
Efficient and Provable Multi-Query Optimization

Tarun Kathuria
Microsoft Research

t-takat@microsoft.com

S. Sudarshan
Indian Institute of Technology Bombay

sudarsha@cse.iitb.ac.in

ABSTRACT
Complex queries for massive data analysis jobs have become
increasingly commonplace. Many such queries contain com-
mon subexpressions, either within a single query or among
multiple queries submitted as a batch. Conventional query
optimizers do not exploit these subexpressions and produce
sub-optimal plans. The problem of multi-query optimiza-
tion (MQO) is to generate an optimal combined evaluation
plan by computing common subexpressions once and reusing
them. Exhaustive algorithms for MQO explore an O(nn)
search space. Thus, this problem has primarily been tackled
using various heuristic algorithms, without providing any
theoretical guarantees on the quality of their solution.

In this paper, instead of the conventional cost minimiza-
tion problem, we treat the problem as maximizing a linear
transformation of the cost function. We propose a greedy
algorithm for this transformed formulation of the problem,
which under weak, intuitive assumptions, provides an ap-
proximation factor guarantee for this formulation. We go
on to show that this factor is optimal, unless P = NP. An-
other noteworthy point about our algorithm is that it can be
easily incorporated into existing transformation-based opti-
mizers. We finally propose optimizations which can be used
to improve the efficiency of our algorithm.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query pro-
cessing

Keywords
Multi-query optimization, greedy algorithms, approxi-
mation algorithms

1. INTRODUCTION
Modern data analytics platforms frequently have to

run scripts which contain a large number of complex
queries. Often, these queries contain common subex-
pressions due to the nature of the analysis performed.
These subexpressions may occur within a single com-
plex query which i) contains multiple correlated nested
subqueries or ii) if the database contains many materi-
alized views which are referenced multiple times in the
query. A more interesting case where common subex-
pressions arise is when a batch of related queries are
being executed together.

Conventional query optimizers are not suited for such
scenarios since they do not exploit these subexpres-

sions and instead produce locally optimal plans for each
query. These plans can be globally sub-optimal since
they do not make use of the shared subexpressions while
generating the plans. The goal of multi-query opti-
mization (MQO) is to generate query plans where these
subexpressions are executed once and their results used
by multiple consumers. The best plan is selected in a
completely cost-based manner.

We now present an example to illustrate the MQO
problem and how locally optimal plans may be glob-
ally sub-optimal for multiple queries in the presence of
common subexpressions.

Example 1. (Example 1.1 in [23]) Consider a batch
consisting of two queries (A ./ B ./ C) and (B ./ C ./
D) whose locally optimal plans (i.e., individual best
plans) are (A ./ B) ./ C and (B ./ C) ./ D respec-
tively. The individual best plans for the two queries
do not have any common subexpressions. However,
consider a locally sub-optimal plan for the first query
A ./ (B ./ C). It is clear that (B ./ C) is a common
subexpression and can be computed once and used by
both queries.

Consider the following instantiation of the various
costs for the two queries shown in Figure 1. Suppose
the base relations A, B, C and D each have a scan cost
of 10 units. Each of the joins have a cost of 100 units,
giving a total evaluation cost of 460 units for the locally
optimal plans shown in Figure 1a. On the other hand,
in the plan shown in Figure 1b, the common subexpres-
sion (B ./ C) is first computed and materialized on the
disk at a cost of 10. Then, it is scanned twice - the first
time to join with A in order to compute the first query,
and the second time to join it with D in order to com-
pute the second - at a cost of 10 per scan. Each of these
joins have a cost of 100 units. Thus, the total cost of
this consolidated plan is 370 units, which is lesser than
the cost of the locally optimal plan in Figure 1a.

It should be noted that blindly sharing a subexpres-
sion may not always lead to a globally optimal strategy.
For example, there may be cases where the cost of join-
ing the subexpression (B ./ C) with A is very large
compared to the cost of the plan (A ./ B) ./ C; in such
cases it may make no sense to reuse (B ./ C) even if it
were available. �

The benefits of a good algorithm for MQO are not just
restricted to multiple queries in a batch but can also be

ar
X

iv
:1

51
2.

02
56

8v
2

 [
cs

.D
B

]
 1

9
Ja

n
20

17

Figure 1: MQO example (from [23]) illustrating benefit
of sharing subexpressions

used to find better plans for a single complex query.
Consider an example of a large query consisting of mul-
tiple subqueries with a common subexpression between
two subqueries. Traditional Volcano-style[10] transfor-
mation rules-based query optimizers will not consider
such sharing unless it is explicitly stated as a transfor-
mation rule. Of course, one cannot state all such pos-
sible rules and, thus, these cases of sharing in are not
considered by Volcano when an optimal plan is devised
for single query optimization. On the other hand, MQO
can be used to search over such cases[23, 29].

While algorithms which find the optimal plan for a
single query are well known, exhaustive algorithms for
MQO take O(nn) time which quickly makes the prob-
lem untenable. Thus, work in this area relies on the
development of various heurisics-based algorithms [23,
26, 29]. While most of such work seems to work well
in practice, there has been no work which provides the-
oretical guarantees on the quality of solution obtained
by any such heuristics, to the best of our knowledge.
Thus, an open question is

Can we devise a polynomial-time algorithm which pro-
vides us with theoretical guarantees on the quality of the
solution obtained as compared to the optimal? If so,
what is the best possible polynomial-time approximation
algorithm?

As a first step towards answering this question, we
propose a reformulation of the MQO problem, the mo-
tivation for which is stated next.

The canonical multi-query optimization problem is
concerned with minimizing the cost of the query plan for
a set of queries by choosing a set of nodes to materialize
(say M) and then finding the optimal plan expoliting
nodes in M . Another way to look at this problem is to
maximize the “materialization-benefit” we get by mate-
rializingM w.r.t. a naive execution plan which is locally
optimal and does not exploit any common subexpres-
sions. More formally, this corresponds to maximizing
the difference of the cost of the best plan in which the
set of materialized nodes is M from the latter. As this
is just a linear transformation of the cost function, it is
clear that the maximizer of the materialization-benefit
will be the minimizer of the cost.

Roy et al. [23] assume a property which they call the
“monotonicity heuristic” on the cost function. This es-
sentially corresponds to assuming the supermodularity

of the cost function defined on the set of nodes to be
materialized. In [23], this assumption is used to speed
up their greedy algorithm via a heap-based argument
which exploits the supermodularity. This is similar to
the LazyGreedy algorithm described in [16] for speed-
ing up monotone submodular function maximization
subject to cardinality constraints via the well-known
greedy algorithm, which is also used by [23]. On the
queries used in their experiments, it was observed that
the plan obtained with or without assuming supermod-
ularity led to the same plan. This seems to imply that
the supermodularity assumption may be a reasonable
one and may hold in practice.

1.1 Our contribution
The contributions of this paper are as follows

• Motivated by [23], we proceed with the “mono-
tonicity heuristic” assumption (which implies the
submodularity of the materialization benefit func-
tion). Under this assumption, we propose an ap-
proximation algorithm for the underlying problem
of unconstrained, normalized submodular maxi-
mization (UNSM). Note that we allow the sub-
modular function to take negative values, which
has not been considered previously and poses a
significant challenge.1.

• We then present a hardness of approximation proof
for the UNSM problem, which matches that ob-
tained by our algorithm, under the weak assump-
tion of P 6= NP.

• We present optimizations to our algorithm which
can be used to improve the running time of the al-
gorithm, without sacrificing any theoretical guar-
antees.

• We also consider a special case of the problem of
submodular maximization under cardinality con-
straints.

– A natural extension to our greedy algorithm
for this problem is presented. We further pro-
pose a pruning strategy to reduce the search
space before running our greedy algorithm, by
exploiting this cardinality constraint.

– While, at this point, we do not formally prove
any theoretical guarantees on the approxima-
tion factor for this constrained problem, we
show that the answer obtained by our greedy
algorithm is the same when run with or with-
out this pruning.

• We compare our algorithm against the Greedy al-
gorithm and stand-alone Volcano (without MQO)
on TPCD benchmark queries.

It is important to note that our approximation guar-
antees are for the benefit-maximization problem, un-
der the submodularity assumption, and do not imply
1Inapproximability results when the submodular function
may be unnormalized are well known.

a multiplicative factor approximation to the cost mini-
mization problem. However, results in our experimental
section shows that our proposed algorithm performs as
well as or better than the Greedy heuristic of [23].

Our techniques for the problem of multi-query opti-
mization are presented in the context of query optimiz-
ers based on the Volcano/Cascades framework [9, 10].
This framework for optimizing queries uses transfor-
mation rules which makes it inherently extensible, and
has been implemented in several widely-used commer-
cial database systems such as Microsoft SQL Server. It
should be noted, however, that our algorithm is agnostic
to the query optimization framework and can be easily
extended to other frameworks as well.

