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Abstract

The evaluation of a query over a probabilistic database boils down to computing the probability
of a suitable Boolean function, the lineage of the query over the database. The method of query
compilation approaches the task in two stages: first, the query lineage is implemented (compiled)
in a circuit form where probability computation is tractable; and second, the desired probability
is computed over the compiled circuit. A basic theoretical quest in query compilation is that of
identifying pertinent classes of queries whose lineages admit compact representations over increasingly
succinct, tractable circuit classes.

Fostering previous work by Jha and Suciu [20] and Petke and Razgon [31], we focus on queries
whose lineages admit circuit implementations with small treewidth, and investigate their compilability
within tame classes of decision diagrams. In perfect analogy with the characterization of bounded
circuit pathwidth by bounded OBDD width [20], we show that a class of Boolean functions has
bounded circuit treewidth if and only if it has bounded SDD width. Sentential decision diagrams
(SDDs) are central in knowledge compilation, being essentially as tractable as OBDDs [13] but
exponentially more succinct [4]. By incorporating constant width SDDs and polynomial size SDDs,
we refine the panorama of query compilation for unions of conjunctive queries with and without
inequalities [19, 20].

1 Introduction

A basic problem in database theory is query evaluation in probabilistic databases : Given a (Boolean) query
Q and a probabilistic database D, where each tuple has a given probability, compute the probability of
the lineage of Q over D. The problem is computationally hard, even for fixed queries in simple syntactic
forms [17, 10].

The lineage of a (Boolean) query Q over a database D is a monotone Boolean function L(Q,D) over
the tuples in D that accepts a subset D′ of tuples of D if and only if Q is true in D′. A standard approach
to probabilistic query evaluation is query compilation [33, Chapter 5]. Here, the lineage L(Q,D), given
as a Boolean circuit, which is computable in polynomial time if Q is fixed, is implemented within a
succinct circuit class where its probability is efficiently computable. In other words, to avoid computing
the probability of a circuit, which is hard, the circuit is first compiled to a tamer form.

Circuit classes supporting tractable probability computation, and model counting in particular, are
central in knowledge compilation [14]; particular emphasis is posed on the hierarchy of deterministic
decomposable circuits. A circuit is decomposable if its AND gates represent independent probabilistic
events [11], and deterministic if its OR gates represent exclusive probabilistic events [12]: probability
computation is then feasible in linear time on deterministic decomposable circuits.

Aimed at a detailed syntactic classification of tractable cases of probabilistic query evaluation, Jha and
Suciu amply explored the compilability of various classes of queries into various classes of deterministic
decomposable circuits, fruitfully bridging database theory and knowledge compilation [19, 21]. In this
context, they studied the compilability of queries whose lineages have small circuit treewidth into decision
diagrams, OBDDs in particular [20]; a study we continue in this article.

An ordered binary decision diagram (OBDD) is a deterministic read-once branching program where
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every path from the root to a leaf visits the Boolean variables in the same order [7].1 The OBDD size of
a Boolean function is the size (number of nodes) of its smallest OBDD implementation. The width of an
OBDD is the largest number of nodes labeled by the same variable, and the OBDD width of a Boolean
function is the smallest width attained by its OBDD implementations.

Unifying several known tractable cases of the probability computation problem, Jha and Suciu
introduce a structural parameter for Boolean functions, called expression width [20] or circuit treewidth
[31], that measures, for any Boolean function, the smallest treewidth of a circuit computing the function.
They show that a Boolean function of n variables and circuit treewidth k has OBDD size

nO(f(k)) (1)

where f is a fast growing (double exponential) function [20]. The bound is tight in the sense that there
are Boolean functions of n variables and circuit treewidth k whose OBDD size is nΩ(k) [29].2

The bound (1) gives polynomial size OBDD implementations for circuits of bounded treewidth, but
the degree of the polynomial depends (badly) on the treewidth. However, as Jha and Suciu show [20],
restricting to functions of small circuit pathwidth resolves this issue. Indeed, a Boolean function of n
variables and circuit pathwidth k has OBDD width f(k), hence OBDD size

O(f(k)n); (2)

and conversely, every Boolean function of OBDD width k has circuit pathwidth O(k). Therefore, a class
of Boolean functions has bounded circuit pathwidth if and only if it has bounded OBDD width.

As Jha and Suciu conclude, the quest naturally arises for a similar characterization of bounded circuit
treewidth. The quest involves, for starters, identifying a circuit class ideally as tractable as OBDDs but
more succinct, and therefore capable of matching the bound (2). Natural candidates, like FBDDs or
even nondeterministic read-once branching programs fail [30].

The question is natural and nontrivial. Compared to the substantial understanding of the compilability
of CNF circuits parameterized by treewidth, or even cliquewidth [5, 24], the parameterized compilability
of general circuits is relatively unexplored and poorly understood; which is unsatisfactory because, in
theory, the circuit treewidth of a class of Boolean functions can be bounded on general circuits and
unbounded on CNFs [20, Example 2.9]; and in practice, query lineages are often presented by circuits
rather than by CNFs [18].

The only bound on the size of a compilation for a circuit that avoids a dependence on its treewidth in
the exponent,3 like in (2) as opposed to (1), is a compilation of size m circuits into decomposable forms
of size

O(g(k)m) (3)

by Petke and Razgon [31], where g is an exponential function. This compilation, however, lacks two
features that are either needed by or desirable in its intended application to query compilation. The
crucial missing feature is that decomposable circuits, in the absence of determinism, do not support
model counting (nor, then, probability computation). Besides, in the upper bound (3), the size of the
compilation depends on the size of the circuit, m, not just on the number of its variables, n, and the
former can be much larger than the latter. Indeed, Petke and Razgon ask whether decomposable forms
of size linear in n are attainable for circuits of bounded treewidth [31, Section 5].

Contribution

In the first part of the article (Section 3), we show that a class of Boolean functions has bounded circuit
treewidth if and only if it has bounded SDD width, which perfectly complements the aforementioned
characterization of circuit pathwidth via OBDD width by Jha and Suciu.

More precisely, we prove the following (Theorem 4 and surrounding discussion).

1OBDDs are deterministic decomposable circuits.
2The lower bound holds even for primal treewidth, which is (unboundedly) larger than circuit treewidth.
3A special case where such a compilation is available is that of lineages of an MSO query over databases of bounded

treewidth, which have linear size deterministic decomposable forms [1, 2].
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OBDD(nO(1))

SDD(nO(1))

OBDD(O(1)) = CPW(O(1))

SDD(O(1)) = CTW(O(1))

Figure 1: Boolean functions.

Result 1. A Boolean circuit of n variables and treewidth k has SDD width f(k), thus SDD size

O(f(k)n), (4)

where f is a triple exponential function. Conversely, every Boolean function of SDD width k has
circuit treewidth O(k).

Introduced by Darwiche [13], sentential decision diagrams (SDDs) are a relaxation of OBDDs
based on a generalized form of Shannon decomposition. An OBDD respecting the variable ordering
x1 < x2 < · · · < xn takes a binary decision of the form (x1 ∧ S1) ∨ (¬x1 ∧ S2), where S1 and S2 are
OBDDs respecting the variable ordering x2 < · · · < xn. Intuitively, based on a binary case distinction on
x1, the OBDD executes subOBDDs respecting the subordering x2 < · · · < xn. An SDD respecting the
variable tree T , whose left and right subtrees split the variables in two disjoint blocks X and Y , takes a
sentential decision of the form

∨m
i=1(Pi(X) ∧ Si(Y )). Here, based on an m-ary (exhaustive and disjoint)

case distinction on X, implemented by the m SDDs Pi(X) respecting the left subtree of T , the m SDDs
Si(Y ) respecting the right subtree of T are executed.

SDDs are theoretically very robust, being essentially as tractable as OBDDs [13, 15] but exponentially
more succinct [4]. They are also appealing in practice since an SDD compiler is reasonable to design and
implement (as opposed to an FBDD compiler for instance, whose design is already fairly elusive). Indeed,
available SDDs compilers already yield more succinct SDDs than OBDDs, leveraging the additional
flexibility offered by variable trees compared to variable orders [8, 26]. Moreover, SDDs have canonical
forms, and hence carry a natural notion of width which in particular implies, if bounded, linear size
implementations, exactly as OBDD width does for OBDDs [13]. Thus, quite remarkably, our study
unveils that circuit treewidth is characterized by an independently introduced, theoretically solid, and
practically useful notion of circuit width, namely, SDD width.4

Figure 1 illustrates the compilability panorama for Boolean functions relative to bounded circuit
pathwidth/OBDD width, bounded circuit treewidth/SDD width, and polynomial OBDD and SDD size.
The class OBDD(f(n)) contains all Boolean functions of OBDD width f(n), and similarly for SDDs; the
class CTW(f(n)) contains all Boolean functions of circuit treewidth f(n), and similarly for CPW and

4SDDs were not even a natural candidate as, until recently [4], they were conjectured to be quasipolynomially simulated
by OBDDs (personal communication with Vincent Liew).
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SDD(nO(1))

SDD(O(1)) = CTW(O(1))

OBDD(O(1)) = CPW(O(1))

OBDD(nO(1))

Figure 2: Lineages of UCQs. The gray region is empty.

circuit pathwidth. We have

CPW(O(1)) = OBDD(O(1)) [20]

( CTW(O(1)) [20]

= SDD(O(1)) Result 1

( OBDD(nO(1)) [20]

( SDD(nO(1)) [4]

Jha and Suciu leave open the question whether the circuit treewidth of a Boolean function is
computable [20, Section 6]. Using the fact that satisfiability of MSO-sentences is decidable on graphs of
bounded treewidth [32], we answer the question positively (Proposition 1).

Result 2. The circuit treewidth of a Boolean function is computable.

In the second part of the article (Section 4), we study the implications of our compilability results in
query compilation, refining the picture drawn by Jha and Suciu for unions of conjunctive queries (UCQs)
with and without inequalities [19, 20].

We prove the following statement (Theorem 5).

Result 3. A union of conjunctive queries with or without inequalities containing inversions has lineages
of exponential deterministic structured size.

