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ABSTRACT
The chase is a family of algorithms used in a number of data man-
agement tasks, such as data exchange, answering queries under de-
pendencies, query reformulation with constraints, and data clean-
ing. It is well established as a theoretical tool for understanding
these tasks, and in addition a number of prototype systems have
been developed. While individual chase-based systems and partic-
ular optimizations of the chase have been experimentally evaluated
in the past, we provide the first comprehensive and publicly avail-
able benchmark—test infrastructure and a set of test scenarios—for
evaluating chase implementations across a wide range of assump-
tions about the dependencies and the data. We used our benchmark
to compare chase-based systems on data exchange and query an-
swering tasks with one another, as well as with systems that can
solve similar tasks developed in closely related communities. Our
evaluation provided us with a number of new insights concerning
the factors that impact the performance of chase implementations.

1. INTRODUCTION
The chase [25] is a long-standing technique developed by the

database community for reasoning with constraints, also known
as dependencies, expressed as universal implications possibly con-
taining existential quantification in the conclusion. When applied
to a set of dependencies and a set of facts, the chase extends the
facts in a forward-chaining manner to satisfy the dependencies.

The chase has been intensively studied as a theoretical tool, but
over the last decade practical aspects, such as developing optimiza-
tions of the chase algorithms and building chase-based systems for
various tasks, have also been considered. Although algorithms for
chasing source-to-target dependencies have shown promise in prac-
tice, with target dependencies scalability has been achieved only in
quite restricted cases. The performance of chase implementations
on large sets of complex dependencies and large datasets remains
unknown. This suggests that it is time to evaluate the extent to
which computing the chase is practically feasible.

The chase is closely related to and can be seen as a special case
of theorem proving calculi such as tableaux and resolution, and it
can also be seen as a generalization of standard query evaluation in
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databases. But while the theorem proving and the database com-
munities have a long history of creating benchmarks and detailed
evaluation methodologies (e.g., SMTLib [37] and TPTP [40] in the
former, the TPC family [39] in the latter), there is little correspond-
ing infrastructure to support experimental validation of techniques
such as the chase that combine reasoning and data management.

This paper aims to take a major step in changing this situation.
We present a new benchmark for chase systems covering a wide
range of scenarios. Since the systems in the literature support dif-
ferent kinds of dependencies, we have developed dependency sets
with different structural properties, and datasets of varying sizes.

We also define example tasks for two main applications of the
chase: (i) data exchange, which involves materializing an instance
of a target schema satisfying a given set of dependencies with re-
spect to an instance of a source schema; and (ii) computing certain
answers to conjunctive queries over databases with dependencies.

We then analyze a variety of publicly available systems on our
benchmark in order to answer the following questions:
• How do existing chase-related systems fare in absolute terms

on these tasks? That is, to what extent can they be con-
sidered as proof that the chase-based approaches to solving
these tasks are practically feasible?
• What algorithmic and architectural choices are most critical

for the performance of chase-related systems?
• Are there other approaches or other kinds of systems that can

perform these same tasks and, if so, how do they compare to
tools that use the chase?

In an attempt to answer these questions, we considered a number of
systems that implement the chase as a component, including sys-
tems motivated from data exchange, data cleaning, query reformu-
lation, and query answering.

We mentioned above that many communities have looked at tech-
niques similar to the chase, and at problems similar to data ex-
change and query answering. To better understand the connection
with the related communities, we also applied our benchmark to
systems that are not specifically “branded” as chase systems, but
that can nonetheless perform some of the tasks that the chase ad-
dresses. In particular, we looked at Datalog engines that support
function symbols as they can solve both data exchange and query
answering problems, as well as a leading theorem prover that can
solve various query answering problems.

Organization. In the rest of this paper, we first present some
background about the chase (Sections 2 and 3). Next, we describe
our test systems (Section 4), and discuss our testing infrastructure
and test scenarios (Section 5). Then, we present the system com-
parison results (Section 6), followed by a discussion of the insights
gained (Section 7) and the future challenges that emerged from our
study (Section 8). Finally, we close with a discussion of the re-



lated work and conclusions (Sections 9 and 10). We emphasize
that full details regarding the systems under test, our test infras-
tructure, and our scenarios are available on the benchmark Web
page (http://dbunibas.github.io/chasebench).

2. BACKGROUND
Database basics. Let Const, Nulls, and Vars be mutually dis-

joint, infinite sets of constant values, labeled nulls, and variables,
respectively. Intuitively, constant values are unique; labeled nulls
represent unknown values; and variables are used in dependencies
and queries. A value is a constant value or a labeled null, and a
term is a value or a variable. We often abbreviate an n-tuple of
terms t1, . . . , tn as~t, and we often treat it as a set and write ti ∈~t.

A schema is a set of relation names (or just relations), each as-
sociated with a nonnegative integer called arity. An instance I of a
schema assigns to each n-ary relation R in the schema a (possibly
infinite) set I(R) of n-tuples of values. The active domain of I is
the set of all values occurring in a tuple of some I(R). A relational
atom has the form R(~t) where R is an n-ary relation and~t is an n-
tuple of terms. An equality atom has the form t1 = t2 where t1 and
t2 are terms. A fact is an atom that does not contain variables. An
instance can equivalently be seen as a set of relational facts, so we
use notation R(~t) ∈ I and~t ∈ I(R) interchangeably. An atom (resp.
an instance) is null-free if it does not contain null values.

Term mappings. A term mapping σ is a partial mapping of
terms to terms; we write σ = {t1 7→ s1, . . . , tn 7→ sn} to denote that
σ(ti) = si for 1≤ i≤ n. For α a term, an atom, a conjunction of
atoms, or a set of atoms, σ(α) is obtained by replacing each oc-
currence of a term t in α that also occurs in the domain of σ with
σ(t) (i.e., terms outside the domain of σ remain unchanged). The
composition of σ with a term mapping µ is the term mapping σ ◦µ

whose domain is the union of the domains of σ and µ , and it is de-
fined by (σ ◦µ)(t) = σ(µ(t)). A substitution σ is a term mapping
whose domain contains only variables and whose range contains
only values; moreover, σ is null-free if its range contains only con-
stants; finally, σ is a homomorphism of a conjunction of atoms
ρ =

∧
i Ai into an instance I if the domain of σ is the set of all

variables occurring in ρ and σ(ρ)⊆ I.
Dependencies and solutions. Semantic relationships between

relations can be described using dependencies, which come in two
forms. A Tuple Generating Dependency (TGD) is a logical sen-
tence of the form (1), where λ (~x) and ρ(~x,~y) are conjunctions of
relational, null-free atoms whose free variables are contained in ~x,
and~x∪~y correspondingly.

∀~x λ (~x)→∃~y ρ(~x,~y) (1)

An Equality Generating Dependency (EGD) is a logical sentence
of the form (2), where λ (~x) is a conjunction of relational, null-free
atoms over variables~x, and {xi,x j} ⊆~x.

∀~x λ (~x)→ xi = x j (2)

The left-hand side of a TGD or an EGD (i.e., the conjunction λ (~x))
is the body of the dependency, and the right-hand side is the head.
A dependency is linear if it has exactly one atom in the body. By a
slight abuse of notation, we often treat heads and bodies as sets of
atoms, and we commonly omit the leading universal quantifiers.

Let I be an instance and let τ be a TGD of the form (1) or an
EGD of the form (2). The notion of dependency τ holding in I (or
I satisfying τ , written I |= τ) is given by first-order logic, and it can
be restated using homomorphisms as follows. A trigger for τ in I
is a homomorphism h of λ (~x) into I. Moreover, an active trigger
for τ in I is a trigger h for τ in I such that, if τ is a TGD, then no

extension of h to a homomorphism of ρ(~x,~y) into I exists, and if τ

is an EGD, then h(xi) 6= h(x j). Finally, dependency τ is satisfied in
I if there does not exist an active trigger for τ in I.

Let Σ be a set of dependencies and let I be a finite, null-free
instance. Instance J is a solution for Σ and I if I ⊆ J and J |= τ for
each τ ∈ Σ. A solution J for Σ and I is universal if, for each solution
J′ for Σ and I, a term mapping µ from the active domain of J to the
active domain of J′ exists such that µ(J)⊆ J′ and µ(c) = c holds
for each constant value c ∈ Const. Solutions for Σ and I are not
unique, but universal solutions are unique up to homomorphism.

Queries. A conjunctive query (CQ) is a formula of the form
∃~y

∧
i Ai, where Ai are relational, null-free atoms. A substitution σ

is an answer to Q on instance I if the domain of σ is precisely the
free variables of Q, and if σ can be extended to a homomorphism of∧

i Ai in I. By choosing a canonical ordering for the free variables
~x of Q, we often identify σ with an n-tuple σ(x1), . . . ,σ(xn). The
output of Q on I is the set Q(I) of all answers to Q on I.

Answering queries under dependencies. Let Σ be a set of de-
pendencies, let I be a finite, null-free instance, and let Q be a CQ.
A substitution σ is a certain answer to Q on Σ and I if σ is an an-
swer to Q on each solution J for Σ and I. The task of finding all
certain answers to Q on Σ and I is called query answering under
dependencies, and we often abbreviate it to just query answering.
The following fundamental result connects universal solutions and
query answering: for each substitution σ and each universal solu-
tion J for Σ and I, substitution σ is a certain answer to Q on Σ and
I if and only if σ is a null-free answer to Q on J [15].

The chase. The chase modifies an instance by a sequence of
chase steps until all dependencies are satisfied. Let I be an instance,
let τ be a TGD or an EGD of the form (1) or (2), and let h be a
trigger for τ in I. If τ is a TGD, applying the chase step for τ and h
to I extends I with facts of the conjunction h′(ρ(~x,~y)), where h′ is
a substitution such that h′(xi) = h(xi) for each variable xi ∈~x, and
h′(y j), for each y j ∈~y, is a fresh labeled null that does not occur in
I. Moreover, if τ is an EGD, applying the chase step for τ and h to
I fails if h(xi) 6= h(x j) and {h(xi),h(x j)} ⊆ Const, and otherwise
it computes µ(I) where µ = {h(x j) 7→ h(xi)} if h(xi) ∈ Const, and
µ = {h(xi) 7→ h(x j)} if h(xi) 6∈ Const.