Organization. In Section 2, we present a detailed
overview of multi-query optimization in the context of
the Volcano framework which was presented in [23] along
with how submodular maximization arises in this con-
text. Section 3 presents our greedy algorithm for un-
constrained, normalized submodular maximization with
the proof of its approximation factor guarantee. In Sec-
tion 4, we prove the hardness of approximation of the
unconstrained,normalized submodular maximization which
rules out better approximation factors than the one
attained by our algorithm, under the assumption of
P 6= NP. Section 5 presents ways to speed up our algo-
rithm. We present experimental results on benchmark
queries in Section 6. Related work in the areas of MQO
and submodular maximization is presented in Section
7. We conclude and discuss directions for future work
in Section 8.

2. PRELIMINARIES
This section presents some relevant background in

(Multi)-Query Optimization in the Volcano framework
followed by some preliminaries of submodular maxi-
mization and finally ends with how submodular max-
imization arises in MQO. Readers well-versed in MQO
techniques in Volcano may skip to the third subsection
directly.

2.1 Query Optimization in Volcano
The Volcano/Cascades query optimization framework

[9, 10] is based on a system of equivalence rules, which
specify that the result of a particular transformation of
a query tree is the same as the result of the original
query tree. The key aspect of this framework is the ef-
ficient implementation of the transformation rule-based
approach.

The Volcano framework uses the AND-OR DAG rep-
resentation [10, 22] for compactly representing the given
query and its alternative query plans. An AND-OR
DAG is a directed acyclic graph whose nodes can be di-
vided into AND-nodes and OR-nodes; the AND-nodes
have only OR-nodes as children and the OR-nodes have
only AND-nodes as children. An AND-node corresponds
to an algebraic operator, such as the join operator (./)
or a select operator (σ). It represents the expression de-
fined by the operator and its inputs. An OR-node repre-
sents a set of logical expressions that generate the same
result set; the set of such expressions is defined by the

(a) Initial Query (b) DAG representation of query

(c) Expanded LQDAG after transformation (Commutativity
not shown explicitly)

Figure 2: Initial Query and LQDAG Representation

children AND nodes of the OR node, and their inputs.
Hereafter, we refer to the OR-nodes and AND-nodes as
equivalence nodes and operator nodes respectively.

The given query tree is initially represented in the
AND-OR DAG formulation. For example, the query
tree of Figure 2a is initially represented in the AND-
OR DAG formulation, as shown in Figure 2b. Equiv-
alence nodes are shown as boxes, while operator nodes
are shown in circles.

The initial AND-OR DAG is then expanded by apply-
ing all possible logical transformations on every node of
the initial DAG created from the given query. Suppose
the only possible transformations are join associativity
and commutativity. Then the plans A ./ (B ./ C)
and (A ./ C) ./ B, as well as several plans equivalent
to these, modulo commutativity, can be obtained by
transformations on the initial AND-OR DAG of Figure
2b. These are represented in the DAG shown in Figure
2c. The AND-OR DAG representation after applying
all the logical tranformations is called the (expanded)
Logical Query DAG (or LQDAG).

Each operator node can have different physical imple-
mentations; for example, a join operator can be imple-
mented as a hash join, a nested loop join or as a merge
join. Once the LQDAG has been generated, physical
implementation rules are applied on the logical opera-
tors to generate the physical AND-OR DAG, which is
called the Physical Query DAG or PQDAG for short.

Properties of the results of an expression, such as
sort order, that do not form part of the logical data
model are called physical properties [10]. The impor-
tance of exploiting physical properties such as sort or-
der and partitioning of result sets is well known in tra-
ditional query optimization. The DAG is actually built
and stored using a “memo” structure, a concise data
structure used in the Volcano/Cascades framework to
represent the entire space of equivalent query evalua-
tion plans succintly. The AND-OR DAG representation
considered for MQO actually works on the PQDAG but
we present our algorithms to work at the LQDAG level
for brevity.

Figure 3: Combined LQDAG for queries in Example 1

2.2 Multi-Query Optimization in Volcano
This subsection primarily focuses on the techniques

presented in [23] for MQO in the Volcano framework. In
order to extend the Volcano AND-OR DAG generation
for MQO on a batch of queries to be jointly optimized,
the queries are represented together in a single DAG,
sharing subexpressions. The DAG is converted to a
rooted DAG by adding a dummy operation node, which
does nothing, but has the root equivalence nodes of all
the queries as its inputs.

The two main challenges for a multi-query optimizer
are :

1. Recognizing possibilities of shared computation by
identifying common subexpressions.

2. Finding a globally optimal evaluation plan exploit-
ing the common subexpressions identified.

Roy et al. [23] present an efficient hashing-based al-
gorithm that identifies the set of all common subexpres-
sions, including subqueries that are syntactically differ-
ent but semantically equivalent, in a single bottom-up
traversal of the LQDAG by using the“memo”structure;
for details see [23]. This is similar to the “expression
fingerprinting” used to identify the common subexpres-
sions in [26]. The combined LQDAG for the queries
of Example 1 is shown in Figure 3. This step takes
exponential time as the size of the DAGs may itself be
exponential and is unavoidable, even in single-query op-
timization.

Similar to the single query optimization done by Vol-
cano, in a single-pass, one can annotate each node in
the DAG with its estimated cost. Note that the cost
estimator functions are taken as input to the optimizer,
i.e., the optimizer algorithm is agnostic to the cost es-
timates. Indeed, this is one of the reasons why the Vol-
cano query optimizer framework is widely used. It is
important to note that in the single query optimization
as well as the multi query optimization setting, one as-
sumes that the cost estimates provided to us are correct
for any guarantees to hold. Thus, we also work under
the assumption that the cost estimates are correct. Af-
ter the common subexpressions are identified and the
cost of each node computed, the next task is to find
the best consolidated plan for the queries exploiting the
subexpressions.

In this paper, we are primarily concerned with the op-
timization philosophy adopted by the Greedy algorithm

in [23] which is presented next. For a set of equivalence
nodes S, let bestCost(Q,S) (for brevity, bc(S)) denote
the cost of the optimal plan for Q given that nodes
in S are to be materialized (this includes the cost of
computing and materializing nodes in S). Here Q is the
combined query DAG with the dummy root operator
node with inputs being the DAGs of Q1, . . . , Qk, as de-
scribed above. The bc(S) function, of course, depends
on the cost estimates and is treated as a black-box for
the MQO algorithms. Given a set of nodes S to be
materialized, [23] present an efficient scheme to find the
best plan and the best cost, bc(S) (this includes the cost
of materializing S, which may be done in multiple ways
and is figured out by the optimizer in [23] as well).

Now, we just need to identify the subset S of nodes
in the AND-OR DAG for which bestCost(Q,S) is mini-
mum. However, an exhaustive algorithm which enumer-
ates all possible subsets S will take time exponential in
the size of the AND-OR DAG , which itself may be
exponential in size. In [23], they propose an intuitive
greedy algorithm which iteratively picks which node to
materialize. At each iteration, the node x that gives the
maximum reduction in the cost, if materialized, is cho-
sen to be added to the current set of materialized nodes
X. While this greedy algorithm is shown to work well
in practice, they [23] do not theoretically argue about
the quality of solution obtained via this algorithm. The
algorithm is presented below for completeness.

Algorithm 1 Greedy Algorithm of [23]

X = ∅
Y = Set of shareable equivalence nodes in the DAG
while Y 6= ∅ do

Pick x ∈ Y which minimizes bc(X ∪ {x})
if bc(X) > bc(X ∪ {x}) then

X = X ∪ {x}, Y = Y \ {x}
else

Y = ∅
end if

end while
return X

As noted in [23], the nodes materialized in the globally
optimal plan are just a subset of the ones that are shared
in some plan for the query. It is, thus, sufficient to
search only over the set of shareable equivalence nodes,
instead of searching over the entire set of equivalence
nodes in the DAG.

Clearly, some assumptions on the cost function have
to be made in order to give theoretical guarantees for
any algorithm. Furthermore, it is desirable to make
assumptions which may hold in practice. Roy et al.
[23] make an additional assumption which they call the
“monotonicity heuristic”.
Define benefit(x,X) as bc(X) − bc(X ∪ {x}). The as-
sumption is that

∀ Y ⊆ X, ∀ x /∈ X, benefit(x,X) ≤ benefit(x, Y).

They [23] make this assumption in order to improve the
running time of their greedy algorithm via a heap-based

argument which corresponds to the LazyGreedy algo-
rithm [16] for faster monotone, submodular maximiza-
tion. Their experiments, however, show that the plans
obtained with and without the assumption had exactly
the same cost. While the assumption may not always
hold, their experiments seem to indicate that the as-
sumption may be a reasonable one, in practice. Thus,
in this paper, we work under this assumption to devise
an algorithm with theoretical guarantees on its perfor-
mance for maximizing the “materialization benefit”.