Introduced by Dalvi and Suciu [9], inversion freeness is a syntactic property of UCQs and UCQs
with inequalities that implies compilability of their lineages in constant width (linear size) OBDDs and
polynomial size OBDDs [19, 20]. On the other hand, if a query contains inversions, then it has lineages
with large OBDD [19, 20], and even SDD [3], implementations.

Structuredness is a strong form of decomposability where not only for every AND gate the circuits
leading into the gate are defined on disjoint sets of variables [11], but their variables are partitioned
accordingly to an underlying variable tree [27].

As alluded in their informal description above, SDDs as well as OBDDs are special deterministic
structured forms. Therefore Result 3 formally generalizes analogous previous incompilability results
for SDDs and OBDDs [3, 19]. The proof has the main and sole merit to combine proof ideas of Jha
and Suciu together with lower bound techniques for deterministic structured circuits based on single
partition communication complexity [3, 6].

A careful inspection of the proof shows that Result 3 also exponentially separates disjunctive normal
forms (DNFs), and even prime implicant forms (IPs), from structured deterministic negation normal
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SDD(nO(1))

OBDD(nO(1))

OBDD(O(1)) = CPW(O(1))

SDD(O(1)) = CTW(O(1))

Figure 3: Lineages of UCQs with inequalities. The gray region is empty, and the light gray region is
conjectured empty.

forms (NNFs). In this interpretation Result 3 settles a special case of the much harder problem of
separating DNFs (and IPs) and deterministic decomposable NNFs (d-DNNFs); which, thanks to the
recently established separation of decomposable NNFs (DNNFs) and d-DNNFs [6], is the last open
question about the relative succinctness of the compilation languages considered in the classic article by
Darwiche and Marquis [14].

Figure 2 and Figure 3 give an overview of query compilability for lineages of UCQs with and without
inequalities. For lineages of UCQs we have that

OBDD(O(1)) = SDD(O(1))

= OBDD(nO(1)) = SDD(nO(1))

because by Result 3 inversions imply large structured deterministic forms, hence large SDDs; on the other
hand, inversion freeness implies constant width OBDDs [19], so that SDD(nO(1)) \OBDD(O(1)) = ∅.

The picture for lineages of UCQs with inequalities is

OBDD(O(1)) ⊆ SDD(O(1))

( OBDD(nO(1)) = SDD(nO(1))

because again Result 3 implies large SDDs in the presence of inversions, and inversion freeness implies
polynomial size OBDDs [20]; thus SDD(nO(1))\OBDD(nO(1)) = ∅. In a symmetric fashion, Jha and Suciu
conjecture that, for lineages of UCQs with inequalities, it also holds that SDD(O(1)) \OBDD(O(1)) = ∅.

Discussion

Our bound (4) amounts to a vast improvement of the available bounds. Compared to (1), it attains linear
size versus (large degree) polynomial size compilation on bounded circuit treewidth classes. Compared to
(3), it answers abundantly the quest for linear size decomposable forms for Boolean functions of bounded
treewidth: our forms are not just linear size and decomposable, but even deterministic and structured.

Pushing the dependency of the compilation size down from m (the size of the given circuit, as in (3))
to n (the number of its inputs, as in (4)) required an entirely new compilation idea.5

The idea used by Petke and Razgon [31] to obtain (3) was the following. Given a circuit C(X) of
n = |X| variables and m = |Z| gates, first compute its Tseitin CNF T (X,Z); the circuit treewidth of the

5This aspect of the bound, at first sight pedantic, is indeed relevant in query compilation, where the number n of
Boolean variables of the query lineage L(Q,D) is the (large) number of tuples in the database D, and m is the size of the
circuit implementation of L(Q,D). Roughly m = O(nq), where q is the size of the query Q. Hence, avoiding a dependence
on m means obtaining a bound where the degree of the polynomial is a universal constant, not just independent of the
circuit treewidth of L(Q,D), but also independent of Q.
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latter is (linearly) related to the former. To obtain a decomposable form for C(X), existentially quantify
the (gate) variables Z in a decomposable form DT (X,Z) for T (X,Z):

C(X) ≡ (∃Z)DT (X,Z)

This indirect approach via Tseitin forms, however, introduces two critical issues. On the one hand,
the size of DT (X,Z) depends on |Z| = m, so that the size of the compiled form will depend on m (as
opposed to depending on n only). On the other hand, for (∃Z)DT (X,Z) to have size polynomial in
that of DT (X,Z), the latter cannot be deterministic [14]; hence the resulting compiled form will not be
deterministic either.

Our compilation approach avoids Tseitin forms and compiles the circuit directly; it relies on a new
insight on Boolean functions, and more specifically on the combinatorics of their subfunctions or cofactors
[34].

Dually to the notion of cofactor, we introduce (Definition 1) the notion of factor of a Boolean function
F (Y, Y ′), that is, a function G(Y ) whose models correspond exactly to the assignments of Y generating
some cofactor of F . We then show (Lemma 2) that first, the rectangle R formed by multiplying any two
factors G(Y ) and G′(Y ′) of F (Y, Y ′) is either disjoint from F , that is F ∧ R ≡ ⊥, or contained in F ,
that is R |= F .6 And second (Lemma 3), the pairs of factors G(Y ) and G′(Y ′) of F (Y, Y ′) satisfying the
latter condition, call them implicants, form a disjoint rectangle cover of F , that is,

F ≡
∨

(G,G′) implicant

(G(Y ) ∧G′(Y ′)),

where the disjunction is deterministic and the conjunctions are decomposable (structured, indeed).
We then elaborate on the main technical lemma of Jha and Suciu [20, Lemma 2.12] to turn the above

structural insight into a compilation of small size. We show that a circuit of small treewidth computing a
function F naturally delivers a variable tree where the number of cofactors of F generated by assigning
the variables below every node in the tree is small (Lemma 1). It follows that the disjoint rectangle
covers described above are small for every factor of F ; we then obtain the desired compilation by an
inductive construction up the variable tree (Lemma 4 and Theorem 3).

Indeed Result 1 is proved for a more basic canonical deterministic structured class of circuits
(Theorem 3 and Proposition 2), which is equivalent to SDDs as far as the boundedness of their widths,
and reduces to OBDDs in the special case of linear variable trees; the class is of independent interest
and gives a fresh structural insight into SDDs (see also the conclusion).

Our construction, significantly shorter to describe and easier to analyze than its precursors, effectively
encompasses the construction by Jha and Suciu in that, if carried out in the special case of circuit
pathwidth, it compiles a circuit of n variables and pathwidth k into an OBDD (not just an SDD) of
width f(k) and size O(f(k)n).

Organization

The article is organized as follows. The required notions from knowledge compilation and communication
complexity are given in Section 2. The part of the article devoted to circuit treewidth and sentential
decision (Section 3) deals first with the introduction and the development of the notion of factor and factor
width for a Boolean function, and the relation of the latter with circuit treewidth (Section 3.1); next, it
presents the actual compilations in canonical deterministic structured NNFs and SDDs (Section 3.2).
Section 4 is devoted to query compilation. We present questions and directions for future research in
Section 5.

2 Preliminaries

For every integer n ≥ 1, we let [n] = {1, . . . , n}. We refer the reader to a standard source for the notions
of treewidth, tree decomposition, and nice tree decomposition [23].

6The product of G(Y ) and G′(Y ′) is a Boolean function over Y ∪ Y ′ whose models are exactly those assignments of
Y ∪ Y ′ whose restriction to Y (Y ′) models G (G′).
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2.1 Circuits, Determinism, Structuredness

We consider (Boolean) circuits over the standard basis, namely DAGs whose non-source nodes, called
internal gates, are unbounded fanin conjunction (∧) and disjunction (∨) gates and fanin 1 negation (¬)
gates, and whose source nodes, called input gates, are pairwise distinct variables or constants (⊥ and >).
A designated sink node is called the output gate. A circuit is in negation normal form, in short an NNF,
if its negation gates are only wired by input gates. The size |C| of a circuit C is the number of its gates.

Let X be a finite set of variables. A circuit C over X is a circuit whose input gates are labelled by
variables in X or by constants. A circuit C on X computes a Boolean function FC = FC(X) over the
Boolean variables X,

FC : {0, 1}X → {0, 1},
in the usual way. We let

sat(C) = sat(FC) = F−1
C (1) ⊆ {0, 1}X

denote the models of C and FC . Two circuits C and C ′ over X are equivalent, in symbols C ≡ C ′, if
sat(C) = sat(C ′); we also write C ≡ F or say that C computes F if FC = F .

For a gate g in a circuit C over X, we let Cg denote the subcircuit of C rooted at g. In particular,
Cg = C if g is the output gate of C. For a circuit C over variables X and a gate g ∈ C, we let var(Cg) ⊆ X
denote the variables appearing at input gates of Cg.

Let g be an ∨-gate in a circuit C, and let h and h′ be two distinct gates wiring g in C. Then g is
called deterministic if sat(Ch) ∩ sat(Ch′) = ∅, viewing each circuit involved in the equation as a circuit
over var(C). The determinism of g in C implies that the two subcircuits Ch and Ch′ are “independent”
in the sense that

|sat(Ch ∨ Ch′)| = |sat(Ch)|+ |sat(Ch′)|,
where each circuit involved in the equation is viewed as a circuit over var(C). A circuit where all ∨-gates
are deterministic is called deterministic.

Let Y be a finite nonempty set of variables. A variable tree (in short, a vtree) for the variable set Y
is a rooted, ordered, binary tree T whose leaves correspond bijectively to Y ; for simplicity, we identify
each leaf in T with the variable in Y it corresponds to. For technical convenience, we slightly relax the
standard definition not requiring for a vtree to be a full binary tree.

For every internal node v of the vtree T with two children, we let vl and vr denote resp. the left and
right child of v. Moreover, we denote by Tv the subtree of T rooted at node v, and by Yv ⊆ Y (the
variables corresponding to) the leaves of Tv.

Let C be a circuit over the variable set X, and let T be a vtree for the variable set Y . Let g be a
fanin 2 ∧-gate in C, having wires from gates h and h′, and let v ∈ T have two children vl and vr. We
say that g is structured by v if var(Ch) ⊆ Yvl and var(Ch′) ⊆ Yvr . We say that C structured by T if each
∧-gate in C (has fanin 2 and) is structured by some node in T . A circuit is called structured if it is
structured by some vtree.

