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ABSTRACT
This paper proposes a class of dependencies for graphs, re-
ferred to as graph entity dependencies (GEDs). A GED is
a combination of a graph pattern and an attribute depen-
dency. In a uniform format, GEDs express graph functional
dependencies with constant literals to catch inconsistencies,
and keys carrying id literals to identify entities in a graph.

We revise the chase for GEDs and prove its Church-Rosser
property. We characterize GED satisfiability and implica-
tion, and establish the complexity of these problems and the
validation problem for GEDs, in the presence and absence of
constant literals and id literals. We also develop a sound
and complete axiom system for finite implication of GEDs.
In addition, we extend GEDs with built-in predicates or dis-
junctions, to strike a balance between the expressive power
and complexity. We settle the complexity of the satisfiabil-
ity, implication and validation problems for the extensions.

Keywords
graph dependencies; conditional functional dependencies;
keys; EGDs; TGDs; satisfiability, implication, validation;
axiom system; built-in predicates; disjunction

1. INTRODUCTION
As primitive integrity constraints for relations, functional

dependencies (FDs) are found in almost every database text-
book. FDs specify a fundamental part of the semantics of
data, and have proven important in conceptual design, query
optimization, and prevention of update anomalies, among
other things. Moreover, FDs and their extensions such as
conditional functional dependencies (CFDs) [21] and denial
constraints [3] have been widely used in practice to detect
semantic inconsistencies and repair data.

Among our most familiar FDs are keys. As a special case
of FDs, keys provide an invariant connection between tuples
and the real-world entities they represent, and are crucial to
data models and transformations.
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The need for FDs and keys is also evident in graphs. Un-
like relational data, real-life graphs often do not come with a
schema, and dependencies such as FDs and keys provide one
of few means for us to specify the integrity and semantics
of the data. They are useful in consistency checking, spam
detection, entity resolution and knowledge base expansion.

Example 1: Consider the following from knowledge bases
and social networks, which are modeled as graphs.

(1) Consistency checking. It is common to find inconsisten-
cies in real-life knowledge bases, e.g.,

◦ psychologist Tony Gibson is credited for creating
Ghetto Blaster, while the video game was actually cre-
ated by programmer Tony ‘Gibbo’ Gibson (Yago3);

◦ both Saint Petersburg and Helsinki are labeled as the
capital of Finland (Yago3);

◦ it is claimed that all birds can fly, and that moa are
birds, although moa are “flightless” (DBPedia);

◦ Philip Sclater is marked as both a child and a parent
of William Lutley Sclater (DBPedia).

As shown in [23], such inconsistencies can be captured by
FDs defined on graphs, referred to as GFDs.

(2) Spam detection. Fake accounts are common in social
networks [14]. A rule for identifying spam is as follows.

◦ If account x′ is confirmed fake, both accounts x and x′

like blogs P1, . . . , Pk, x posts blog y, x′ posts y′, and
if both y and y′ have a peculiar keyword c, then x can
also be identified fake.

Such rules can also be expressed as GFDs [23].

(3) Knowledge base expansion [19]. We want to decide
whether to add a newly extracted album to a knowledge
base G. To avoid duplicates, we need keys to identify an
album entity in G, defined in terms of

ψ1: its title and the id of its primary artist, or
ψ2: its title and the year of initial release.

These can be expressed as keys for graphs studied in [19].
Note that the title of an album and the name of its artist
cannot uniquely identify an album. For instance, an Amer-
ican band and a British band are both called “Bleach”, and
both bands had an album “Bleach”.

To cope with ψ1, we also need a key to identify artists:

ψ3: the name of the artist, and the id of an album recorded
by the artist.

As opposed to our familiar keys for relations, these keys are
“recursively defined”: to identify an album, we may need to
identify its primary artist, and vice versa. 2



Dependencies Satisfiability Implication Validation Connection with GEDs
GEDs coNP-complete (Th. 3) NP-complete (Th. 5) coNP-complete (Th. 6) Q[x̄](X → Y )
GFDs coNP-complete (Th. 3) NP-complete (Th. 5) coNP-complete (Th. 6) GEDs without id literals
GKeys coNP-complete (Th. 3) NP-complete (Th. 5) coNP-complete (Th. 6) Q[x̄](X → x.id = y.id)
GEDxs coNP-complete (Th. 3) NP-complete (Th. 5) coNP-complete (Th. 6) GEDs without constant literals
GFDxs O(1) (Th. 3) NP-complete (Th. 5) coNP-complete (Th. 6) GFDs without constant literals
GDCs Σp2-complete (Th. 8) Πp2-complete (Th. 8) coNP-complete (Th. 8) adding built-in predicates
GED∨s Σp2-complete (Th. 9) Πp2-complete (Th. 9) coNP-complete (Th. 9) disjunctive Y in Q[x̄](X → Y )

Table 1: Complexity for reasoning about GEDs

Moreover, FDs and keys help us optimize queries that are
costly on large graphs in the real world, e.g., Facebook,
which have billions of nodes and trillions of edges [27].