2.3 Submodular Maximization
Let U be a universe of n = |U | elements, let f : 2U →

R be a function. For simplicity, we use the notation
f ′(u, S) to denote the incremental value in f of adding
u to S, i.e., f ′(u, S) = f(S ∪ {u})− f(S).

Definition 1. (Submodular Functions)

A function f : 2U → R is called submodular if

∀ A ⊆ B ⊆ U, ∀ u ∈ U \B,we have f ′(u,A) ≥ f ′(u,B).

Definition 2. (Supermodular Functions)

A function f : 2U → R is called supermodular if

∀ A ⊆ B ⊆ U, ∀ u ∈ U \B,we have f ′(u,A) ≤ f ′(u,B).

Definition 3. (Additive Functions)

A function c : 2U → R is called additive if it is of the form
c(S) =

∑
e∈S c({e}).

Definition 4. (Monotone Functions)

A function f : 2U → R is said to be monotone if

∀A ⊆ B ⊆ U,we have f(A) ≤ f(B).

Definition 5. (Normalized Functions)

A function f : 2U → R is called normalized if f(∅) = 0.

Given a normalized submodular function f : 2U → R,
the unconstrained, normalized submodular maximiza-
tion (UNSM) problem is to find a set S ⊆ U which
maximizes the value of f , i.e., arg max

S⊆U
f(S).

Since submodular maximization problems are in gen-
eral NP-hard and can only be approximated, a simple
additive scaling of the function by a large constant to
make the function non-negative and running an algo-
rithm like [2] suffers in the approximation factor and
moreover does not guarantee a multiplicative approxi-
mation.

It is well-known that any non-monotone submodu-
lar function f , with the constraint that f(∅) = 0, can
be written as the difference of a non-negative monotone
submodular function fM and an additive“cost” function
c. However, multiple such decompositions are possible
and as we will show, there is one particular decompo-
sition (the decomposition in Proposition 1) which will
give us the best approximation ratio and a matching
hardness of approximation.

Proposition 1. Any normalized, non-monotone (which
may take negative values) submodular function f can be
decomposed as

f(S) = fM (S)− c(S) ,∀ S ⊆ U

where fM is a monotone submodular function and c is
an additive cost function. In particular, one possible
decomposition is

f∗M (S) = f(S) +
∑
e∈S

(f(U \ {e})− f(U))

c∗(S) =
∑
e∈S

(f(U \ {e})− f(U))

Proof. The proof is provided in Appendix A.

Since our approximation ratio depends on the decompo-
sition and owing to the importance of the decomposition
in Proposition 1, we refer to it as f∗M and c∗.

2.4 Multi-Query Optimization and UNSM
We now describe the changes to the MQO formula-

tion of [23] and show the role submodularity plays in
the same. As defined above, bestCost(Q,S) includes the
cost of computing and materializing the set of PQDAG
nodes to be materialized S. Consider a scenario where
S was already materialized and we just have to find the
optimal plan which may or may not use the materi-
alized nodes in S. However, no further nodes may be
chosen to be materialized. The cost of the optimal plan
can be thought of as the best use cost and the func-
tion is thus called bestUseCost(Q,S). This function is
monotonically decreasing since as more nodes are mate-
rialized, we will exploit the additional nodes only if they
lead to a reduction in cost. Of course, the cost of ma-
terializing S needs to be taken into account and we call
that function c(S). Clearly, bestCost(Q,S) = bestUseC-
ost(Q,S) + c(S). For brevity, we refer to bestUseC-
ost(Q,S) as buc(S).

The MQO problem can be thought of as maximizing
the “materialization-benefit” (mb(S) for brevity) we get
in the plan cost by exploiting common subexpressions
over a naive execution plan which is just locally optimal
and does not exploit subexpressions. Clearly the cost
of the latter is bc(∅) = buc(∅). Mathematically, mb(S)
is defined as

mb(S) = bc(∅)− bc(S)

= buc(∅)− (buc(S) + c(S))

= (buc(∅)− buc(S))− c(S)

The function in parenthesis in the last line is a mono-
tonically increasing function since buc(S) is a monotoni-
cally decreasing function. Also, if the set of materialized
nodes S are “far apart” in the PQDAG, the cost of com-
puting and materializing a node e ∈ S can be thought
of as being independent of the other nodes in S. This
motivates us to assume that the c function is additive.
Of course, this assumption need not be true. For exam-
ple, if two of the equivalence nodes in S are just below
each other, we can significantly benefit by computing
the “lower” node and then just reading it from disk to
compute the “upper” node. As proved in Proposition 1,
under the assumption of submodularity, mb can always
be decomposed into a difference of monotone, submod-

ular function and an additive function2. Observe that

∀X, ∀x /∈ X, benefit(x,X) = −bc′(x,X)

Thus, the “monotonicity heuristic” assumption is essen-
tially that the bestCost function is supermodular. This
implies that mb is submodular. Note that mb is nor-
malized. Thus, the problem is essentially the UNSM
problem with mb as the submodular function. The rea-
son why materialization benefit for a particular set of
nodes may be negative is due to the fact that there may
be certain nodes which may have very high materializa-
tion cost but may not have high benefit. This is where
the algorithm of [26], which chooses to materialize every
node can be horribly inefficient.

3. THE MARGINAL GREEDY ALGORITHM
In this section, we propose a greedy algorithm for the

UNSM problem for which we prove an approximation
guarantee in this section. A proof of a matching hard-
ness of approximation, under the assumption of P 6= NP
is presented in the next section.

Given a decomposition of a non-monotone, normal-
ized submodular function f , let the monotone submod-
ular and additive functions be denoted by fM and c.
Thus, the problem we want to solve is as follows

max
S⊆U

f(S) = max
S⊆U

fM (S)− c(S)

The MarginalGreedy algorithm (Algorithm 2) has
been proposed before by [28], albeit for non-negative,
monotone submodular maximization under knapsack
constraints. At each iteration, the algorithm greedily
selects the element with the highest use-benefit to cost
ratio from those elements which satisfy a knapsack con-
straint. In our case, however, there is no knapsack con-
straint and instead we add elements as long as it leads
to an increase in the value of f . We emphasize that the
problem in our case is considerably different than this
problem and highlight the differences in subsection 3.1.

Algorithm 2 MarginalGreedy Algorithm

X = ∅
Y = Set of shareable equivalence nodes in the DAG
while Y 6= ∅ do

Pick x ∈ Y which maximizes r(x,X) =
f ′M (x,X)
c({x})

if r(x,X) > 1 then
X = X ∪ {x}, Y = Y \ {x}

else
Y = ∅

end if
end while
return X

The MarginalGreedy algorithm also finally adds
all elements with negative c values. This was also done
in Sviridenko’s case [28] as one can only increase the
value of the function without increasing the budget.
2The decomposition in Proposition 1 does not actually cor-
respond to the cost of materializing nodes but parallels are
drawn for intuition

This is fine for us as well and can only raise the value
of the function f . This is because fM is monotone so
including more elements only raises its value and we are
subtracting off some negative c values which can only
raise the value of f . If the decomposition used is the
one given in Proposition 1, we can compute the term in
the summation for each element once and store it. This
can be done in just n+ 1 bc(S) invocations (for the sets
U and for U \ {ei} ∀ei ∈ V).

3.1 Approximation Factor of MarginalGreedy

Let Θ be an optimal solution. Let Xi denote the
set of nodes selected by Algorithm 2 just after the ith

iteration.
Define ∆fM (E,S) = fM (S ∪E)− fM (S), where E and
S are subsets of U .

We state the main theorem of this section which men-
tions the approximation guarantee Algorithm 2 pro-
vides. The approximation factor is not a constant and
instead depends on the value of the f and c functions
at optimal.

Theorem 1. The answer obtained by the Marginal-
Greedy algorithm (X) satisfies the following inequality

f(X) ≥
[
1− c(Θ)

f(Θ)
ln(1 +

f(Θ)

c(Θ)
)

]
f(Θ).

We prove the theorem after presenting a lemma and
its corollary which are central to the proof. At a high
level, the lemma states that upto a certain point in the
execution of the algorithm, there exists an element that
can be picked and has a marginal-benefit to cost ratio
which is at least the marginal-benefit to cost ratio we
would get if we picked all remaining elements in the
optimal solution.

Lemma 1. At any iteration i + 1 < n in the execu-
tion of the MarginalGreedy algorithm, if fM (Xi) <
f(Θ), then there exists some element e ∈ Θ \ Xi that
satisfies

∆fM ({e}, Xi)

c({e})
≥ ∆fM (Θ, Xi)

c(Θ)
.

Proof. Firstly, note that if
fM (Xi) < f(Θ) = fM (Θ)− c(Θ) ≤ fM (Θ), then
Θ \ Xi 6= ∅. This is because fM is monotonically in-
creasing. Also, note that if S is fixed, ∆fM (E,S) is a
submodular function in E, due to submodularity of fM .

We consider two cases. Since the fM function is
monotonically increasing, the numerators on both sides
of the inequality are non-negative.