A class of structured NNFs is canonical if, for every Boolean function F (X) and vtree T (Y ) with
X ⊆ Y , if two circuits C and C ′ in the class both compute F and are structured by T , then they are
syntactically equal (not just semantically equivalent).

Note that if a gate g ∈ C is structured, then it is also decomposable, i.e., every two distinct gates
h and h′ wiring g satisfy var(Ch) ∩ var(Ch′) = ∅. The decomposability of g in C implies that the two
subcircuits Ch and Ch′ are “independent” in the sense that

|sat(Ch ∧ Ch′)| = |sat(Ch)| · |sat(Ch′)|,

when viewing each circuit involved in the equation as a circuit over its own variables.
A sentential decision diagram, in short SDD, is a deterministic structured NNF C over X of the form∨

i∈[m]

(Pi ∧ Si), (5)

structured by a vtree T (Y ), X ⊆ Y , such that the following holds. There exists a node v ∈ T with two
children w and w′ structuring each ∧-gate appearing in (5), the Pi’s are SDDs over Yw structured by Tw,
the Si’s are SDDs over Yw′ structured by Tw′ , and moreover:
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(1)
∨

i∈[m] Pi ≡ >;

(2) Pi ∧ Pj ≡ ⊥ for all i 6= j in [m].

Constants (⊥ and >) are SDDs (over any variable set) structured by any vtree, and a literal (x or ¬x)
is an SDD (over any variable set containing x) structured by any vtree containing x. SDDs become
canonical forms if, in addition to the above, the following holds [13]:

(3) Si 6≡ Sj for all i 6= j in [m].

2.2 Rectangles, Covers, Complexity

Let X be a finite set of variables. A partition of X is a sequence of pairwise disjoint subsets (blocks) of
X whose union is X. Let (X1, X2) be a partition of X. For b1 : X1 → {0, 1} and b2 : X2 → {0, 1}, we let
b1 ∪ b2 : X1 ∪X2 → {0, 1} denote the assignment of X whose restriction to Xi equals bi for i = 1, 2. Also,
for B1 ⊆ {0, 1}X1 and B2 ⊆ {0, 1}X2 , we let B1 ×B2 = {b1 ∪ b2 : b1 ∈ B1, b2 ∈ B2}. A (combinatorial)
rectangle over X is a Boolean function R = R(X) : {0, 1}X → {0, 1} over the Boolean variables X such
that there exist a partition (X1, X2) of X and Boolean functions Ri : {0, 1}Xi → {0, 1} for i = 1, 2 such
that sat(R) = sat(R1)× sat(R2). We also call a subset S of {0, 1}X a rectangle over X, with underlying
partition (X1, X2), if there exists a rectangle R : {0, 1}X → {0, 1}, with underlying partition (X1, X2),
such that S = sat(R).

Let F = F (X) be a Boolean function over the Boolean variables X. A finite set {Ri : i ∈ [m]} of
rectangles over X is called a rectangle cover of F if

sat(F ) =
⋃

i∈[m]

sat(Ri); (6)

the rectangle cover is called disjoint if the union in (6) is disjoint. Disjoint rectangle covers and
deterministic structured NNFs are tightly related.

Theorem 1. [28, 6] Let C be a (deterministic) structured NNF computing a function F = F (X) and
respecting a vtree T for X. For every node v ∈ T , F has a (disjoint) rectangle cover of size at most |C|
where each rectangle has underlying partition (Xv, X \Xv).

Let F (X) be a Boolean function, and let (X1, X2) be a partition of X where |X1| = |X2| = n. The
communication matrix of F relative to (X1, X2), denoted by cm(F,X1, X2) is a Boolean matrix whose
rows and columns are indexed by Boolean assignments of X1 and X2, resp., and whose (b1, b2)th entry
equals F (b1 ∪ b2). We regard communication matrices as matrices over the reals.

A basic fact in communication complexity is that the rank of the communication matrix is a lower
bound on the size of disjoint rectangle covers of a function.

Theorem 2. [22, Section 4.1] Let (X1, X2) be a partition of the variables of a function F , where
|X1| = |X2| = n. Every disjoint rectangle cover of F into rectangles with underlying partition (X1, X2)
contains at least rank(cm(F,X1, X2)) rectangles.

A typical application of the above statement is the disjointness function,

Dn(Xn, Yn) = (¬x1 ∨ ¬y1) ∧ · · · ∧ (¬xn ∨ ¬yn), (7)

where Xn = {x1, . . . , xn} and Yn = {y1, . . . , yn}. It is folklore that

rank(cm(Dn, Xn, Yn)) = 2n, (8)

i.e., the communication matrix of Dn relative to (Xn, Yn) has full rank [22, Exercise 7.1]. Thus every
disjoint rectangle cover of Dn into rectangles with underlying partition (Xn, Yn) has at least 2n rectangles.
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3 Circuit Treewidth

In this section, we introduce the notion of factor width of a Boolean function, relate it with its circuit
treewidth, and show that, when parameterized by its factor width, a Boolean function admits a linear
size compilation into some natural classes of canonical deterministic structured NNFs (including SDDs).

3.1 Factor Width and Circuit Treewidth

We introduce the notion of factor width, and recall from the literature the notion of circuit treewidth [20].
Let F (X) = F : {0, 1}X → {0, 1} be a Boolean function over a finite set of variables X. For a set of

variables Y we use the notation
F (X) = F (Y ∩X,X \ Y )

to display a partition of the variables of F into the two blocks Y ∩X and X \ Y . It is intended that if
b : Y ∩X → {0, 1} and b′ : X \ Y → {0, 1}, then F (b, b′) = F (b ∪ b′).

The cofactor (or subfunction) of F induced by b : Y ∩ X → {0, 1} is the Boolean function F ′ =
F ′(X \ Y ) = F ′ : {0, 1}X\Y → {0, 1} such that

F ′(b′) = F (b, b′),

for all b′ : X \ Y → {0, 1}. A function F ′′(X \ Y ) is called a cofactor of F (X) relative to X \ Y if it is
equal to the cofactor of F induced by some b : Y ∩X → {0, 1}.

Example 1. Let F (x, y) = x → y be Boolean implication, i.e. F (b, b′) = 1 iff b ≤ b′, for all b, b′ ∈
{0, 1}. The cofactors of F relative to y, induced by Boolean assignments of x, are F (0, y) ≡ >(y) and
F (1, y) ≡ y. The cofactors of F relative to x, induced by Boolean assignments of y, are F (x, 0) ≡ ¬x
and F (x, 1) ≡ >(x). The cofactors of F induced by Boolean assignments of both x and y are F (1, 0) ≡ ⊥
and F (0, 0) = F (0, 1) = F (1, 1) ≡ >. The only cofactor of F induced by Boolean assignments of no
variables is F (x, y) itself.

We introduce notation to denote the cofactor of a Boolean function F (X) generated by replacing, in
a partition of X, the variables in certain blocks by constants. Let {Y1, . . . , Yl} be a partition of X, let
L ⊆ [l], and let bi : Yi → {0, 1} for all i ∈ L. We write F (B1, . . . , Bl) where Bi = bi if i ∈ L and Bi = Yi
otherwise, for all i ∈ [l], to denote the cofactor of F induced by

⋃
i∈L bi, i.e. the Boolean function over

the variables
⋃

i∈[l]\L Yi defined, for every
⋃

i∈[l]\L(bi : Yi → {0, 1}), by⋃
i∈[l]\L

bi 7→ F (b1, . . . , bl).

Example 2. Let F be as in Example 1, so that F = F (X) for X = {x, y}. Let Y = {x}. We write
F = F (X) = F (Y,X \ Y ). Let b : Y → {0, 1}. We write F (b,X \ Y ) to denote the cofactor of F relative
to X \ Y induced by b. If b(x) = 0, then F (b,X \ Y ) ≡ >(y).

Let Y ⊆ X. Intuitively, a factor of F (Y,X \ Y ) is a function G(Y ) whose models correspond exactly
to the assignments of Y that induce some fixed cofactor F ′(X \ Y ) of F .

Definition 1. Let Y and X be finite sets of variables and let F (X) = F (Y ∩X,X \ Y ) be a Boolean
function. A Boolean function G = G(Y ∩X) = G : {0, 1}Y ∩X → {0, 1} is called a factor of F (X) relative
to Y if there exists a cofactor F ′ = F ′(X \ Y ) of F such that

b ∈ sat(G)⇐⇒ F (b,X \ Y ) = F ′.

The factors of F relative to Y are denoted by factors(F, Y ).

Example 3. Let F (x, y) = x→ y be Boolean implication as in Example 1. The function G(x) ≡ x is a
factor of F relative to x, because there exists a cofactor of F relative to y, namely F ′(y) ≡ y, such that
b |= G(x) iff F (b, y) = F ′(y). The function G(x) ≡ ¬x is a factor of F relative to x, because there exists
a cofactor of F relative to y, namely F ′(y) ≡ >(y), such that b |= G(x) iff F (b, y) = F ′(y).

9



Note that cofactors and factors of a Boolean function relative to a variable set are, in general, distinct.7

Example 4. Let F (x, y) = x→ y be Boolean implication as in Example 1. Then G(x) ≡ x is a factor
of F relative to x (Example 3), but it is not a cofactor of F relative to x, since the only cofactors of F
relative to x are equivalent to ¬x and >(x) (Example 1).

Note that, by Definition 1,
factors(F, Y ) = factors(F, Y ∩X), (9)

but we insist on Y being an arbitrary set of variables for technical convenience. Moreover, again by
Definition 1,

{0, 1}Y ∩X =
⋃

G∈factors(F,Y )

sat(G) (10)

and the union is disjoint. In words, factors(F, Y ) naturally determines a partition of {0, 1}Y ∩X whose
blocks, of the form sat(G) for G ∈ factors(F, Y ), correspond to the cofactors of F relative to X \ Y .

Finally, we introduce the notion of factor width of a Boolean function.

Definition 2. Let F = F (X) be a Boolean function and let T be a vtree for Z ⊇ X. The factor width
of F relative to T , in symbols fw(F, T ), is defined by

fw(F, T ) = max
v∈T
|factors(F,Zv)|.