For Σ a set of TGDs and EGDs and I a finite, null-free instance, a
chase sequence for Σ and I is a (possibly infinite) sequence I0, I1, . . .
such that I = I0 and, for each i > 0, instance Ii (if it exists) is ob-
tained from Ii−1 by applying a successful chase step to a depen-
dency τ ∈ Σ and an active trigger h for τ in Ii−1. The sequence
must be fair: for each τ ∈ Σ, each i≥ 0, and each active trigger h
for τ in Ii, some j > i must exist such that h is not an active trigger
for τ in I j (i.e., no chase step should be postponed indefinitely).
The result of a chase sequence is the (possibly infinite) instance
I∞ =

⋃
i≥0

⋂
j≥i I j. Since EGD chase steps can fail, a chase se-

quence for a given Σ and I may not exist. Moreover, chase steps
can be applied in an arbitrary order so a chase sequence for Σ and I
is not unique. Finally, EGD steps are not monotonic (i.e., Ii−1 6⊆ Ii
holds when Ii is obtained by applying an EGD step to Ii−1), and so
I∞ is not uniquely determined by Σ and I. Still, each result I∞ of a
chase sequence for Σ and I is a universal solution for Σ and I [15].

A finite chase sequence is terminating. A set of dependencies Σ

has terminating chase if, for each finite, null-free instance I, each
chase sequence for Σ and I is terminating. For such Σ, the chase
provides an effective approach to computing certain answers to a
CQ Q on Σ and I: we compute (any) chase I∞ of Σ and I, we com-
pute the output Q(I∞), and finally remove all substitutions that are
not null-free. Checking if a set of dependencies Σ has terminating
chase is undecidable [13]. Weak acyclicity [15] was the first suffi-



Algorithm 1 RESTRICTED-CHASE(Σ, I)
1: ∆I := I
2: while ∆I 6= /0 do
3: N := /0, µ := /0
4: for each τ ∈ Σ with body λ (~x) do
5: for each trigger h for τ in I such that h(λ (~x))∩∆I 6= /0 do
6: if h is an active trigger for τ in µ(N∪ I) then
7: if τ = ∀~x λ (~x)→∃~y ρ(~x,~y) is a TGD then
8: h′ := h∪{~y 7→~v} where~v⊆Nulls is fresh
9: N := N∪h′(ρ(~x,~y))

10: else if τ = ∀~x λ (~x)→ xi = x j is an EGD then
11: if {h(xi) 6= h(x j)} ⊆ Const then fail
12: ω := {max(h(xi),h(x j)) 7→min(h(xi),h(x j))}
13: µ := µ ◦ (ω ◦µ)

14: ∆I := µ(N∪ I)\ I
15: I := µ(I)∪∆I

cient polynomial-time condition for checking if Σ has terminating
chase. Stronger sufficient (not necessarily polynomial-time) condi-
tions have been proposed subsequently [20, 32].

Data exchange. In relational-to-relational data exchange [15], a
transformation of an arbitrary instance of a source schema into an
instance of a target schema is described using
• a set Σst of s-t (source-to-target) TGDs where all body atoms

use relations of the source schema and all head atoms use
relations of the target schema, and
• a set Σt of target dependencies (i.e., TGDs or EGDs) whose

atoms use relations of the target schema.
Given a finite, null-free instance I of the source schema, the objec-
tive of data exchange is to compute a universal solution to the set of
dependencies Σ = Σst ∪Σt and I. If Σ has terminating chase, then a
universal solution can be computed using the chase, and it can be
used to answer queries [15].

3. IMPLEMENTING THE CHASE
In this section we discuss the main challenges that chase imple-

mentations must address. Our discussion is largely independent
of the specific technology, but we discuss briefly how these issues
impact RDBMS-based implementations.

General structure. Computing the chase is naturally expressed
as a fixpoint computation. Algorithm 1 achieves this by following
the definition of a chase sequence from Section 2: in each iteration
(lines 2–15), the algorithm examines each dependency τ (line 4)
and trigger h (line 5), checks whether h is active (line 6), and, if
so, applies the chase step (lines 8–9 for TGDs and lines 11–13 for
EGDs). Although chase implementations may and do depart from
the specifics of Algorithm 1, the algorithm is useful because it al-
lows us to discuss the following issues, which each implementation
must address in one form or another.
• To avoid an important source of inefficiency, we must ensure

that each relevant trigger for τ and I is considered in line 5 at
most once.
• Applying chase steps should not interfere with the enumera-

tion of triggers.
• The EGD chase steps are complex and require care.
• Checking whether a trigger is active can be expensive.

Identifying triggers. Let τ be a TGD or an EGD of the form
(1) or (2), respectively, and let I be a finite instance. Clearly, sub-
stitution h is a trigger for τ and I if and only if h is an answer to
λ (~x) on I. Hence, the triggers for τ can be determined in line 5
by evaluating λ (~x) as a CQ over I. The latter can be solved using
any known join algorithm, and an RDBMS-based implementation

can translate λ (~x) into SQL in a straightforward manner. However,
evaluating λ (~x) in each iteration “from scratch” would be very inef-
ficient since it would repeatedly consider triggers from all previous
iterations. Algorithm 1 thus uses seminaïve evaluation [1]. It main-
tains an auxiliary set ∆I of “newly derived facts” from the most
recent iteration, and it requires at least one atom of h(λ ) in line 5
to be contained in ∆I. As a consequence, each combination of τ

and h is considered at most once during algorithm’s execution.
Applying chase steps. An important consideration is how query

λ (x) is evaluated over I in line 5: we must ensure that we do not
miss any applicable triggers, and that we retrieve each such trig-
ger once. One possibility is to compute and store the result in a
temporary relation, but this can impose a significant overhead. It is
therefore often preferable to evaluate λ (x) over I in a “streaming”
mode, where a trigger h is returned as soon as it is computed; but
then, set I should not change in lines 4–13 or the modifications to
I could affect the enumeration of triggers in line 5. To ensure this,
the chase steps in Algorithm 1 do not modify I directly. Instead, all
changes are accumulated in an auxiliary set N and a term mapping
µ; after each iteration, ∆I contains the “newly derived subset” of N
(line 14), which is propagated to I (line 15). The algorithm termi-
nates when ∆I becomes empty in line 2 since another iteration then
cannot derive new facts.

Handling EGDs. Applying a chase step to an EGD τ of the
form (2) and trigger h poses several problems. A minor issue is
that, when h(xi) and h(x j) are both labeled nulls, we can replace
either value with the other. To make this choice deterministic, one
can totally order all values so that all constant values are smaller
than all labeled nulls, and then always replace the larger value with
the smaller one (line 12). Constant values are thus never replaced
with labeled nulls, and this also ensures uniqueness of the chase for
a specific chase variant that we discuss shortly.

A more complex issue is to ensure that I does not change in
lines 5–13. To achieve this, Algorithm 1 uses a term mapping µ

that accumulates all the required changes to I (line 13): at the end
of each iteration, µ(v) is defined for each labeled null v that is to
be replaced with µ(v). The expression in line 13 ensures that µ

is correctly updated when several EGD steps are applied in sin-
gle iteration. For example, consider µ = {v1 7→ v2,v3 7→ v4} and
ω = {v2 7→ v3}; then, ω ◦µ = {v1 7→ v3,v2 7→ v3,v3 7→ v4} “nor-
malizes” µ with ω , and µ ◦ (ω ◦µ) = {v1 7→ v4,v2 7→ v4,v3 7→ v4}
reflects the cumulative effects of all EGDs.

At the end of each iteration (lines 14–15), the facts in both I and
N may require updating, and all facts newly derived in the iteration
most be added to ∆I to correctly further trigger dependencies.

Checking active triggers. Assume that h is a trigger for a de-
pendency τ in an instance I, and consider checking whether h is
an active trigger for τ in µ(N ∪ I) in line 6. It should be clear
that h is a trigger for τ in µ(N ∪ I) if and only if µ(h(x)) = h(x)
for each variable x from the domain of h. In other words, we
simply check whether “h up-to-date with µ .” Thus, to complete
the active trigger check, if τ is of the form (2), we check whether
h(xi) 6= h(x j) holds; and if τ is of the form (1), we check γ(I) = /0
where γ = ∃~y ρ(h(~x),~y) is a boolean CQ. The latter can be imple-
mented using standard query evaluation techniques, and RDBMS-
based systems can simply extend the CQ from line 5 with a NOT

EXISTS (SELECT * WHERE ...) condition. In the rest of this sec-
tion and in Section 7 we discuss several theoretical and practical
drawbacks of checking for active triggers and present alternatives.

Chase variants. The chase variant given in Algorithm 1 is called
the restricted chase to stipulate that triggers are restricted only to
the active ones (cf. line 6). A drawback of the restricted chase is



that the chase solution is not unique (even up to isomorphism of
labeled nulls), as Example 1 shows.

EXAMPLE 1. Let Σ and I be as in (3) and (4).

R(x1,x2)→∃y R(x1,y)∧A(y)∧A(x2) (3)
I = { R(a,b), R(b,b) } (4)

Dependencies in Σ are weakly acyclic [15] so the restricted chase
terminates on all finite instances, but the chase solution depends on
the ordering of chase steps. Triggers h1 = {x1 7→ a,x2 7→ b} and
h2 = {x1 7→ b,x2 7→ b} for (3) are both active in I. Applying the
TGD step to h1 makes h2 inactive by deriving R(a,v1), A(v1), and
A(b). In contrast, applying the TGD step to h2 makes h1 inactive
by deriving R(b,v1), A(v1), and A(b).

The chase can be optimized by normalizing TGDs prior to apply-
ing the chase: for each TGD τ ∈ Σ of the form (1) such that ρ(~x,~y)
can be rewritten as ρ1(~x1,~y1)∧ρ2(~x2,~y2) so that ~y1∩ ~y2 = /0, we
replace τ in Σ with ∀~x λ (~x)→∃~yi ρi(~xi,~yi) for i ∈ {1,2}. Exam-
ple 2 shows how normalization can lead to smaller instances.

EXAMPLE 2. Normalizing TGD (3) produces (5) and (6). Now
by applying (6) to I from Example 1 we derive A(b), which makes
triggers h1 and h2 for (5) both inactive.

R(x1,x2)→∃y R(x1,y)∧A(y) (5)
R(x1,x2)→ A(x2) (6)

Checking whether trigger h is active (line 6) can be difficult in
practice, particularly for a test against µ(N∪ I); we discuss these
issues in detail in Section 7. Furthermore, the dependence on the
ordering of chase steps can make the chase more difficult to analyze
from a theoretical point of view. This motivates several variants in
which the check in line 6 is either eliminated or weakened.

The unrestricted (or oblivious) chase simply eliminates line 6.
Such a simple solution removes the overhead of checking active
triggers and the dependence on the ordering of chase steps. But,
as Example 3 shows, the unrestricted chase does not necessarily
terminate even for weakly acyclic TGDs.

EXAMPLE 3. For Σ and I defined as in Example 1, the unre-
stricted chase derives the following infinite set of facts.

