thath}; = Bl;, S; be the set of

segments such tha; > b}; > 0, and.S;; be the set of segments such tbgt: 0. Also, letS be the

family of all 5%, S, S” sets and. be the set of sellers reaching their earning limits. An éioyiilm price

p, the corresponding spendihgnd inverse MBB value,, if existed, must be a point inside the polyhedron
P(S, L) bounded by the following constraints:
Vi€ N,¥j € MVl € S; vﬁjai >p; bl =B
: : 0 Loy ! l
Vie N,Vje MVl €S V0% = Dpj 0 <b;; < Bj;
Vie NYje MVl S,  wvjai<p; bl;=0

VieN > b=

j?l
VjeL Zbéj:cj ijCj
VigL Y bi=p;, pi<¢

Suppose that all the parameters specified are rational mgmbgain, we can see that a rational equilibrium
must also exist if an equilibrium exists. It then follows ttearational equilibrium exists if and only if

2.5 ¢ = 22 B O
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D Utility restricted market model

D.1 Linear utilities

The convex program for the linear utility with buyers havintjlity limits is a natural extension of the
Eisenberg-Gale program:

max y . B;logu; S.t. (P3)
Vi, zj T = Uj, (16)
Vi, u; < dj, a7

Vi, > wiy < 1, (18)
Vi, j, i > 0. (19)

In this programy;; is the amount of goog allocated to buyet, andu; is the amount of utility that buyer
obtains. Constrairt7 guarantees that the amount of utility buyegets does not exceed his utility limij.

Lemma 18. Convex progranP3 captures the equilibrium prices of utility restricted matknodel under
linear utility function.

Proof. Let \;, u;, p; be the dual variables for contraini$, 17, 18 respectively. By the KKT conditions,
optimal solutions must satisfy the following:

1. ViGN,jGMZ —)\ivij—ijO
.Yie N,jeM: xij>0:>—)\iv,-j—pj20
ViEN: BipN—pi=0

.Vie N : ,ui>0:>ui:di

2
3
4.VieN: p; >0
5
6.VJEN: p; >0
7

.VjeN: pj>O:>Zixij:1

From the first 3 conditions, we havé € N,j € M : 22 < g ——-and ifw;; > Othen”“ = gt

We will show thatp is an equilibrium price with aIIocatlom From the above observatlon it is easy to
see that each buyeronly spends money on his MBB goods at priceMoreover, we know that ip; > 0
then goodj must be fully sold. Therefore, the only remaining thing toy is that at price each buyer
either spends all his money or attains his utility limit.ulf = d; then buyeri reaches his utility limit and
the amount of money he spendsAs — y;d;, which is at mos®;. If u; < d; theny; = 0 and the amount
of money he spends B;. O
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We now extend these results to Leontief and CES utility fiemst  Ultility function f; is said to be
Leontiefif, given parameters;; € R, U {0} for each goodi € M, f;(x) = minjecas xi;/a;;. Finally, f;
is said to beconstant elasticity of substitution (CES) with parametérgiven parameters;; for each good
JeM,

-

filz) = Z o al
j=1

D.2 Utility restricted market model under Leontief utilities

The convex program for the Leontief utility model is as folk

max Z B;logu; s.t. (P4)
Vi, J,u;ij = ij, (20)
Vi, u; < dj, (21)

vj, Z zi; <1 (22)
Vi, j, iy > 0. (23)

Lemma 19. Convex progranP4 captures the equilibrium prices of utility restricted matknodel under
Leontief utility function.

Proof. Let \;;, i, p; be the dual variables for constrairii§, 21, 22 respectively. By the KKT conditions,
optimal solutions must satisfy the following:

lL.VieNgjeM: —X\j—p; <0
2.Vie NjeM: z;; >0= -\ —pj=0
3.VieN: Zig 3 Njoiy —pi=0
4.YieN: p;>0

5. Vie N: u;>0=u;=d;

6.VieM: p;>0

7.VjeEM: pi>0=) x;=1

Notice that in this model, we may assume that> 0 for all i € . It follows from constrain0 that
x;; = 0if and only if ¢;; = 0. From the second KKT condition, we know thaigif; > 0, we must have
Aij = —pj. Substituting in the third condition we have:

B,
u_; — i = ij¢ij
j
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Therefore,

L
B; — pu; = E qubij—qﬁ = E DjTij
. Z‘] .
J J

It follows that B; — u;u; is actually the amount of money that buyespends. By complementary slackness
condition, ifu; < d; thenu; = 0 andi spends all his budget. Otherwiseyif = d; thenB; — p;u; < B;.
Therefore, in this model, a buyéeither spends all his budget or attains his utility limit. idover, we know

that if p; > 0 then goodj is fully sold. Thusp is an equilibrium price with allocation.