The factor width of F is defined by

fw(F ) = min{fw(F, T ) : T vtree for Z ⊇ X}.

The treewidth of a circuit C, in symbols tw(C), is the treewidth of the undirected graph underlying
(the directed acyclic graph underlying) C. The circuit treewidth ctw(F ) of a Boolean function F is the
minimum treewidth of a circuit computing F .

A crucial fact in our development is that the factor width of a Boolean function is bounded above by
a function of its circuit treewidth. The proof is a revisitation of [20, Lemma 2.12].

Lemma 1. For all Boolean functions F ,

fw(F ) ≤ 2(ctw(F )+2)2ctw(F )+1

.

Proof. Let C be a treewidth k − 1 circuit computing the Boolean function F (X). Let S be a nice tree
decomposition of the gates of C, witnessing treewidth k − 1; without loss of generality, the root of S is
the empty bag, therefore each input gate of C (i.e., each variable in X) is forgotten exactly once in S.

We associate to S a vtree T for X as follows. Let W be a set of fresh variables in a bijective
correspondence with the leaves of S. Label the leaves of S by pairwise distinct (dummy) variables in W .
For every variable x ∈ X, append a fresh leaf labelled x to the node forgetting x in S. The resulting tree
T is a vtree for X ∪W ⊇ X.

For every v ∈ T , let Xv denote the variables in X appearing in Tv (or equivalently, the variables in
Tv that are not dummy variables). In light of (9), to show that

fw(F, T ) ≤ 2(k+1)2k

it is sufficient to prove that |factors(F,Xv)| matches the bound for all v ∈ T .
If v is a leaf in T , then Xv = {x} for some x ∈ X and |factors(F,Xv)| ≤ 2, or v is labelled by some

dummy variable in W , so that Xv = ∅ and |factors(F,Xv)| = 1. Otherwise v is a bag B in S and in this
case Xv contains the variables in X forgotten by nodes in the subtree of S rooted at v.

For a gate g in C, let K(g) ⊆ B be the gates in B with a directed path to g in (the DAG underlying)
C whose intermediate gates are not in B. Namely, h ∈ K(g) iff h ∈ B and there exists a directed path

h
C→ h1

C→ · · · C→ hm
C→ g

7Exceptions include the parity function.
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in the DAG underlying C such that {h1, . . . , hm} ∩B = ∅.
Let g be a gate in C. We freely identify Cg, the subcircuit of C rooted at g, with the Boolean function

on X it computes.

Claim 1. For every g ∈ C, it holds that

|factors(Cg, Xv)| ≤ 22|K(g)| ∏
h∈K(g)

|factors(Ch, Xv)|. (11)

Proof of Claim 1. Let Z = {zh : h ∈ K(g)} be a set of fresh variables. Let C ′g denote the circuit obtained
from Cg by transforming each gate h ∈ K(g) into an input gate labelled by the variable zh ∈ Z. We
distinguish two cases depending on whether or not g is in B.

If g 6∈ B, then observe that var(C ′g) ⊆ Xv ∪ Z, or var(C ′g) ⊆ (X \ Xv) ∪ Z; otherwise, if C ′g uses
variables in both Xv and X \Xv then, in the graph underlying C, there exists a path from Xv to X \Xv

not intersecting B, contradicting the properties of S.
If var(C ′g) ⊆ Xv ∪ Z then, for every b : Xv → {0, 1}, C ′g(b) is a function of Z among at most

22|Z| = 22|K(g)|

possibilities. Otherwise, if var(C ′g) ⊆ (X \Xv) ∪ Z, then every b : Xv → {0, 1} yields the same function
C ′g(b) = C ′g of (X \Xv) ∪ Z. Since each variable zh ∈ Z in C ′g represents the subcircuit Ch of C for
h ∈ K(g), it follows that

|factors(Cg, Xv)| ≤ 22|K(g)| ∏
h∈K(g)

|factors(Ch, Xv)|.

If g ∈ B, then each proper subcircuit of C ′g uses only variables in Xv ∪ Z or only variables in
(X \ Xv) ∪ Z; otherwise we obtain a contradiction as above. Let G1, . . . , Gm and H1, . . . ,Hl be a
bipartition of the immediate subcircuits of C ′g such that the Gi’s only use variables in Xv ∪ Z and the
Hi’s only use variables in (X \Xv) ∪ Z.

If g is an ∧-gate, then
C ′g ≡ (G1 ∧ · · · ∧Gm) ∧ (H1 ∧ · · · ∧Hl).

For every b : Xv → {0, 1}, (G1 ∧ · · · ∧ Gm)(b) is a function Gb over Z; on the other hand, every
b : Xv → {0, 1} yields the same function H over (X \Xv) ∪ Z, namely H1 ∧ · · · ∧Hl. Therefore, for all
b : Xv → {0, 1}, C ′g(b) is a function over (X \Xv) ∪ Z of the form

Gb ∧H,

where Gb is a function over Z, so that

|{C ′g(b) : b ∈ {0, 1}Xv}| ≤ 22|Z| .

Recalling that each variable zh ∈ Z in C ′g represents the subcircuit Ch of C for h ∈ K(g), we have

|factors(Cg, Xv)| ≤ 22|K(g)| ∏
h∈K(g)

|factors(Ch, Xv)|.

The cases where g is a ∨-gate or a ¬-gate are similar, and the claim is proved.

For all g ∈ C, let L(g) = (Cg \ {g}) ∩B. By induction on |L(g)| ≥ 0 we prove that for all g ∈ B it
holds that

|factors(Cg, Xv)| ≤ 22|L(g)|
. (12)

For the base case, let g ∈ B be such that |L(g)| = 0. Then

|factors(Cg, Xv)| ≤ 220

· 1 = 22|L(g)|
,

11



where the first inequality holds by (11) as K(g) = ∅ in this case.
For the inductive case, let g ∈ B be such that |L(g)| ≥ 1. Then, resp. by (11) and the induction

hypothesis as |L(h)| < |L(g)| for all h ∈ K(g),

|factors(Cg, Xv)| ≤ 22|K(g)| ∏
h∈K(g)

|factors(Ch, Xv)|

≤ 22|K(g)| ∏
h∈K(g)

22|L(h)|
.

But
22|K(g)| ∏

h∈K(g)

22|L(h)|
≤ 22

|K(g)|+
∑

h∈K(g) |L(h)|
≤ 22|L(g)|

where |K(g)|+
∑

h∈K(g) |L(h)| ≤ |L(g)| justifies the last inequality.
We now conclude the proof. Let g be the output gate of C, i.e., C = Cg. Then, justifying the first

and second inequalities resp. by (11) and by (12), K(g) ⊆ B and |B| ≤ k,

|factors(F,Xv)| = |factors(Cg, Xv)|

≤ 22|K(g)| ∏
h∈K(g)

|factors(Ch, Xv)|

≤ 22k
(

22k
)k

= 2(k+1)2k

,

and we are done.

We conclude the section observing that circuit treewidth is computable, thus answering a question
posed by Jha and Suciu [20, Section 6].

Proposition 1. The circuit treewidth of a Boolean function is computable.

Proof. Let X = {x1, . . . , xn} be a variable set. Say that a graph (with loops) G implements a circuit
over X iff there exists a circuit C over X such that G is (isomorphic to) the graph whose edge set E is
defined relative to C as follows:

• For every wire g → g′ in C, add to E a path {g, h}, {h, h′}, {h′, g′} from g to g′ with a loop on h′,
where h and h′ are fresh vertices.

• Add to E a loop on the output gate g of C.

• Let

(◦, j) ∈ {(x1, 1), . . . , (xn, n), (⊥, n+ 1), (>, n+ 2)}
∪ {(¬, n+ 3), (∧, n+ 4), (∨, n+ 5)}.

For every ◦-gate g in C, add to E a j-star {g, h1}, . . ., {g, hj} centered at g, where h1, . . . , hj are
fresh vertices.

Intuitively a graph (with loops) G implementing a circuit C is a faithful representation of C in
the vocabulary of graphs, where the arcs and labels used to represent C in the vocabulary of circuits
are suitably expressed by edges (and loops). Let F be a Boolean function over X. It is a tedious but
straightforward exercise to write an MSO sentence φF that is true on a graph (with loops) G iff G
implements a circuit C on X computing F (X) [16, Examples 4.10, 4.13, and 4.18].8

Also note that, if the graph (with loops) G implements a circuit C, then the treewidth of G is equal
to the treewidth of C. Now, let k be an upper bound on the circuit treewidth of F (for instance, the

8Recall that a (finite) digraph is acyclic iff every induced subgraph has a source and a sink.
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treewidth of the DNF whose terms are exactly the models of F ). Seese proves that, given an MSO
sentence on the vocabulary of graphs, it is decidable whether it is satisfied by a graph (with loops) of
treewidth k [32]. We therefore cycle for i = 1, 2, . . . until we find i ≤ k such that φF is modeled by a
graph of treewidth i.

3.2 Few Factors Imply Small Disjoint Rectangle Covers

We show that Boolean functions of small factor width have implementations of small width within
natural canonical subclasses of deterministic structured NNFs (including canonical SDDs); conversely,
small width implementations within such circuit classes imply small circuit treewidth. Thus a class
of Boolean functions has bounded circuit treewidth iff it has bounded width implementations in some
natural, canonical classes of deterministic structured NNFs, including SDDs.

3.2.1 Factorized Implicant Width and Deterministic Structured Forms

We introduce the notion of factorized implicant of a Boolean function F (Y, Y ′), roughly

F ′(Y ) ∧ F ′′(Y ′) |= F (Y, Y ′),

where Y and Y ′ are disjoint sets of variables, F ′ (resp., F ′′) is a factor of F relative to Y (resp., Y ′).
The first key insight is that the rectangle formed by multiplying any two factors F ′(Y ) and F ′′(Y ′)

of F (Y, Y ′) is either disjoint from F or contained in F .

Lemma 2. Let F = F (X) be a Boolean function. Let Y and Y ′ be disjoint subsets of X. Let H, G,
and G′ be factors of F relative to Y ∪ Y ′, Y , and Y ′, respectively. Then either

(sat(G)× sat(G′)) ⊆ sat(H) (13)

or
(sat(G)× sat(G′)) ∩ sat(H) = ∅. (14)

Proof. If (sat(G)× sat(G′))∩ sat(H) 6= ∅, then let b ∈ sat(G) and b′ ∈ sat(G′) be such that b∪b′ ∈ sat(H).
Let c ∈ sat(G) and c′ ∈ sat(G′). It suffices to show that c ∪ c′ ∈ sat(H). Below, X ′ = X \ (Y ∪ Y ′).