Keys and FDs on graphs are a departure from their re-
lational counterparts. (1) A relational FD R(X → Y ) is
defined on a relation schema R with attributes X and Y ,
where R specifies the “scope” of the FD, i.e., X → Y is
to be applied to tuples in an instance of R. In contrast,
graphs are semistructured and often schemaless. To cope
with this, we need a combination of (a) a topological con-
straint to identify entities, i.e., to specify its “scope”, and
(b) an “FD” on the attributes of the entities identified. (2)
Relational FDs and keys are “value-based”, while keys and
FDs for graphs are often necessarily “id-based” as shown by
ψ1–ψ3 of Example 1. That is, they are based on node iden-
tity. In particular, if two vertices are identified as the same
entity, then they must have the same attributes and edges.

There has been work on FDs for RDF [2,13,16,28,30,32,42]
in particular and for general property graphs [23] in general,
and on keys for RDF [19]. However, many questions remain
open. For example, as opposed to relational FDs and keys,
none of these FD proposals can express keys for graphs [19].

The practical need calls for a full treatment of the topic,
to answer the following questions. (1) Is there a simple class
of graph dependencies for us to uniformly express FDs and
keys? (2) Can we adapt the chase [39] to reason about the
dependencies? (3) What is the complexity of fundamental
problems associated with the dependencies? (4) Is there a
finite axiom system for their implication analysis, like Arm-
strong’s axioms for traditional FDs [5]? (5) How can we
strike a balance between their expressivity and complexity?

Contributions. This paper tackles these questions.

(1) GEDs. We propose a class of dependencies, referred to as

graph entity dependencies and denoted by GEDs (Section 3).
A GED is a combination of (a) a graph pattern Q as a topo-
logical constraint, and (b) an “FD”X → Y with sets X and
Y of equality literals. Pattern Q identifies a set of entities
in a graph, and the FD is enforced on these entities. GEDs
may specify conditions carrying literals with constants, like
relational CFDs [21]. They may carry id literals to identify
vertices in a graph, beyond equality on attribute values.

GEDs subsume GFDs of [23] and keys of [19] as special
cases (subject to adaption of graph pattern matching with
graph homomorphism instead of subgraph isomorphism, to
uniformly express GFDs and keys; see Section 3). They can
express traditional FDs, CFDs and equality-generating de-
pendencies (EGDs [7]), when relations are represented as
graphs. That is, GEDs can do the job of keys, FDs, CFDs and
EGDs for graph-structured data, e.g., to specify integrity, de-
tect inconsistencies, identify entities and optimize queries.

(2) The chase revised. We extend the chase [39] to GEDs

(Section 4). Chasing with GEDs is more involved than with
traditional FDs: it may run into conflicts introduced by id lit-
erals or constant literals, and may “generate” new attributes
when enforcing GEDs on a schemaless graph. Nonetheless,
we show that the chase with GEDs is finite and has the
Church-Rosser property. That is, all chasing sequences of
a graph (pattern) by a set of GEDs are finite and yield the
same result, regardless of the order of GEDs applied.

(3) Classical problems for GEDs. We investigate three fun-

damental problems associated with GEDs (Section 5).

(a) The satisfiability problem is to decide, given a set Σ of
GEDs, whether there exists a nonempty finite model G of Σ
that satisfies Σ, denoted by G |= Σ as usual.

(b) The implication problem is to decide whether a set Σ of
GEDs entails another GED ϕ, denoted by Σ |= ϕ, i.e., for
any finite graph G, if G |= Σ, then G |= ϕ.

(c) The validation problem is to decide, given a finite graph
G and a set Σ of GEDs, whether G |= Σ.

These problems not only are of theoretical interest, but
also find practical applications. The satisfiability analysis
helps us check whether a set of GEDs makes sense before
the GEDs are used as rules for data cleaning or query opti-
mization. The implication analysis serves as an optimization
strategy to get rid of redundant rules. The validation analy-
sis can detect violations of GEDs, and catch “dirty” entities.

To understand where the complexity arises, we consider
two dichotomies when studying these problems:

◦ the presence of id literals vs. their absence, and

◦ the presence of constant values vs. their absence.