D.3 Utility restricted marked model under CES utilities

The convex program for the CES utility model with parametées as follows:

max Z B;logu; s.t.
i

\V/i, U; = <Z ’Uz'jl’fj)

Via Uy S di7

vj, Z x5 <1,
;

o=

O

(P5)

(24)

(25)

(26)

(27)

Notice that in this modelu; /0x;; = u; "vijaf; | has the same termy~v;; for all z;;’s. Moreover,
Ou;/0z;; decreases when;; increases. It follows that the best spending strategy fanyeety is to start
with z;; =0 Vj € M and spend money on googishat maximize the ratig% at every point. At the

J

end of the procedure, all goodssuch thatz;; > 0 will have the same value fo%, and that value is
the maximum over all goods.

Lemma 20. Convex progranP5 captures the equilibrium prices of utility restricted matknodel under
CES utility function.

Proof. Let \;, i;, p; be the dual variables for constrairig, 25, 26 respectively. By the KKT conditions,
optimal solutions must satisfy the following:

1

2.

R L

ViENjEM: —Mul vyl —p; <0
VieN,jeM: w5>0= —\u ‘vgal "
VieN: Dig)—pi=0

Vie N: p; >0

Vie N: pu>0=u;=4d;

VieM: p;>0

VieM: p;i>0=5 x;=1
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We will prove thatp is an equilibrium price with allocatiom. From the first there KKT conditions, we
have - e
Uy Uiy, < U;
Pj = Bi — piug
and equality happens when; > 0. Thereforez is in agreement with the best spending strategy of the
buyers, which says that for each buyeif z;; > 0 then% is maximized over all's. Moreover, we
can see thaB; — u,;u; is the amount of money buye‘zrspenjds. By complementary slackness condition, if
u; < d; theny; = 0 andq spends all his budget. Otherwiseuif = d; then B; — u;u; < B;. Therefore,
in this model, a buyef either spends all his budget or attains his utility limit. Mover, we know that if
p; > 0then goodj is fully sold. Thusp is an equilibrium price with allocation. O

D.4 Rationality of equilibriafor UR market model under linear utilities

Lemma 21. In UR market model under linear utility functions, a ratidoremuilibrium exists if all the pa-
rameters specified are rational numbers.

Proof. Let A; be the set of goods that buyespends money o¥ be the family of4;’s, andL be the set of
buyers reaching their utility limits. An equilibrium prige the corresponding spendihgnd inverse MBB
valueq, if existed, must be a point inside the polyhedi®(A, L) bounded by the following constraints:
Vie N,Vj e A; Vij0G = P;
VieM  wvja; <pj
Vie N,Vj & A; bij =0

V] N Zbij = pj
VieL wa = ;d; wa < B;
J J

Vi L Z%’j < a4d; Zbij =DB;
J J
Vie NjeM bijZO

Suppose that all the parameters specified in this model dmnahnumbers. By a similar argument to
Lemmal3, we can see that an equilibrium exists if and only if a ratia@gpilibrium exists. It follow from
LemmaZ22 that a rational equilibrium price must always exist if aletharameters specified are rational
numbers. O

D.5 Existence and Uniqueness of UR equilibrium

For UR market model, we show that an equilibrium always exist all utility functions we mentioned in
the previous section. On the uniqueness side, the utilityovas unique. To verify that the price vector
is not unique, consider a market with only one buyer withitytiunction u(x) = x; and one seller. Let
d; = 1andB; = 2. Itis easy to see every price in interJal 2] is an equilibrium price.

Lemma 22. In UR market model under linear, Leontief and CES utilityclions, an equilibrium price
always exists.

Proof. An equilibrium price exists if and only if the feasible regiof the convex program is not empty. In
P3 P4andP5 z;; = 0 for all ¢, j is a feasible solution. Therefore, the feasible region tsemapty and an
equilibrium exists. O
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Lemma 23. In UR market model under linear, Leontief and CES utilityclions, the utilities of an equilib-
rium are unique.