Assume for a contradiction that c ∪ c′ 6∈ sat(H). Therefore, by definition, the cofactors of F induced
by b ∪ b′ and c ∪ c′ are distinct, i.e.,

F (b, b′, X ′) 6= F (c, c′, X ′).

On the other hand, by definition, {b, c} ⊆ sat(G) implies that F (b, Y ′, X ′) = F (c, Y ′, X ′), and similarly
{b′, c′} ⊆ sat(G′) implies that F (Y, b′, X ′) = F (Y, c′, X ′). In particular, F (b, b′, X ′) = F (c, b′, X ′) and
F (c, b′, X ′) = F (c, c′, X ′). Then

F (b, b′, X ′) = F (c, c′, X ′),

a contradiction.

Intuitively, a factorized implicant of a function F (Y, Y ′) is a pair of factors F ′(Y ) and F ′′(Y ′) entirely
contained in F , as in (13). Formally,

Definition 3. Let F = F (X) be a Boolean function. Let H, G, and G′ be factors of F relative to Y ∪Y ′,
Y , and Y ′, resp., where Y and Y ′ are disjoint subsets of X. Then (G,G′) is a factorized implicant of H
relative to (F, Y, Y ′) if G and G′ satisfy (13) relative to H. We denote by impl(F,H, Y, Y ′) the set of
factorized implicants of H relative to (F, Y, Y ′).

The second key insight is that the factorized implicants of F (Y, Y ′) naturally induce a disjoint
rectangle cover for F (Y, Y ′).
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Lemma 3. Let F = F (X) be a Boolean function and let H be a factor of F relative to Y ∪ Y ′, where Y
and Y ′ are disjoint subsets of X. Then

{sat(G)× sat(G′) : (G,G′) ∈ impl(F,H, Y, Y ′)}

forms a disjoint rectangle cover of H, i.e.,

sat(H) =
⋃

(G,G′)∈impl(F,H,Y,Y ′)

(sat(G)× sat(G′)), (15)

and the union is disjoint.

A circuit interpretation of Lemma 3 is that

CH ≡
∨

(G,G′)∈impl(F,H,Y,Y ′)

(CG ∧ CG′) (16)

where CH , CG, and CG′ are circuits using variables in Y ∪ Y ′, Y , and Y ′ computing H, G, and G′,
respectively. The ∧-gates are decomposable as Y and Y ′ are disjoint, and by Lemma 3 the ∨-gate is
deterministic.

Proof of Lemma 3. We claim that the union on the right of (15) is disjoint. Indeed if (G1, G
′
1) and

(G2, G
′
2) are distinct implicants in impl(F,H, Y, Y ′), then G1 6= G2 or G′1 6= G′2. If G1 6= G2, then

sat(G1) ∩ sat(G2) = ∅ because distinct factors of F relative to Y have disjoint models by (10). Similarly,
if G′1 6= G′2, then sat(G′1) ∩ sat(G′2) = ∅. Therefore, (sat(G1)× sat(G′1)) ∩ (sat(G2)× sat(G′2)) = ∅, and
we are done.

We prove the equality in (15). For the nontrivial inclusion (⊆), let b : Y ∪Y ′ → {0, 1} be in sat(H). By
(10), there exist G ∈ factors(F, Y ) such that b|Y ∈ sat(G) and G′ ∈ factors(F, Y ′) such that b|Y ′ ∈ sat(G′).
Then b|Y ∪ b|Y ′ = b ∈ (sat(G)× sat(G′))∩ sat(H). It follows by Lemma 2 that sat(G)× sat(G′) ⊆ sat(H).
Then (G,G′) ∈ impl(F,H, Y, Y ′) and b is contained in the union on the right.

The above insight can be exploited recursively to implement Boolean functions within a natural,
canonical class of deterministic structured forms.

Let F be a function and let T be a vtree, both over the variables X. For every node v ∈ T and every
factor H of F relative to Xv, we construct a circuit Cv,H as follows.

If v is a leaf of T , then Xv = {x} for some variable x ∈ X. There are two cases. Either F (0, X \{x}) =
F (1, X \ {x}), or F (0, X \ {x}) 6= F (1, X \ {x}). In the former case, factors(F, {x}) = {H} and

Cv,H = >. (17)

In the latter case, factors(F, {x}) = {H0, H1} and

Cv,H0
= ¬x, (18)

Cv,H1
= x. (19)

If v is a node of T with children w and w′, we put

Cv,H =
∨

(G,G′)∈impl(F,H,Xw,Xw′ )

(Cw,G ∧ Cw′,G′) . (20)

Finally we put
CF,T = Cr,F , (21)

where r is the root of T ; note that F itself is a factor of F relative to X; its models induce the cofactor
1 : {0, 1}∅ → {0, 1} of F , the identically 1 function (over ∅).

Lemma 4. Let F be a Boolean function and let T be a vtree, both over the variables X. Let v ∈ T and
let H ∈ factors(F,Xv). The following holds.
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• Cv,H is a deterministic structured NNF respecting the vtree Tv.

• Cv,H computes H.

Proof. The proof is a routine induction on the depth of v in T . The base case holds by inspection of
(17)-(19). The inductive case holds by inspection of (20), using (15) in Lemma 3 and the induction
hypothesis; indeed, note that the disjunction arising in (20) is deterministic because the union in (15) is
disjoint, and the conjunctions arising in (20) are structured by Tv (namely the left and right conjuncts
are over variables Xw and Xw′ resp., where w and w′ are the children of v in T ) by the induction
hypothesis.

Note that, by Lemma 4, it follows that CF,T is a deterministic structured NNF computing F , canonical
in that it is uniquely determined by the vtree T and F ; the notion of factorized implicant width of F
relative to T arises naturally.

Definition 4. Let F be a Boolean function and let T be a vtree, both over the variables X. The factorized
implicant width of F relative to T , in symbols fiw(F, T ), is defined by9

fiw(F, T ) = max
v∈T
|{g ∈ CF,T : g is structured by v}|.

The factorized implicant width of F , in symbols fiw(F ), is defined by

fiw(F ) = min{fiw(F, T ) : T vtree for X}.

Relative to its factorized implicant width, a Boolean function (of n variables) has linear (in n) size
compilations into canonical deterministic structured forms.

Theorem 3. A Boolean function F of n variables and factorized implicant width k has canonical
deterministic structured NNFs of size O(kn).

Proof. Let X be the variables of F , so that |X| = n, and let T be a vtree for X witnessing factorized
implicant width k for F . The circuit CF,T in (21) is a canonical deterministic structured NNF computing
F by Lemma 4.

Moreover, we claim that CF,T has size O(kn). The n leaves of T contribute at most n + 1 input
gates and n ¬-gates in CF,T . The n− 1 internal nodes of T contribute each at most k ∧-gates (by the
definition of factorized implicant width), and each such gate is linked with at most 3 ∨-gates. Hence
CF,T contains at most 2n+ 1 + 3k(n− 1) = O(kn) gates.

We conclude the section showing that a class of Boolean functions has bounded circuit treewidth iff
it has bounded factorized implicant width. It is sufficient to prove that the factorized implicant width of
a Boolean function is bounded below and above by computable functions of its circuit treewidth.

For the upper bound, we have

fiw(F ) ≤ fw(F )2 ≤ 2(ctw(F )+2)2ctw(F )+2

, (22)

where the first inequality is justified by the observation that every ∧-gate g in CF,T , structured by a
node v ∈ T , corresponds to a pair of factors of F , and the second inequality follows by Lemma 1.

For the lower bound, we verify that small factorized implicant width implies small circuit treewidth.

Proposition 2. For all Boolean functions F ,

ctw(F )/3 ≤ fiw(F ). (23)

9Recall that, if g ∈ CF,T is an ∧-gate arising from (20), we say that g is structured by v ∈ T .
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Proof. Let T be a vtree for X such that

fiw(F, T ) = fiw(F ) = k.

We claim that tw(CF,T ) ≤ 3k, so that ctw(F ) ≤ 3k by Lemma 4.
For every gate g ∈ CF,T , let neigh(g) denote the closed neighborhood of g in the undirected graph

underlying CF,T . We define a tree decomposition for the undirected graph underlying CF,T , as follows.
The bags of the tree decomposition have the form

Bv = {neigh(g) : g structured by v},

for all v ∈ T . The root of the tree decomposition is Br. The bag Bw has an arc to the bag Bw′ iff w
has an arc to w′ in T . By definition, Bv contains all the ∧-gates structured by the node v ∈ T ; there
are at most k such gates in CF,T by definition, and each such gate has indegree 2 and outdegree 1 by
construction (therefore degree 3 in the undirected graph underlying CF,T ). Hence |Bv| ≤ 3k. We check
the desired properties.

Since every wire of CF,T enters or leaves an ∧-gate and every ∧-gate is structured by some v ∈ T ,
the edges of the undirected graph underlying CF,T are covered by the tree decomposition. Moreover let
g be a gate of CF,T occurring in two distinct bags Bw and Bw′ . Then g ∈ neigh(h) ∩ neigh(h′) where h
is a ∧-gate structured by w and h′ is a ∧-gate structured by w′. By construction of CF,T , either w has
an arc to w′ in T or w′ has an arc to w in T . Hence Bw and Bw′ are adjacent.

3.2.2 Sentential Decision Width and Sentential Decision Diagrams

We show that the notion of factorized implicant lies at the core of (and provides fresh insight on) the
canonical construction of SDDs for Boolean functions.

We prepare the actual description of the construction in two steps. The first step yields, by a
straightforward generalization of Lemma 3, a factorized implicant decomposition reminiscent of (16) for
unions of factors.

Lemma 5. Let F = F (X) be a Boolean function, let Y and Y ′ be disjoint subsets of X, and let
H ⊆ factors(F, Y ∪ Y ′). Then

{sat(G)× sat(G′) : (G,G′) ∈ impl(F,H, Y, Y ′), H ∈ H}

forms a disjoint rectangle cover of
∨

H∈HH.

