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Recent work has considered theoretical models for the behavior of agents with speci�c behavioral biases:

rather than making decisions that optimize a given payo� function, the agent behaves ine�ciently because

its decisions su�er from an underlying bias. �ese approaches have generally considered an agent who

experiences a single behavioral bias, studying the e�ect of this bias on the outcome.

In general, however, decision-making can and will be a�ected by multiple biases operating at the same

time. How do multiple biases interact to produce the overall outcome? Here we consider decisions in the

presence of a pair of biases exhibiting an intuitively natural interaction: present bias – the tendency to value

costs incurred in the present too highly – and sunk-cost bias – the tendency to incorporate costs experienced

in the past into one’s plans for the future.

We propose a theoretical model for planning with this pair of biases, and we show how certain natural

behavioral phenomena can arise in our model only when agents exhibit both biases. As part of our model we

di�erentiate between agents that are aware of their biases (sophisticated) and agents that are unaware of them

(naive). Interestingly, we show that the interaction between the two biases is quite complex: in some cases,

they mitigate each other’s e�ects while in other cases they might amplify each other. We obtain a number of

further results as well, including the fact that the planning problem in our model for an agent experiencing and

aware of both biases is computationally hard in general, though tractable under more relaxed assumptions.

1 INTRODUCTION
A rich genre of work at the interface of economics and psychology has studied the ways in which

behavioral and cognitive biases can lead people to make consistently sub-optimal decisions [Ariely,

2008, DellaVigna, 2009, Kahneman, 2013, �aler, 2015]. Research in this area has provided a useful

organization of these types of biases, including broad categories such as treating losses and gains

asymmetrically [Kahneman and Tversky, 1979], treating the present inconsistently relative to the

future [Frederick et al., 2002], and systematically mis-estimating probabilities [Rabin, 2002, Tversky

and Kahneman, 1971]. Drawing on these results, a recent line of research has developed theoretical

models of planning by biased agents, seeking to bound the gap between the quality of the plans

produced by these biased agents and the quality of optimal plans [Albers and Kra�, 2016, Gravin

et al., 2016, Kleinberg and Oren, 2014, Kleinberg et al., 2016, Tang et al., 2017].

�ese analyses have generally considered a single bias at a time, which serves as a way to

decompose a complex pa�ern of behavior into a set of conceptually distinct parts. But it is natural

to ask what phenomena might emerge if we were to build models of multiple biases acting at once.

Would they reinforce each other, or partially “cancel each other out,” or would it be situationally

dependent?

In this paper we investigate the prospect of analyzing multiple biases simultaneously, using a

theoretical model as our underlying approach. We focus on two well-studied behavioral biases

that �t naturally together: present bias — the tendency to value costs and bene�ts incurred in the

present too highly relative to future costs and bene�ts [Akerlof, 1991, Pollak, 1968, Strotz, 1955] —

and sunk-cost bias — the tendency to incorporate costs incurred in the past into one’s plans for the

future, even when these past costs are no longer relevant to optimal planning [Arkes and Blumer,

1985, �aler, 1980, 1999]. Sunk cost bias is a fundamental bias in planning, studied in various
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disciplines under di�erent names. For example, it appears in the organizational behavior literature

as “Escalation of Commitment” [Staw, 1976], and it is known as the “Concorde Fallacy” [Dawkins,

1976, Weatherhead, 1979] in behavioral ecology, named a�er the famous supersonic airplane whose

development was continued long a�er it was clear that it had no economic justi�cation.

Present Bias and Sunk-Cost Bias. Present bias and sunk-cost bias on their own are qualita-

tively quite di�erent, though each operates on perceptions of costs and bene�ts over time, and each

is easily recognizable at an intuitive level. A canonical example of present bias (familiar from many

people’s experience) is the scenario in which an individual buys a membership to a gym, but then

actually goes to the gym very few times [DellaVigna and Malmendier, 2006]. Viewed at the moment

when the gym membership was purchased, the long-range health bene�ts of regular exercise

seemed to outweigh the cost in e�ort required to go to the gym regularly; but when the time comes

to actually go to the gym, the cost of the e�ort seems larger than it did previously, even relative to

the other costs and bene�ts under consideration. �is leads to sub-optimal decision-making: either

it would have been preferable to buy the membership and then regularly go to the gym, or to not

buy the membership, but it can’t be optimal to buy a membership and then not use it.

A canonical example of sunk-cost bias (also familiar from everyday experience) lies in the contrast

between the following two scenarios [�aler, 1980, 1999]:

(i) You have bought an expensive and non-refundable ticket to a concert or sporting event

that you are very interested in a�ending, but on the day of the event, a major snowstorm

makes travel dangerous. Should you go to it anyway?

(ii) You were given a free ticket to a concert or sporting event that you are very interested in

a�ending, but on the day of the event, a major snowstorm makes travel dangerous. Should

you go to it anyway?

In examples of these and similar situations, many people view the two scenarios di�erently — they

would risk the dangerous travel conditions in scenario (i) so as not to “throw away the cost of the

ticket,” while they’d conclude in scenario (ii) that it’s not worth the risk just to make it to the free

event. Yet if we think of the two scenarios strictly as an optimization of costs and bene�ts, they are

e�ectively equivalent: since the cost of the ticket is unrecoverable in scenario (i), in both cases the

question is whether the enjoyment of a�ending the event (given that you are already in possession

of the ticket) outweighs the costs associated with traveling under risky conditions. �e fact that

the two scenarios feel di�erent at an intuitive level suggests some of the deep ways in which

people take into account sunk costs — costs incurred in the past that can no longer be recovered —

and use these sunk costs in their decision-making even when they are formally irrelevant to the

optimization aspects of the planning problem ahead.

Interactions of Present Bias and Sunk-Cost Bias. Although present bias and sunk-cost bias

involve di�erent types of reasoning, they both connect costs and bene�ts incurred at di�erent

stages of a planning problem to decisions about future behavior. As such, one could ask about the

behavior of an agent in such a planning problem if they were experiencing both biases. Do we

learn something new by considering the two biases together?

We argue here that modeling the interaction of present bias and sunk-cost bias in planning leads

to an interesting and natural set of phenomena that don’t arise when we model either of the two

biases individually. To get some intuition for what we learn by combining them, let’s �rst return

to a synthesis of the two scenarios discussed above. In particular, consider the reasoning (again

familiar from everyday life) of a person who decides they’re going to buy a gym membership so

that when the time comes to go to the gym, their desire not to waste the money spent on the

membership will help motivate them to go regularly. Although the sentiment is expressed in a
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pithy format, it is intrinsically based on an interaction among multiple ingredients: �rst, the person

su�ers from present bias, which will make it harder to a�end the gym when the time comes; second,

they exhibit sunk cost bias so once they buy a gym membership they will be more inclined to visit

the gym to avoid wasting the money they already spent; and third, they are sophisticated in that

they realize they will experience these biases in the future, so they plan to use their sunk-cost bias

associated with prepaying the gym membership as a commitment device to overcome their present

bias when it arises.

1.1 Planning with Multiple Biases: A Basic Model
We now describe a simple theoretical model in which we can express this type of planning,

and discuss the basic framework for reasoning within the model. �e model has the following

components, building on a graph-theoretic formalism from our priorwork on present bias [Kleinberg

and Oren, 2014, Kleinberg et al., 2016]. First, the planning problem is represented by a directed

graph G with non-negative costs on its edges. An agent starts at a node s in G with the goal of

reaching a node t in G. �ere is a reward R at the node t . �e agent’s payo� if it reaches t is
equal to the reward R minus the sum of the costs on all the edges it traverses. In case the agent

traverses some of the edges but doesn’t reach t its negative payo� is simply the total cost of all

edges traversed. (�e agent achieves a payo� of 0 if it never starts traversing the graph.)

Figure 1 shows a small instance of this type of planning problem. �e optimal plan would be to

traverse the upper path through v , achieving a payo� of R − 1 − 12 = 6. Note that if we set the

reward R to be 10 instead of 19, then the optimal plan would be not to start, thus achieving a payo�

of 0.

s

v

w

t R = 19

1 12

4 10

Fig. 1. An instance of the planning problem.