Proof. In sectionD, we showed every equilibrium correspond to an solution afravex program with an
objective function of the forn} , B; log u;. It is easy to see that the objective function is strictly care.
Therefore, there is a unique vectothat maximizes the objective function and the lemma follows [

E Proofsof Theorem 1 and Lemma 10 (Approximation Factor Bounds)

E.1 Approximation Factor Upper Bound

For each itery that has more than one child-agent in the spending gidph remove the edges connecting
it to all but the one child-agent that spends the most money pe., the one with the largest; value. This
yields a pruned spending graphd) that is also a forest of trees. We refer to the trees of thegurgnaph
P(b) as thematching-trees In every matching-tre@” with £ > 2 agents, when the algorithm reaches its
last step, every remaining item has exactly one parenttagahone child-agent, so all but one agent can
be matched to one of these items. Our proof shows that théses exmatching of the remaining items such
that the agents withiff’ have a “high” NSW.

A naive way to match the agents in the last step of the algarittould be to match all of them, except
the one that has accrued the highest value during the pregieps. It was already observed i) that,
for any matching-tred” of k agents, there exists an agent who was assigned value at J¢as} during
Steps 3 and 4 of the algorithm, so we could match every agéntéxcept him. But, what is the worst case
distribution of value that can arise in this matching?

If T"is some matching-tree of the pruned spending gr&ph), then let)M denote the union of items
in T with the items that were assigned to agent$’im Steps 3 and 4. Also, gl be the set of items with
p; > 1inthe SR equilibrium andi7 the subset of those items that belond/toln proving this theorem,
we use the following lemma fron¥].

Lemma 24 ([7]). For any matching-tred” with k& agents, there exists an agent 1T who, during Steps 3
and 4 received one or more items that she values at led&t:). Also, for items inV/p:

1
>k (28)

JjEMT

Let 2’ be the integral allocation that would arise if we follow th@FS algorithm up to Step 4, and then
use the naive matching described above. For simplicity, sgai@e that the valuations of the agents are
scaled in such a way that; = p; if b;; > 0, which allows us to user-uB as an upper bound of OPT. We
begin by showing that, if every agent receives a value ofastle/2 in 2/, then the theorem follows. To
verify this fact, note that every agent who is matched to em it with pricep; > 1 has a value of at least
p;, and every other agent has a value of at |é#8f so

1/n

1/n 1 1 1/n
(H vi(x')> > T H D > 5 (H UZ(,I'*)> .

JjeEH

For any matching-tree witk = 1 agent, Inequality Z8) implies that this agent will receive value at
leastk — 1/2 = 1/2. Therefore, we now, assume that there exists some matttged-with £ > 2 agents
such that some agentin 7" gets a value less thar/2 in z’. Letv,(z'), or v, for short, be the value that
this agent receives. Sineg < 1/2, this agent is the only one ifi that was not matched to an item with
p; > 1/2, so every other agentin T hasv;(z') > 1/2.
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Lemma 25. Over all the possible allocations’, the one with the minimum product of the valuations, has

at Ieastﬁjrg;’zJ agents with valuey (z) > 1.

Proof. Let k; be the number of agents with value at least 'irand assume thaf < {%J — 1. Since

every agent other tham was matched to an item witfy > 1/2, we know that the value of the; agents
before the matching was at mast. Hence, for each such agerthe sum of they; values of the items that
were assigned toin 2’ is at mostl + v,,. As a result, ifA/’ is the union of items that were assigned to agent
« and thek; agents, we know thazjeM, ¢ < ki(14va) + va.

Using Inequality 28), we get

1 1 1 1
Z 4 = k—i—(k1(1+va)+va) = i(k—k1)+§k—<§+va> (k1 +1).
JEM\M'

k—2vq k—2vq
But, we have assumed thiat + 1 < LJFQUQJ < T7500, SO

204
2

k — 1
> a4 > 3 Lk - k1) + 3 - = 5k —ki) +va.