In terms of circuits, the statement means that∨
H∈H

CH ≡
∨

H∈H
(G,G′)∈impl(F,H,Y,Y ′)

(CG ∧ CG′) , (24)

where CH , CG, and CG′ are as in (16), the ∨-gate is deterministic, and the ∧-gates are decomposable.

Proof of Lemma 5. We have

sat

( ∨
H∈H

H

)
=
⋃

H∈H
sat(H)

=
⋃

H∈H
(G,G′)∈impl(F,H,Y,Y ′)

(sat(G)× sat(G′)) ,

where the second equality follows by applying Lemma 3 to H. We claim that the union is disjoint.
Indeed, by (10), distinct factors of F relative to Y ∪ Y ′, in particular those in H, have disjoint models;
moreover, by Lemma 3, distinct implicants of a factor have disjoint models.
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The second step enforces the properties of a proper sentential decision over the factorized implicant
form (24) given by Lemma 5, as follows. For each G ∈ factors(F, Y ), let

SG = {G′ : (G,G′) ∈ impl(F,H, Y, Y ′), H ∈ H}
⊆ factors(F, Y ′)

and observe that ∨
G∈factors(F,Y )

(
CG ∧

( ∨
G′∈SG

CG′

))
, (25)

where empty disjunctions are implemented by ⊥, is equivalent to
∨

H∈H CH and is a sentential decision
form as the factors of F relative to Y partition {0, 1}Y .

However, (25) is not a canonical form because distinct G1 and G2 in factors(F, Y ) can give SG1
= SG2

.
Let

{S1, . . . ,Sm} = {SG : G ∈ factors(F, Y )},
Pi = {G ∈ factors(F, Y ) : SG = Si},

for all i ∈ [m], and

sd(F,H, Y, Y ′) = {(P1,S1), . . . , (Pm,Sm)}

⊆ 2factors(F,Y ) × 2factors(F,Y ′)∪{⊥}.

It is readily observed that

∨
(P,S)∈sd(F,H,Y,Y ′)

(( ∨
P∈P

CP

)
∧

(∨
S∈S

CS

))
(26)

is equivalent to
∨

H∈H CH and moreover:

(SD1) > ≡
∨

i∈[m]

∨
P∈Pi

CP ;

(SD2) ⊥ ≡
(∨

P∈Pi
CP

)
∧
(∨

P∈Pj
CP

)
for i 6= j in [m];

(SD3)
(∨

S∈Si CS

)
6≡
(∨

S∈Sj CS

)
for i 6= j in [m].

We now use the above development to describe a recursive construction of a canonical SDD for a
given Boolean function. Let F be a Boolean function and let T be a vtree, both over X. For every node
v ∈ T and every subset H of factors of F relative to Xv, we construct a circuit Cv,H, as follows.

If v is a leaf of T , then Xv = {x} for some variable x ∈ X. There are two cases. Either F (0, X \{x}) =
F (1, X \{x}), or F (0, X \{x}) 6= F (1, X \{x}). In the former case, factors(F, {x}) = {H} and: Cv,∅ = ⊥;
Cv,{H} = >. In the latter case, factors(F, {x}) = {H0, H1} and: Cv,∅ = ⊥; Cv,{H0} = ¬x; Cv,{H1} = x;
Cv,{H0,H1} = >.

If v is a node of T with children w and w′, we put

Cv,H =
∨

(P,S)∈sd(F,H,Y,Y ′)

(Cw,P ∧ Cw′,S) . (27)

Finally we put, where r is the root of T ,

SF,T = Cr,{F}. (28)

Lemma 6. Let F be a Boolean function and let T be a vtree, both over the variables X. Let v ∈ T and
let H ⊆ factors(F,Xv).
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• Cv,H is a canonical SDD respecting the vtree Tv.

• Cv,H computes
∨

H∈HH.

Proof. By induction on the depth of v in T . The base case holds by construction. The inductive case
holds inspection of (27), using (26) together with (SD1)-(SD3), (25), Lemma 5, and the induction
hypothesis.

Therefore SF,T is the canonical SDD computing F , uniquely determined by the vtree T . We recall
the notion of sentential decision width of F relative to T .

Definition 5. Let F be a Boolean function and let T be a vtree, both over X. The sentential decision
width of F relative to T , in symbols sdw(F, T ), is defined by

sdw(F, T ) = max
v∈T
|{g ∈ SF,T : g is structured by v}|.

The SDD width of F , in symbols sdw(F ), is defined by

sdw(F ) = min{sdw(F, T ) : T vtree for X}.

It is well known that OBDDs are canonical SDDs respecting linear vtrees, i.e. vtrees where every
left child is a leaf [13]; in this case, the notion of SDD width in Definition 5 reduces to the usual notion
of OBDD width [34]. Moreover, as a Boolean function (of n variables) has linear (in n) OBDD size
parameterized by its OBDD width, likewise it has linear SDD size parameterized by its SDD width.

Theorem 4. A Boolean function F of n variables and SDD width k has canonical SDD size O(kn).

Proof. Let X be the variables of F , so that |X| = n, and let T be a vtree for X witnessing SDD width k
for F . The circuit SF,T in (28) is a canonical SDD by Lemma 6.

Moreover, we claim that SF,T has size O(kn). The n leaves of T contribute at most 2(n+ 1) input
or negation gates in CF,T . The n − 1 internal nodes of T contribute each at most k ∧-gates (by the
definition of SDD width), and each such gate is linked with at most 3 ∨-gates. Hence CF,T contains at
most 2(n+ 1) + 3k(n− 1) = O(kn) gates.

We conclude observing that, for classes of Boolean functions, bounded circuit treewidth and bounded
SDD width collapse. Indeed, on the one hand, the SDD width of a Boolean function F is bounded above
by a computable function of its circuit treewidth, namely,

sdw(F ) ≤ 22·fw(F )+1 ≤ 22(ctw(F )+2)2ctw(F )+1+1+1, (29)

since in the canonical SDD SF,T for T every ∧-gate g structured by a node v ∈ T corresponds to a pair
of sets of factors of F (plus ⊥), and fw(F ) is bounded above by ctw(F ) as in Lemma 1. On the other
hand, for all Boolean functions F , along the lines of Proposition 2,

ctw(F )/3 ≤ sdw(F ). (30)

By combining (22)-(23) and (29)-(30), the factorized implicant width (resp., SDD width) of a Boolean
function is squeezed between computable functions of its SDD width (resp., factorized implicant width).

4 Query Compilation

In this section, we show that inversions in unions of conjunctive queries, with or without inequalities,
imply large deterministic structured circuits for their lineages.

Let σ be a relational vocabulary. A union of conjunctive queries (UCQs) with inequalities Q is a
disjunction of existentially closed conjunctions of atoms Rx1 · · ·xm and inequalities x 6= y, where R ∈ σ
and x, y, xi are variables, i ∈ [m]. We call Q a UCQs if it does not contain inequalities. The lineage of
a Boolean query Q over a database D is a Boolean function L(Q,D) whose Boolean variables are the
tuples in D such that, for every subdatabase D′ ⊆ D, it holds that D′ |= Q iff bD′ |= L(Q,D), where
bD′ : D → {0, 1} is defined by bD′(t) = 1 iff t ∈ D′. A lineage of a Boolean query is a lineage of the query
over some database.
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4.1 Inversions Imply Large Deterministic Structured Forms

We prove the main result. For all k, n ≥ 1, let X = {xl : l ∈ [n]}, Y = {ym : m ∈ [n]}, Zi = {zil,m : l,m ∈
[n]} for i ∈ [k], and Z =

⋃
i∈[k] Z

i. For i ∈ [k − 1], let:

H0
k,n(X,Z1) =

∨
l,m∈[n]

(xl ∧ z1
l,m),

Hi
k,n(Zi, Zi+1) =

∨
l,m∈[n]

(zil,m ∧ zi+1
l,m ),

Hk
k,n(Zk, Y ) =

∨
l,m∈[n]

(zkl,m ∧ ym).

In [21, Proposition 7] and [20, Theorem 3.9] Jha and Suciu show the following, resp. for UCQs and
UCQs with inequalities.

Lemma 7. Let Q be a UCQs with or without inequalities.10 If Q “contains an inversion of length
k ≥ 1”, then for every n ≥ 1 there exist a lineage F (X) of Q on O(n2) variables and assignments
bi : Xi → {0, 1} for Xi ⊆ X and i = 0, 1, . . . , k such that

F (bi, X \Xi) ≡ Hi
k,n.

As we only need the implication stated in Lemma 7, we omit the technical definition of the notion of
inversion [9]. The following statement unifies and generalizes analogous results by Jha and Suciu for
UCQs with inequalities vs. OBDDs [20, Theorem 3.9] and by Beame and Liew for UCQs vs. SDDs [3,
Theorem 4.6].

Theorem 5. Let Q be a UCQs with or without inequalities. If Q “contains an inversion of length k ≥ 1”,
then for every n ≥ 1 there exists a lineage F of Q on O(n2) variables whose deterministic structured
NNF size is 2Ω(n/k).

of Theorem 5. Let Q be a query with inequalities. If Q “contains an inversion of length k ≥ 1”, then
by Lemma 7 for every n ≥ 1 there exist a lineage F (X) of Q on O(n2) variables and assignments
bi : Xi → {0, 1} for Xi ⊆ X and i = 0, 1, . . . , k such that F (bi, X \Xi) ≡ Hi

k,n.
Let C be a deterministic NNF of size s computing F , structured by the vtree T . Then by the

properties of deterministic structured NNFs DBLP:conf/aaai/PipatsrisawatD08, it holds that Ci(X\Xi) =
C(bi, X \Xi) is a deterministic NNF of size si ≤ s that computes Hi

k,n and is structured by T , for all

i = 0, 1, . . . , k. By Lemma 8, there exists i ∈ {0, 1, . . . , k} such that Ci has size si = 2Ω(n/k). Therefore
C has size 2Ω(n/k).