(b,λ)-agents. Now, let’s consider how to model the behavior of biased agents on such a graph

G. Biased agents can deviate from optimal behavior in two ways: �rst in how they misperceive

the costs of paths in G (and hence how they misperceive payo�s), and second in their potential

misunderstanding of how they will behave in the future. We describe these two components in

turn, and then illustrate them by showing how biased agents behave in the example of Figure 1.

Our agents will exhibit both present bias and sunk-cost bias in general, and we specify them

using parameters b ≥ 1 and λ ≥ 0.

• �e quantity b is a present-bias parameter: when the agent is at a node u and considering

the prospect of traversing a path P beginning with the edge (u,v), it perceives the cost of
the u-v edge as being scaled up by a multiplicative factor of b. It adds this scaled-up cost to

the actual costs of the remaining edges on P , resulting in a total perceived cost for P . �is

re�ects the overweighting of costs incurred in the present — in this case, the next edge to

be traversed — that is associated with agents exhibiting this bias [Laibson, 1997].
1
�us, for

1
�e model proposed by Laibson [1997] also include an exponential decay on costs and rewards incurred in the future,

where for a decay parameter δ , quantities experienced τ steps in the future are reduced by a factor of δ τ . In this paper
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example, an agent with present-bias parameter b located at s in Figure 1 would perceive

the cost of the upper path as b + 12 and the lower path as 4b + 10.
• �e quantity λ is a sunk-cost parameter: if the agent decides to abandon the traversal —

stopping at its current node u and thus incurring no future cost or reward — it exhibits a

mental cost equal to λ times the total cost it has incurred thus far.

�is re�ects the agent’s aversion to giving up when it already has incurred sunk cost

in the traversal thus far; incurring this as a �nal cost is motivated by constructions in the

literature on mental accounting [�aler, 1980, 1999] and realization utility [Barberis and

Xiong, 2012].

We will refer to a biased agent with parameters b and λ as a (b, λ)-agent. Note that an agent who

experiences neither present bias nor sunk-cost bias has b = 1 and λ = 0, and hence is a (1, 0)-agent.

Future Selves, Naivete, and Sophistication. So far we have described the way a biased agent

perceives costs; now we need to describe the process by which it forms a plan on the graph G.
Since our focus is on agents who may have di�erent preferences in the future than they do in the

present, we adopt a style of exposition used in behavioral economics and consider agents who

reason about what their “future selves” will do. �is style of description is useful in our gym

membership scenarios, for example, where the person buying the gym membership would like his

or her “future self” to go to the gym regularly, but is worried that this future self will not feel like

going when the time comes to actually do it.

�is is also a useful formulation for our graph-theoretic model, because biased agents may di�er

in how they believe their future selves are going to behave. Suppose a (b, λ)-agent is currently
located at a node u, and is considering whether to traverse an edge (u,v). It imagines that when it

reaches the node v , it will hand o� control of future planning to its “node-v self.” Now, how does

the agent believe its node-v self will reason about the remainder of the planning problem? An

agent who is naive about its biases believes that its node-v self will plan optimally starting from

node v , whereas an agent who is sophisticated about its biases believes that its node-v self will

continue to behave like a (b, λ)-agent. Since in our model, an agent’s parameters remain constant

for the duration of the planning problem, a sophisticated agent is correct in its belief about its

node-v self, while a naive agent is incorrect in its belief. Importantly, both types of agents care

about the costs incurred by their future selves as well as their own costs; they just scale up the cost

of the immediate next edge by a factor of b when they determine the total cost of a path, re�ecting

the fact that they value costs to themselves a factor of b higher than they value costs to their future

selves.

�ere is extensive empirical evidence that people can behave more like naive agents or more

like sophisticated agents in di�erent scenarios — sometimes we make a plan believing that we’ll be

fully motivated to follow through on it when the time comes, and sometimes we factor into our

planning the belief that we might not be inclined to take the necessary step in the future [Frederick

et al., 2002].

�ere are thus multiple types of agents, and as we will see next, they exhibit a range of intuitively

natural behaviors that re�ect how their biases — and their awareness of these biases — interact. In

keeping with the fact that there are two kinds of biases under consideration, we will refer to the

two types of agents discussed above as doubly naive and doubly sophisticated, indicating that such

agents are either naive about both biases or sophisticated about both biases. Later we will consider

the natural question of agents who are naive about one bias and sophisticated about the other.

we consider the case of δ = 1, where there is no decay into the future, so as to focus our a�ention on the present-bias

parameter b .
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1.2 Two Examples
With the core de�nitions established, it is very useful to consider the behavior of these agents in

some basic examples, for two reasons. First, given the subtle distinctions among di�erent agent

types, it is useful to see these distinctions through simple illustrations; and second, these examples

help establish that the behaviors we are modeling are all intuitively quite natural.

Health Club Memberships. We’ll start with the behavior of these agents on the instance in

Figure 1. To begin with, we note that the planning problem described by the graph in Figure 1 has

a direct interpretation in terms of decisions about gym membership, as follows.

A local health club o�ers a range of classes, and you’re interested in taking its yoga

class. �e e�ort required to take the yoga class is 10, and the long-term reward from

having taken it is 19. To take the yoga class you need to get a membership at the

health club, and there are two options for memberships. With a basic membership,
you pay 1 up front, and pay 2 for each class at the time you a�end it. With a deluxe
membership, you pay 4 up front, but then all classes are free. You know that you

only want to take the yoga class, not any of the other classes (since none of the

other classes at the health club appeal to you). What should you do?

It is easy to check that the graph in Figure 1 encodes this story, with node v corresponding to the

state in which you’ve purchased a basic membership (but haven’t yet taken the class), node w
corresponding to the state in which you’ve purchased a deluxe membership (but haven’t yet taken

the class), and node t corresponding to the state in which you’ve completed the yoga class (and so

can now achieve the reward of 19). An optimal agent would buy the basic membership (using the

path through v), since there’s no reason to pay 4 for a deluxe membership when just the yoga class

can be taken for a cost of 1 + 12 = 13.

Now, what would doubly naive or a doubly sophisticated agent do in this situation? For con-

creteness, let’s use b = 2 and λ = 1/2 as the parameters for our example. In particular, this means

that both types of biased agents — doubly naive and doubly sophisticated — will perceive the cost

on the �rst edge out of s as being multiplied by a factor of 2; they di�er in how they reason about

the remainder of the planning problem. As part of this reasoning, it is important to distinguish

between an agent’s perceived payo� at a given point in the traversal, and the actual payo� it incurs,

which is determined entirely by the true costs and rewards on the graph, rather by the agent’s

biases.

• A doubly naive agent would perceive the path through v as costing 2 · 1 + 12 = 14 and

the path throughw as costing 2 · 4 + 10 = 18. It also believes that it will behave optimally

starting from whichever node it visits next. It thus traverses the edge from s to v . Once it
is at v , however, it now evaluates the cost of the v-t edge as 2 · 12 = 24, which means that

paying this cost to get the reward of 19 leads to a perceived payo� of -5. On the other hand,

abandoning the path incurs a sunk cost penalty of 1 · λ = 1/2; since this perceived payo�

of −1/2 is preferable to the perceived payo� of −5 from continuing, the agent abandons

the path at v . In summary: the doubly naive agent buys the basic membership, but when

the time comes to take the yoga class, it lets the membership go to waste.

• A doubly sophisticated agent �rst reasons about how it would expect to behave starting

from node v and from node w . From node v , with a sunk cost of 1, it would behave the

way the doubly naive agent actually behaved when it reached v — comparing a perceived

payo� of −5 from continuing with a perceived payo� of −1/2 from abandoning — and so it

would abandon the path if it were at node v . From nodew , with a sunk cost of 4, it would

get a perceived payo� of 19 − 2 · 10 = −1 from continuing to t , and a perceived payo� of
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−4λ = −2 (from the sunk-cost penalty of 2) if it were to abandon the path atw . �us, fromw
it would continue to t . Finally, back at s , the agent reasons that the path throughw to t has
perceived cost 2 · 4 + 10 = 18 and hence a perceived payo� of 19 − 18 = 1 to its present self,

since it knows it will continue fromw . �us it chooses to go tow . �e informal summary

is that the doubly sophisticated agent buys the deluxe membership, since it knows the fear

of wasting the price of the deluxe membership (as manifested through its sunk-cost bias)

will motivate it to take the yoga class, leading to a positive payo�.