Case 1. ∆fM (Θ, Xi) = 0
In this case, the RHS of the inequality is 0. Since the
fM function is monotonically increasing, ∀e′ ∈ Θ \Xi,

we have
∆fM

(e′,Xi)

c({e′}) ≥ ∆fM
(Θ,Xi)

c(Θ) . Since Θ\Xi 6= ∅, any

element e′ ∈ Θ \Xi satisfies the required inequality.
Case 2. ∆fM (Θ, Xi) > 0

We first show that there exists some element e ∈ Θ for
which the inequality holds. Assume the contradiction,

i.e.,

∀e ∈ Θ,
∆fM ({e}, Xi)

c(e)
<

∆fM (Θ, Xi)

c(Θ)
.

∴ c(e)(∆fM (Θ, Xi)) > c(Θ)(∆fM ({e}, Xi)).

Summing up over all e ∈ Θ, we get∑
e∈Θ

c(e)(∆fM (Θ, Xi)) >
∑
e∈Θ

c(Θ)(∆fM ({e}, Xi))

=⇒ (∆fM (Θ, Xi))
∑
e∈Θ

c(e) > c(Θ)
∑
e∈Θ

(∆fM ({e}, Xi))

=⇒ (∆fM (Θ, Xi))c(Θ) > c(Θ)
∑
e∈Θ

(∆fM ({e}, Xi))

=⇒ ∆fM (Θ, Xi) >
∑
e∈Θ

(∆fM ({e}, Xi)).

SinceXi is fixed, from our earlier observation, ∆fM (E,Xi)
is a submodular function in E. Thus, we have

∆fM (Θ, Xi) ≤
∑
e∈Θ

(∆fM ({e}, Xi)).

This leads to a contradiction. Thus, there exists some
element e′ ∈ Θ for which the required inequality holds.

Now, observe that the RHS of the required inequality
in this case is strictly positive and ∀e ∈ Xi, the LHS of
the inequality is 0. Hence, e′ /∈ Xi and we are done.

Corollary 1. When the conditions of Lemma 1 hold,

∆fM
({e},Xi)−c({e})

∆fM
({e},Xi)

≥ ∆fM
(Θ,Xi)−c(Θ)

∆fM
(Θ,Xi)

.

Proof. From Lemma 1, we have

∆fM
({e},Xi)

c({e}) ≥ ∆fM
(Θ,Xi)

c(Θ) .

Since fM is monotonically increasing, it implies

∆fM
({e},Xi)−c({e})

∆fM
({e},Xi)

≥ ∆fM
(Θ,Xi)−c(Θ)

∆fM
(Θ,Xi)

,

and we are done.

Proof. (of Theorem 1) Say the MarginalGreedy
algorithm runs for l ≤ n iterations. Define α(Xi) to
be the rate of increase of f with respect to fM just
after the ith iteration (and thus the current chosen set
of elements is Xi). Further, let e ∈ U \Xi be the next
element that will be chosen by the MarginalGreedy
algorithm. Note that e is actually a function of Xi and,
thus, once Xi is fixed, so is e. Mathematically,

α(Xi) =
f(Xi ∪ {e})− f(Xi)

δ(fM (Xi))

where δ(fM (Xi)) = fM (Xi ∪ {e})− fM (Xi).
Let j ≤ l be the maximal index such that fM (Xj) < f(Θ).

The rate of increase at iteration i of the algorithm is at least
as large as choosing the element from Θ \Xi with the rate
presented in LHS of Corollary 1.

The corollary also implies that while fM (Xi) < f(Θ),
the greedy algorithm has an element that it can pick. This
implies that j < l. Thus, we have

f(Xl) =
∑l−1
i=0 α(Xi)δ(fM (Xi)).

Using Corollary 1,

f(Xl) ≥
l−1∑
i=0

(
fM (Θ)− fM (Xi)− c(Θ)

fM (Θ)− fM (Xi)

)
δ(fM (Xi))

≥
l−1∑
i=0

(
1− c(Θ)

fM (Θ)− fM (Xi)

)
δ(fM (Xi)).

Since the term in the parenthesis in the last line is a
decreasing function of fM (Xi), we get

f(Xl) ≥
fM (Xl)∫

0

(
1− c(Θ)

fM (Θ)− u

)
du

≥
f(Θ)∫
0

(
1− c(Θ)

fM (Θ)− u

)
du

=

[
u+ c(Θ) ln(fM (Θ)− u)

]f(Θ)

0

=f(Θ) + c(Θ) ln

(
fM (Θ)− f(Θ)

fM (Θ)

)
=f(Θ) + c(Θ) ln

(
c(Θ)

f(Θ) + c(Θ)

)
=f(Θ)− c(Θ) ln

(
c(Θ) + f(Θ)

c(Θ)
)

)
=f(Θ)− c(Θ) ln

(
1 +

f(Θ)

c(Θ)
)

)
=

[
1− c(Θ)

f(Θ)
ln

(
1 +

f(Θ)

c(Θ)

)]
f(Θ).

This concludes our proof and gives us our required ap-

proximation factor of

[
1− c(Θ)

f(Θ)
ln

(
1 + f(Θ)

c(Θ)

)]
.

Since the approximation ratio depends on the decom-
position (specifically the function c), it is natural to
ask whether different decompositions can lead to differ-
ent solutions and approximation ratios. This is indeed
the case; given a decomposition fM and c, we can add
a positive linear function d(S) =

∑
i∈S di to both fM

and c, we still have a valid decomposition and the ap-
proximation factor has become smaller. This is because
f(Θ) is fixed but c(Θ) becomes larger and clearly, the
ratio is a decreasing function of c. Since this is the
case, one may ask what is the “best” decomposition for
this problem? We now show that the decomposition in
Proposition 1, f∗M and c∗, is indeed the best decom-
position. This is done by first improving the ratio for
an arbitrary decomposition and then showing that the
improvement procedure for f∗M and c∗ does not lead to
any improvement. In fact, in the next section, we will
show a hardness of approximation which matches the
ratio provided by this decomposition.

First we show how to obtain from an arbitrary de-

composition fM and c, another decomposition f̃M and
c̃ such that the ratio improves. This happens if we can
subtract a linear term from fM and c while preserving
monotonicity of fM based on the above argument. And
then we show that for f∗M and c∗, this improvement
procedure returns f∗M and c∗

Proposition 2. Given an arbitrary decomposition fM
and c of a normalized submodular function f , i.e., f(S) =
fM (S)− c(S) ∀ S ⊆ V with monotone fM and consider
another decomposition

f̃M (S) = fM (S)−
∑
i∈S

(
fM (U)− fM (U \ i)

)
c̃(S) = c(S)−

∑
i∈S

(
fM (U)− fM (U \ i)

)
Then, f̃M is monotone. Furthermore, for the decom-

position in Proposition 1, f∗M and c∗, f̃∗M = f∗M and
c̃∗ = c∗.

Proof. The proof is provided in Appendix A.

We now remark on certain aspects of the algorithm
and its analysis. Since the algorithm is inspired by [28],
one may ask whether running that algorithm for mul-
tiple values of the budget in the knapsack constraint
leads to the same answer. Indeed, this is the case with
budget being the value of c(Θ). However, since we do
not apriori know c(Θ), we would have to potentially try
out a large number of budget values which is not fea-
sible. Furthermore, our analysis of the approximation
ratio crucially uses the fact that we are actually run-
ning the algorithm on this decomposition of f in order
to maximize f itself and not maximizing a monotone
submodular function subject to knapsack constraints.

4. INAPPROXIMABILITY OF UNSM
In this section, we prove a hardness of approxima-

tion result for the UNSM problem which matches the
approximation factor given by the MarginalGreedy
algorithm in Theorem 1 when the decomposition used
is f∗M and c∗ as defined in Proposition 1.

Theorem 2. For any ε > 0, it is NP-hard to approx-
imate the unconstrained, normalized submodular maxi-
mization problem to a factor of at least(

1− ln(1 + γ)

γ
+ ε

)
.

Here, γ = f(Θ)
c∗(Θ) and Θ is an optimal solution to the un-

constrained, normalized submodular maximization prob-
lem.

This approximation factor depends on the value at op-
timal (which may go to 0), implying that a constant
factor approximation to the UNSM problem is unlikely.

Before proving Theorem 2, we first present a separa-
tion result of the Max Coverage problem which is central
to the proof of Theorem 2.

4.1 Inapproximability of Max Coverage

An instance I = (X,S) of the Set Cover problem is
defined as follows: we are given the ground set X =
{e1, e2, . . . , en} and S = {S1, S2, . . . , Sm} ⊆ 2X . The
goal is to choose the minimum number of sets O ⊆
S such that

⋃
Si∈O

Si = X. Feige [8] showed that for

any ε > 0, there is no (1 − ε) lnn-approximation poly-
nomial time algorithm for this problem unless NP ⊆

DTIME(nO(log logn)). The hardness was later proved un-
der the weaker assumption of P 6= NP by [5, 18].