The proof idea is that, if a query Q “contains inversions”, then it has a lineage L(Q,D) of which
each Hi

k,n is a cofactor (i = 0, 1, . . . , k). If C is a small deterministic form for L(Q,D) respecting a vtree

T , then small deterministic structured forms for each Hi
k,n, all respecting the vtree T , can be mined

from C by suitably assigning its inputs. But this is impossible for communication complexity reasons
(Lemma 8).

Lemma 8. For every vtree T for X ∪ Y ∪ Z and every family {C0, . . . , Ck} of deterministic structured
NNFs, where Ci is structured by T and computes Hi

k,n (i = 0, 1, . . . , k), there exists i ∈ {0, 1, . . . , k} such

that Ci has size 2Ω(n/k).

of Lemma 8. We let Xv denote the variables in Tv ∩X, Yv denote the variables in Tv ∩Y , and Zv denote
the variables in Tv ∩ Z.

Claim 2. There exists v ∈ T such that 2n/5 ≤ |Xv ∪ Yv| ≤ 4n/5.

10As a technical assumption, we assume that all queries and databases are ranked [33].
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Proof of Claim 2. Let nv = |Xv ∪ Yv|, for all v ∈ T . Let v1, . . . , vl be a root-leaf path in T such that,
letting ni = |Xvi ∪ Yvi |,

ni+1 ≥ ni/2

for all i = 1, . . . , l − 1. Let i ∈ [l] be minimum such that

ni ≤ |X ∪ Y |/5,

so that
|X ∪ Y |/5 < ni−1.

By construction,
ni−1 ≤ 2ni ≤ 2|X ∪ Y |/5.

Hence, letting v = vi−1, we have

2n/5 = |X ∪ Y |/5 < |Xv ∪ Yv| ≤ 2|X ∪ Y |/5 = 4n/5,

and we are done.

By Claim 2, let v ∈ T be such that 2n/5 ≤ |Xv ∪ Yv| ≤ 4n/5. Let nx = |Xv| and ny = |Yv|. Assume
without loss of generality that nx ≥ ny; otherwise the argument is similar. It follows by the choice of v
that

nx ≥ n/5 (31)

and that
n− ny ≥ n− nx ≥ n− 4n/5 = n/5. (32)

We enter a case distinction. The first case is covered by the following claim.

Claim 3. If there exists j ∈ [n] such that for all i ∈ [n] it holds that xi ∈ Xv implies z1
i,j ∈ T \ Tv, then

C0 has size 2Ω(n).

Proof of Claim 3. For j ∈ [n], let Z1
j = {z1

i,j : xi ∈ Xv} \ Tv. By hypothesis, there exists j ∈ [n] such

that |Z1
j | = nx. Write

C0(X,Z1) = C0(Xv, X \Xv, Z
1
j , Z

1 \ Z1
j ).

Then
C ′0(Xv, Z

1
j ) = C0(Xv, {0}X\Xv , Z1

j , {0}Z
1\Z1

j )

is a deterministic NNF structured by T of size |C ′0| ≤ |C0| [27]. It follows from Theorem 1 that C ′0 has a
disjoint rectangle cover of size at most |C ′0| where each rectangle has underlying partition (Xv, Z

1
j ).

By the choice of v, it holds that Xv contains nx variables in X. For the sake of notation, say that
Xv = {x1, . . . , xnx

}, so that Z1
j = {z1

1,j , . . . , z
1
nx,j
}. Then, since C0 ≡ H0

k,n, we have that

C ′0 ≡ (x1 ∧ z1
1,j) ∨ · · · ∨ (xnx

∧ z1
nx,j).

Note that C ′0(Xv, Z
1
j ) is the complement of the disjointness function Dnx(Xv, Z

1
j ) in (7). Therefore the

complement of the communication matrix of C ′0 relative to (Xv, Z
1
j ) is equal (up to a permutation of

rows and columns) to the communication matrix of Dnx
, i.e.,

cm(Dnx
, Xv, Z

1
j ) = 1− cm(C ′0, Xv, Z

1
j ),

where 1 denotes the 2nx × 2nx all-1 matrix. Therefore, by (8) and basic linear algebra,

2nx = rank(cm(Dnx
, Xv, Z

1
j ))

= rank(1− cm(C ′0, Xv, Z
1
j ))

≤ rank(1) + rank(cm(C ′0, Xv, Z
1
j ))

= 1 + rank(cm(C ′0, Xv, Z
1
j )),
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hence
rank(cm(C ′0, Xv, Z

1
j )) ≥ 2nx − 1. (33)

Therefore, by Theorem 2 and (33), every disjoint rectangle cover of C ′0 into rectangles with underlying
partition (Xv, Z

1
j ) contains at least 2nx − 1 rectangles.

Summarizing, C ′0 has a disjoint rectangle cover of size at most |C ′0| where each rectangle has underlying
partition (Xv, Z

1
j ), but every such rectangle cover contains at least 2nx − 1 rectangles. Hence

|C0| ≥ |C ′0| ≥ 2nx − 1 ≥ 2n/5 − 1 = 2Ω(n),

and we are done (recall (31)).

The second (and complementary) case is covered by the following claim.

Claim 4. If for all j ∈ [n] there exists i ∈ [n] such that xi ∈ Xv and z1
i,j ∈ Tv, then there exists p ∈ [k]

such that Cp has size 2Ω(n/k).

Proof of Claim 4. Define a set S of pairs (i, j) as follows. For each j ∈ [n] such that yj ∈ T \ Tv, choose
i ∈ [n] such that z1

i,j ∈ Tv, and add (i, j) to S. Note that

|S| = n− ny. (34)

For each p = 1, . . . , k − 1, let Rp ⊆ S be such that (i, j) ∈ Rp iff z1
i,j , . . . , z

p
i,j ∈ Tv and zp+1

i,j ∈ T \ Tv.
Also, let

Rk = S \
k−1⋃
i=1

Ri.

Note that R1, . . . , Rk form a partition of S, so that

|R1|+ · · ·+ |Rk| = |S|. (35)

We show that
k∑

p=1

|Cp| ≥ k(2n/5k − 1),

which implies that there exists p ∈ [k] such that |Cp| ≥ 2n/5k − 1, and we are done.

Let p ∈ [k−1]. For all (i, j) ∈ Rp, it holds that zpi,j ∈ Tv and zp+1
i,j ∈ T \Tv. Let V p = {zpi,j : (i, j) ∈ Rp}

and V p+1 = {zp+1
i,j : (i, j) ∈ Rp}. Write

Cp(Zp, Zp+1) = Cp(V p, Zp \ V p, V p+1, Zp+1 \ V p+1)

and let
C ′p(V p, V p+1) = Cp(V p, {0}Z

p\V p

, V p+1, {0}Z
p+1\V p+1

),

so that C ′p is a deterministic NNF structured by T of size |C ′p| ≤ |Cp| [27]. It follows from Theorem 1
that C ′p has a disjoint rectangle cover of size at most |C ′p| where each rectangle has underlying partition
(V p, V p+1).

Since Cp ≡ Hp
k,n, we have that

C ′p ≡
∨

(i,j)∈Rp

(zpi,j ∧ z
p+1
i,j ),

and along the lines of Claim 3 we obtain

|Cp| ≥ |C ′p| ≥ 2|Rp| − 1. (36)

Similarly, we obtain
|Ck| ≥ 2|Rk| − 1. (37)
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Thus

k∑
p=1

|Cp| ≥
k∑

p=1

(2|Rp| − 1) (36), (37)

≥
k∑

p=1

2|Rp| − k

≥ k2
∑k

p=1 |Rp|/k − k
= k2|S|/k − k (35)

≥ k2n/5k − k (32), (34)

and we are done. The third inequality holds by plugging the convex function f(r) = 2r in Jensen’s

inequality
∑k

p=1 f(rp)/k ≥ f(
∑k

p=1 rp/k).

Claim 3 and Claim 4 imply the statement.

5 Conclusion

We have related the circuit treewidth of a Boolean function with the width of its SDD implementation
(and more generally its width in natural canonical classes of deterministic structured forms), and we have
incorporated constant width SDDs and polynomial size SDDs in the panorama of query compilation for
union of conjunctive queries with and without negations.

The comparison of Theorem 5 and [3, Theorem 4.6] reiterates the question about the relative
succinctness of deterministic structured forms and SDDs [3, 4]. As Beame and Liew observe, a natural
candidate function for an exponential separation is the indirect access storage (ISA) function, which is
known to have large OBDDs but whose small deterministic structured forms deviate substantially from
the SDD syntax [3, Section 6]. However, as we prove in Appendix A, ISA has small SDD size, which
unfortunately leaves us with no candidates for a separation.

The canonical structured deterministic forms induced by factorized implicants, introduced in Sec-
tion 3.2.1, deserve in our opinion both a direct investigation in the framework of the knowledge compilation
map [14], and a thorough comparison with the data structures used in factorized databases, which are
more than just reminiscent of structured deterministic forms [25].

The question remains whether bounded circuit treewidth lineages imply bounded OBDD width for
UCQs with inequalities, as conjectured by Jha and Suciu [20].

Another intriguing conjecture is that SDDs with OR gates of bounded fanin are quasipolynomially
simulated by OBDDs.11 The containment of bounded width SDDs in polynomial size OBDDs, discussed
in the introduction and obtained in Section 3, imply a polynomial simulation of bounded width SDDs,
which have indeed bounded fanin ORs, by OBDDs.
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A ISA Has Small SDD Size

Let k and m be positive integers such that 2km = 2m. The indirect access storage (in short, ISA)
function on n = k + 2km = k + 2m variables

ISAn(y1, . . . , yk, x1,1, . . . , x1,m, . . . , x2k,1, . . . , x2k,m)

also displayed as
ISAn(Yk, Zm) = ISAn(y1, . . . , yk, z1, . . . , z2m)

accepts input
a1, . . . , ak, b1,1, . . . , b1,m, . . . , b2k,1, . . . , b2k,m

also displayed as
a1, . . . , ak, c1, . . . , c2m

iff , letting i − 1 ∈ {0, . . . , 2k − 1} be the number whose binary representation is (a1, . . . , ak) and
j− 1 ∈ {0, . . . , 2m− 1} be the number whose binary representation is (bi,1, . . . , bi,m), it holds that cj = 1.

Proposition 3. ISAn has SDD size O(n13/5).