R(a,v1), A(v1), R(a,v2), A(v2), . . .
A(b), R(b,w1), A(w1), R(b,w2), A(w2), . . .

The unrestricted Skolem chase [26, 38, 28] also eliminates line 6,
but it also skolemizes TGDs: in each TGD τ of the form (1), each
existentially quantified variable y ∈~y is replaced with a function
term f (~z) where f is a fresh function symbol and ~z contains all
variables occurring in both the head and the body of τ . The chase
then proceeds as in Algorithm 1, but without line 6 and by using the
preprocessed τ in line 7. The result of the Skolem chase is unique
(if the EGD steps are determinized as in line 8). Although cases
exist where the restricted chase terminates but the Skolem chase
does not, the known acyclicity conditions [20] ensure termination
of both. Example 4 illustrates the Skolem chase.

EXAMPLE 4. Normalizing and then skolemizing TGD (3) pro-
duces (7) and (8).

R(x1,x2)→ R(x1, f (x1))∧A( f (x1)) (7)
R(x1,x2)→ A(x2) (8)

Applying TGDs (7) and (8) to the set of facts I from Example 1
produces facts R(a, f (a)), A( f (a)), A(b), R(b, f (b)), and A( f (b)),

after which the chase terminates: functional term f (x1) in (7) cap-
tures the fact that the fresh null depends only on x1, and so apply-
ing (7) to R(a, f (a)) and R(b, f (b)) does not introduce more nulls
as in Example 3. Normalization is very important since it elimi-
nates variables within Skolem terms; for example, skolemizing (3)
directly produces (9), and applying (9) to I does not terminate.

R(x1,x2)→ R(x1, f (x1,x2))∧A( f (x1,x2))∧A(x2) (9)

Since functional terms provide canonical “names” for labeled
nulls, a global counter of labeled nulls is not required, which may
simplify implementation. For example, deriving the first atom of
(7) can be implemented using the SQL query (10), which does not
interact with other TGDs.

INSERT INTO R(a,b)

SELECT DISTINCT R.a, append('_Sk_f(',R.a,')') FROM R
(10)

The parallel chase [13] weakens line 6 so that it checks whether
h is active in I, rather than in µ(N∪ I); since I is fixed in an itera-
tion, this can make checking active triggers much easier to imple-
ment. Known acyclicity conditions [20] ensure termination of the
parallel chase, and the solution is deterministic, although it may be
larger than the one produced by the restricted chase. Example 5
illustrates the parallel chase.

EXAMPLE 5. Let Σ, I, h1, and h2 be as in Example 1. Both h1
and h2 are active for I, so the parallel chase applies the TGD step
to both triggers independently and derives R(a,v1), A(v1), A(b),
R(a,w1), and A(w1). No active triggers exist after this step so the
parallel chase terminates.

The single-TGD-parallel (or 1-parallel) chase checks active trig-
gers w.r.t. all facts derived thus far apart from the ones derived by
the TGD τ currently considered in line 4. As with the parallel
chase, implementing this variant can be much easier than for the
restricted chase (see Section 7).

While the check in line 6 is not needed with skolemized TGDs, it
can still be used, in which case we obtain the restricted (or parallel
or 1-parallel) Skolem chase: each of these two chase variants never
produces more facts than the original variant, and in certain cases
it can produce fewer facts.

The frugal chase [22] further considers triggers that are only par-
tially active. Let τ be a TGD τ of the form (1) such that ρ(~x,~y) can
be rewritten as ρ1(~x1,~y1)∧ρ2(~x2,~y2) where ~x1 and ~x2, and~y1 and
~y2 are not necessarily disjoint, and let h be a trigger for τ in an in-
stance I. Then, h is partially active for τ in I if h can be extended to
a homomorphism h′ such that (i) ρ1(h′(~x1),h′(~y1))⊆ I, (ii) h′(~y1)
contains only labeled nulls, and (iii) for each fact P(~w) ∈ I such that
~w∩h′(~y1) 6= /0, we have P(~w) ∈ ρ1(h′(~x1),h′(~y1)) (i.e., each atom
in I that joins “existentially” with the image of ρ1 is contained in
the image of ρ1). Since ρ1 is already satisfied, the frugal chase
satisfies the TGD τ by extending I with ρ2(h′′(~x2),h′′(~y2)), where
h′′ is a homomorphism that extends (one such) h′ by mapping the
variables in~y2 \~y1 to fresh labeled nulls.

EXAMPLE 6. Let Σ contain the TGD (5) from Example 2 and
TGD (11), and let I be as in (12).

B(x)→∃y R(x,y) (11)
I = { B(a) } (12)

Assume now that the frugal chase first applies (11) and thus ex-
tends I with fact R(a,v1). Then, h = {x1 7→ a,x2 7→ v1} is a par-
tially active trigger for TGD (5): we can decompose the head of
(5) such that ρ1 = R(x1,y) and ρ2 = A(y), and we can extend h to



h′ = {x1 7→ a,x2 7→ v1,y 7→ v1} such that h′(ρ1) is contained in the
current instance, and h′(y) = v1 does not occur in the instance out-
side of h′(ρ1). Hence, the frugal chase satisfies (5) by adding A(v1)
to the instance, instead of introducing a fresh labelled null.

The core chase [13] omits the active trigger check completely;
however, after each iteration it replaces the current instance with its
core [16]—the smallest subset of I that is homomorphically equiv-
alent to I. The core chase produces a smallest finite solution when-
ever one exists, but efficient computation of the core on instances
of nontrivial sizes is an open problem.

4. THE SYSTEMS TESTED
As we explained in Section 1, our objectives are to determine

whether existing chase implementations can support data exchange
and query answering on nontrivial inputs, and to identify the im-
plementation decisions most relevant to performance. To answer
these questions, we used nine publicly available systems shown in
Table 1. We group the systems based on their primary motivation.

Systems motivated by data exchange. DEMO [34] was one of
the first data exchange engines. It implements the restricted chase
for s-t TGDs and target TGDs and EGDs; moreover, upon termi-
nation, it computes the core of the solution using the algorithm by
Gottlob and Nash [19]. The system runs on top of PostgreSQL or
HSQLDB, and we used the former in our experiments.

CHASEFUN [12] is a more recent data exchange system. It sup-
ports only s-t TGDs and functional dependencies, and it imple-
ments a variant of the unrestricted Skolem chase that orders TGD
and EGD chase steps to reduce the size of the intermediate chase re-
sults. We used an implementation that runs on top of PostgreSQL.

Systems motivated by data cleaning. LLUNATIC [18] was ini-
tially developed for data cleaning, but has since been redesigned as
an open-source data exchange system. It handles s-t TGDs and tar-
get TGDs and EGDs, and it can also compute certain query answers
over the target instance. It implements the 1-parallel Skolem chase
(the default), the unrestricted and restricted Skolem chase, and the
restricted chase with fresh nulls (i.e., without Skolem terms). The
system runs on top of PostgreSQL.

Systems motivated by query reformulation. Three of our test
systems use the chase for query reformulation.

PEGASUS [29] is a system for finding minimal queries equivalent
to a given query with respect to a set of TGDs and EGDs. It uses
the Chase & Backchase method of Deutsch, Popa, and Tannen [14],
which internally uses the restricted chase implemented in RAM.

PDQ [10, 11] takes a query, a set of integrity constraints, and
a set of interface descriptions (e.g., views or access methods), and
it produces an equivalent query that refers only to the interfaces
and whose cost is minimal according to a preselected cost function.
By extending the Chase & Backchase method, PDQ reduces query
reformulation to checking query containment under TGDs and/or
EGDs, and the latter problem is solved using an implementation of
the restricted chase on top of PostgreSQL.

Systems motivated by query answering. GRAAL [7] is an
open-source toolkit developed for computing certain answers to
queries under dependencies. Although the system was not origi-
nally designed for chase computation, it uses a “saturation algo-
rithm” that can be seen as variant of the standard chase. GRAAL
can be used both in an RAM and on secondary storage, such an
RDBMS, a triple store, or a graph database. We used the RAM-
based version as we found it to be faster.

Chase-related systems. A prominent goal of our work was to
investigate how chase implementations fare against systems from

other communities that either (i) implement algorithms related to
the chase, or (ii) can answer queries over dependencies using very
different approaches. Many systems satisfy these requirements, so
we decided to restrict our attention to several prominent represen-
tatives. In particular, we considered Datalog engines in the former,
and a resolution-based theorem prover in the latter category.

DLV [24] is a mature disjunctive Datalog system supporting
a range of features such nonmonotonic negation, aggregates, and
user-defined functions. The system comes in several flavors: a
RAM-based version that supports function symbols in the rules, an-
other RAM-based version with native support for TGDs [23], and
an RDBMS-based version that supports neither function symbols
nor TGDs. The latter is not applicable to our setting, and we used
the version with function symbols since it proved to be more sta-
ble. We implemented a preprocessing skolemization step, allowing
DLV to support the unrestricted Skolem chase for TGDs; however,
the system does not support EGDs [33]. The system can be used
without a query, in which case it computes and outputs the chase
solution. If a query is provided, the system evaluates the query over
the chase and outputs the result. To obtain certain answers, we ex-
ternally postprocess the query output to remove functional terms.

RDFOX [30] is a high-performance RAM-based Datalog engine.
It was originally designed for Datalog with EGDs over the RDF
data model and without the unique name assumption. To support
the chase, RDFOX was extended as follows. First, a builtin func-
tion was added that produces a labeled null unique for the func-
tion’s arguments, which emulates Skolem terms. Second, a builtin
function was added that checks whether a CQ is not satisfied in the
data, thus enabling both the restricted and the unrestricted chase
variants. Third, a mode was implemented that handles EGDs un-
der unique name assumption. Fourth, to support relations of ar-
bitrary arity, a preprocessor was implemented that shreds n-tuples
into RDF triples and rewrites all dependencies accordingly.

E [36] is a state of the art first-order theorem prover that has
won numerous competitions. It takes as input a set of axioms F
and a conjecture H, and it decides the unsatisfiability of

∧
F ∧¬H.

E implements the paramodulation with selection [31] calculus, of
which the unrestricted Skolem chase is an instance: each inference
of the Skolem chase is an inference of paramodulation (but not vice
versa). Paramodulation requires F to be represented as a set of
clauses—that is, first-order implications without existential quan-
tifiers but possibly containing function symbols and the equality
predicate. Thus, F can capture EGDs and the result of preprocess-
ing TGDs as described in Section 3. Moreover, E can also be used
in a mode where F contains arbitrary first-order formulas, thus
capturing TGDs directly without any preprocessing; however, this
approach proved less efficient, so we did not use it in our experi-
ments. Finally, conjecture H can contain free variables, in which
case E outputs each substitution σ that makes

∧
F ∧¬σ(H) un-

satisfiable; thus, E is interesting as it can answer queries without
computing the chase in full. Ordered paramodulation targets first-
order logic, which is undecidable; hence, E is not guaranteed to
terminate on all inputs, not even if F encodes dependencies on
which the unrestricted Skolem chase terminates. The system’s be-
havior can be configured using many parameters, and we used the
values suggested by the system’s author.