JjeEM\M’

Therefore, the remaining — k; — 1 agents have a total value more th@n- &,)/2, i.e., strictly more than
1/2 on average. It also implies that at least two of thesetadwve value strictly more than 1/2. Hf k; —2
agents had value equal to 1/2 then the remaining agent wamkdavalue more tha%m(k —ki)— %(kz —k1—

2) = 1, which contradicts our assumption that oglyagents have value at least 1. ketvs € (1/2,1) be
the values of two such agents in the worst case outcome.hgrsdasy to verify that, if we were to instead
give valuel/2 to the one agent ang + v — 1/2 to the other, the NSW would drop. This contradicts our
assumption that this is a worst case outcome. O

Lemma 26. For any matching-tred” with k agents, the allocation of the SRR algorithm satisfies

H’ui(m/) > 2% H Dj-

ieT JEHT

Proof. Letk; be the number of agents with(z') > 1. Given any agentamong thesé; agents, ifj is the
item that he was matched to, then has valye’) > max{1, p,;}. As a result, the product of the values of
thesek; players is at Ieaqt_[jeHT p;. Therefore, it suffices to show that the product of the remgih — £
agents is at leadt/2".

Among thek, = k — k1 — 1 agents that get value in/2,1), it is easy to verify that their product is
minimized when at most one agent among them gets value hiigaet /2. If we letvg be the value of that
player, and using Inequality8), we get

1 1
itwe leth; = A2 andd = ki — ki = 732 — | 42 | be the rounding error, then Inequalitdj yields
541
> —.
Vg = B
This implies that
Va3 Vo O0+1
Hv’ —2kk12Hp3—2kk1126 Hpj22kk11HpJ’
€T jEHT jEHT jeHT
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where the last inequality comes from the fact that 1 > 29 for 6 € [0,1]. To verify this fact note that
(6 +1—20)" = —2°In22 < 0, so this is minimized at eithef = 0 or § = 1, both of which yield
§+1—2% = 0. To conclude the proof, it suffices to show that for everyc [1/(2k), 1/2] and everyk > 2

we have

Vo . _kt1
W = 2_k or, eql.“valently, 'Ua21+2”04 2 1.
—k1—

Fork > 7, itis easy to verify that this inequality holds. In partiaylusing the fact that, € [1/(2k),1/2],

kil ot

k41 1 T
2T 2va > — 92125 > >1
Ve = 9% = o) <

fork > 7.

Note thatv, 2 T+2va T is minimized at the same pointslag v, + 1’” L Taking a derivative w.r.t, gives

g, 1 FF1 T 1 2(k+1)
Bl T T 20 )~ waln2 (142002

k:
For k < 4, this derivative is positive for any value of,, sov,2 rre is minimized at, = 1/(2k), Where

i i k(k+1)

its value is equal t%27k+1 = £ > 1. Finally, replacingk = 5 andk = 6 and m|n|m|2|ngva21+2va

over all values of,, also shows that this function is minimizedwt = 1/10 andv, = 1/12 respectively,
and its value is at leasgt which concludes the proof. O

The inequality of Lemm&6 implies the desired approximation factor if we observe that

) ()

T €T

1/n

Hpﬂ

JjEH

N =

E.2 Approximation Factor Lower Bound

Proof. Consider an instance witlhh = 2« items andn = « + 1 agents. Each agente [1, x| has a value
of 1/2 for item and a value of /2 + 1/« for item 2i. The value of these agents for every other iter. is
Finally, agentx + 1 values every item from to « for a value ofl and has valu@ for the rest. The item
prices in the SR equilibrium for this instance ar for the firstx items andl /2 + 1/« for the remainings
items. Agents + 1 spendsl/x on each one of the first items, while each agetite [1, x| spendsl — 1/x
on item: and his remaining budget @f+ 1/x on item2i.

Facing this SR equilibrium, assume that the SRR algorithoosbs agent + 1 as the root-agent in
Step 2, then it would assign all of the firsitems to this agent. To verify this fact note that for evegnit
j among the first. ones,q; = 1/2 and agent + 1 is the parent-agent. On the other hand, every other
agenti € [1, ] would get only iten®2i. This leads to a product of valuations equal(—,ﬁ%. If, on the
other hand, agent 4+ 1 was allocated just one of the firstitems and gave each of the other 1 items
to the agents that value them, the product of the valuatianddabe more thar%. For large values of the
ratio between the NSW of these two outcomes converges taallfinote that, even if the algorithm chose
some different agent as the root, the result would not betaifiein the limit. O
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