�e upshot is that the optimal agent, the doubly naive agent, and the doubly sophisticated agent all

pursue di�erent plans: the optimal agent makes e�ective use of the basic membership; the doubly

naive agent foolishly buys the basic membership and then doesn’t actually take the yoga class;

and the doubly sophisticated agent buys the deluxe membership as a commitment device to follow

through on the yoga class.

It is also instructive to compare these outcomes to the plans pursued by naive and sophisticated

present-biased agents — that is, (b, 0)-agents who experience only present bias without sunk-cost

bias. A naive present-biased agent will follow the same plan as the doubly naive agent above. But a

sophisticated present-biased agent will follow a plan distinct from all the ones we’ve seen so far: it

will correctly recognize that it wouldn’t continue from either node v or nodew , and consequently

it wouldn’t start out from s . In other words, a sophisticated present-biased agent wouldn’t buy

either type of membership in the health club, because it realizes that it won’t take the yoga class

when the time comes.

Completing Assignments in a Class. We brie�y consider a second example where the con-

trasts between the agents turn out di�erently — a version of an example from [Kleinberg and Oren,

2014] involving assigned work in a class, adapted to the types of agents we are considering here.

Suppose you’re taking a 4-week class, and you must complete three short projects by the end

of the class. In each week you can choose to do 0, 1, or 2 of the projects; doing 0 projects in a

given week costs 0, doing 1 project costs 4, and doing 2 projects costs 10. If you complete all three

projects by the end of the 4 weeks, then you pass the class, which comes with a reward of R = 17.5.
�e graph G associated with this planning problem is shown in Figure 2: the node vi j corresponds
to the state in which you’re i weeks into the class and you’ve completed j projects so far.

s

v01

v02

v10

v11

v12

v20

v21

v22

v30

v31

v32

v40

v41

v42

v03 v13 v23 v33 t

Fig. 2. A biased agent must choose a path from s to t .



Jon Kleinberg, Sigal Oren, and Manish Raghavan 7

An optimal agent would choose to do one project in each of 3 separate weeks, for any 3 out of

the 4 weeks, incurring a total cost of 12 and hence a payo� of 17.5 − 12 = 5.5. Let’s consider the
behavior of biased agents with b = 2 and λ = 3/4; we only sketch the reasoning for this example.

• A doubly naive agent will do one project in week 2, planning to do one more project

in each of weeks 3 and 4. In week 3, it chooses to defer both projects to week 4 (since

2 · 4 + 4 > 10). In week 4, it would incur a perceived payo� (due to sunk cost) of −4λ = −3
from abandoning, and a perceived payo� of 17.5 − 2 · 10 = −2.5 from continuing, so it will

do both projects and �nish the class.

• A doubly sophisticated agent correctly anticipates that it will do two projects in week

4, for a cost of 10. �us, when the time comes to do the �rst project, its perceived cost

will be 2 · 4 + 10 = 18 > 17.5, and since it has no sunk cost at this point, it will choose

to abandon the path. Given this, a doubly sophisticated will choose not to start out from

s , thus deciding not to take the class. (Essentially, the doubly sophisticated agent says,

correctly, “I know that once I put some work into the class, I’m going to end up pushing

the rest of the work to the very end and overdo things in week 4.”)

• A naive agent with only present bias — i.e. a naive (2, 0)-agent — will, like the doubly naive

agent, get to week 4 needing to do two projects. At that point, since it has no sunk cost

bias, abandoning the path has a payo� of 0, while continuing has a perceived payo� of

17.5 − 2 · 10 = −2.5. �us it will abandon the path (dropping the class) in week 4.

• A sophisticated agent with only present bias — i.e. a sophisticated (2, 0)-agent — actually

behaves optimally. It correctly anticipates that if it reaches week 4 with two projects le� to

do, it will abandon the path (since it has no sunk-cost bias), and so it does one project in

each of weeks 2, 3, and 4.

It’s interesting that in contrast to the case of health club memberships, where the doubly

sophisticated agent reached the goal and the sophisticated present-biased agent didn’t, here the

roles are reversed; the contrast is that this second example is one inwhich (i) the doubly sophisticated

agent realizes that its present bias combined with its sunk-cost bias will lead it down a path where

it pays too high a price; and (ii) there’s an alternate path that the sophisticated present-biased agent

can take.

One conclusion from all these examples is that relatively small graphs can encode scenarios that

would otherwise be quite complicated to reason about; and the interplay between present bias and

sunk-cost bias in these examples is producing intuitively natural behaviors that inherently require

both biases.

1.3 Mixed Forms of Sophistication
Since we are considering two biases at once, we should also consider the possibility that an agent

might be naive about one of its two biases and sophisticated about the other. �us, a (b, λ)-agent
at a node u, considering the traversal of edge (u,v), would be naive about its sunk-cost bias but

sophisticated about its present bias if it believed that its node-v self will behave like a (b, 0)-agent
who is sophisticated about its present bias. Alternately, it would be naive about its present bias but

sophisticated about its sunk-cost bias if it believed that its node-v self will behave like a (1, λ)-agent
who is sophisticated about its sunk-cost bias.

It is not hard to show that in our model this la�er type of agent, who is naive about present bias

and sophisticated about sunk-cost bias, is indistinguishable in its behavior from an agent who is
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naive about both biases.
2
�us, we will focus on agents that are sophisticated about their present

bias and naive about their sunk-cost bias. We refer to such agents as singly sophisticated agents.
It is interesting to consider how a singly sophisticated agent behaves in the examples from Figure

1 and 2. In the health club example of Figure 1, the singly sophisticated agent doesn’t appreciate

that sunk-cost bias will play a role in its reasoning at nodes v andw , and so at node s it reasons
like a sophisticated (b, 0)-agent and decides not to start out from s . In the class-projects example of

Figure 2, the singly sophisticated agent again starts out reasoning like a sophisticated (b, 0)-agent
and plans to do one project in each of weeks 2, 3, and 4. Once it does the �rst project in week 2,

however, it now has acquired some sunk cost, and so it changes its plan to do both of the remaining

projects in week 4. �anks to the sunk-cost bias it goes ahead and does this, since the perceived

payo� of 17.5 − 2 · 10 from �nishing in week 4 is preferable to the perceived payo� of −4λ = −3
from abandoning in week 4. �is second example shows that despite the agent’s sophistication

about its present bias, its naivete about its sunk-cost bias means that it can still sometimes be

time-inconsistent in its behavior, changing plans in the middle of its traversal of the graph G.

Perceived Rewards. We now describe an equivalent way of representing the payo� to an agent

with sunk-cost bias. �us far, if a (b, λ)-agent stops without reaching t , it incurs a negative payo�
equal to λ multiplied by the total cost of edges it has traversed. In deciding whether to continue, it

compares this negative payo� from stopping to the perceived payo� from continuing to t (equal
to the reward R minus the perceived cost of upcoming edges). An equivalent way to express this

comparison is to add λ times the cost incurred so far to the reward, creating a new (larger) perceived
reward. �e agent continues if and only if this perceived reward is at least as large as the perceived

cost of the upcoming edges it plans to traverse. In this way, there is no explicit sunk-cost penalty

from stopping; rather, the sunk-cost bias is re�ected in the growing reward that the agent perceives,

incorporating λ times the cost experienced so far. We will use this equivalent formulation in the

remainder of the paper.

1.4 Overview of Results
In the remainder of the paper, we provide a set of performance guarantees and algorithmic results

for the types of biased agents de�ned in this section. We give a brief summary of some of the main

results here.