A problem closely related to the Set Cover problem
is the Max Coverage problem. An instance of the Max
Coverage problem consists of an instance I = (X,S, l)
where X is the ground set, S is a collection of subsets
of X, and l ≤ m is an integer specifying the budget.
The goal is to select l sets Si1 , Si2 . . . , Sil and cover as
many elements of the ground set as possible. Feige [8]
shows that it is NP-hard to approximate this problem
to a factor better than 1− 1/e.

Krishnaswamy and Sviridenko [14] prove a separation
result (which is an extension of the Max Coverage hard-
ness stated above) which is of interest to us.

Theorem 3. (Theorem 2.2 in [14]) Suppose there ex-
ists a polynomial algorithm, which for some constants
B ≥ 1 and 0 < ε < e−B has the following property :
Given any instance (X,S, l) of Max Coverage with opti-
mal value equal to |X| (i.e., there exist l sets that cover
the ground set X completely), the algorithm picks a col-
lection of βl sets for some β ∈ [0, B] which can cover
(1 − e−β + ε)n elements. Then P = NP. Note that
we allow the algorithm to pick different values of β for
different instances of the problem.

Theorem 2.2 in [14] is actually stated under the stronger
assumption of NP 6⊆ DTIME(nO(log logn)). Their reduc-
tion relies on the hardness of Set Cover which, at the
time of that paper, was known only under this stronger
assumption. Leveraging the set cover hardness result
by [5, 18] under the weaker assumption of P 6= NP, we
arrive at Theorem 3 without any changes to the proof
provided in [14].

Note that the coverage function f(A) =

∣∣∣∣ ⋃
S∈A

S

∣∣∣∣ is a

monotone, submodular function. The proof of Theorem
2 proceeds by considering a special case of UNSM where
for a Max Coverage instance, fM (A) is taken to be a
scaling of the coverage function and the additive cost
function c(A) is a scaling of the cardinality of the chosen
set of subsetsA. We call this the Profitted Max Coverage
problem.

Problem 1. (The Profitted Max Coverage problem)
An instance of this problem consists of an instance I =
(X,S, l) like the Max Coverage problem. Consider γ
to be a constant for this problem whose value will be
revealed later.

Let fM (A) = (γ+1)
γ

∣∣ ⋃
S∈A

S
∣∣

n and c(A) = 1
γ
|A|
l . The

goal is to maximize

f(A) = fM (A)− c(A)

=
(γ + 1)

γ

∣∣∣∣ ⋃
S∈A

S

∣∣∣∣
n

− 1

γ

∣∣A∣∣
l

Proof. (of Theorem 2) We want to show that if
there exists a polynomial time algorithm which approx-
imates the Profitted Max Coverage problem to a ratio

better than

1− ln(γ + 1)

γ
+ ε

(γ + 1)

γ
,

then P = NP.
We consider a hard instance I = (X,S, l) of the Max

Coverage problem such that the optimal value is n (i.e.,
there exist l sets to cover the entire ground setX). Now,
let functions f, fM and c be defined as in Problem 1.

[Completeness] Let us take a collection of l sets G =
{Si1 , Si2 , . . . , Sil} that cover the ground set X (such a
collection exists because I is a Max Coverage instance
with optimal value n). The optimal value of the corre-
sponding Profitted Max Coverage instance occurs when
exactly the sets in G are chosen.

f(G) =
(γ + 1)

γ

n

n
− 1

γ

l

l

=
(γ + 1)

γ
− 1

γ

= 1.

Observe that f(G)
c(G) = γ.

[Soundness] It is easy to see that we will never choose
more than (γ + 1)l sets as the function f will take neg-
ative values in those cases.

For any set, say F , of βl (where β ∈ [0, γ+1]) subsets
from S which cover at most (1 − e−β + ε)n elements,
the value of the Profitted Max Coverage instance in this
case is at most:

f(F) ≤ (γ + 1)

γ

(1− e−β + ε)n

n
− 1

γ

βl

l

=
(γ + 1)

γ
(1− e−β + ε)− 1

γ
β

=
(γ + 1)(1− e−β + ε)− β

γ
.

Differentiating the expression in the last line w.r.t β
and setting the derivative to 0, we get

γ + 1

γ
(e−β)− 1

γ
= 0

=⇒ eβ = (γ + 1)

=⇒ β = ln(γ + 1) ≤ (γ + 1).

Thus, the value f(F) is always less than the value
attained for that value of β and is

f(F) ≤ 1− ln(γ + 1)

γ
+ ε

(γ + 1)

γ
.

Now, if there exists a polynomial time algorithm (say
Alg) which solves the Profitted Max Coverage problem

to a factor better than 1− ln(γ+1)
γ +ε (γ+1)

γ , then on any

input instance of the Max Coverage problem such that
the optimal value is n, Alg will output a set F such

that f(F) > 1 − ln(γ+1)
γ + ε (γ+1)

γ (since the optimal

value is 1). Thus, F covers strictly more than (1 −
e−β + ε)n elements with β = |F|

l (by contrapositivity).
By Theorem 3, we have P = NP.

The above argument establishes the hardness for γ =
f(Θ)
c(Θ) for the function c defined in Problem 1. Since

the factor depends only on c(Θ), if we can show that
c(Θ) = c∗(Θ) for these hard instances, we would be
done. This can be shown by considering the expression
for c∗(Θ) in this case :

c∗(Θ) =
∑
i∈Θ

(
f(U \ {i})− f(U)

)
=
∑
i∈Θ

(
fM (U \ {i})− fM (U)− c(U \ {i}) + c(U)

)
=
∑
i∈Θ

(
c(U)− c(U \ {i})

)
+
∑
i∈Θ

(
fM (U \ {i})− fM (U)

)
= c(Θ) +

∑
i∈Θ

(
fM (U \ {i})− fM (U)

)
= c(Θ) +

(γ + 1)

γ · n

∑
i∈Θ

[∣∣∣∣ ⋃
S∈U\{i}

S

∣∣∣∣− ∣∣∣∣ ⋃
S∈U

S

∣∣∣∣]
Note that all the hard instances of SetCover and Max

Coverage are derived from the construction of [15]. All
such instances are such that each element has multiple
subsets which may cover it (intuitively if there is only
one subset which covers a particular element in any hard
instance, then we will pick it and get a smaller, easier
instance of the problem). Since the union of all subsets
of the given instance is n and so is the union of all but
one of the available subsets in the hard instance, each
term in the above summation is 0. This implies that
c∗(Θ) = c(Θ) and we are done.

5. SPEEDING UP THE MARGINAL GREEDY
In the worst case, the MarginalGreedy algorithm

runs in O(n2 ·EO) time, where n is the number of share-
able nodes and EO is the time to evaluate bc(S), i.e.,
the time to optimize the batch of queries given the set of
nodes S, to be materialized. This makes the algorithm
expensive since n itself may be exponential in the worst
case. Thus, we would like to reduce the time taken
by the algorithm without sacrificing on the theoretical
guarantees on the quality of the solution proved in Sec-
tion 3. In this section, we present some optimizations
to our algorithm to improve its running time.

5.1 Basic Optimizations
We first note that two optimizations presented in [23]

can be used for our algorithm as well. Their first ob-
servation is about searching only over all the shareable
nodes. As noted above, this can be directly used by us
since our algorithm just presents a different heuristic for
choosing which nodes to materialize. Their second op-
timization presents a way to incrementally update the
bestCost function for various sets that exploits the result
of earlier cost computations to incrementally compute
the new plan. Since the mb function is just a linear
transformation of the bestCost function and our greedy
algorithm (at least when the decomposition presented
in the proof of Proposition 1 is used) is also concerned
with just successive differences in the values of the best-
Cost function, their optimization can also be used to
speed up our algorithm; for details see [23].

Another optimization (not in [23]) that can be made
is based on a simple observation of the greedy algorithm
and by exploiting submodularity. In the ith iteration,
the MarginalGreedy algorithm needs to compute

the maximum benefit to cost ratio
f ′M (e,Xi−1)
c({e}) . Thus, if

while scanning elements to compute the maximum, we
encounter an element which has the marginal-benefit to
cost ratio less than 1, we can remove it from the set Y
of elements to be searched over as it will never be picked
by the MarginalGreedy algorithm in the future it-
erations either. This is because fM is also submodular
and the size of Xi always increases as i increases so the
value of the marginal-benefit to cost ratio only decreases
as the algorithm proceeds and will never become greater
than 1. A similar optimization for the simple greedy al-
gorithm used for monotone, submodular maximization
under cardinality constraints is also possible.

5.2 The LazyMarginalGreedy algorithm
The third optimization in [23] essentially leverages

supermodularity to improve the running time of the
greedy algorithm. The argument is similar to that used
by [16] for the LazyGreedy algorithm. We observe
that a similar argument as the ones presented in these
two papers may be used for the MarginalGreedy al-
gorithm and is presented next.