Proof. Let Tn = T (Yk, Zm) be the vtree for variables Yk ∪ Zm formed by a right-linear subtree Tn(Yk)
whose left leaves correspond to the variables in Yk and whose (unique) right leaf v is the root of a
left-linear subtree Tn(Zm) whose (unique) left leaf corresponds to z1 and whose right leaves correspond
(in a postorder traversal) to z2, . . . , z2m . For instance, the vtree T5(Y1, Z2) is depicted in Figure 4.

We liberally identify the leaves of Tn with their labels (so that we simply call x the leaf of Tn labelled
by the variable x). For i ∈ [k], we let wi denote the node in Tn whose left child is yi; for j ∈ [2m], we let
vj denote the node in Tn whose right child is zj .
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z1 z2

z3

z4

v4
y1

Figure 4: Vtree for ISA5.

A term on Zm is a conjunction of literals on Zm.12 We call a term on Zm small if it contains at most
m+ 1 distinct variables. Note that the number of small terms on Zm is

3m+1 + 1 = O(n8/5) (38)

since m = log2(2m) = log2(n− k) ≤ log2 n.
We now construct an SDD C computing ISAn and respecting Tn, where each ∧-gate structured by a

node of the form vj (j ∈ [2m]) conjoins one small term on Zm and an input gate (namely, a literal on vj
or a constant). As C has at most 2n+ 2 = O(n) input gates, it follows that the number of ∧-gates in C
structured by nodes of the form vj (j ∈ [2m]) is

O(n13/5).

Moreover, C is such that the number of ∧-gates structured by nodes of the form wi (i ∈ [k]) is

2k+1 − 2 = O(n)

since k ≤ log2 n. It follows immediately that C has size polynomial in n. Indeed, as each ∧-gate in C
contributes a constant number of ∨-gates, C contains at most O(n13/5) internal gates. Also, C has at
most 2n+ 2 = O(n) input gates. Hence

|C| = O(n13/5).

We now present the construction of the SDD C implementing ISAn and respecting Tn.
The upper part of C is isomorphic to an OBDD respecting the order y1 < · · · < yk and having 2k

source gates. Each such source, say ga1,...,ak
, corresponds to the Boolean assignment yi 7→ ai, i ∈ [k], of

the variables in Yk and implements the cofactor

ISAn(a1, . . . , ak, z1, . . . , z2m) (39)

as an SDD respecting the vtree Tn(Zm), as follows.
We start observing that each cofactor in (39) is expressible as a sentential decision, respecting the

root node of Tn(Zm) and involving only small terms on Zm (and literals on z2m).

Claim 5. The function ISAn(a1, . . . , ak, z1, . . . , z2m) is equivalent to a sentential decision
∨

i(Pi ∧ Si)
of the form (5), where the ∧-gates are structured by v2m ∈ Tn and the Pi’s are small terms.

of Claim 5. We distinguish two cases.

Case a1 + · · ·+ak = k: In this case, we have to implement ISAn(1, . . . , 1, z1, . . . , z2m), which is equivalent
to

2m∨
j=1

(“x2k,1, . . . , x2k,m = j” ∧ zj);

here “x2k,1, . . . , x2k,m = j” corresponds to the term

La1

2k,1
∧ · · · ∧ Lam

2k,m

12The empty term is denoted by > and a term containing both literals of a variable is denoted by ⊥.
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where a1 · · · am represents j−1 ∈ {0, . . . , 2m−1} in binary, and L0
2k,j′ = ¬x2k,j′ , L

1
2k,j′ = x2k,j′ , j

′ ∈ [m].

For all a : {x2k,1, . . . , x2k,m−1} → {0, 1} and i ∈ [2m−1] we say that a orbits on i if

a(x2k,1) · · · a(x2k,m−1)1

represents 2i− 1 in binary. If a orbits on i, we let “a orbits on i” denote the term

L
a(x

2k,1
)

2k,1
∧ · · · ∧ L

a(x
2k,m−1

)

2k,m−1
.

By direct inspection, ISAn(1, . . . , 1, z1, . . . , z2m) is equivalent to a sentential decision
∨

i(Pi ∧∗ Si) as in

(5), namely,

∨
(a,i)



(“a orbits on i” ∧ ¬z2i−1 ∧ ¬z2i) ∧∗ ⊥

(“a orbits on i” ∧ ¬z2i−1 ∧ z2i) ∧∗ z2m

(“a orbits on i” ∧ z2i−1 ∧ ¬z2i) ∧∗ ¬z2m

(“a orbits on i” ∧ z2i−1 ∧ z2i) ∧∗ ⊥

where (a, i) ranges over all pairs such that a orbits on i.
Here, the interesting ∧-gates (marked with ∗) are structured by the node v2m in Tn. Moreover, the

Pi’s are small terms as they contain (m− 1) + 2 = m+ 1 variables by construction.

Example 5 (k = 2, m = 4). Assume y1 = y2 = 1, so that we compute ISA18(1, 1, z1, . . . , z16). In this
case a : {z13, z14, z15} → {0, 1} and i ∈ {0, 1, . . . , 8}. The following lists the disjuncts corresponding to
“a orbits on i” for i = 0, 1, 2, 3, 4, 6 (we use x = ¬x and xy = x ∧ y as shortenings):

∨



z13z14z15z1z2 ∧∗ ⊥

z13z14z15z1z2 ∧∗ z16

z13z14z15z1z2 ∧∗ z16

z13z14z15z1z2 ∧∗ >

z13z14z15z3z4 ∧∗ ⊥

z13z14z15z3z4 ∧∗ z16

z13z14z15z3z4 ∧∗ z16

z13z14z15z3z4 ∧∗ >
...

z13z14z15z11z12 ∧∗ ⊥

z13z14z15z11z12 ∧∗ z16

z13z14z15z11z12 ∧∗ z16

z13z14z15z11z12 ∧∗ >

If (a, i) gives {z2i−1, z2i} ⊆ {x2k,1, . . . , x2k,m−2}, then the corresponding subdisjunction reduces to one
disjunct only; and, if (a, i) gives {z2i−1, z2i} = {x2k,m−1, x2k,m}, then the corresponding subdisjunction
reduces to two disjuncts only, as the following example illustrates.

Example 6 (k = 2, m = 4). Continuing Example 5, the following lists the one disjunct corresponding
to “a orbits on 7”:

z13z14z15 ∧∗ >
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and the following lists the two disjuncts corresponding to “a orbits on 8”:

∨z13z14z15 ∧∗ z16

z13z14z15 ∧∗ z16

Case a1+· · ·+ak < k: Say that a1 · · · ak represents i < 2k−1. We implement ISAn(a1, . . . , ak, z1, . . . , z2m),
which is equivalent to

2m∨
j=1

(“xi,1, . . . , xi,m = j” ∧ zj),

where the notation is as in the previous case; note that z2m 6∈ {xi,1, . . . , xi,m}. An equivalent sentential
decision of the form (5) is obtained by disjoining

“xi,1, . . . , xi,m = 2m” ∧
∗
z2m

and the following:

2m−1∨
j=1

(“xi,1, . . . , xi,m = j” ∧ ¬zj) ∧∗ ⊥

(“xi,1, . . . , xi,m = j” ∧ zj) ∧∗ >

where the interesting ∧-gates (marked with ∗) are structured by the node v2m in Tn. Moreover, the Pi’s
are small terms as they contain m+ 1 variables by construction.

If “xi,1, . . . , xi,m = j” and zj ∈ {xi,1, . . . , xi,m}, then the corresponding pair of disjuncts simplifies,
as the following example illustrates.

Example 7 (k = 2, m = 4). Assume y1 = 0 and y2 = 1, so that we compute ISA18(0, 1, z1, . . . , z16) by
the following sentential decision:

∨



(“z5, . . . , z8 = 1” ∧ ¬z1) ∧
∗
⊥

(“z5, . . . , z8 = 1” ∧ z1) ∧
∗
>

...

(“z5, . . . , z8 = 4” ∧ ¬z4) ∧
∗
⊥

(“z5, . . . , z8 = 4” ∧ z4) ∧
∗
>

z5z6z7z8 ∧∗ ⊥

z5z6z7z8 ∧∗ >

z5z6z7z8 ∧∗ >

z5z6z7z8 ∧∗ >

(“z5, . . . , z8 = 9” ∧ ¬z1) ∧
∗
⊥

(“z5, . . . , z8 = 9” ∧ z1) ∧
∗
>

...

(“z5, . . . , z8 = 15” ∧ ¬z15) ∧
∗
⊥

(“z5, . . . , z8 = 15” ∧ z15) ∧
∗
>

(“z5, . . . , z8 = 16”) ∧
∗
z16

The claim is settled.
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The construction implements each gate ga1,...,ak
by the sentential decision given by Claim 5. We

now claim that the construction can continue recursively by implementing the resulting Pi’s as SDDs
respecting subtrees of the subtree of Tn rooted at v2m−1.

Claim 6. Let P be a small term on Zm. Then P is equivalent to a sentential decision
∨

i(Pi ∧ Si) of
the form (5), where the ∧-gates are structured by some vj ∈ Tn (j ∈ [2m]) and the Pi’s are small terms.

of Claim 6. For j ∈ [2m], let L0
j = ¬zj , L1

j = zj , and Lj ∈ {Lc
j : c = 0, 1}. Say that P = P (zj1 , . . . , zjl)

where j1 < · · · < jl−1 < jl and 1 < l ≤ m+ 1.
Let a be the assignment of {zj1 , . . . , zjl−1

} to {0, 1} such that

P =
((
L
a(zj1 )
j1

∧ · · · ∧ L
a(zjl−1

)

jl−1

)
∧
∗
Ljl

)
.

By direct inspection, P is equivalent to the sentential decision
∨

i(Pi ∧∗ Si) of the form (5)

P ∨
∨
a 6=b

((
L
b(zj1 )
j1

∧ · · · ∧ L
b(zjl−1

)

jl−1

)
∧
∗
⊥
)

where b ranges over the assignments of {zj1 , . . . , zjl−1
} in {0, 1} distinct from a.

Here, the interesting ∧-gates (marked with ∗) are structured by the node vjl in Tn. Moreover, the
Pi’s are trivially small terms, because l − 1 ≤ l ≤ m+ 1 by hypothesis.

The statement is proved.
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