For instance, keys of [19] are recursively defined in terms
of id literals while GFDs of [23] are not. In these settings,
we characterize GED satisfiability and implication, based on
the chase. We also establish complexity bounds of these
problems for GEDs, GFDs, keys and other sub-classes, all
matching (see Table 1). As opposed to relational FDs, these
problems are all intractable for GEDs, and the intractability
is robust even for restricted special cases. The complexity is,
however, comparable to, e.g., (a) relational CFDs, for which
the satisfiability and implication problems are NP-complete
and coNP-complete, respectively [21], and (b) EGDs, for
which the implication problem is NP-complete [8].

(4) Finite axiomatizability. We study the finite axiomatiz-

ability of GEDs (Section 6). One naturally wants a finite set
A of inference rules that is sound and complete for the impli-
cation analysis of GEDs, along the same lines as Armstrong’s
axioms for relational FDs (see [1]). That is, for any set Σ of
GEDs and another GED ϕ, Σ |= ϕ if and only if ϕ is provable



Figure 1: Graph patterns

from Σ using A. Here we focus on finite graphs and study
finite implication, rather than unrestricted implication.

We provide a set of six inference rules for GEDs, and show
that it is sound and complete for GED implication analyses,
based on the revised chase. We also show that the axiom
system is independent (non-redundant and minimal), i.e.,
removing any rule makes it no longer complete.

(5) Extensions. To strike a balance between the expressiv-

ity and complexity, we investigate extensions of GEDs (Sec-
tion 7). We extend GEDs by supporting

◦ built-in predicates =, 6=, <,>,≤,≥ (GDCs); or
◦ limited disjunction of literals (GED∨s).

We can express, for instance, denial constraints [3] as GDCs,
disjunctive EGDs [17] as GED∨s, and “domain constraints”
for attributes of an entity to have a finite domain as both
GDCs and GED∨s, among other things.

With the increased expressive power, the extensions in-
crease the complexity of static analyses. We show that their
satisfiability and implication problems become Σp2-complete
and Πp

2-complete, as opposed to coNP-complete and NP-
complete for GEDs, respectively. Their validation problems
remain coNP-complete, the same as for GEDs (Table 1).

The dependency classes studied in the paper and their
complexity results are summarized in Table 1, annotated
with their corresponding theorems. This work is a prelimi-
nary step toward developing a dependency theory for graphs.
The intractability results reveal the challenges inherent to
entities with a graph structure. The revised chase, charac-
terizations of satisfiability and implication, and axiom sys-
tem provide insight into the analyses of graph dependencies.

The related work will be discussed in Section 8.

2. PRELIMINARIES
Before we define GEDs, we first review some basic nota-

tions. Assume three countably infinite sets Γ, Υ and U of
labels, attributes and constants, respectively.

Graphs. A graph G is specified as (V,E, L, FA), where (a)
V is a finite set of nodes; (b) E ⊆ V × Γ× V is a finite set
of edges, in which (v, ι, v′) denotes an edge from node v to
v′, and the edge is labeled with ι, referred to as its label; (c)
each node v ∈ V has label L(v) from Γ; and (d) each node
v ∈ V carries a tuple FA(v) = (A1 = a1, . . . , An = an) of
attributes of a finite arity, where Ai ∈ Υ and ai ∈ U , written
as v.Ai = ai, and Ai 6= Aj if i 6= j. In particular, each v has
a special attribute id denoting its node identity.

That is, we consider finite directed graphs in which nodes
and edges are labeled. Nodes carry attributes for, e.g., prop-
erties and keywords and rating, as in property graphs. Un-
like relational databases, we assume no schema for graphs.
Hence for an attribute A ∈ Υ and a node v ∈ V , v.A may not
exist, except that v has a unique v.id as found in practice.

Graph patterns. A graph pattern is a directed graph Q[x̄]
= (VQ, EQ, LQ), where (1) VQ (resp. EQ) is a finite set of
pattern nodes (resp. edges) as before; (2) LQ is a function
that assigns a label LQ(u) to each node u ∈ VQ; and (3) x̄
denotes the nodes in VQ as a list of variables.

Labels of pattern nodes and edges are drawn from Γ.
Moreover, we allow wildcard ‘ ’ as a special label in Q.

A pattern Q2[ȳ] is a copy of Q1[x̄] via a bijection f :
x̄ 7→ ȳ if Q2[ȳ] is Q1[x̄] with variables renamed by f .
More specifically, let Q1[x̄] = (VQ1, EQ1, LQ1) and Q2[ȳ] =
(VQ2, EQ2, LQ2). Then (a) x̄ and ȳ are disjoint, and (b)
f is an isomorphism from Q1 to Q2; i.e., for each x ∈ x̄,
LQ1(x) = LQ2(f(x)); and (x1, ι, x2) is an edge in EQ1 if and
only if (f(x1), ι, f(x2)) is in EQ2 , with the same label ι.