As noted previously, in each iteration i, the Marginal-
Greedy algorithm must identify the element e with

the maximum marginal-benefit to cost ratio
f ′M (e,Xi−1)
c({e}) .

For each element e, the denominator is fixed and the
marginal benefits are monotonically nonincreasing dur-
ing the iterations of the algorithm, i.e., f ′M (e,Xi) ≥
f ′M (e,Xj) whenever i ≤ j. Thus, instead of recomput-

ing
f ′M (e,Xi−1)
c({e}) for each element e ∈ V , which requires

O(n) computations of f , the LazyMarginalGreedy
algorithm maintains a list of upper bounds u(e) (ini-
tialized to a large value) on the marginal-benefit to cost
ratio sorted in decreasing order (using a heap).

In each iteration, the algorithm extracts the element
with largest u(e) from the ordered list of remaining
elements. If, after this update, u(e) ≥ u(e′) ∀e′ 6=
e, then submodularity guarantees that

f ′M (e,Xi−1)
c({e}) ≥

f ′M (e′,Xi−1)
c({e}) ∀e′ 6= e, and therefore the algorithm has

identified the element with the largest marginal benefit
to cost ratio without computing the ratio for a poten-
tially large number of elements e′.

5.3 Universe Reduction under size constraints
We may sometimes want to consider a cardinality con-

straint (say k) on the number of nodes to be material-
ized. This may arise due to storage constraints which
only allow materialization of a few subexpressions. We
adapt our greedy algorithm for this constraint by simply
stopping after k elements are picked.

While, at this point, we do not show any theoretical
approximation guarantees for this problem, there is a
way to leverage this cardinality constraint to prune out
certain elements from the ground set U . This prepro-

cessing step may be used to reduce the size of the set of
PQDAG nodes U on which the algorithm will be run.

We show that the algorithm run on this reduced set
is the same as that obtained when the algorithm runs
on the full set. This check is useful only when there is
a cardinality constraint of k < n, as we will show.

Theorem 4. Let U = {e1, . . . , en} be the set of all
shareable PQDAG nodes ordered as
f ′M (e1,U\{e1})

c({e1}) ≥ . . . ≥ f ′M (en,U\{en})
c({en}) . Furthermore, let

U ′ = {e ∈ U
∣∣ fM (e)
c({e}) ≥

f ′M (ek,U\{ek})
c({ek}) } for k < n.

The output of the MarginalGreedy algorithm (with
cardinality constraint of k) when it runs on U is the
same as the output when it runs on U ′.

Proof. The proof is provided in Appendix A.

It is important to note that this strategy may not
always lead to a reduction in the ground set but it may
lead to pruning in certain cases.

Note that this pruning procedure can be modified to
work for the simple greedy algorithm for monotone, sub-
modular maximization under cardinality constraints. The
proof is also along similar lines as those stated above.

6. EXPERIMENTAL SECTION
We now describe our experimental setup and find-

ings. We worked with the original C++ code of Pyro
which implemented the Greedy algorithm [23]. We ex-
tended it by implementing the Marginal Greedy algo-
rithm. All the optimizations discussed in Section 5 are
implemented with the exception of the one discussed in
subsection 5.3 as we are mainly interested in the best
plan without imposing any cardinality constraints.

The optimizer rule set consists of select push down,
join commutativity and associativity (to generate bushy
join trees), and select and aggregate subsumption. The
physical operators included sort-based aggregation, merge
join, nested loop join, indexed selection and relation
scan. The implementation includes handling physical
properties (sort order and presence of indices) on base
and intermediate relations, unification and subsumption
during DAG generation (see [23] for details).

The block size was taken as 4KB and our cost func-
tions assume 6MB is available to each operator during
execution (we also conducted experiments with mem-
ory sizes of 128MB). Standard techniques were used for
estimating costs, using statistics about relations. The
cost estimates are of the standard resource consumption
estimates which contain an I/O component and a CPU
component, with seek time as 10 msec, transfer time of
2 msec/block for read and 4 msec/block for write, and
CPU cost of 0.2 msec/block of data processed.

We assume that intermediate results are pipelined to
the next input, using an iterator model as in Volcano;
they are saved to disk only if the result is to be material-
ized for sharing. The materialization cost is the cost of
writing out the results sequentially. The tests were per-
formed on a 2.4 GHz Intel i7 processor laptop with 8GB
memory running Linux. We compare Marginal Greedy
with Greedy and stand-alone Volcano (no MQO). The

(a) 1GB Total Size (b) 100GB Total Size (c) Optimization Time (logscale)
Figure 4: Results for batched TPCD queries (Experiment 1)

optimization time of our Marginal Greedy algorithm
was very close to that of the Greedy algorithm in [23].
The optimization times are measured as CPU time.

6.1 Experiment 1 (Batched TPCD Queries)
The workload for the first experiment models a sys-

tem where several TPCD queries are executed as a batch.
The workload consists of subsequences of the queries
Q3, Q5, Q7, Q8, Q9 and Q10. Each query was re-
peated twice with different selection constants. Com-
posite query BQi consists of the first i of the above
queries, and we used composite queries BQ1 to BQ6
in our experiments. The TPCD database is used at a
scale of 1 (1 GB total size), with a clustered index on
the primary keys for all the base relations. We also ran
the queries in this experiment and the next at a scale
of 100 (total size 100GB).

Note that although a query is repeated with two dif-
ferent values for a selection constant, we found that the
selection operator generally lands up at the bottom of
the best Volcano plan tree, and the two best plan trees
may not have common subexpressions.

The results on the two workloads (1GB and 100 GB
total sizes) are shown in Figure 4. The number on
top of the bars for Greedy and Marginal Greedy de-
notes the number of materialized nodes. Greedy does
substantially better than Volcano (without MQO) by
upto 57%. Marginal Greedy always does as good as or
better than Greedy. In fact, the results are the same
only for BQ1 where both chose to materialize the two
nodes which lead to benefit. For all other queries in the
experiment with 1GB Total Size, the improvement of
Marginal Greedy is always between 12% and 25%. This
is primarily due to the number of materialized nodes
by Marginal Greedy being more than that by Greedy.
BQ5 is especially interesting in Figure 4a as the number
of materialized nodes is the same yet there is almost a
20% improvement over Greedy. In fact, for queries from
BQ4 to BQ6, the intersection in the materialized nodes
by the two algorithms had an overlap of 1 or 2 only.

In the experiment with 100GB Total Size (Figure
4b), as mentioned, the nodes chosen to be material-
ized for BQ1 are the same for both algorithms. For the
rest of the queries, the number of materialized nodes
is much larger than in the 1GB size dataset. While
the relative gains in this dataset might seem compara-

ble or slightly lesser than those observed in the smaller
dataset, the actual gains in these cases are substantial
due to large costs coming from these large data sizes.
In these queries, there were 1 or 2 nodes which had sub-
stantially more benefit and got picked by both Greedy
and Marginal Greedy. While Greedy picked a few more
nodes which seemed benefical initially, Marginal Greedy
picked many more nodes, each of which had moderate
benefit but lead to an overall decrease in the cost. This
behaviour was particularly observed in BQ5 and BQ6
and we believe for larger sets of queries on larger data
sets, this behavior will be more pronounced.

The optimization times for the queries are shown in
Figure 4c. Since the values for Greedy and Marginal
Greedy were very close to each other, we present the
results in logscale. As can be seen, even in logscale,
the optimization times are very close to each other. We
stress that while the execution cost of a query depends
on the size of the underlying data, the cost of optimiza-
tion does not.

6.2 Experiment 2 (Stand-Alone TPCD Queries)
Roy et al. [23] also had an experiment consisting

of four individual queries based on TPCD using the
same data sizes (1GB and 100GB) and the same in-
dices. These queries had common subexpressions within
themselves and benefitted from MQO to optimize just
those queries individually. However, in all four queries,
only node was beneficial and hence, both algorithms
found that node and resulted in the same answer. We
present the results here for completeness. We explain
these queries themselves and the actual results are pre-
sented in Figure 5 in Appendix B.

TPCD query Q2 has a large nested query, and re-
peated invocations of the nested query in a correlated
evaluation could benefit from reusing some of the inter-
mediate results. Greedy and Marginal Greedy gave a
plan with an estimated cost of 79 seconds for the smaller
data set and 1929 seconds for the larger one. Decorrela-
tion is an alternative to correlated evaluation and Q2-D
is a (manually) decorrelated version of Q2 (due to decor-
relation, Q2-D is actually a batch of queries). Multi-
query optimization also gives substantial gains on the
decorrelated query Q2-D, results in a plan of estimated
cost 46 and 2059 for the two data sizes respectively, by
both algorithms. We next considered the TPCD queries

Q11 and Q15, both of which have common subexpres-
sions, and hence make a case for multi-query optimiza-
tion. For Q11, both the greedy algorithms lead to a
plan of approximately half the cost as that returned by
Volcano. The improvements for Q15 are similar but
more pronounced for the smaller data set.