We �rst consider doubly sophisticated agents, and in particular the planning problem for such

agents. Algorithmically, such agents face a non-trivial planning task, since in choosing a next step,

they must consider what their future selves will do not just from every node, but for every possible

value of the sunk cost they might experience from that node. We give an algorithm for solving

the planning problem for doubly sophisticated agents that runs in time polynomial in the number

of nodes n and the total sum C of edge costs in the graph. �is is a pseudo-polynomial algorithm
in that its running time depends on the actual magnitudes of the costs in the instance, and it is

natural to ask whether there might be some be�er algorithm that avoids this form of dependence

on the costs. We show, however, that this dependence is necessary (assuming P , NP ), by proving

that the planning for a doubly sophisticated agent is NP-hard when the edge costs are presented in

binary notation (and hence the input has size polynomial in n and logC).
In a positive direction, we are able to show that doubly sophisticated agents always achieve

reasonably good payo�s. In particular, we �nd that if Co denotes the cost incurred by an optimal

2
To see why this is the case, �rst observe that an agent who has no present bias (i.e. b = 1) will behave the same in our

graph traversal problem regardless of whether or not it has sunk-cost bias, and whether or not it is aware of it. Since an

agent who is naive about present bias plans paths on the assumption that it will have b = 1 in the future, the plan it makes

from any node is indistinguishable from the plan of an agent who is naive about both biases.
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agent that reaches t in a given instance, then the payo� of a doubly sophisticated agent is smaller

than the payo� of an optimal agent by an additive amount of at most (b − 1)Co . As one direct

consequence of this fact, a doubly sophisticated agent will reach the target node t in any instance

for which the reward R is at least bCo . We show similar additive gaps between the payo� of a doubly

sophisticated agent and the payo� of a sophisticated present-biased agent (with no sunk-cost bias,

and hence parameters (b, 0)); there are instances in which either can achieve a be�er payo� than

the other, but the gap between them always remains bounded by (b − 1)Co .

For doubly naive agents, we show that their sunk-cost bias can push them to incur costs that are

much higher than the available reward R. In particular, they can incur a cost that is exponential in

the size of the graph. We �nd upper and lower bounds on the worst-case cost, with exponential

bases that are close to one another between the two bounds.

Using a more complex construction, we can show that exponentially bad bounds apply to the

singly sophisticated agent as well. Despite its sophistication about its present bias, it is possible

for a singly sophisticated agent to incur exponentially large cost before abandoning the traversal

without reaching t . We complement this with a nearly matching upper bound, which also shows

that the cost incurred by a singly sophisticated agent is only exponential in the number of “switches”

— nodes at which the agent changes its plan.

2 DOUBLY SOPHISTICATED AGENTS
In this section we consider doubly sophisticated agents. Recall that these are agents that are

sophisticated about both their present bias and sunk cost bias. A doubly sophisticated agent

accurately predicts the decisions that its future selves will make, meaning that the agent will follow

the path it plans to take. In particular, this means that the agent won’t begin traversing the graph

unless it is sure that it will reach the target.

Path-planning for an agent that is sophisticated but has no sunk cost bias is straightforward – at

a node v , the agent’s action is purely a function of its decisions at later nodes in the topological

ordering, so its decisions can be recursively computed. With sunk cost bias, however, this is no

longer the case. An agent’s decision depends not only on its future decisions but also on its past

decisions and particularly on the cost it has incurred reaching v . �us, to plan its path it needs to

know its future behavior for all possible values of the cost incurred.

In the next section we will see that when the number of possible values of the cost incurred at

every node is small the agent can e�ciently recursively compute the path it will take and discuss

the special case in which the cost on the edges have integer values.

2.1 Integer Doubly-Sophisticated Path Computation
As we will later see the general path computation problem for a doubly sophisticated agent is

NP-hard. Let k be an upper bound on the number of possible di�erent values of the costs for

reaching a node. In Appendix A we present a recursive algorithm for path computation that runs

in time polynomial in k and n. Here we present an iterative dynamic program algorithm for the

case that the edges have integer costs. For this case we take k to be the sum of all edge costs and

exhibit a pseudo polynomial algorithm. Such an algorithm is both easier to follow and illustrates

well the way that a doubly sophisticated agent reasons about the behavior of its future selves to

plan its path.

Proposition 2.1. �e integer doubly sophisticated path computation problem can be solved in time
polynomial in n andC , where n is the number of vertices inG andC is the sum of the costs of the edges.

Proof. Algorithm 1 solves the integer doubly-sophisticated path computation problem in time

polynomial in n andC . �e algorithm relies on the observation that path that the agent will choose
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from some node u only depends on the total cost of the path it took to get to u and not on the

explicit path. Since the costs on the edges are integers, we can compute for each node u and for

each possible cost of the path reaching u what the cost of going from u to t is. �is can be done in

reverse topological order – at node u with some sunk cost i , if we know what the agent will do at

every subsequent node v with sunk cost i + c(u,v), we can determine the agent’s behavior at u.
In the algorithm we de�ne two arrays – choices and costs – that hold the choice and cost of the

path that the agent would take if it reached a vertex u with a sunk cost of i . We begin �lling in

these arrays in reverse topological order, since at t , there is no decision to be made, and the cost of

the remaining path is 0.

If the agent reaches some vertex u having incurred a cost of i along the way, then its choice of

where to go next is uniquely determined by the successor vertices it can go to. Since we do the

computation in reverse topological order, we know that for any successor v ′, the choices and costs
values have already been computed. �erefore, the agent can simulate what would happen along

each potential path simply by looking up the costs value of reaching v ′ with an incurred cost of

i + c(u,v ′). Out of all potential successors v ′, the agent chooses the v that minimizes its perceived

cost, where perceived cost is given by b · c(u,v ′) + costs[v][i + c(u,v)].
If this perceived cost is larger than the perceived reward, which is given by R plus λ times the

cost incurred so far, then the agent would abandon upon reaching u a�er an incurred cost of i .
Otherwise, it would proceed to v , and the total cost of the path it would take from u to v would be

c(u,v) + costs[v]. In either case, the algorithm correctly computes the action of the agent.

At the start of the traversal, the agent is at s with an incoming cost of 0. �erefore, we can look

up choices[s][0] to see where the agent would go next, and so on until we �nd the path that the

agent would take to t , updating the incurred cost so far as we go. �

2.2 The Gap Between a Doubly Sophisticated Agent and an Optimal Agent
As the payo� of a doubly sophisticated agent is always non-negative, the only instances that can

admit a positive gap are ones in which the optimal agent reaches the target. Let Co(u) be the cost
of the optimal agent for reaching the target from u, which means that Co(s) = Co . We show that

there can be an additive gap of at most (b − 1)Co between the payo�s of an optimal agent and a

doubly sophisticated agent. We note that the source of the gap could be either because the doubly

sophisticated agent did not traverse the graph or because both agents traversed the graph but the

cost of the doubly sophisticated agent was higher.

Instead of proving the gap directly we show that a similar claim holds in a more general se�ing.

An agent currently at v that exhibits sunk cost bias perceives a di�erent reward based on the path

it took to v . In particular if the agent took a path P to get to v then its perceived reward at v is

R+λ ·c(P), where c(P) is the total cost of the path P . To generalize this, we de�ne a reward schedule
H as a mapping from paths beginning at s to rewards. When computing a path for a graph G with

reward schedule H , an agent makes its calculations as if a�er following a path, the reward it will

get when it reaches t is given by the reward schedule.

Proposition 2.2. Given a graph G and a path-dependent reward schedule H , if the perceived
reward according to H at each vertex v on the optimal path from s to t is at least b · Co(v), then a
present-bias sophisticated agent will traverse the graph and incur a cost of at most b ·Co(s) .

Proof. Let P be the optimal path from s to t . We will prove by induction that from each vertex

v along P , there exists a path of cost at most b ·Co(v) from v to t that the agent would be willing to
take for the reward schedule H , regardless of the path taken to get to v . Let CH (v) denote the cost
for a sophisticated present-biased agent to reach t from v given the schedule H .
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Algorithm 1 IntegerDoublySophisticated(G,R,b, λ)
1: n ← |V |
2: C ← sum of the edge costs

3: choices ← array[n][C] initialized to null
4: costs ← array[n][C] initialized to 0

5: for u ∈ V \{t} in reverse topological order do
6: for i ← 0 . . .C do
7: v ← argminv ′∈N (u) b · c(u,v ′) + costs[v ′][i + c(u,v ′)]
8: perceived ← b · c(u,v) + costs[v][i + c(u,v)]
9: if perceived > R + λ · i then
10: choices[u][i] ← null
11: costs[u][i] ← ∞
12: else
13: choices[u][i] ← v
14: costs[u][i] ← c(u,v) + costs[v][i + c(u,v)]
15: if choices[s][0] == null then
16: return no path

17: path ← []
18: cost ← 0

19: u ← s
20: while u , t do
21: Append u to path
22: v ← choices[u][cost]
23: cost ← cost + c(u,v)
24: u ← v
25: Append t to path

Base case: At t , the claim is trivially true.