5. THE BENCHMARK
Our CHASEBENCH benchmark consists of two distinct parts.

The first part is described in Section 5.1 and it comprises several
tools that allow the generation and processing of test data in a com-
mon format. The second part is described in Section 5.2 and it com-
prises a number of test scenarios, each consisting of a (i) schema



System s-t TGDs t TGDs EGDs Cert. Ans. Engine Strategy Sources

Explicit chase implementations
CHASEFUN X FDs only RDBMS unrestricted skolem chase
DEMO X X X RDBMS restricted chase + core computation
GRAAL X X X RAM restricted chase X
LLUNATIC X X X X RDBMS restr./unrestr./1-parallel skolem/fresh-nulls chase X
PDQ X X X X RDBMS restricted chase X
PEGASUS X X X RAM restricted chase X

Chase-related systems
DLV X X X RAM unrestricted skolem chase
E X X X X RAM paramodulation X
RDFOX X X X X RAM restricted/unrestricted skolem chase X

Table 1: Summary of the tested systems

description, (ii) a source instance, (iii) sets of s-t TGDs, target
TGDs, and/or target EGDs, and (iv) possibly a set of queries. We
used existing resources whenever possible; for example, we repur-
posed scenarios produced by IBENCH [4], as well as instances of
varying sizes produced by the instance-generation tool TOXGENE
[8]. We divide our scenarios into the following two groups.

Correctness scenarios were designed to verify that the systems
correctly produce universal solutions. Checking homomorphisms
between solutions is computationally challenging so these scenar-
ios generate very small solutions. Moreover, these scenarios do not
contain queries, as correctness of query answering can be verified
by simply comparing the certain answers on larger scenarios.

Data exchange and query answering scenarios aim to test the
performance of computing the target instance and of answering
queries over the target instance in data exchange. These scenar-
ios vary the data size and the complexity of the dependencies to
simulate different workloads.

5.1 Test Infrastructure
1. The common format. In their “native” versions, the systems

from Section 4 take a wide range of input formats. For example,
RDBMS-based systems expect the source instance to be preloaded
into a relational database, whereas RAM-based systems typically
read their input from files. Moreover, the structure of the inputs
varies considerably; for example, RDFOX expects data to be rep-
resented as triples, and E expects data to be encoded as first-order
sentences in the TPTP format. The translation between various in-
put formats is often straightforward, but in certain cases (e.g., if
schema shredding or the transformation of TGDs is required) it in-
volves choices that can significantly affect a system’s performance.

To allow for an automated and fair comparison of all systems re-
gardless of their implementation details, we standardized the input
structure for all systems. Theorem-proving formats such as TPTP
can express first-order sentences and can thus represent dependen-
cies and queries, but such formats are difficult to read for humans
and so we found them inappropriate for CHASEBENCH. We thus
developed our own “common format” for describing all parts of a
scenario (i.e., the schema description, the source instance, the de-
pendencies, and the queries). We also wrote a parser for the com-
mon format, which was used to develop wrappers for the systems.
The wrapper was provided by the system designers whenever pos-
sible, but for E, DLV, and PEGASUS we developed the wrappers
ourselves. Our tests required each system to read the scenarios in
the common format, so our test results cover all times necessary to
parse and transform the inputs.

2. The instance repair tool. Generating scenarios with EGDs
and large source instances is complex since, due to the size of the
source instance, it is difficult to ensure that no EGD chase step fails.
For example, TOXGENE does not necessarily generate instances

that are consistent with a collection of TGDs and EGDs, and in fact
the chase failed on all instances initially produced by TOXGENE
so this problem is not merely hypothetical. Thus, we developed a
simple instance repair tool. Given a set of dependencies Σ and an
instance I on which the chase of Σ fails, the tool proceeds as fol-
lows. First, it computes the chase of Σ and I without the unique
name assumption: when equating two distinct constant values, one
value is selected as representative and the other one as conflicting,
the latter is replaced with the former, and the chase continues. Sec-
ond, the tool removes from I all facts containing a conflicting value
encountered in the previous step. The chase of Σ and the subset of I
produced in this way is guaranteed to succeed. This strategy proved
very effective in practice: on average it removed slightly more than
1% of the facts from I, and so the size and the distribution of the
source instance remain largely unaffected.

3. The target TGD generator. In addition to generating large
source instances, generating scenarios with a significant number
of s-t TGDs, target TGDs, and target EGDs was critical for ade-
quately evaluating the performance of the tested systems. One of
our goals was to push the systems to their limit by testing them on
deep chase scenarios that generate very large instances using long
chase sequences. To this end, we developed a custom target TGD
generator that can generate weakly acyclic TGDs while controlling
their depth and complexity. In our experiments we used the gener-
ator to develop scenarios from scratch, but the generator can also
be used to increase the difficulty of existing scenarios.

Our generator is based on our earlier approach [22] for generat-
ing linear dependencies, which we extended to support an arbitrary
number of body atoms. The generator creates a predicate name
space of a certain required size, and it uniformly chooses a (param-
eterized) number of predicates to populate a conjunction of atoms
(which can become a query or a dependency). A parameter is used
to control the maximum number of repeated relations in this for-
mula, and another parameter is used to determine the arity of the
atoms. The generator can create “chain” conjunctions (the last vari-
able of an atom is joined with the first one of the next atom), “star”
conjunctions (the first variable of all atoms also occurs in a desig-
nated “center” atom that has a different arity than the other atoms),
and “random” ones in which variables are chosen out of a variable
name space and are distributed in a conjunction (the larger the vari-
able name space, the fewer joins are introduced). Each dependency
is generated by first creating a conjunction and then selecting the
subset of atoms that make up the head. The size of the dependen-
cies’ bodies can be fixed; for example, this parameter was 1 in our
DEEP scenarios, thus producing linear TGDs. The generator main-
tains a weakly-acyclic dependency graph and tests each generated
dependency against the ones there were created previous; if the
newly created dependency violates weak acyclicity, it is discarded
and a new dependency is produced.



4. The query generator. To evaluate the performance of com-
puting certain answers, nontrivial queries over the target schema
are required. Existing benchmarks such as LUBM [21] come with
several manually curated queries, which we incorporated into our
scenarios. To obtain queries for scenarios where the target schema
is automatically generated, we developed a new query generator.
The tool is given a desired number of joins in the output query
NJ , the desired number of selections conditions in the output query
NS, the percentage of attributes that will be projected P, and a set
of tables of the target schema. It first identifies a set of joinable
attribute pairs from the tables of the source and target schema by
analyzing the dependencies. Two attributes are considered joinable
if they join either in the head or the body of the rule; moreover, if a
variable is passed from the body to the head of the rule, then the at-
tributes that map to these variables are considered joinable as well;
and finally, the joinable attributes are transitively closed. Next, the
algorithm iteratively creates NJ join conditions by choosing at ran-
dom a table T and attribute a from the schema and then choosing a
random table and attribute that is joinable with T.a. The algorithm
then proceeds analogously to create NS selections by first choos-
ing an attribute that does not appear in a join condition and then
a introducing randomly selected value from the attribute’s domain.
Finally, the algorithm randomly projects P attributes. By focus-
ing on joinable attributes, the algorithm is more likely to produce a
query with a nonempty output, but does not guarantee it; therefore,
we discarded and regenerated each query that produced an empty
output on the target instance as long as needed.

5. The homomorphism checker. Checking correctness of com-
puting certain query answers is easy: certain answers are unique for
the query so the systems’ outputs can be compared syntactically.
Checking correctness of the chase is more involved since the result
of the restricted chase is not unique and, even with the unrestricted
Skolem chase, it is unique only up to the renaming of Skolem func-
tions. Hence, to verify the correctness of the systems, we devel-
oped a tool that can check the existence of homomorphisms, mu-
tual homomorphisms, and isomorphisms between instances. The
tool enumerates all candidate homomorphisms using brute force,
so it can be used only on relatively small instances (i.e., few thou-
sands facts). Consequently, we designed our correctness scenarios
so that they produce small solutions.

5.2 Test Scenarios
Our benchmark consists of a total of 23 scenarios, each com-

prising a source and target schema, a source instance, a set of de-
pendencies, and possibly a set of queries; all dependencies in all
scenarios are weakly acyclic. We classify the scenarios into five
families, as shown in Table 2. The first family contains six small
scenarios for testing correctness of data exchange, whereas all other
families are aimed at testing the performance of computing the tar-
get instance and the certain answers. The IBENCH and the LUBM
families were derived from the well established benchmarks in the
database and the Semantic Web communities, respectively. Finally,
we developed the MANUALLY CURATED and the DEEP families
ourselves to test specific aspects of the chase. We identify each
scenario using a unique identifier; for DOCTORS and LUBM sce-
narios, the identifier is obtained by combining the scenario name
with the source instance size, such as LUBM-90k. We discuss
next the main features of our scenario families.

a. Correctness tests. As we explained in Section 5.1, our ho-
momorphism checker can handle only small instances. We thus
prepared six scenarios that produce small chase results, while aim-
ing to cover exhaustively the different combinations of various fea-
tures. All scenarios contain s-t TGDs and test different combina-

tions such as joins over the source schema, vertical partitioning,
and self-joins both in the source and in the target schemas. The
scenarios cover standard examples from some of the prior papers
and surveys on the chase (e.g., [32, 27]), including cases where
TGDs and EGDs interact, where the chase fails, and where various
acyclicity conditions are used to ensure chase termination.

b. Manually curated scenarios. Our scenarios from this family
are based on the DOCTORS data integration task from the schema
mapping literature [17]. These scenarios are relatively small in
terms of the number of relations, attributes, and dependencies (cf.
Table 2), but we believe that they represent a useful addition to
the benchmark for two reasons. First, these scenarios are based
on schemas inspired by real databases about medical data. Sec-
ond, they simulate a common use case for data exchange: take
two databases from the same domain but with different schemas
and bring them to a unified target representation. We used TOX-
GENE to generate instances of the source schema of 10 k, 100 k,
500 k, and 1 M facts. DOCTORS contains EGDs that refer to more
than one relation in the body, which cannot be handled by all sys-
tems in our evaluation. Hence, we also generated a simplified ver-
sion, called DOCTORSFD, that contains only EGDs corresponding
to functional dependencies. Consequently, the manually curated
family contains eight scenarios. We also used the query generator
described in Section 5.1 to generate nine queries covering most of
the possible joins among the three target relations.

c. LUBM scenarios. LUBM [21] is a popular benchmark in the
Semantic Web community. It does not simulate a data exchange
task, but it is useful as it comes with nontrivial target TGDs and
queries designed to test various aspects of query answering. Using
the LUBM data generator we produced instances with 90 k, 1 M,
12 M, and 120 M facts and transformed them as follows.
• The LUBM generator produces data as RDF triples, which

we converted into a source instance using vertical partition-
ing: a triple 〈s, p,o〉 is transformed into a unary fact osrc(s)
if p = rdf :type, and into a binary fact psrc(s,o) otherwise.