Example 2: Figure 1 depicts seven graph patterns: (1)
Q1[x, y] specifies a person entity and a product entity, which
are connected by a create edge; similarly for Q2[x, y, z]
and Q4[x, y]; (2) Q3[x, y] depicts a generic is a relation-
ship between two entities labeled with wildcard ‘ ’; (3)
Q5[x, x′, z1, z2, y1, . . . , yk] specifies two accounts x and x′,
k + 2 blogs z1, z2, y1, . . . , yk and their relationships; (4)
Q6[x, x′, y, y′] consists of (a) a pattern Q1

6[x, x′] with vari-
ables x and x′, specifying a relationship between an album
entity x and an artist entity x′; and (b) a copy Q2

6[y, y′] of
Q1

6[x, x′] with variables renamed; similarly for Q7[x, y]. 2

Matches. We say that a label ι matches ι′, denoted by
ι � ι′, if either (a) ι and ι′ are in Γ and ι = ι′, or (b) ι′ ∈ Γ
and ι is ‘ ’, i.e., wildcard matches any label in Γ.

A match of pattern Q[x̄] in graph G is a homomorphism
h from Q to G such that (a) for each node u ∈ VQ, LQ(u) �
L(h(u)); and (b) for each edge e = (u, ι, u′) in Q, there exists
an edge e′ = (h(u), ι′, h(u′)) in G such that ι � ι′. Note that
when ι is ‘ ’, there may exist multiple edges e′ with ι � ι′.
The match picks one of them, and denotes it by h(ιuv ).

Abusing the notations, we also denote the match as a
vector h(x̄) if it is clear from the context, where h(x̄) consists
of h(x) for all variables x ∈ x̄. Intuitively, h(x̄) is a list of
entities identified by pattern Q in graph G.

3. GRAPH ENTITY DEPENDENCIES
We now define graph entity dependencies (GEDs).

GEDs. A GED ϕ is defined as Q[x̄](X → Y ), where Q[x̄] is
a graph pattern, and X and Y are two (possibly empty) sets
of literals of x̄; we refer to Q[x̄] and X → Y as the pattern
and FD of ϕ, respectively.

A literal of x̄ is one of the following: for x, y ∈ x̄,

(a) constant literal x.A = c, where c is a constant in U ,
and A is an attribute in Υ that is not id;

(b) variable literal x.A = y.B, where A and B are at-
tributes in Υ that are not id; or



(c) id literal x.id = y.id.

Intuitively, GED ϕ is a combination of (1) a topological
constraint imposed by pattern Q, to identify entities in a
graph, and (2) an FD X → Y , to be applied to the entities
identified by Q. Constant literals x.A = c enforce bindings
of semantically related constants, along the same lines as
relational CFDs [21]. An id literal x.id = y.id states that x
and y denote the same vertex (entity).

Example 3: We can use GEDs to detect the inconsisten-
cies, catch spam and identify entities observed in Example 1.
These GEDs are defined with graph patterns of Fig. 1.

(1) GED ϕ1 = Q1[x, y](X1 → Y1). Here X1 consists of a
single constant literal x.type = “video game”, Y1 consists of
a literal y.type = “programmer”, and type is an attribute of
person and product (not shown in Q1). It states that a video
game can only be created by programmers.

(2) GED ϕ2 = Q2[x, y, z](∅ → y.name = z.name). It says
that if a country x has two capitals y and z, then y and z
must have the same name. Here name is an attribute, X is
empty, and Y consists of a single variable literal.

(3) GED ϕ3 = Q3[x, y](x.A = x.A → y.A = x.A), where
A is an attribute of x, e.g., can fly. It says that if y is a x
and if x has property A, then y inherits x.A, i.e., y also has
attribute A and y.A = x.A. Note that x and y are labeled
‘ ’, representing generic entities regardless of labels.

(4) GED ϕ4 = Q4[x, y](∅ → false), where false is a syntactic
sugar for Boolean constant (see details shortly). It states
that pattern Q4 is “illegal”, i.e., no person can be both a
child and a parent of another person.

GEDs ϕ1–ϕ4 catch the errors described in Example 1, e.g.,
ϕ3 can detect the inconsistency between birds and moa.

(5) GED ϕ5 = Q5[x, x′, z1, z2, y1, . . . , yk](X5 → Y5) specifies
the rule of Example 1 for catching spam. Here X5 consists
of three constant literals x′.is fake = 1, z1.keyword = c and
z2.keyword = c, Y5 is x.is fake = 1, and c is a constant.
The GED says that for accounts and blogs that match Q5,
if account x′ is confirmed fake and if blogs z1 and z2 both
contain a peculiar keyword c, then x is also a fake account.