Inductive hypothesis: CH (v) ≤ b ·Co(v), and v is never abandoned under H .

Inductive step: Consider some vertex u on P and assume that the inductive hypothesis holds

for all the vertices a�er u on P . Let v be the next vertex a�er u on P . By assumption, the perceived

reward at u is some Ru ≥ b ·Co(u). We know by induction that if the agent reaches v , the rest of
the path will cost CH (v) ≤ b ·Co(v). �erefore, the perceived cost of going from u to v and then

from v to t is

b · c(u,v) +CH (v) ≤ b · c(u,v) + b ·Co(v) = b ·Co(u) ≤ Ru

�us, the agent would be willing to take this path, so u could never be abandoned. Furthermore,

this implies that the agent will take some path (either the one discussed above or a di�erent one)

that its perceived cost is at most b ·Co(u). As the total cost is always smaller than the perceived cost

this implies that the total cost of the path that the agent will take is at most b ·Co(u) as required. �

We can now use Proposition 2.2 to bound the gap between an optimal agent and a doubly

sophisticated agent.

Proposition 2.3. Consider a task graph G with a reward R on the target. �e payo� of an optimal
agent can be higher than the payo� of a (b, λ)-doubly sophisticated agent by an additive amount of at
most (b − 1)Co .
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Proof. First, observe that if R ≤ b ·Co then the payo� of the optimal agent is at most (b − 1) ·Co
and the proposition holds. Next, recall that the reward schedule that is used to describe the behavior

of a doubly sophisticated agent is monotonically increasing: the perceived reward at any vertex v
along a path P is R + λ ·CP (v), where CP (v) is the cost for reaching v on the path P . �is means

that if R ≥ b · Co we can apply Proposition 2.2 and get that the doubly sophisticated agent will

reach the target and pay a cost of at most b ·Co . Hence, in this case as well, the di�erence in the

payo�s of the optimal agent and doubly sophisticated agents is at most b ·Co −Co = (b − 1)Co . �

Lastly the fact that the agent is always willing to traverse the graph for a reward of R = b ·Co
leads us to the following corollary:

Corollary 2.4. �e minimum reward R for which a (b, λ)−doubly sophisticated agent would be
willing to traverse a graph G is at most b ·Co .

In Section 2.3 we present results for similar comparisons between doubly sophisticated and

sophisticated present-biased agents, �nally in Section 2.4 we show that computing the path that a

doubly sophisticated agent takes is NP-hard.

2.3 Doubly Sophisticated Agents Versus Sophisticated Present-Biased Agents
To be�er understand the interplay between present bias and sunk cost bias, in this section we con-

trast between doubly sophisticated agent and sophisticated present-biased agents. By Proposition

2.3 and 2.2 we have that for each of the agents the additive gap between its payo� and the payo�

of an optimal agent is at most (b − 1)Co
3
. As the payo� of each of the agents is at most the payo�

of an optimal agent, we have that the gap between the payo�s of a doubly sophisticated agent and

sophisticated present-biased agents is (b − 1). �is proves the following claim:

Claim 1. �e additive gap between the payo�s of a doubly sophisticated agent and a sophisticated

present-biased agent is at most (b − 1)Co .

In the next two claims we will see that this gap can go either way and it is tight in both directions.

In other words, each of the type of agents can do be�er than the other by this additive factor of

(b − 1)Co . We conclude that the way the two biases interact with one another in agents that are

sophisticated about them depends on the situation.

Claim 2. �epayo� of a doubly sophisticated agent can be smaller than the payo� of a sophisticated

present-biased agent by an additive amount arbitrarily close to (b − 1)Co .

Proof. Consider the example in Figure 3 with R = b2 − λε . A doubly sophisticated agent knows

that a�er traversing the edge (s,v1) its sunk cost would increase the perceived reward to b2 and
it will be able to traverse the edge (v1, t). Since when standing at s the upper path has a lower

perceived cost, the doubly sophisticated agent will choose it for a total cost of b + ε . A sophisticated

present-biased agent, on the other hand, knows that it won’t be able to traverse the edge (v1, t)
and thus chooses the lower path of total cost 1 + (b + 1)ε instead. Intuitively, the sunk cost bias is

allowing the doubly sophisticated agent to “procrastinate” more because it knows that if it puts in

a small amount of work now, its future self won’t abandon because the perceived reward will be

higher. �

Claim 3. �e payo� of a sophisticated present-biased agent can be smaller than the payo� of a

doubly sophisticated agent by an additive amount arbitrarily close to (b − 1)Co .

3
For a present-bias sophisticated agent this gap was �rst proven in [Kleinberg et al., 2016].
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s

v1

v2

t

ε

1

b

(b + 1)ε

Fig. 3. For R = b2 − λε a doubly sophisticated agent will take the upper path and a singly sophisticated agent
will take the lower path

Proof. Consider the example in Figure 4 with R = b2 − λ · ε . A sophisticated present-biased

agent will not start traversing the graph as the perceived cost when standing at v1 is greater than
the reward. Hence, a sophisticated agent will incur a payo� of 0. A doubly sophisticated agent,

knows that because of sunk cost, the perceived reward when standing at v1 will be su�ciently

large to continue to the target. �us, it will traverse the graph for a total payo� of b2 −λ · ε −b − ε =
(b − 1) · (b + ε) + (b − λ)ε . �

s v t
ε b

Fig. 4. For R = b2 − λ · ε , a sophisticated agent wouldn’t traverse the graph but a doubly sophisticated agent
would.

2.4 Doubly-Sophisticated Path Computation is NP-Hard
Wewill show that the problem of determiningwhether there exists a path that a doubly sophisticated

agent will traverse is NP-hard. Formally, we show

Theorem 2.5. �is problem is NP-hard: Given a graphG , a reward R, present bias b, and sunk cost
bias λ, determine whether there exists a path that a doubly sophisticated agent can take from s to t .

We show that for any parameter 1/2 ≤ λ < 1 there exists b > 0 such that this problem is NP-hard

by using a reduction from the Subset Sum problem. Recall that in the Subset Sum problem we

ask, given a set S of integers x1, . . . ,xn and a target T , is there some subset of S that adds up to

T . Given an instance of the subset sum problem, we construct a graphG as follows: �e vertices

are s,v1, . . . ,vn+1,w1, . . . ,wn , t . �ere is an edge of cost 0 from s to v1 and an edge of cost T from

vn+1 to t . For each i between 1 and n, there is an edge of cost 0 from vi towi and an edge of cost 0

from wi to vi+1. Finally from each vi to vi+1, there is a sequence of vertices and edges such that

the path from vi to vi+1 has total cost xi . �e �rst two edges on each sequence have cost
1

2b , and

each subsequent edge has twice the cost of the previous edge. �is sequence ends when the total

cost of the sequence is exactly xi (meaning that the last edge has at most twice the cost of the

second-to-last edge, and the sum of the costs of the edges is xi ). For example, if xi = 4 and b = 2.5,
then the sequence of edges will be

1

5
, 1
5
, 2
5
, 4
5
, 8
5
, 4
5
. �e agent’s present bias for λ > 0 is b = 2+λ and

the reward is R = (b − λ)T + λ − ε = 2T + λ − ε . A sketch of the reduction can be found in Figure 5

It is not hard to show that for each xi the number of edges we create in G is linear in logxi the
size of G is polynomial in the size of the input. Formally, we prove the following claim:
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s v1 v2 v3 vn vn+1

w1 w2 wn

t
x1 x2 xn0

0 0 0

0 0 0

T

Fig. 5. A sketch of the graph G created by the reduction

Claim 4. �e size of G is polynomial in the size of the input.

Proof. We will show that the number of edges between vi and vi+1 is linear in logxi . We know

that for j > 2 the jth edge in the sequence has cost at most
1

2b × 2j−2, and that the sum of the costs

of the edges is xi . Let ei be the number of edges between vi and vi−1. Ignoring the �rst edge in the

sequence, it is su�cient for ei to be large enough such that

∑ei
j=1

1

2b × 2j−1 ≥ xi . Note that,

ei∑
j=1

1

2b
× 2j−1 = 1

2b

ei−1∑
j=0

2
j =

1

2b

(
2
ei − 1
2 − 1

)
≥ 1

6

(2ei − 1)

where the last transition is due to our choice of b = 2 + λ ≤ 3. �us, we have that 2
ei ≥ 6xi + 1 and

hence the number of required edges between vi and vi+1 is at most loд (6xi + 1) and the size of G
is polynomial in the size of the input. �

In the next two claims we prove that the subset sum instance has a solution⇐⇒ there is some

path in G that the doubly sophisticated agent will traverse for the given reward.