• For each unary relation osrc from the previous step, we added
the s-t TGD ∀x osrc(x)→ o(x), and similarly for each binary
relation. Thus, the s-t TGDs simply copy the source instance
into the target instance.

• The dependencies in LUBM are encoded using an ontology,
which we converted into target TGDs using vertical parti-
tioning and the known correspondences between description
logics and first-order logic [5].

• We manually converted all SPARQL queries into CQs; this
was possible for all queries.

As a consequence of these transformations, the source and the tar-
get schemas of LUBM contain only unary and binary relations.
Also, the source instance of LUBM-120M is much larger than any
other source instance in our scenarios.

d. IBENCH scenarios. IBENCH [4] is a tool for generating de-
pendencies whose properties can be finely controlled using a wide
range of parameters. For our purpose, we selected two existing sets
of dependencies [4, Section 5] that consist of second-order TGDs,
primary keys, and foreign keys. To obtain dependencies compat-
ible with most of our systems, we modified a parameter in the
IBENCH scripts to generate ordinary s-t TGDs instead of second-
order TGDs, thus obtaining two scenarios of the IBENCH family.
• STB-128, derived from an earlier ST-benchmark [3], is the

smaller scenario of the family.
• ONT-256, a scenario motivated by ontologies, has several

times larger source instance.



Scenario Source Schema Target Schema s-t t TGDs EGDs Qrs Source Instance Facts
Family Name Rel Attr Rel Attr TGDs Tot Inc.Dep Tot FDs

CORR. EMPDEPT 1 3 2 5 1 2 2 0 0 0 1
CORR. TGDS-A 1 3 5 12 2 5 5 0 0 0 1
CORR. TGDS-B 2 8 3 9 5 2 1 0 0 0 8
CORR. EGDS 1 2 1 2 1 0 0 1 1 0 3
CORR. TGDSEGDS-A 1 3 5 12 3 5 5 4 4 0 4
CORR. TGDSEGDS-B 1 3 5 12 6 5 5 4 4 0 80
MAN.C. DOCTORSFD 3 24 5 17 5 0 0 8 8 9 10 k, 100 k, 500 k, 1 M
MAN.C. DOCTORS 3 24 5 17 5 0 0 10 8 9 10 k, 100 k, 500 k, 1 M
LUBM LUBM 30 76 74 179 30 106 91 0 0 14 90 k, 1 M, 12 M, 120 M
IBENCH STB-128 111 535 176 832 128 39 39 193 193 20 150 k
IBENCH ONT-256 218 1210 444 1952 256 273 273 921 921 20 1 M
DEEP DEEP100 1000 5000 299 1495 1000 100 50 0 0 20 1 k
DEEP DEEP200 1000 5000 299 1495 1000 200 100 0 0 20 1 k
DEEP DEEP300 1000 5000 299 1495 1000 300 150 0 0 20 1 k

Table 2: Summary of the test scenarios

For both of these scenarios, we used the integration of IBENCH and
TOXGENE to generate 1 k facts per source relation. Next, we used
our instance repair tool from Section 5.1 to ensure that the chase
does not fail. Finally, we generated 20 queries for each scenario
using our query generator.

e. The DEEP scenarios. The final family of scenarios was de-
veloped as a “pure stress” test. We used our target TGD generator
to generate three scenarios with 1000 source relations, 299 target
relations, 1000 linear s-t TGDs, and increasing numbers (100, 200,
and 300) of linear target TGDs. Moreover, to generate the source
instance, we globally fixed a substitution σ that maps each vari-
able x ∈ Vars into a distinct constant value σ(x) ∈ Const; then, for
each linear s-t TGD with R(~x) in the body, we added σ(R(~v)) to
the source instance. Thus, all source instances contain just one fact
per relation; however, the TGDs are very complex so they produce
over 500 M facts on the largest DEEP300 scenario.

The TGDs were taken from previous work [22] and they have
the following structure. All TGD heads have three relations joined
in a chain. Each atom has arity four and each dependency can have
up to three repeated relations. The three head predicates and the
body predicate have been chosen randomly out of a space of 300
predicates. We generated 10% of all TGDs from a smaller subset
of predicates of size 60. Also, around 10% of the s-t TGD heads
were constructed by getting the body and two (out of three) head
atoms of a target TGD. This causes some target TGDs to almost
map entirely to these particular s-t TGDs. After generating each
dependency, a weak acyclicity test was used to discard the depen-
dency if acyclicity was violated.

6. SYSTEM COMPARISON
We ran a total of 40 tests per system: 6 correctness tests, 17 chase

computation tests, and 17 query answering tests. Our correctness
tests revealed a number of errors in the systems, most of which
were corrected by the system authors during the evaluation period.
All systems eventually passed all correctness tests, except for PE-
GASUS which failed two correctness tests but could not be updated.
Complete results of the performance tests, including a breakdown
of all times, are given in the appendix and on the benchmark Web
site. Figure 1 summarizes some results that we discuss next.

Hardware configuration. We ran all tests on a server with six
physical 1.9 GHz Xeon v3 cores, 16 GB of RAM, and a 512 GB
SSD, running Ubuntu v16. Our configuration is thus not very far
from that of a high-end laptop.

Test Setup. All systems apart from E and DLV (as we discuss
shortly) were required to perform the following steps:

1. load the source instance from .csv files on disk;
2. load the dependencies in the common format;
3. run the chase of the s-t TGDs;
4. run the chase of the target dependencies;
5. save the target instance to .csv files on disk; and
6. run each query and save its results to .csv files on disk.

For each scenario, each system was allowed three hours to complete
all of these tasks; if the system ran out of time or memory, we count
the scenario in question as failure and report no results (not even
the loading times). In order to analyze the relative contribution
of all the steps, we captured the times for all steps independently
whenever the systems supported such time measurements. We also
repeated the experiments with s-t TGDs only.

Figure 1 shows (I) the chase execution times (steps 3+4), (II) the
source import and target export times (steps 1 + 5), (III) the s-t
TGDs chase times (step 3), (IV) the total chase times (steps 1+2+
3+ 4), and (V) the query execution times (step 6) for the scenar-
ios where the results vary significantly between different system
configurations. Figure 1 shows the results only for the 1-parallel
Skolem chase for LLUNATIC and the unrestricted Skolem chase for
RDFOX. All results for all scenarios and all chase variants sup-
ported by the systems are given in the appendix. The data sizes
in the STB-128 and ONT-256 scenarios do not vary so we report
our results as a single bar chart; for all other scenarios we use line
charts that show scaling with the data size. Test coverage of differ-
ent systems is reported separately.

E and DLV do not report any intermediate times so we treated
them differently. The reasoning strategy of DLV is closely related
to the Skolem chase so we report its “total chase time”; however, we
found no reasonable analogous time for E. Moreover, to compare E
and DLV with the other systems, in Figure 1.VI we show the query
evaluation times measured in a different way: (i) for DLV and E,
we report the total time needed to answer all queries; and (ii) for all
other systems we report the import and chase times multiplied by
the number of queries (thus compensating for the fact that, for each
query, DLV and E load the dataset and perform reasoning from
scratch), plus the sum of all query times.

A “db-to-db” test protocol, where the source and the target in-
stances are stored in an RDBMS, might have been more natural for
RDBMS-based systems. Our “file-to-file” test protocol, however,
has two advantages. First, even in RDBMS-based systems import-
ing the data may require indexing or building supporting data struc-
tures (e.g., we discuss the dictionary encoding in Section 7), which
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Figure 1: Experimental results for scenarios where times vary significantly between system configurations

can incur overheads; thus, reporting the import and the chase times
separately allows us to investigate these issues. Second, reporting
the cumulative times allows us to take DLV and E into account.

Test coverage. On some tests, certain systems did not support
all required features, they terminated with an exception, or did not
finish in three hours; such tests are not shown in Figures 1. Table 3
summarizes test coverage for all tested systems. For each system
and each of the three test categories, we report the number of tests
that the system was applicable to and the number of successfully
completed tests; furthermore, we report the causes of failures (if
any). Note that for most systems a failure in data exchange on a
test scenario implies failure in the corresponding query answering
tests, and we count such failures only once in the table.

As one can see, LLUNATIC was the only system that completed
all tests, closely followed by RDFOX which ran out of memory
on LUBM-120M and DEEP300. DEMO and the systems that use
chase for query reformulation exhibited low coverage; for exam-
ple, PDQ completed only five out of the 17 data exchange tests.
CHASEFUN completed all tests that it was applicable to.

7. LESSONS LEARNED
Our tests should not be misunderstood as aiming primarily for a

performance competition: the tested systems were designed under
completely different assumptions, often targeting tasks currently
not covered by our benchmark. A key feature of our benchmark is

that it covers a range of scenarios, which allowed us to answer the
questions we posed in Section 1. Specifically, we could observe the
behavior of the chase on a diverse set of systems and inputs, which
allowed us to derive many general conclusions about the tradeoffs
in implementing different chase variants (see Section 3). Moreover,
we could compare the effectiveness of the systems specifically de-
signed for the chase with that of the systems that tackle related
problems. We summarize our findings in the rest of this section.

Restricted vs. unrestricted vs. parallel chase. A major deci-
sion facing a chase system designer is whether to implement the
active trigger check (line 6 of Algorithm 1). By analyzing the per-
formance of different chase variants implemented in LLUNATIC
and RDFOX on our scenarios (Table 4 shows some, and Table 7
in the appendix shows all results), we obtained several important
insights. Interestingly, the tradeoffs associated with this question
are quite different for RDBMS- and RAM-based systems.

Implementing the restricted chase in RDBMS-based systems is
quite challenging. Triggers are retrieved in such systems using SQL
queries, so it is natural to embed the active trigger check into these
queries. For example, query (13) attempts to retrieve the active
triggers for TGD (3) from Example 1.