(6) The keys of Example 1 can be expressed as GEDs:

For album: ψ1 = Q6[x, x′, y, y′](X6 → x.id = y.id),
ψ2 = Q7[x, y](X7 → x.id = y.id).

For artist: ψ3 = Q6[x, x′, y, y′](X8 → x′.id = y′.id).

Here X6 consists of x.title = y.title and id literal x′.id = y′.id;
X7 includes x.title = y.title and x.release = y.release; and
X8 consists of x′.name = y′.name and id literal x.id = y.id,
defined with attributes title, release, name and id.

To identify a pair of album entities x and y, we check either
their title attributes and the ids of their artists (ψ1), or their
title and release attributes (ψ2). Similarly, to identify artist
entities x′ and y′ as required by ψ1, we need to check the
ids of a pair of albums they recorded (ψ3) in turn. 2

Semantics. To interpret GED ϕ = Q[x̄](X → Y ), we use
the following notations. Consider a match h(x̄) of Q in a
graph G, and a literal l of x̄. We say that h(x̄) satisfies l,
denoted by h(x̄) |= l, if (a) when l is x.A = c, then attribute
v.A exists at node v = h(x), and v.A = c; (b) when l is
x.A = y.B, then attributes A and B exist at v = h(x) and
v′ = h(y), respectively, and v.A = v′.B; and (c) when l

is x.id = y.id, then h(x) and h(y) refer to the same node;
hence, they have the same set of attributes and edges.

We denote by h(x̄) |= X if the match h(x̄) satisfies all the
literals in X; in particular, if X is ∅, then h(x̄) |= X for any
match h(x̄) of Q in G; similarly for h(x̄) |= Y . We write
h(x̄) |= X → Y if h(x̄) |= X implies h(x̄) |= Y .

A graph G satisfies GED ϕ, denoted by G |= ϕ, if for all
matches h(x̄) of Q in G, h(x̄) |= X → Y .

We say that a graph G satisfies a set Σ of GEDs if for all
ϕ ∈ Σ, G |= ϕ, i.e., G satisfies every GED in Σ.

Given the semantics, we also write Q[x̄](X → Y ) as

Q[x̄]
(∧

l∈X l→
∧
l′∈Y l

′).
Existence of attributes. Note that attributes are not speci-
fied in pattern Q, and that we consider schemaless graphs.
For a literal x.A = c, node h(x) does not necessarily have
attribute A, to accommodate the semistructured nature of
graphs. Observe the following. (a) When x.A = c is a literal
in X, if h(x) has no A-attribute, then h(x̄) trivially satisfies
X → Y by the definition of h(x̄) |= X. (b) In contrast, if
x.A = c is in Y , then for h(x̄) |= Y , node h(x) must have
A-attribute by the definition; similarly for x.A = y.B.

As a consequence, we can use, e.g., Q[x](∅ → x.A = x.A)
to enforce that all entities x of “type” τ must have an A
attribute, where Q consists of a single vertex x labeled τ .
This is in the flavor of tuple generating dependencies [7],
limited to attributes. Such constraints cannot be expressed
as EGDs [7] or FDs for relations and RDF [2,16,30,42].

However, GEDs cannot enforce attribute x.A to have a
finite domain, e.g., Boolean, as opposed to database schema.

Special cases. We list some special cases of GEDs.

(1) GFDs. GFDs of [23] are syntactically defined as GEDs

without id literals, i.e., Q[x̄](X → Y ) in which neither X
nor Y contains x.id = y.id. They adopt the semantics of
subgraph isomorphism for graph pattern matching.

We refer to GEDs of this form also as GFDs, and interpret
graph pattern matching in terms of homomorphism. For
instance, ϕ1–ϕ5 in Example 3 are GFDs, but ψ1–ψ3 are not.

(2) Keys. A key ψ of [19] is defined as Q[x̄, xo], where Q[x̄]
is a graph pattern and xo is a designated node in x̄. A
graph G satisfies ψ if for any two matches h(x̄) and h′(x̄)
of Q[x̄] in G such that h(x̄) and h′(x̄) are isomorphic, h(xo)
and h′(xo) denote the same node. Pattern Q is defined as
a set of RDF triples, carrying variables and constants, and
interpreted under the semantics of subgraph isomorphism.