The conclusion based on the experiments seems to be
that when there are multiple possible nodes that can
be materialized, Greedy chooses the nodes which result
in considerable improvements early on but Marginal
Greedy is more global and chooses to materialize more
nodes which might have moderate benefit individually
but can result in overall benefits.

7. RELATED WORK
We now present the related work in the areas of multi-

query optimization and submodular maximization.

7.1 Multi-Query Optimization
The MQO problem has received significant attention

in the past [20, 21, 24, 25, 27]. Initial work [20, 21,
24, 25] proposed solutions that were not fully integrated
with the query optimizer and were primarily exhaustive.

Subramanian and Venkataraman [27] consider sharing
only among the best plans of the query; this approach
can be implemented as an efficient, post-optimization
phase in existing systems, but can be highly suboptimal.

To choose the set of nodes to be materialized, Roy
et al. [23] use a greedy algorithm which has already
been discussed in detail in Section 2. Dalvi et al. [4]
explores the possibility of sharing intermediate results
by pipelining, avoiding unnecessary materializiations.
Diwan et al. [6] consider the MQO problem in Vol-
cano taking scheduling and caching into account. They
present an exhaustive algorithm which takesO(nn) time,
which is clearly infeasible.

Zhou et al.[29] propose a framework to use common
subexpressions for MQO and materialized view selec-
tion in a query optimizer based on the Cascades frame-
work [9]. The focus however is on “covering” subexpres-
sions at the LQDAG level and they do not take into
account competing physical properties like sort orders
and partitioning properties from different consumers.

Silva et al. [26] consider physical properties in a cost-
based fashion. However, their solution is also based
on heuristics which materializes every common subex-
pression at the LQDAG level. The best physical prop-
erty for each subexpression is chosen and all consumers
are forced to use the same physical property, which can
be sub-optimal. Furthermore, even with this heuristic,
their approach can be very expensive when there are
many potential physical properties for each subexpres-
sion.

7.2 Submodular Maximization
Submodular maximization has received a significant

amount of attention in optimization [2, 3, 19] and has
wide applicability in machine learning, computer vision
and information retrieval [1, 11, 12, 13]. In this problem,
we are given a submodular function f and a universe
U , with the goal of selecting a subset S ⊆ U such that

f(S) is maximized. Typically, S must satisfy additional
feasibility constraints such as cardinality, knapsack or
matroid constraints.

This problem is NP-hard even for the simplest prob-
lems which involve only cardinality constraints and mono-
tone functions. Nemhauser et al. [19] show that a sim-
ple greedy algorithm gives a (1−1/e) approximation for
monotone submodular maximization under cardinality
constraints. They further show that it is NP-hard to ob-
tain a better approximation guarantee. Sviridenko [28]
presents a modified greedy algorithm for monotone sub-
modular function maximization under knapsack con-
straints. Their algorithm is the main motivation for
our marginal greedy algorithm.

Buchbinder et al. [2] gave a 1/2-approximation al-
gorithm for unconstrained non-monotone submodular
maximization, for which there is a matching hardness
result. However, all these results assume non-negativity
of the function f . Mittal and Shulz [17] show that a
constant factor approximation for non-negative super-
modular minimization is NP-hard. Inapproximability
of non-monotone submodular maximization (with pos-
sibly negative values) is also well known. To the best
of our knowledge, ours is the first work which, under
the assumption of f(∅) = 0, provides an approxima-
tion algorithm with a matching hardness of approxima-
tion result for unconstrained non-monotone submodu-
lar maximization when the function may take negative
values. Since the hardness of approximation factor de-
pends on the optimal (and may go to 0), this rules out
constant factor approximations for the problem even in
the restricted setting of f(∅) = 0.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a reformulation of

the well-studied MQO problem. Under the assumption
of supermodularity of the bestCost function, we propose
a greedy algorithm for the maximization problem and
provide an approximation factor guarantee for our algo-
rithm. We then showed that obtaining a better approx-
imation factor than the one attained by our greedy al-
gorithm is NP-hard. Such theoretical guarantees on the
quality of any heuristic has not been presented before.
Since the underlying problem solved in this paper is
the unconstrained, normalized submodular maximiza-
tion problem, with possibly negative values, we believe
our results can be useful beyond just MQO.

One area of future work is the problem of non-negative,
non-monotone submodular maximization problem un-
der cardinality constraints and more generally, matroid
constraints. This is an outstanding open problem and
even the most recent work [7] has a considerable gap in
the approximation ratio and the hardness of approxima-
tion known. We would like to see if ideas in this paper
like the “best decomposition” can be used to devise al-
gorithms with better guarantees for that problem.

9. ACKNOWLEDGMENTS
We would like to thank Amit Deshpande, Deeparnab

Chakrabarty, Ravishankar Krishnaswamy and Sebastien

Tavenas for comments on the paper.

References
[1] Y. Boykov and M.-P. Jolly. Interactive Graph Cuts

for Optimal Boundary & Region Segmentation of
Objects in N-D Images. In ICCV, pages 105–112,
2001.

[2] N. Buchbinder, M. Feldman, J. Naor, and
R. Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular max-
imization. In FOCS, pages 649–658, 2012.

[3] G. Călinescu, C. Chekuri, M. Pál, and J. Vondrák.
Maximizing a submodular set function subject to a
matroid constraint. In IPCO, pages 182–196, 2007.

[4] N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudar-
shan. Pipelining in multi-query optimization. J.
Computer and System Sciences, 66:728–762, 2003.

[5] I. Dinur and D. Steurer. Analytical approach to
parallel repetition. In STOC, pages 624–633, 2014.

[6] A. Diwan, S. Sudarshan, and D. Thomas. Schedul-
ing and Caching in Multi-Query Optimization. In
COMAD, pages 14–17, 2006.

[7] A. Ene and H. L. Nguyen. Constrained submodular
maximization: Beyond 1/e. In FOCS, 2016.

[8] U. Feige. A threshold of ln n for approximating set
cover. Journal of the ACM, 45(4):634–652, 1998.

[9] G. Graefe. The Cascades framework for query op-
timization. Data Engg. Bull., 18(3):19–29, 1995.

[10] G. Graefe and W. McKenna. The Volcano opti-
mizer generator: extensibility and efficient search.
In ICDE, pages 209–218, 1993.

[11] S. Jegelka and J. A. Bilmes. Submodularity beyond
submodular energies: Coupling edges in graph
cuts. In CVPR, pages 1897–1904, 2011.

[12] D. Kempe, J. Kleinberg, and É. Tardos. Maximiz-
ing the spread of influence through a social net-
work. In KDD, 2003.

[13] P. Kohli, M. P. Kumar, and P. H. S. Torr. P3 &
beyond: Solving energies with higher order cliques.
In CVPR, 2007.

[14] R. Krishnaswamy and M. Sviridenko. Inapprox-
imability of the Multi-level Uncapacitated Facility
Location Problem. In SODA, pages 718–734, 2012.

[15] C. Lund and M. Yannakakis. On the hardness of
approximating minimization problems. J. ACM,
41(5):960–981, 1994.

[16] M. Minoux. Accelerated greedy algorithms for
maximizing submodular set functions. In Opti-
mization Techniques, pages 234–243, 1977.

[17] S. Mittal and A. S. Schulz. An FPTAS for optimiz-
ing a class of low-rank functions over a polytope.
Math. Program., 141(1-2):103–120, 2013.

[18] D. Moshkovitz. The Projection Games Conjecture
and the NP-Hardness of ln n-Approximating Set-
Cover. Theory of Computing, 11(1):221–235, 2015.

[19] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher.
An analysis of approximations for maximizing
submodular set functions- I . Math. Program.,
14(1):265–294, 1978.

[20] J. Park and A. Segev. Using common subexpres-
sions to optimize multiple queries. In ICDE, pages
311–319, 1988.

[21] A. Rosenthal and U. Chakravarthy. Anatomy of a
modular multiple query optimizer. In VLDB, pages
230–239, 1988.

[22] N. Roussopoulos. View indexing in relational
databases. ACM Trans. Database Syst., 7(2):258–
290, 1982.

[23] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe.
Efficient and Extensible Algorithms for Multi
Query Optimization. In SIGMOD, pages 249–260,
2000.

[24] T. K. Sellis. Multiple-query optimization. ACM
Trans. Database Syst., 13(1):23–52, 1988.

[25] K. Shim, T. Sellis, and D. Nau. Improvements on
a heuristic algorithm for multiple-query optimiza-
tion. Data & Knowledge Engg., 12:197–222, 1994.

[26] Y. N. Silva, P.-a. Larson, and J. Zhou. Exploiting
Common Subexpressions for Cloud Query Process-
ing. In ICDE, 2012.

[27] S. Subramanian and S. Venkataraman. Cost-based
optimization of decision support queries using tran-
sient views. In SIGMOD, pages 319–330, 1998.