SELECT DISTINCT R.a FROM R WHERE NOT EXISTS

(SELECT * FROM R AS R1, A AS A1, A AS A2

WHERE R.a=R1.a AND R1.b=A1.a AND R.b=A2.a)

(13)



System Tests Run Tests Completed Failures
Corr. Chase Query Total Corr. Chase Query Total Timeouts Memory

Explicit chase implementations

CHASEFUN 1 4 0 5 1 4 0 5 0 0
DEMO 6 17 0 23 6 3 0 9 11 3
GRAAL 3 7 7 17 3 4 4 11 0 3
LLUNATIC 6 17 17 40 6 17 17 40 0 0
PDQ 6 17 17 40 6 5 5 16 12 0
PEGASUS 6 17 0 23 4 0 0 4 17 0

Chase-related systems
DLV 3 7 7 17 3 5 5 13 2 0
E 6 0 17 23 6 0 3 9 14 0
RDFOX 6 17 17 40 6 15 15 36 0 2

Table 3: Test coverage

LUBM-90k DEEP200
Ch.Time # Facts Query T. Ch.Time # Facts Query T.

LLUNATIC 1-Parallel 2.67 141,213 0.29 19.25 902,636 0.41
LLUNATIC Unrest 6.37 177,738 0.31 33.35 926,324 0.44
LLUNATIC Rest 2196.00 141,213 0.23 7521.00 893,990 0.36
RDFOX Unrest 0.19 177,738 0.06 15.23 926,324 0.03
RDFOX Rest 0.21 141,213 0.06 24.02 892,516 0.03

Table 4: Results for variants of the chase

RDBMSs, however, evaluate queries fully before any updates, so
query (13) cannot detect that applying a chase step to one trigger
makes another trigger inactive (as in Example 1). To properly im-
plement the restricted chase, we must check triggers one-by-one
using independent queries; for example, we can add LIMIT 1 to
(13) and run one query per trigger, but this is very slow on large
instances in most RDBMSs. Table 7 confirms this: with both the
1-parallel and the unrestricted Skolem chase, LLUNATIC runs or-
ders of magnitude faster than with the restricted Skolem chase, and
some of the latter tests timed out.

Query (13), however, can be used to implement the 1-parallel
chase, which can even eliminate a common source of overhead: by
combining DISTINCT and the active triggers check, the query never
produces duplicate answers, so separate duplicate elimination is not
needed. Indeed, as Table 7 shows, LLUNATIC is faster with the 1-
parallel Skolem chase than with the unrestricted Skolem chase.

In contrast, RAM-based systems can more efficiently interleave
queries with updates, which can make the active triggers check eas-
ier. For example, RDFOX identifies active triggers using a sub-
query similar to (13), but its optimized RAM-based indexes [30]
can efficiently answer the NOT EXISTS subqueries while taking into
account the result of all concurrent updates. Thus, as Table 7 shows,
the performance of the restricted and the unrestricted Skolem chase
in RDFOX differs by only a couple of seconds.

Solution sizes and getting to the core. Another question to con-
sider is the impact of the chase variant on the size of the universal
solution. Our benchmark again allowed us to investigate this issue:
Table 4 shows the solution sizes obtained by the chase variants in
LLUNATIC and RDFOX (Table 7 in the appendix shows all results).
As one can see, solutions produced by the restricted chase can be
between 4% and 21% smaller than those produced by the unre-
stricted chase; however, we did not observe any significant impact
on the performance of query answering. Thus, we conclude that
the choice of the chase variant can be mainly driven by the ease of
implementation, rather than the solution size.

An interesting question is whether computing the core can fur-
ther reduce solution sizes. To this end, we ran DEMO to compute
the core of the universal solutions for scenarios in our benchmark.
DEMO computed the core for DOCTORS-10k and LUBM-90k; the

computation failed on all other scenarios, and the core was in both
cases of the same size as the result of the restricted chase. We were
not able to test the impact of computing the core on most of our
scenarios: as we discuss in Section 8, computing the core of large
instances is an important open problem. We could, however, an-
swer this question partially: a set Σ of s-t TGDs can be rewritten
into a set Σ′ such that the restricted chase of Σ′ returns the core of
the universal solution for Σ [28]. We ran this experiment on the
DOCTORS scenario and only s-t TGDs; full results are shown in
Table 8 in the appendix. On the 10k and 100k scenarios, the core
target instances were 18% smaller then the ones produced using un-
restricted Skolem chase, suggesting that scalable methods for core
computation in a more general setting could be practically relevant.

Implementing EGDs. In order to apply the EGDs, a system
typically first retrieves and deletes all affected facts, applies µ , and
inserts the result back into the instance. These operations require
mass updates that are much more expensive in an RDBMS-based
than a RAM-based system, which makes supporting EGDs in an
RDBMS very challenging. Our benchmark results offer evidence
for this observation: the chase times of LLUNATIC were consider-
ably higher than of RDFOX on the ONT-256 scenario, which had
the largest and most complex set of EGDs (see Figure 1.I.d).

Representing labeled nulls. Chase systems must consistently
distinguish labeled nulls from constant values, which turned out to
be a source of complexity in RDBMS-based systems. We noticed
two common solutions to this problem.

RDBMS-based systems represent labeled nulls using a suitable
encoding, which is often string-based; for example, string values
are encoded in query (10) using the '_Sk_' prefix. Each attribute is
thus represented using just one relation column, so join conditions
are expressed naturally. Nevertheless, value decoding requires pat-
tern matching; for example, to compute certain answers, LLU-
NATIC filters string-typed labeled nulls using NOT LIKE '_Sk_' in
the WHERE clause. This is a considerable source of overhead, for
two reasons. First, pattern matching is costly. Second, this kind of
conditions are not handled nicely by the query planner: as usual,
the optimizer pushes selections down towards the scans, but this
forces the database engine to apply pattern matching to most facts
in the target relations. In most cases, filtering out labeled nulls as a



last step of the query would be faster, since the number of facts to
analyze is much smaller. This effect can be observed in the query
times of LLUNATIC on DEEP300, one of our very large scenarios:
the system answers Query 16 in 147 s, but of these, 118 s (80%) are
used to filter out labeled nulls; similarly, Query 20 takes 44 s, of
which 30 s (68%) are used to filter out labeled nulls.

There are no obvious solutions to this issue. One could imple-
ment an alternative query execution strategy that forces the query
planner to materialize the intermediate result of the query and then
filter labeled nulls at the very end, but this incurs a materializa-
tion overhead. An alternative is to adopt a multi-column repre-
sentation of labeled nulls. For example, DEMO represents labeled
nulls using three columns per attribute of the target relation: one
boolean column determines whether the attribute contains a con-
stant value or a labeled null, one column stores constant values,
and one column stores labels of labeled nulls. This cleanly sepa-
rates labeled nulls from constant values; however, it triples the size
of the database, and it greatly complicates join conditions, which
also often confuses the query optimizer.

In summary, our benchmark allowed us to examine the draw-
backs of both approaches, to the point that we consider the de-
velopment of new, performance-oriented representations of labeled
nulls an interesting open research question.

Query execution and query characteristics. All systems that
successfully computed the chase also successfully evaluated all rel-
evant queries. Most queries can be answered very quickly (typ-
ically in under 1 s). Query evaluation was slowest on DEEP300
and LUBM-120M because the target instances of that scenario are
much larger than in the case of other scenarios.

We analyzed the queries in our benchmark to detect a possible
correlation between execution times and various complexity pa-
rameters, such as the number of variables in the head and the body,
the number of joins and so on; the parameters for all queries are
shown on the benchmark Web site. We observed no clear correla-
tion between the query parameters and the query answering times.
Moreover, we found removing duplicates and filtering out labeled
nulls to be significant sources of overhead for query answering, and
these have no clear connection to the shape and size of the query.

Dictionary encoding. Columnar databases often compress data
using a dictionary encoding, which can be applied in the chase set-
ting using the following steps:
• one fixes an invertible mapping e of values to integers;
• the set of dependencies Σ and the input instance I are en-

coded as Σe = e(Σ) and Ie = e(I), respectively;
• the encoded chase Je of Σe and Ie is computed; and
• Je is decoded as J = e−1(Je) by inverting the mapping.

Clearly, J is the chase of Σ and I. This process improves perfor-
mance in a number of ways. First, the encoded instance is usu-
ally much smaller than the original. Second, comparing integers is
faster than comparing strings. Third, data access structures such as
indexes are smaller so joins are faster. Fourth, dictionary encod-
ing removes a problem specific to the Skolem chase: target TGDs
may produce very “deep” Skolem terms that can be expensive to
manage, but dictionary encoding reduces the depth of such terms.

DLV, GRAAL, and RDFOX all use a variant of this idea as they
load the input, and E achieves similar benefits using term index-
ing [35]. Dictionary encoding is less common in RDBMS-based
systems, but it is even more useful as it reduces the amount of
data to be transferred from secondary storage, and we were again
able to evaluate the impact of this optimization using the bench-
mark. To this end, we ran LLUNATIC with and without the encod-
ing on LUBM-120M and DEEP300. To isolate the impact of the

encoding, the source instance was available (but not encoded) in
the RDBMS. First, we measured the chase time on the unencoded
instance. Second, we measured the total time needed to encode the
source instance, run the chase, and decode the solution. Despite
the overhead of the encoding process, the execution with dictio-
nary encoding was 46% faster on LUBM-120M and 58% faster on
DEEP300. In our performance comparison, LLUNATIC was con-
figured to turn on the encoding on all scenarios with target TGDs.

Chase vs. first-order theorem proving. E answered all queries
in less than a minute on the DOCTORS-10k and DOCTORSFD-10k
scenarios, but it was not as efficient on the remaining scenarios (all
times are given in the appendix): it took more than an hour for
DOCTORS-100k and DOCTORSFD-100k, and it ran out of memory
on LUBM-1M, LUBM-12M, and LUBM-120M. Nevertheless,
although E was not specifically designed for answering queries
over dependencies, it could still process nontrivial scenarios. Note
that the Skolem chase is actually an instance of the theorem prov-
ing calculus used in E, so the performance gap between E and the
other systems is most likely due to the generality of the former.

This generality can actually be beneficial in some cases. As Fig-
ure 1.VI.o shows, E performed very well on DEEP100 by answer-
ing each query in several seconds, so we analyzed the saturated
set of clauses produced by E. We noticed that, by a combination
of forward and backward reasoning, the system derived many in-
termediate clauses (i.e., “lemmas”). Some lemmas were obtained
by composing s-t TGDs with target TGDs to obtain new s-t TGDs,
which introduced “shortcuts” in proofs and thus sped up query an-
swering. In fact, queries over weakly-acyclic linear dependencies
(i.e., dependencies with just one atom in the body, which covers
all DEEP scenarios) can always be answered fully using such an
approach [2]. Thus, E “discovered” this method using a general
first-order theorem proving technique.