Claim 5. �e subset sum instance has a solution =⇒ there is some path in G that the doubly

sophisticated agent will traverse for the given reward.

Proof. Let I ⊆ {1, . . . ,n} be the solution to the subset sum instance, i.e.

∑
i ∈I xi = T . If there

are multiple solutions, then let I be the one which has the largest minimum index (with ties broken

by the second-smallest index, and so on). �en, consider a path through G such that for i ∈ I , the
agent takes the sequence of edges from vi to vi+1 for a cost of xi , and for j < I , the agent takes the
edges (vi ,wi ) and (wi ,vi+1). �en, when the agent gets to vn+1, it will have incurred a total cost of

T , so when it takes the last edge from vn+1 to t , the �nal incurred cost will be 2T . We will show

that if the agent follows this path, at every vertex that the agent passes through, the perceived cost

will always be smaller than R, meaning this is a valid path. Finally, we will show that the agent

cannot take any other path.

Call the path described above P . We proceed by induction, proving the claim that if the agent

reaches vi along P , then the agent will reach t along P .
Base case: i = n + 1. If the agent reaches vn+1 along P , it will have incurred a total cost of T . �e

only outgoing edge from vn+1 goes to t for a cost of T , so the perceived cost of taking that edge is

b ·T which is smaller than the perceived reward of (b − λ)T + λ − ε + λT = b ·T + λ − ε . �us, if

the agent reaches vn+1 along P , it will reach t along P .
Inductive hypothesis: If the agent reaches vi along P , it will continue along P to t without
abandoning.

Inductive step: Assume that the agent reaches vi−1 along P . �en, in order to prove the claim, we

must show that it proceeds from vi−1 to vi along P , at which point we can use induction to prove

that from vi , it continues to t along P . Since the agent has reached vi−1 along P , we know that at

this point, it has incurred a cost of Ki−1 =
∑

j ∈I, j<i−1 x j . We consider two cases:
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Case 1: i − 1 ∈ I . In this case, we must show that the agent takes the sequence of edges from vi−1
to vi . Assume towards contradiction that the agent takes the vi−1 → wi−1 → vi path instead. In

order forwi−1 not to be abandoned for this incoming cost, there must be some path that reaches t
from wi−1 with a sunk cost of Ki−1 without abandoning. In order for the agent to take the edge

from vn+1 to t , the total cost of the path from s to vn+1 should be at least T .
�us, any valid path fromwi−1 to vn+1 must have a total cost of at least T − Ki−1. However, if

this path does have a total cost of exactlyT −Ki−1, then following it would yield a valid solution to

the subset sum instance. Moreover, this solution I ′ would have a larger minimum index than our

original solution I , as xi−1 ∈ I and xi−1 < I ′, and for all j < i − 1, either j is in both I and I ′ or it is
in neither. �us, by contradiction, the path fromwi−1 to vn+1 must have a total cost strictly greater

than T −Ki−1. As all edge costs are integers this implies that the path should have a cost of at least

T − Ki−1 + 1. As a result the perceived cost of completing this path by going from vn+1 to t would
is at least 2T − Ki−1 + 1. On the other hand the perceived cost of going from vi−1 to vi is

b · 1
2b
+ 2T − Ki−1 −

1

2b
<

1

2

+ 2T − Ki−1 < 2T − Ki−1 + 1

�is is because by induction, if the agent begins on the path from vi−1 to vi , it will follow P
from vi to t , meaning the total remaining cost is 2T − Ki−1 − 1/(2b). Furthermore, the agent

will not abandon at vi−1, as the perceived cost is less than the reward for λ > 1/2 and ε ≤ 1

2b :

b · 1

2b + 2T − Ki−1 − 1

2b <
1

2
+ 2T − 1

2b < 2T + λ − ε .
For any vertex betweenvi andvi+1 along the sequence of edges, we must show that the perceived

cost is no more than the perceived reward. Let y be the cost of the edge leading out of some

intermediate vertex along this sequence. Since the cost of each edge increases by a factor of two,

the incurred cost so far along the sequence of edges is also y. �is also means that a�er following

this edge of cost y, the remaining cost is at most 2T − 2y (because the agent has already incurred a

cost of at least y, and the next edge also has a cost of y). �us, the perceived cost is no more than

by + (2T − 2y) = λy + 2T while the perceived reward is at least R + λy = 2T + λ − ε + λy meaning

that the agent does not abandon.

Case 2: i − 1 < I . As before, we know that any path from vi−1 to t must have a total cost of at

least 2T − Ki−1. �e perceived cost of going towi−1 is 2T − Ki−1. �e perceived cost of beginning

the sequence of edges from vi−1 to vi is at least b · 1

2b + 2T − (Ki−1 +
1

2b ) = (b − 1)
1

2b + 2T − Ki−1
(assuming xi−1 ≥ 1). �erefore, the perceived cost of following P is smaller than the perceived cost

of following the sequence of edges from vi−1 to vi , so the agent chooses to go towi−1. Furthermore,

the agent will not abandon at either vi−1 or wi−1 because at both vertices, the perceived cost is

2T − Ki−1 < R.
Since the claim holds in both cases, the induction holds. �us, if the agent follows P to v1, it

must continue to follow P until it reaches t without abandoning. However, the only way to reach

v1 from s is along P . �us, all that remains to be shown is that the agent will not abandon at s .
However, this must be the case, as the total cost of the path is 2T and the (s,v1) edge has cost 0, so
the perceived cost at s is 2T < R. �

Claim 6. �e subset sum instance has a solution⇐= there is some path in G that the doubly

sophisticated agent will traverse for the given reward.

Proof. Let P be the path that the agent traverses. Since P must pass through vn+1, let Kn+1 be

the sunk cost when the agent reaches vn+1. �e total cost of the path is Kn+1 +T , so the perceived

cost for the agent at s is Kn+1+T . In order for the agent to be willing to begin along P , the perceived
cost must be no more than the reward, so Kn+1 +T ≤ 2T + λ − ϵ . Because Kn+1 must be an integer

this implies that Kn+1 ≤ T .
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When the agent reaches vn+1, in order for it to be willing to take the (vn+1, t) edge the perceived
cost at that point must also be no more than the reward, so

b ·T ≤ 2T + λ − ϵ + λKn+1

By plugging in b = 2 + λ and rearranging we get that T − 1 + ϵ/λ ≤ Kn+1 and because Kn+1 must

be an integer we conclude that T ≤ Kn+1.

Since we have both Kn+1 ≤ T and Kn+1 ≥ T , Kn+1 = T . �en, we can construct a solution to the

subset sum instance by le�ing I = {i | P does not includewi }.
∑

i ∈I xi = Kn+1 = T because i ∈ I i�
P follows the sequence of edges of total cost xi from vi to vi+1, and all other edges in P have cost 0.

�us, I is a solution to the subset sum instance. �

3 DOUBLY NAIVE AGENTS
Consider an agent which has both present bias and sunk cost bias, and is naive about both. We

know that a naive present-biased agent might abandon partway through a task. �is is still the case

for a doubly-naive agent, but in contrast to a naive present-biased agent (whose cost is bounded by

R), because the perceived reward keeps increasing the doubly-naive agent can actually incur an

arbitrary amount of cost along the way. We �rst provide a bound on the cost a doubly naive agent

incurs and then show this upper bound is almost tight. Note that since the payo� of an optimal

agent is at most R the claim also establishes an asymptotic exponential additive gap between the

payo� of a doubly naive agent and an optimal agent.

Claim 7. A (b, λ)-doubly naive agent with b > 1 and λ > 0 traversing any graph G on n nodes

incurs a cost of at most O
(
R

(
1 + λ

b

)n )
.