We define a key for graphs, denoted by GKey, as a GED
of the form Q[z̄](X → x0.id = y0.id), where (a) Q[z̄] is
composed of patterns Q1[x̄] and Q2[ȳ], and Q2[ȳ] is a copy
of Q1[x̄] via a bijection f : x̄ 7→ ȳ (see Example 2), (b) z̄
consists of x̄ followed by ȳ, (c) x0 ∈ x̄ and y0 = f(x0) are
designated nodes in Q, and (d) X is a set of literals as before.

For instance, ψ1, ψ2 and ψ3 of Example 3 are GKeys.
GKeys express recursive keys of [19] in terms of id literals.

The key ψ = Q[x̄, xo] of [19] can be expressed as a GKey
Q′[z̄](X → x0.id = y0.id), where X consists of literals to
express constant and variable bindings embedded in pattern
Q, and Q′ is composed of Q and a copy of Q, interpreted in
terms of homomorphism instead of subgraph isomorphism.

It is to uniformly express keys and GFDs that we adopt
the homomorphism semantics for graph pattern matching.



To illustrate this, consider GKey ψ3 given in Example 3. The
GKey catches no violations if it is interpreted under subgraph
isomorphism. Indeed, for any match h[x̄] of pattern Q6 in a
graph G, h(x) and h(y) have to be distinct nodes as required
by isomorphism. As a result, h[x̄] 6|= X8 and hence, h[x̄]
trivially satisfies ψ3. As opposed to [19] that interprets a key
with three isomorphic mappings, we interpret GEDs with a
single match of pattern, and thus isomorphism is too strict
to allow two variables to be mapped to the same node.

The issue becomes more subtle when it comes to the satis-
tiability of a set Σ of GEDs (see Section 5.1), where a model
of Σ requires that every GED in Σ finds a match of its pat-
tern, to assure that the GEDs in Σ do not conflict with each
other. Consider a GKey ϕ = Q[x, y](∅ → x.id = y.id), where
Q consists of two isolated nodes, which are labeled with
“UoE”. This GKey states that all nodes representing “UoE”
are essentially the same node. One can verify that under
the semantics of subgraph isomorphism, GKeys like ϕ can-
not find a model in any sensible graph.

(3) GEDxs. We also study the class of GFDs that include no
constant literals, referred to as variable GFDs and denoted
by GFDxs. For instance, ϕ2 and ϕ3 are GFDxs, but ϕ1, ϕ4

and ϕ5 are not. Intuitively, (a) GFDs are an extension of
relational CFDs to graphs, (b) while GFDxs extend FDs, car-
rying neither constant literals nor id literals.

Similarly, we study GEDs without constant literals, re-
ferred to as variable GEDs and denoted by GEDxs. Obvi-
ously GFDxs are a proper sub-class of GEDs; e.g., ψ1–ψ3 of
Example 3 are GEDxs, but they are not GFDxs.

(4) Forbidding GEDs. GEDs can express limited negation, in

the form of Q[x̄](X → false), where false is an abbreviation
for, e.g., Y consisting of y.A = c and y.A = d for distinct
constants c and d, where y is a variable in x̄. Following [16],
we refer to such GEDs as forbidding constraints.

(5) Relational dependencies. Following [23], one can show
that FDs and CFDs can be expressed as GEDs if rela-
tion tuples are represented as nodes in a graph. In fact,
equality-generating dependencies (EGDs) can be expressed
as GFDs (GEDs) in the same setting. An EGD has the form
∀z̄(φ(z̄) → y1 = y2), where φ is a conjunction of relation
atoms R(w1, . . . , wl) and equality atoms wi = wj , wi and
wj are variables in z̄, and so are y1 and y2 (cf. [1]). Here each
variable w corresponds to an attribute Rw[Aw] in a relation
atom of φ. The EGD can be expressed as a pair of GFDs:

(1) ϕR = QE [x̄](∅ → YR), where (a) QE is a pattern such
that for each relation atomR in φ, there exists a node xR ∈ x̄
in QE that is labeled with R; and QE has no edges; and (b)
YR consists of xR.AR = xR.AR for each variable x ∈ z̄, which
indicates attribute R[AR]; intuitively, ϕR ensures that the
relations in φ have the attributes required; and

(2) ϕE = QE [x̄](XE → YE), where (a) for each equal-
ity atom wi = wj in φ, which corresponds to Ri[ARi ] =
Rj [ARj ] as remarked above, XE includes a literal xRi .ARi =
xRj .ARj ; and (b) YE is xRy1 .ARy1 = xRy2 .ARy2 , which cor-
responds to y1 = y2. This enforces that φ entails y1 = y2.

One might be tempted to encode GEDs as relational de-
pendencies. As will be discussed in Section 8, such encoding
makes it awkward to express id literals, and the relational
techniques do not simplify the analyses of GEDs.