[28] M. Sviridenko. A note on maximizing a submod-
ular set function subject to a knapsack constraint.
Oper. Res. Lett., 32(1):41–43, 2004.

[29] J. Zhou, P. A. Larson, J. C. Freytag, and
W. Lehner. Efficient exploitation of similar subex-
pressions for query processing. SIGMOD, pages
533–544, 2007.

APPENDIX

A. ADDITIONAL PROOFS
We now present the missing proofs. We reproduce the

theorem statements for convenience.

Proposition 1. (in the main paper) Any normal-
ized, non-monotone (which may take negative values)
submodular function f can be decomposed as

f(S) = fM (S)− c(S) ,∀ S ⊆ U

where fM is a monotone submodular function and c is
an additive cost function. In particular, one possible
decomposition is

f∗M (S) = f(S) +
∑
e∈S

(f(U \ {e})− f(U))

c∗(S) =
∑
e∈S

(f(U \ {e})− f(U))

Proof. It is easy to see that c is additive and that

∀ S ⊆ X, we have f(S) = fM (S)− c(S)

Since c is additive and f is submodular, fM is also sub-
modular since for arbitrary S1 ⊂ S2 ⊂ U and an arbi-
trary e ∈ U \ S2,

fM (S1 ∪ {e})− fM (S1)

= f(S1 ∪ {e})− c(S1 ∪ {e})− f(S1) + c(S1)

= f(S1 ∪ {e})− f(S1)− c({e}) (by linearity of c)

≥ f(S2 ∪ {e})− f(S2)− c({e}) (by submodularity of f)

= f(S2 ∪ {e})− f(S2)− c(S2 ∪ {e}) + c(S2) (by linearity)

= fM (S2 ∪ {e})− fM (S2).

Now we just have to show that fM is monotone.
Consider an arbitrary S ⊂ U and an arbitrary e ∈ U \S.
Let us consider the expression

fM (S ∪ {e})− fM (S)

= f(S ∪ {e})− f(S) + (f(U \ {e})− f(U))

= (f(S ∪ {e})− f(S))− (f(U)− f(U \ {e}))
≥ 0

The inequality in the last line follows from the fact that
S ⊆ U \ {e} and the submodularity of f . The terms in
the summation can be suitably scaled to ensure that c
is zero only at ∅ and positive everywhere else.

Proposition 2. (in the main paper) Given an arbi-
trary decomposition fM and c of a normalized submod-
ular function f , i.e., f(S) = fM (S)−c(S) ∀ S ⊆ V with
monotone fM and consider another decomposition

f̃M (S) = fM (S)−
∑
i∈S

(
fM (U)− fM (U \ i)

)
c̃(S) = c(S)−

∑
i∈S

(
fM (U)− fM (U \ i)

)
Then, f̃M is monotone. Furthermore, for the decom-

position in Proposition 1, f∗M and c∗, f̃∗M = f∗M and
c̃∗ = c∗.

Proof. To show monotonicity of f̃M , it is enough to

show ∀j ∈ U, ∀S ⊆ U \ {j}, f̃M (S ∪ {j})− f̃M (S) ≥ 0.

f̃M (S ∪ {j})− f̃M (S)

= fM (S ∪ {j})− fM (S)−
(
fM (U)− fM (U \ {j})

)
≥ 0 (by submodularity of fM)

For the second part, we just expand the expressions
to get the desired result.

c̃∗(S) = c∗(S)−
∑
i∈S

(
f∗M (U)− f∗M (U \ {i})

)
= c∗(S)−

∑
i∈S

f(U)− f(U \ {i}) +
(
f(U \ {i})− f(U)

)
= c∗(S)

The computation for f̃∗M (S) proceeds similarly.

Theorem 4. (in the main paper) Let the set of all
shareable PQDAG nodes U = {e1, . . . , en} be ordered
as
f ′M (e1,U\{e1})

c({e1}) ≥ . . . ≥ f ′M (en,U\{en})
c({en}) . Furthermore, let

U ′ = {e ∈ U
∣∣ fM (e)
c({e}) ≥

f ′M (ek,U\{ek})
c({ek}) } for k < n.

The output of the MarginalGreedy algorithm (with
cardinality constraint of k) when it runs on U is the
same as the output when it runs on U ′.

Proof. Without loss of generality, assume that the
algorithm, when run on V, terminates after the full k
steps. Let the sequence of chosen elements, in order
of inclusion, be {s1, s2, . . . , sk} and for all i ∈ [k], let
Xi = {s1, s2, . . . , si}, as before. Clearly, ∅ = X0 ⊂
X1 ⊂ X2 ⊂ . . . ⊂ Xk.

Case 1. k = n
This is a simple case in which all elements are chosen
and, thus, U ′ should be equal to U which is shown as
follows ∀e ∈ U , we have

fM ({e})
c({e})

=
f ′M (e, ∅)
c({e})

≥ f ′M (e, U \ {e})
c({e})

(by submodularity)

≥ f ′M (ek, U \ {ek})
c({ek})

.

Hence, all elements of U are going to be in U ′ since
they all satisfy the condition to be in U ′. In this case,
the check is clearly wasteful since the ground set has
no reduction and a lot of functional calls are made. In
the MQO context, this corresponds to invoking a lot
of bestCost(Q,S) calls, each of which are moderately
expensive. Thus, in this case, the preprocessing step
should just check if k = n and if so, directly pass the
full ground set to the greedy algorithm.

Case 2. k < n & Xk = {e1, e2, . . . , ek}.
In this case, the theorem follows trivially since U ′ will
contain all elements in Xk, along with some other ele-
ments.

Case 3. k < n & Xk 6= {e1, e2, . . . , ek}.
We first make a claim which we will prove later.

Claim 1. For all i ∈ {1, 2, . . . , k}, we have

f ′M (si, Xi−1)

c({si})
≥ f ′M (ei, U \ {ei})

c({ei})
.

The claim is used to show that elements in U \ U ′ will
never be picked by the MarginalGreedy algorithm.

(a) 1GB Total Size (b) 100GB Total Size (c) Optimization Times (logscale)
Figure 5: Results for stand-alone TPCD queries (Experiment 2)

Intuitively, for any element e /∈ U ′, the
f ′M (e,Xi)
c({e}) ratio of

picking it is largest in the first iteration (by submodu-
larity) and that itself is less than the element with the
smallest ratio of the elements selected by the greedy al-
gorithm. So, it is guaranteed that the greedy algorithm
does not pick any element which is not in U ′. This is
easy to see and is as follows
For all e ∈ U \ U ′, we have

f ′M (e, ∅)
c({e})

=
fM (e)

c({e})
<
f ′M (ek, U \ {ek})

c({ek})
.

By Claim 1,

f ′M (sk, Xk−1)

c({sk})
≥ f ′M (ek, U \ {ek})

c({ek})

=⇒ f ′M (sk, Xk−1)

c({sk})
>
f ′M (e, ∅)
c({e})

.

We now present the proof of Claim 1.

Proof. (of Claim 1) The case of ei 6∈ Xi−1 is trivial
due to submodularity and the greedy algorithm.

Thus, we just have to prove for the case when ei ∈
Xi−1

Since |Xi−1| = i − 1, Xi−1 cannot include all elements
from the set {e1, e2, . . . , ei}. Thus, there exists some
element, say, ez ∈ e1, e2, . . . , ei such that ez /∈ Xi−1.

Thus, we have
f ′M (si, Xi−1)

c({si})

= max
e∈U\Xi−1

f ′M (e,Xi−1)

c({e})

≥f
′
M (ez, Xi−1)

c({ez})

≥f
′
M (ez, U \ {ez})

c({ez})
(by submodularity)

≥f
′
M (ei, U \ {ei})

c({ei})

This concludes our proof.

B. RESULTS OF EXPERIMENT 2
In this section, we present the results of Experiment

2 (Stand-alone TPCD). The results are shown in Figure
5.

	1 Introduction
	1.1 Our contribution

	2 Preliminaries
	2.1 Query Optimization in Volcano
	2.2 Multi-Query Optimization in Volcano
	2.3 Submodular Maximization
	2.4 Multi-Query Optimization and UNSM

	3 The Marginal Greedy algorithm
	3.1 Approximation Factor of MarginalGreedy

	4 Inapproximability of UNSM
	4.1 Inapproximability of Max Coverage

	5 Speeding up the Marginal Greedy
	5.1 Basic Optimizations
	5.2 The LazyMarginalGreedy algorithm
	5.3 Universe Reduction under size constraints

	6 Experimental Section
	6.1 Experiment 1 (Batched TPCD Queries)
	6.2 Experiment 2 (Stand-Alone TPCD Queries)

	7 Related Work
	7.1 Multi-Query Optimization
	7.2 Submodular Maximization

	8 Conclusions and Future Work
	9 Acknowledgments
	A Additional Proofs
	B Results of Experiment 2