Query reformulation vs. query answering. Systems that use
chase to support query reformulation (i.e., PEGASUS and PDQ)
fared badly on all tests. The chase implementation in these systems
is optimized for small instances obtained from the queries being
reformulated, rather than for sizes found in data exchange.

Maturity of the chase. Despite the increasing complexity of the
test scenarios, some consisting of over 1000 dependencies and gen-
erating up to 500 M facts, several systems successfully completed
most tests on mainstream hardware (a CPU with 6 cores, 16 GB of
RAM, and a 512 GB SSD). In addition, some systems were able to
complete the chase and answer the queries in the majority of the
tests within a few minutes. Thus, our results suggest that applying
the chase to tasks of nontrivial sizes is practically feasible.

8. FUTURE CHALLENGES
Our experiments also gave us some insight regarding directions

for future work in the community.
Modular implementations. While a good benchmark should

provide a range of workloads for testing the chase, systems with
a more modular architecture are needed in order to test hypothe-
ses about the performance of chase. A prominent example of this
kind is comparing RDBMS- and RAM-based systems: one would
ideally use a system that can work either in RAM or on top of
an RDBMS, and it would allow one to measure the impact of this
choice independently of the myriad of other implementation fac-
tors; however, no such system exists at present. A more modu-
lar chase implementation would also be beneficial in practice since
many design choices (including the one above) are appropriate for
some scenarios and not for others.



Understanding the chase with EGDs. The handling of EGDs
in the chase is an area in need of much further study, both in terms
of theory (e.g., termination guarantees and static analysis) and im-
plementation. Equality reasoning has been studied extensively in
the theorem-proving community (e.g., [6]), and thus a first step
would be to better understand the applicability of these techniques
to the chase with EGDs.

Computing the core. An open question is to what extent can
computing the core reduce the size of the target instance. We in-
vestigated this for s-t TGDs, but to answer this question more gen-
erally scalable techniques for computing the core in the presence of
target dependencies are needed.

Alternative approaches to query answering. The chase is of-
ten used for computing the certain answers to queries—a task that,
in some cases, can also be tackled using radically different reason-
ing techniques such as theorem provers. In this paper we took a
first look at comparing the chase to the other approaches, but more
work is needed to further compare and possibly even combine the
chase with the related approaches. The classical chase procedure is
particularly well-suited for use cases where the certain answers for
many queries must be computed for the same instance. For com-
parison with other approaches, it might be appropriate to consider
a more dynamic setting, as well as possibly develop a set of com-
plexity measures appropriate to such a setting.

Answering queries without materializing the chase. As our
experiments show, the chase can be very large so computing and
maintaining it can be impractical. It can sometimes thus be desir-
able to answer queries without first materializing the chase. A lot of
work has already been invested in query rewriting, where a query is
transformed to take into account the effect of dependencies so that
the transformed query can be evaluated directly over the source in-
stance. This, however, is feasible only with simple dependencies
such as linear TGDs, and answering queries in cases where query
rewriting is not applicable remains an open problem. Goal-oriented
query answering techniques from Datalog such as magic sets [9]
provide a promising starting point for this investigation.

Ordering of steps. We found considerable evidence in our ex-
periments that ordering chase steps is important in practice; for
example, the good performance of CHASEFUN is due to its careful
ordering of EGD and TGD steps. More research is needed to under-
stand the impact of the ordering: even with TGDs only, a particular
order can make the active triggers check more effective.

9. RELATED WORK
Experimental evaluations of many chase based systems have al-

ready been conducted [34, 28, 27, 17, 22, 12]. In many cases we
reused and extended systems from these earlier studies, but our
work differs in several important ways. First, previous studies have
involved a limited number of systems, typically one or two. To the
best of our knowledge, this is the first attempt to compare a large
number of a very different, yet related systems. Second, earlier
studies have considered only a narrow range of scenarios closely
related to the function of the tested systems. We evaluate the sys-
tems on over 20 scenarios covering a wide range of assumptions,
testing both correctness and scalability, covering a broad spectrum
of steps related to the chase from data loading to query execution.
Finally, the systems, datasets, and scenarios from the earlier studies
have not been made available to the community—an important step
towards advancing the experimental culture of the community.

Previous efforts that are more similar in spirit to our work in-
clude ST-Benchmark [3] and iBench [4]. ST-Benchmark is con-
cerned with evaluating tools for generating schema mappings. It

consists of a number of mapping tasks, where each task comprises
two schemas, possibly in different data models, and a description
of a transformation between them. In addition, ST-Benchmark pro-
vides a generator for mapping specifications themselves. It also
modifies TOXGENE—a generator of schema instances with certain
properties. The tests reported in [3] focus on common transforma-
tions on a nested relational model, as opposed to relational data
exchange. The ST-Benchmark suite of tools is no longer available,
so we could not reuse it. However, several pieces of the infrastruc-
ture used in the ST-benchmark, such as TOXGENE and IBENCH (a
successor of the specification generator from the ST-benchmark),
play a prominent role in our work.

IBENCH [4] is a tool for generating metadata for benchmarking
mapping scenarios. It can generate source and target schemas, s-t
TGDs, and target EGDs. It is publicly available, it provides some
support for data generation via TOXGENE, and it has already been
used for testing schema mapping tools. We complemented IBENCH
with a number of additional tools, as discussed in Section 5.

10. CONCLUSIONS
Our work provides the first broad look at the performance of

chase systems. Our contributions include a new benchmark that
comprises test infrastructure and many test scenarios, experimen-
tal results for nine prominent systems, and insights about aspects
of the systems’ implementation. We intend to maintain and extend
our infrastructure for benchmarking the chase presented in this pa-
per as new systems appear and as existing systems are improved.
We feel that our work can be easily extended to support new classes
of dependencies and other chase-related tasks, such as query refor-
mulation with respect to dependencies.

We hope that our infrastructure will have an impact beyond the
specific techniques examined here. As mentioned in the introduc-
tion, many automated reasoning communities, from SMT solving
to description logics, have invested enormous effort in evaluation
in the past years. In contrast, while the research literature on ex-
tending database systems with reasoning capabilities is extensive,
evaluation methodologies are much less developed. A major con-
tribution of this work, beyond its results on the chase, is as a pre-
liminary step in addressing this gap. Evaluation infrastructure is
not just a matter of providing synthetic data and dependency gen-
erators: it includes common formats, common test harnesses, and
much more (see Section 5). We hope that some of our infrastruc-
ture and methods will spur activity in other evaluation tasks around
reasoning in database systems.

Finally, in this work we took an initial step in comparing reason-
ing systems produced by the database community with the systems
developed by other related communities.

11. ACKNOWLEDGMENTS
The work by Benedikt, Motik, and Konstantinidis was funded by

the EPSRC grants PDQ (EP/M005852/1), ED3 (EP/N014359/1),
DBOnto (EP/L012138/1), and MaSI3 (EP/K00607X/1).

12. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] F. N. Afrati and N. Kiourtis. Computing certain answers in

the presence of dependencies. Inf. Syst., 35(2):149–169,
2010.

[3] B. Alexe, W.-C. Tan, and Y. Velegrakis. STBenchmark:
towards a benchmark for mapping systems. In VLDB, 2008.



[4] P. C. Arocena, B. Glavic, R. Ciucanu, and R. J. Miller. The
iBench integration metadata generator. In VLDB, 2015.

[5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F.
Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge
University Press, 2007.

[6] Franz Baader and Tobias Nipkow. Term Rewriting and All
That. Cambridge University Press, 1998.

[7] J.-F. Baget, M. Leclère, M.-L. Mugnier, S. Rocher, and
C. Sipieter. Graal: A toolkit for query answering with
existential rules. In RuleML, 2015.

[8] D. Barbosa, A. Mendelzon, and K. Keenleyside, J.and Lyons.
ToXgene: A template-based data generator for XML. In
SIGMOD, 2002.

[9] C. Beeri and R. Ramakrishnan. On the power of magic. In
PODS, pages 269–283, 1987.

[10] M. Benedikt, J. Leblay, and E. Tsamoura. PDQ: Proof-driven
query answering over web-based data. In VLDB, 2014.

[11] M. Benedikt, J. Leblay, and E. Tsamoura. Querying with
access patterns and integrity constraints. In VLDB, 2015.

[12] A. Bonifati, I. Ileana, and M. Linardi. Functional
Dependencies Unleashed for Scalable Data Exchange. In
SSDBM, 2016.

[13] A. Deutsch, A. Nash, and J. Remmel. The chase revisited. In
PODS, 2008.

[14] A. Deutsch, L. Popa, and V. Tannen. Query reformulation
with constraints. SIGMOD Record, 35(1):65–73, 2006.

[15] R. Fagin, P.G. Kolaitis, R.J. Miller, and L. Popa. Data
Exchange: Semantics and Query Answering. TCS,
336(1):89–124, 2005.

[16] R. Fagin, P.G. Kolaitis, and L. Popa. Data Exchange: Getting
to the Core. TODS, 30(1):174–210, 2005.

[17] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. Mapping and
Cleaning. In ICDE, 2014.

[18] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. That’s All
Folks! LLUNATIC Goes Open Source. In VLDB, 2014.

[19] G. Gottlob and A. Nash. Efficient Core Computation in Data
Exchange. J. of the ACM, 55(2):1–49, 2008.

[20] B. Cuenca Grau, I. Horrocks, M. Krötzsch, C. Kupke,
D. Magka, B. Motik, and Z. Wang. Acyclicity notions for
existential rules and their application to query answering in
ontologies. JAIR, 47:741–808, 2013.

[21] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for
OWL knowledge base systems. Web Semantics: Science,
Services and Agents on the World Wide Web, 3(2-3), 2011.

[22] G. Konstantinidis and J. L. Ambite. Optimizing the chase:
Scalable data integration under constraints. In VLDB, 2015.

[23] N. Leone, M. Manna, G. Terracina, and P. Veltri. Efficiently
computable Datalog∃ programs. In KR, 2012.

[24] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri,
and F. Scarcello. The DLV system for knowledge
representation and reasoning. TOCL, 7(3):499–562, 2006.

[25] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing
implications of data dependencies. TODS, 4(4):455–469,
1979.

[26] B. Marnette. Generalized Schema Mappings: From
Termination to Tractability. In PODS, 2009.

[27] B. Marnette, G. Mecca, and P. Papotti. Scalable Data
Exchange with Functional Dependencies. In VLDB, 2010.

[28] G. Mecca, P. Papotti, and S. Raunich. Core Schema
Mappings: Scalable Core Computations in Data Exchange.
Inf. Systems, 37(7):677–711, 2012.

[29] M. Meier. The backchase revisited. VLDB J., 23(3):495–516,
2014.