4. THE CHASE REVISITED FOR GEDS
We next revise the chase [39] for GEDs over graphs (Sec-

tion 4.1), and show that chasing with GEDs has the Church-
Rosser property (Section 4.2). As will be seen in later sec-
tions, the chase helps us characterize the static analyses of
GEDs and develop finite axiomatization for GEDs.

4.1 Chasing with GEDs
Consider a graph G = (V,E, L, FA) and a finite set Σ

of GEDs. We study the chase of G by Σ, to (a) check the
satisfiability of Σ (resp. implication of GED ϕ by Σ) when
G encodes the patterns of Σ (resp. ϕ; see Section 5), (b)
optimize graph pattern queries Q with Σ when G represents
Q, and (c) identify entities and catch errors by using Σ in a
knowledge base or a social graph G, among other things.

Equivalence relations. We define the chase as a sequence
of equivalence relations Eq on nodes x and attributes x.A in
G. For each node x in V , its equivalence class, denoted by
[x]Eq, is a set of nodes y ∈ V that are identified as x. For
each attribute x.A of x, its equivalence class [x.A]Eq is a set
of attributes y.B and constants c, if x.A = y.B and x.A = c
are enforced by GEDs in Σ (see below), respectively. The
relation is reflexive, symmetric and transitive, such that

(a) if node y ∈ [x]Eq, then x ∈ [y]Eq and [x]Eq = [y]Eq;
that is, we merge [x]Eq and [y]Eq into one; similarly, if
attribute y.B ∈ [x.A]Eq, then [y.B]Eq = [x.A]Eq;

(b) if there is attribute y.B such that y.B ∈ [x.A]Eq and
y.B ∈ [z.C]Eq, then [x.A]Eq = [z.C]Eq; similarly for
constant c if c ∈ [x.A]Eq and c ∈ [z.C]Eq;

(c) if there exists node y such that y ∈ [x]Eq and y ∈ [z]Eq,
then [x]Eq = [z]Eq by transitivity; and

(d) if node y ∈ [x]Eq, then for each attribute y.B of y,
[x.B]Eq = [y.B]Eq; similarly for attribute x.A; that is,
if x and y are the same node, then they have the same
attributes and corresponding values.

Consistency. Inconsistencies may be introduced by id literals
and constant literals when enforcing GEDs.

We say that Eq is inconsistent in G if

(a) there exists node y ∈ [x]Eq such that L(x) 6� L(y) and
L(y) 6� L(x) (label conflict), or

(b) there exists y.B ∈ [x.A]Eq such that x.A = c and y.B =
d for distinct c, d in U (attribute conflict).

Otherwise we say that Eq is consistent.
We use � to compare labels (recall � from Section 2).

This is to cope with wildcard in a pattern Q when we chase
Q as a graph (see Section 5 for such examples). In this
case, we treat ‘ ’ in Q as a special label. Recall that � is
asymmetric: x � y does not mean that y � x.

Coercion. When an equivalence relation Eq is consistent in
graph G, we can enforce Eq on G and revise G by merging
nodes and their corresponding attributes and edges, and by
equalizing and extending attributes, as follows.

We define the coercion of a consistent Eq on G as graph
GEq = (V ′, E′, L′, F ′A) obtained from G as follows: for each
node x ∈ V , (a) xEq is a node in V ′, denoting [x]Eq; (b) for
each edge (x, ι, y) ∈ E, (xEq, ι, yEq) is an edge in E′; similarly
for each edge (y, ι, x) ∈ E; (c) L′(xEq) is ‘ ’ if all nodes
in [x]Eq are labeled ‘ ’; otherwise L′(xEq) = L(z), where
z ∈ [x]Eq with L(z) 6= ‘ ’; and (d) F ′A(xEq) =

⋃
y∈[x]Eq

FA(y),

the union of the attributes of all the nodes in [x]Eq.



When Eq is consistent, GEq is well defined. In particu-
lar, when x and y are identified as the same node, F ′A([x]Eq)
merges the attributes of x and y; moreover, if A is an at-
tribute of both x and y, then x.A = y.A, and hence F ′A(·)
is well defined. In addition, for all nodes z1, z2 ∈ [x]Eq, if
L(z1) 6= ‘ ’ and L(z2) 6= ‘ ’, then L(z1) = L(z2).

When Eq is inconsistent, GEq is undefined.

Chasing. We start with Eq0, an initial equivalence relation
that includes [x]Eq0 = {x} and [x.A]Eq0 = {x.A, c}, for each
node x ∈ V and attribute x.A = c in FA(x). Each chase
step i extends Eqi−1 to get Eqi, by applying a GED.