Proof. Consider the path that the doubly naive agent takes through G. Let Ri denote the

perceived reward when the agent is at node i and let zi denote the cost of the edge that the agent
takes leaving i . In order for the agent to continue at node i , it must be the case that the perceived

cost is no more than Ri , so bzi ≤ Ri . Since Ri+1 = Ri + λzi , it must be that Ri+1 ≤ Ri (1+ λ/b). �us,

if Rn is the perceived reward when the agent has reached the target, Rn ≤ R0(1 + λ/b)n where

R0 = R. Since Rn − R0 = λ
∑n

i=1 zn , we have
∑n

i=1 zn ≤ R((1 + λ/b)n − 1)/λ = O(R(1 + λ/b)n). �

Next, we show that the above bound is nearly tight.

Claim 8. �ere exists a fan type graph on n nodes (Figure 6) in which a doubly naive agent with

b > 1 and λ > 0 traversing G incurs cost Θ
(
R

(
b(b+λ)
b2+λ

)n )
.

Proof. �e full proof is deferred to Appendix B. Consider the instance in Figure 6 with the

following de�nitions:

xi = y0
b(b − 1)
b2 + λ

(
b(b + λ)
b2 + λ

) i−1
; yi = y0

(
b(b + λ)
b2 + λ

) i
; R = by0

Note that the costs are increasing exponentially with base b(b + λ)/(b2 + λ). Because the perceived
reward is increasing as the agent traverses the graph, it will be willing to continue along the outer

edge of the fan, incurring total cost exponential in the size of the graph. �

It is not always the case that a doubly naive agent does worse than a naive present-biased agent.

As we will see next, sometimes sunk cost bias may actually help the agent reach the goal and

achieve a positive payo�. Next, we bound the possible gain due to sunk cost bias and prove the

following claim:
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Fig. 6. Graph for which doubly naive agent incurs exponential cost

Claim 9. �e payo� of a doubly naive agent can be greater by R(1 − 1

b )) than the payo� of a naive

present-biased agent. �e bound is tight.

Proof. Recall that we would like to prove that the payo� of a doubly naive agent can be greater

by R(1 − 1

b )) than the payo� of a naive present-biased agent. Observe that a naive present-biased

agent and a doubly naive agent will take the exact same path till the point that the naive present-

biased agent abandons. Denote the node at which this happens by vi and the node that the doubly

naive agent will continue to by vi+1. Since the naive present-biased agent abandons we have that

b · c(vi ,vi+1)+Co(vi+1) > R (whereCo(vi ) is the cost of the optimal agent for reaching t from node

vi ). �is in particular implies that c(vi ,vi+1) +Co(vi+1) > R
b . As c(vi ,vi+1) +Co(vi+1) is a lower

bound on the cost of the doubly naive agent for ge�ing from vi+1 to t . We get that the gap between

the two agents is at most R − R
b , since from vi the naive present-biased agent gets a payo� of 0,

and the doubly naive agent gets a payo� of at most R − c(vi ,vi+1) −Co(vi+1) < R − R
b .

�e instance in Figure 7 illustrates this bound is tight. Observe that a naive present-biased agent

will stop traversing the graph at node v as b · c < R. A doubly naive agent will get to t for a total
payo� of R − R+λ ·ε

b − ε = R(1 − 1

b ) − (1 + λ/b)ε .

s v t
ε

R+λ ·ε
b

Fig. 7. For any λ > 0 and R > 0 a doubly naive agent will traverse the graph but a naive agent will abandon
at v .

�

4 SINGLY SOPHISTICATED AGENTS
A singly sophisticated agent is an agent who is sophisticated about its present bias but is naive about

its sunk cost bias. In contrast to sophisticated present-biased agents, singly sophisticated agents

can’t plan their whole path ahead of time, as their beliefs about the reward are time-inconsistent.

Such an agent, for example, can abandon a task, as demonstrated in Figure 8. In this example

a singly sophisticated agent standing at s will plan to follow the path s → u → v → t as it
believes that since the reward is only 11, its future self at v will go straight to t instead of taking

the v → w → t path. However, because of sunk cost bias, once it reaches u its perceived reward is

increased to 12. As a result, it now believes that its future self at v will take the path v → w → t .
When standing at u, the perceived cost of this path is 13 > 12, and hence the agent abandons.
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s u v

w

t
2 4

0

3

6

Fig. 8. For b = 2 and R = 11, a singly sophisticated agent with λ = 1/2 would abandon.

Next, we bound the loss of a singly sophisticated agent in comparison to an optimal agent. We

will later show that this bound is close to tight by pu�ing together many instances similar to the

one in Figure 8 to amplify the sunk cost of a singly sophisticated agent.

Claim 10. �e additive gap between the payo�s of an optimal agent and a singly sophisticated

agent is at most
(1+λ)k−1

λ R + R.

Proof. Recall that a singly sophisticated agent can plan to take one path and then change its

plan. Denote the nodes in which the agent decides to change the path it takes by v1, . . . ,vk and let

s = v0. Denote the cost accumulated between vi−1 and vi by ci−1. Note that between every two

adjacent change points vi−1 and vi the agent behaves the same as a present-biased sophisticated

agent with no sunk cost bias, and hence its cost is less than the perceived reward at node vi , which
we denote by Ri . �us we have that ci ≤ Ri and Ri = Ri−1 + λci−1. Pu�ing this together we get

that Ri ≤ (1 + λ)Ri−1 which implies that Ri ≤ (1 + λ)i · R. Hence,
k∑
j=1

c j ≤
k∑
j=1

(1 + λ)j−1 · R = (1 + λ)
k − 1

λ
· R

�is concludes the claim as the payo� of an optimal agent is at most R. �

In the next claim we show that this gap is essentially tight:

Claim 11. �e additive gap between a singly sophisticated agent with b > 2 and λ > 0 and an

optimal agent can be as high as
(1+α ·λ)n−1

λ R + R(1 − α − 1

b ) where α = min{ 1

2bλ ,
b−1
b2+2λ }.

s v1

u1

t1

w1

v2

u2

t2

w2

t

vn

un

tn

wn

x1 x2

y1

z1

b · z1

0

y2

z2

b · z2

0

0

0 0

. . .

y2

zn

0

b · zn

Fig. 9. A graph in which a singly sophisticated agent incurs an exponential cost
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Proof. Consider the instance in Figure 9. For simplicity, we de�ne the di�erent costs as a

function of the perceived rewards, where as before Ri is the perceived reward at node vi :

xi = α · Ri−1; zi =
Ri−1
b2
+ ε ; yi =

Ri
b
− Ri−1

b2
; R0 = R

We �rst show that a singly sophisticated agent will take the path v1 → v2 → . . .→ vn and then

abandon at vn . In particular at every node vi−1 (for this purpose s = v0) the agent plans to follow

the path vi−1 → vi → ui → ti → t . Once it reaches vi since the perceived reward has increased,

the path vi → ui → ti → t is no longer an option and the only path it can take to get to ti is
vi → ui → wi → ti → t . As the la�er path has a perceived cost greater than the perceived reward,

the agent plans to follow the path vi → vi+1 → ui+1 → ti+1 → t instead.

Lemma 4.1. A (b, λ)-singly sophisticated agent traversing the graph in Figure 9 will follow the path
v1 → v2 → . . .→ vn and then abandon at vn .

Proof. We show that for every i once the agent reaches vi because the perceived reward has

increased the path vi → ui → ti → t is no longer an option and the only path it can take to get

to ti is vi → ui → wi → ti → t which for an agent at vi has a perceived cost greater than the

perceived reward. Note that when the agent is standing at vi−1 its perceived reward is Ri−1 and
that Ri = Ri−1 + λαRi−1 = (1 + αλ)Ri−1 :