[30] B. Motik, Y. Nenov, R. Piro, I. Horrocks, and D. Olteanu.
Parallel Materialisation of Datalog Programs in Centralised,
Main-Memory RDF Systems. In AAAI, 2014.

[31] R. Nieuwenhuis and A. Rubio. Paramodulation-Based
Theorem Proving. In Handbook of Automated Reasoning,
volume I. Elsevier, 2001.

[32] A. Onet. The chase procedure and its applications in data
exchange. In DEIS, pages 1–37, 2013.

[33] S. Perri, F. Scarcello, G. Catalano, and N. Leone. Enhancing
DLV instantiator by backjumping techniques. Ann. Math.
Art. Int., 51(2-4):195–228, 2007.

[34] R. Pichler and V. Savenkov. DEMo: Data Exchange
Modeling Tool. In VLDB, 2009.

[35] I. V. Ramakrishnan, R. Sekar, and A. Voronkov. Term
Indexing. In Handbook of Automated Reasoning. Elsevier,
2001.

[36] Stephan Schulz. System Description: E 1.8. In LPAR, 2013.
[37] SMT-LIB. http://smtlib.cs.uiowa.edu/.
[38] B. ten Cate, L. Chiticariu, P. Kolaitis, and W. C. Tan. Laconic

Schema Mappings: Computing Core Universal Solutions by
Means of SQL Queries. In VLDB, 2009.

[39] TPC. http://www.tpc.org/.
[40] TPTP. http://www.cs.miami.edu/~tptp/.



APPENDIX
A. FULL EXPERIMENTAL RESULTS
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Figure 2: Full charts of the chase experiments
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Figure 3: Full charts of the query answering experiments



2

Chase
Chase

ST-TGDs Import/Exp Total time Query Chase
Chase

ST-TGDs Import/Exp Total time Query Chase
Chase

ST-TGDs Import/Exp Total time Query Chase
Chase

ST-TGDs Import/Exp Total time Query
10000 10000 10000 10000 10000 100000 100000 100000 100000 100000 500000 500000 500000 500000 500000 1000000 1000000 1000000 1000000 1000000

ChaseFUN 0,35 0,62 1,49 2,58
DEMo 686,00 31,00 4,14 691,00 1777,00

DLV 0,54 2,68 13,06 26,98
Graal 13,71 1936,96

Llunatic 12,63 0,08 2,37 15,78 0,22 19,56 0,35 2,75 23,70 1,30 34,76 1,64 3,86 39,82 5,18 55,96 3,32 5,11 62,00 10,00
PDQ 13,55 12,00 2,06 1220,00 388,00 4,06 977,00 1622,00

RDFox 0,18 0,11 0,33 0,90 0,10 0,81 0,46 1,53 2,03 0,97 3,73 2,26 6,57 10,12 5,88 7,53 4,57 13,01 21,59 13,41

3

Chase
Chase

ST-TGDs Import/Exp Total time Query Chase
Chase

ST-TGDs Import/Exp Total time Query Chase
Chase

ST-TGDs Import/Exp Total time Query Chase
Chase

ST-TGDs Import/Exp Total time Query
10000 10000 10000 10000 10000 100000 100000 100000 100000 100000 500000 500000 500000 500000 500000 1000000 1000000 1000000 1000000 1000000

ChaseFUN 0,46 0,66 1,00 0,83 1,14 2,00 1,97 3,17 5,00 3,55 5,75 9,00
DEMo 658,00 31,00 4,09 665,00 1777,00

DLV 0,56 2,69 13,03 27,05
Graal 13,71 1936,96

Llunatic 1,60 0,07 2,73 4,74 0,26 2,02 0,37 3,04 5,59 1,41 3,99 1,77 4,32 8,46 5,54 6,48 3,52 6,64 13,78 11,22
PDQ 14,50 12,00 2,66 1258,00 388,00 4,14 977,00 1622,00

RDFox 0,21 0,13 0,33 0,90 0,10 0,81 0,46 1,60 2,03 0,97 3,73 2,27 6,39 10,15 5,85 7,49 4,56 12,67 20,77 13,23

4

Chase
Chase

ST-TGDs Import/Exp Total time Query Chase
Chase

ST-TGDs Import/Exp Total time Query Chase
Chase

ST-TGDs Import/Exp Total time Query Chase
Chase

ST-TGDs Import/Exp Total time Query
90000 90000 90000 90000 90000 1000000 1000000 1000000 1000000 1000000 12000000 12000000 12000000 12000000 12000000 120000000 120000000 120000000 120000000 120000000

ChaseFUN 0,54 2,29 22,17 906,51
DEMo 503,00 127,00 3,44 512,00

DLV 1,78 3,00 19,04 28,00 197,10 304,00
Graal 9,73 4,44 3,37 14,90 0,90 162,00 59,02 27,00 188,56 7,44

Llunatic 2,67 0,13 4,03 8,29 0,29 10,79 0,95 13,13 24,31 2,69 107,35 9,47 129,21 237,44 19,56 1415,53 117,82 1543,17 2739,29 214,71
PDQ 410,00 1276,00

RDFox 0,19 0,07 0,68 1,06 0,06 1,12 0,39 4,59 6,63 0,37 10,34 3,65 57,03 77,04 3,96

5

Chase
Chase

ST-TGDs Import/Exp Total time Query Chase
Chase

ST-TGDs Import/Exp Total time Query
STB-128 STB-128 STB-128 STB-128 STB-128 Ont-256 Ont-256 Ont-256 Ont-256 Ont-256

ChaseFUN 5,46 10,23
DLV 48,59 118,01

Graal 160,38 566,46
Llunatic 10,10 2,16 39,31 50,08 1,92 257,12 5,34 108,55 366,18 0,82

PDQ 1088,00 1045,00
RDFox 10,73 6,65 14,22 27,19 0,81 35,27 18,73 40,87 82,71 0,29

6

Chase
Chase

ST-TGDs Import/Exp Total time Query Chase
Chase

ST-TGDs Import/Exp Total time Query Chase
Chase

ST-TGDs Import/Exp Total time Query
100 100 100 100 100 200 200 200 200 200 300 300 300 300 300

ChaseFUN 4,73 4,50 4,31
DLV 0,67 1,00 0,65 22,00 0,67

Graal 2,98 0,53 2,00 4,98 0,02 192,00 0,52 7,61 199,61 0,39 0,52
Llunatic 12,13 1,90 18,96 31,83 0,17 19,25 1,86 21,51 41,59 0,41 2805,48 2,79 770,15 3576,85 253,16

PDQ 11,82 106,51 118,33 0,05 Unsupported
RDFox 9,49 8,93 0,47 10,98 0,02 15,23 9,03 4,41 20,96 0,04 8,86 Timeout

Doctors
1m

300,00
Deep

001 010

DoctorsFD

500k10k 100k

Chase Times

10k 100k 500k 1m

STB-128 Ont-256
iBench

100
LUBM

01k

100,00 200,00

Table 5: Full results of the chase experiments

Doctors DoctorsFD
10k 10k

E 399,00 383,00
Llunatic 138,05 38,63

RDFox 6,96 7,02

001 010 100
DLV 31,00 356,00 3960,00

Graal 176,32 2479,28
Llunatic 95,42 267,31 2393,79

RDFox 9,26 66,47 653,21

100 200
DLV 16,00 184,00

E 79,00
Graal 62,82 3843,99

Llunatic 609,39 783,85
PDQ 1566,79

RDFox 212,64 333,78

Query Answering Times

Deep

LUBM

Table 6: Full results of the query answering experiments



Chase	
Time

#Target	
Tuples

Query	
Time

Chase	
Time

#Target	
Tuples

Query	
Time

Chase	
Time

#Target	
Tuples

Query	
Time

Llunatic	-	1-Parallel 12,63 9.734 0,22 19,56 81.000 1,30 34,76 397.000 5,18
Llunatic	-	Unrestricted 15,40 9.734 0,21 20,69 81.000 1,38 44,91 397.000 5,60
Llunatic	-	Restricted 69,12 9.734 0,21 3948,14 81.000 2,83
RDFox	-	Unrestricted 0,18 9.734 0,10 0,81 81.000 0,97 3,73 397.000 5,88
RDFox	-	Restricted 0,14 9.734 0,11 0,67 81.000 0,98 2,92 397.000 5,75

Chase	
Time

#Target	
Tuples

Query	
Time

Chase	
Time

#Target	
Tuples

Query	
Time

Llunatic	-	1-Parallel 2,67 141.213 0,29 10,79 1.779.697 2,69
Llunatic	-	Unrestricted 6,37 177.738 0,31 32,99 2.246.699 1,69
Llunatic	-	Restricted 2196,80 141.213 0,23
RDFox	-	Unrestricted 0,19 177.738 0,06 1,12 2.246.699 0,45
RDFox	-	Restricted 0,21 141.213 0,06 0,94 1.779.697 0,42

Chase	
Time

#Target	
Tuples

Query	
Time

Chase	
Time

#Target	
Tuples

Query	
Time

Llunatic	-	1-Parallel 10,10 1.918.178 1,92 257,12 5.673.830 0,82
Llunatic	-	Unrestricted 34,04 1.918.217 1,40 307,13 5.674.103 0,73
Llunatic	-	Restricted
RDFox	-	Unrestricted 10,73 1.918.217 0,81 35,27 5.674.103 0,29
RDFox	-	Restricted 10,87 1.918.178 0,78 36,83 5.673.830 0,30

Chase	
Time

#Target	
Tuples

Query	
Time

Chase	
Time

#Target	
Tuples

Query	
Time

Llunatic	-	1-Parallel 12,13 18.386 0,17 19,25 902.636 0,41
Llunatic	-	Unrestricted 15,89 19.537 0,22 33,35 926.324 0,44
Llunatic	-	Restricted 22,23 18.347 0,17 7521,92 893.990 0,36
RDFox	-	Unrestricted 9,49 19.537 0,02 15,23 926.324 0,03
RDFox	-	Restricted 18,86 18.385 0,02 24,02 892.516 0,03

100 200

001 010

STB-128

Deep

Ont-256
iBench

LUBM

10k
Doctors
100k 500k

Table 7: Impact of the chase variants

Chase	Time #	Tuples Chase	Time #	Tuples Chase	Time #	Tuples Chase	Time #	Tuples Chase	Time #	Tuples
10k 0,17 11.808 79,40 10.208 89,33 9.867 87,96 9.734 0,25 9.734

100k 1,14 97.500 12404,00 95.634 11340,00 85.168 103720,00 81.000 0,73 81.000

Doctors	(S-T	tgds	only)
Unrestricted Restricted	Less	Favorable Restricted	Random Restricted	Favorable Core

Table 8: Impact of the core