• For a reward of Ri−1 an agent at ui will continue to ti - �rst we observe that the perceived

cost of continuing straight to ti is less than Ri−1: b · zi = Ri−1
b + ε < Ri−1. Second,

note that the agent at vi−1 believes that the path ui → wi → ti is not an option since

b2 · zi = Ri−1 + ε · b2 > Ri−1.
• For a reward of Ri−1 an agent at vi will continue to ui - the agent believes that if it will
continue to ui it will then continue to ti and then to t . �e perceived cost of this path is

b · yi + zi = b · (
Ri
b
− Ri−1

b2
) + Ri−1

b2
+ ε

= Ri −
Ri−1
b
+
Ri−1
b2
+ ε

= Ri−1 + αλRi−1 −
Ri−1
b
+
Ri−1
b2
+ ε

≤ Ri−1 + λ · Ri−1 ·
1

2bλ
− Ri−1

b
+
Ri−1
b2
+ ε

= Ri−1 ·
2b2 − b + 2

2b2
+ ε

For b > 2 and an appropriate value of ε the above perceived cost is less than Ri−1. By
construction it is easy to see that the perceived cost of any other path (i.e., continuing from

vi to vi+1) is greater.
• For a reward of Ri−1 an agent at vi−1 will continue to vi :
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– �e perceived cost of the path vi−1 → vi → ui → ti → t is less than Ri−1:

b · xi + yi + zi = b · Ri−1 · xi +
Ri
b
+ ε

= b · xi +
Ri−1 + λxi

b
+ ε

=
Ri−1
b
+ xi

b2 + λ

b
+ ε

=
Ri−1
b
+ αRi−1 ·

b2 + λ

b
+ ε

≤ Ri−1
b
+

b − 1
b2 + 2λ

· b
2 + λ

b
· Ri−1 + ε

�e last expression is less than Ri−1 for an appropriate choice of ε .
– For a reward of Ri−1 an agent at ui−1 will continue towi−1. For this it su�ces to show

that b2zi−1 = Ri−2 + ε < Ri−1.
– For a reward of Ri−1 and an agent atvi−1 the perceived cost of the pathvi−1 → ui−1 →
wi−1 → ti−1 → t is greater than Ri−1:

b · yi−1 + b · zi−1 = b ·
Ri
b
+ b · ε = Ri + bε > Ri−1.

�

To compute the total cost the agent incurred, recall that Ri = Ri−1 + λαRi−1 this implies that

(1 + αλ)i · R. Note that
n∑
i=1

xi =
Rn − R
λ

=
(1 + αλ)n − 1

λ
· R

Lastly, observe that an optimal agent will take the path s → v1 → u1 → t1 → t for a payo� of

R(1 − α − 1

b ). �

To understand the role naivete regarding sunk cost plays in agents that are sophisticated about

their present bias we now compare between the payo� of singly sophisticated agents and doubly

sophisticated agents. By Proposition 2.3 we have that the payo� of a doubly sophisticated agent is

at most an additive amount of (b − 1)Co from the payo� of an optimal agent. Hence by Claim 10 we

have that a singly sophisticated can do worse than a doubly sophisticated agent by an exponential

additive factor. However, in some cases being naive about its sunk cost can actually help the agent

avoid taking a more costly path or reach the target. As the payo� of a doubly sophisticated agent

is at most an additive factor of (b − 1)Co of from the payo� of an optimal agent, even in cases in

which a singly sophisticated agent surpasses a doubly sophisticated one, the payo� of the singly

sophisticated agent is greater by at most (b − 1)Co . �e example in Figure 3 in which a singly

sophisticated agent will behave just as a present-biased sophisticated agent establishes this is tight.

�is proves the following claim:

Claim 12. �e payo� of a singly sophisticated agent can be be�er than the payo� of a doubly

sophisticated agent by an additive amount of (b − 1)Co .

5 CONCLUSION
We have studied the interaction between two behavioral biases that both play an important role in

planning contexts: present bias and sunk-cost bias. We �nd that in conjunction, they give rise to

natural behavioral phenomena that cannot be seen with either in isolation. �rough these biases,
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we also gain new insights about subtleties in the behavior of naive and sophisticated agents. We

show that sophistication about these two biases makes path-planning computationally hard, though

we are still able to provide performance bounds for agents with di�erent forms of sophistication.

�is work leads to several open questions. While we showed that path-planning for doubly

sophisticated agents is NP-hard, we do not know whether or not the problem is in NP. Moreover,

in the case where the reward R exceeds b times the optimal cost — which implies that a feasible

path for the doubly sophisticated agent is guaranteed to exist — is it possible to �nd such a path

e�ciently? We also showed that there exist instances in which singly sophisticated agents incur

exponentially large cost; is there a structural characterization (e.g. a graph minor result) for the

graphs on which singly sophisticated agents incur exponential cost, in the style of [Kleinberg

and Oren, 2014]? More broadly, the rich interplay between these two biases demonstrates how

considering multiple behavioral biases together can yield a wider set of natural phenomena. With

this in mind, we believe there are many further opportunities to enhance theoretical models of

behavior through the analysis of agents with multiple biases.
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A RECURSIVE ALGORITHM FOR DOUBLY SOPHISTICATED PATH COMPUTATION
Let k be an upper bound on the number of possible di�erent values of the costs for reaching a

node. Algorithm 2 recursively computes the path that a doubly sophisticated agent will take. Note

that as the number of subproblems the algorithm need to solve is at most k · n, the algorithm runs

in time polynomial in n and k . Hence, for example, if the number of paths connecting s and t is
polynomial then the path computation problem can be solved in polynomial time.

Algorithm 2 RecursiveIntegerDoublySophisticated(G,R,b, λ)
1: Initialize choices and costs to empty hashmaps

2: procedure ComputePathAndCosts(u, i)
3: if u == t then
4: costs[u, i] = 0

5: return
6: for v ∈ N (u) do
7: if choices[v, i + c(u,v)] is empty then
8: ComputePathAndCosts(v, i + c(u,v))
9: v ← argminv ′∈N (u) b · c(u,v ′) + costs[v ′, i + c(u,v ′)]
10: perceived ← b · c(u,v) + costs[v, i + c(u,v)]
11: if perceived > R + λ · i then
12: choices[u, i] ← null
13: costs[u, i] ← ∞
14: else
15: choices[u, i] ← v
16: costs[u, i] ← c(u,v) + costs[v, i + c(u,v)]
17: ComputePathAndCosts(s, 0)

B SUPPLEMENTARY MATERIAL FOR SECTION 3

Proof of Claim 8. Consider Figure 6 with costs given by

xi = y0
b(b − 1)
b2 + λ

(
b(b + λ)
b2 + λ

) i−1
yi = y0

(
b(b + λ)
b2 + λ

) i
R = by0
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Note that

i∑
j=1

x j = y0
b(b − 1)
b2 + λ

i∑
j=1

(
b(b + λ)
b2 + λ

) j−1
= y0

b(b − 1)
b2 + λ

©­­«
(
b(b+λ)
b2+λ

) i
− 1

b(b+λ)
b2+λ − 1

ª®®¬
= y0

b(b − 1)
b2 + λ

©­­«
(
b(b+λ)
b2+λ

) i
− 1

λ(b−1)
b2+λ

ª®®¬
=
by0
λ

((
b(b + λ)
b2 + λ

) i
− 1

)
(1)

At node vi , the agent has incurred a cost of

∑i
j=1 xi . It must choose between going directly to

t , for a perceived cost of byi , or going to vi+1 and then to t , for a perceived cost of bxi+1 + yi+1.
However, by construction,

bxi+1 + yi+1 = y0

(
b2(b − 1)
b2 + λ

(
b(b + λ)
b2 + λ

) i
+

(
b(b + λ)
b2 + λ

) i+1)
= y0

(
b2(b − 1)
b2 + λ

(
b(b + λ)
b2 + λ

) i
+
b(b + λ)
b2 + λ

(
b(b + λ)
b2 + λ

) i )
= y0

(
b2(b − 1) + b(b + λ)

b2 + λ

(
b(b + λ)
b2 + λ

) i )
= byi

(
b2 − b + b + λ

b2 + λ

)
= byi

Breaking ties by continuing to vi+1, the agent will always prefer to continue along the fan. �e

reward is always large enough to do so, because the perceived reward at vi is

R + λ
i∑
j=1

x j = by0 + by0

((
b(b + λ)
b2 + λ

) i
− 1

)
= by0

(
b(b + λ)
b2 + λ

) i
= byi

= bxi+1 + yi+1
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�us, the total cost incurred by the agent is

n∑
i=1

xi + yn = y0

[
b

λ

((
b(b + λ)
b2 + λ

)n
− 1

)
+

(
b(b + λ)
b2 + λ

)n ]
=
y0
λ

[
(b + λ)

(
b(b + λ)
b2 + λ

)n
− b

]
= Θ

(
R

(
b(b + λ)
b2 + λ

)n)
= Θ

(
R

(
1 +
(b − 1)λ)
b2 + λ

)n)
Note that for this family of examples, a naive present-biased agent with only present bias (or with

λ = 0) would go from s to v1 and then immediately abandon because the perceived cost would be

higher than the reward.
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