We define a chase step of G by Σ at Eq as

Eq⇒(ϕ,h) Eq′,

where ϕ = Q[x̄](X → Y ) is a GED in Σ, and h(x̄) is a match
of pattern Q in the coercion GEq of Eq on graph G such that
(a) h(x̄) |= X, and (b) Eq′ is the equivalence relation of the
extension of Eq by adding one literal l ∈ Y ; more specifically,
l and Eq′ satisfies one of the following conditions:

(1) if l is x.A = c and c 6∈ [h(x).A]Eq, then Eq′ extends Eq
by (a) including a new equivalence class [h(x).A]Eq′ if
h(x).A is not in Eq, and (b) adding c to [h(x).A]Eq′ ;

(2) if l is x.A = y.B and h(y).B 6∈ [h(x).A]Eq, then Eq′

extends Eq by adding (a) [h(x).A]Eq′ if h(x).A is not
in Eq, and (b) h(y).B to [h(x).A]Eq′ ; and

(3) if l is x.id = y.id and h(y) 6∈ [h(x)]Eq, then Eq′ extends
Eq by adding h(y) to [h(x)]Eq′ .

The step is valid if Eq′ is consistent in GEq.

Note that cases (1) and (2) above may expand the set of
attributes of h(x) when enforcing ϕ: attribute h(x).A in Y
is added if it is not already an attribute of h(x), as required
by h(x̄) |= Y (Section 3), since otherwise the chase will not
lead to a graph that satisfies ϕ (see Theorem 1 below).

A chasing sequence ρ of G by Σ is a sequence

Eq0, . . . , Eqk,

where for all i ∈ [0, k− 1], there exist a GED ϕ = Q[x̄](X →
Y ) in Σ and a match h of pattern Q in coercion graph GEqi

such that Eqi ⇒(ϕ,h) Eqi+1 is a valid chase step.

The sequence is terminal if there exist no GED ϕ ∈ Σ,
match h of pattern Q of ϕ in GEqk and equivalence relation
Eqk+1 such that Eqk ⇒(ϕ,h) Eqk+1 is a valid chase step.
More specifically, it terminates in one of the following cases.

(a) No GEDs in Σ can be applied to expand the chasing
sequence. If so, we say that the sequence is valid, and refer
to (Eqk, GEqk ) as its result. It is easy to verify that in a valid
ρ, for all i ∈ [0, k], Eqi is consistent in GEqi .

(b) Either Eq0 is inconsistent to start with (see the case
in Section 5.2), or there exist ϕ, h and Eqk+1 such that
Eqk ⇒(ϕ,h) Eqk+1 but Eqk+1 is inconsistent in GEqk . If so,
we say that ρ is invalid, with result ⊥ (undefined).

In particular, a forbidding constraint Q[x̄](X → false) can
be applied only when G is “inconsistent” or “dirty”, and as
a result, it makes the chasing sequence invalid.

Example 4: Consider graph G shown in Fig. 2, where v1

and v2 have attribute A with v1.A = 1 and v2.A = 1.

(1) Consider a set Σ1 consisting of a single GED φ1 =
Q1[x, y](x.A = y.A → x.id = y.id) with Q1 in Fig. 2. Then
Eq0 ⇒(φ1,h1) Eq1 is a chase step, where (a) Eq0 consists of

Figure 2: Graphs and patterns used in chasing

[v]Eq0 = {v} for v ranging over v1, v2, v
′
1, v
′
2, and [v1.A]Eq0 =

[v2.A]Eq0 = {v1.A, v2.A, 1}; (b) h1: x 7→ v1 and y 7→ v2; and
(c) Eq1 extends Eq0 by letting [v1]Eq1 = [v2]Eq1 = {v1, v2}.
The coercionG1 of Eq1 onG is shown in Fig. 2, which merges
v1 and v2. One can verify that Eq0 ⇒(φ1,h1) Eq1 is a termi-
nal chasing sequence of G by Σ1 since no more GEDs can be
applied. Moreover, it is valid, yielding result (Eq1, G1).

(2) Consider Σ2 = {φ1, φ2}, where φ2 = Q2[x, y, z](∅ →
y.id = z.id) (Q2 in Fig. 2). Now Eq1 ⇒(φ2,h2) Eq2 is a chase
step, where h2: x 7→ v1, y 7→ v′1, z 7→ v′2; and (b) Eq2

extends Eq1 by adding v′2 to [v′1]Eq1 . Then Eq0 ⇒(φ1,h1) Eq1

is still terminal, but it is invalid as there exists a chase step
Eq1 ⇒(φ2,h2) Eq2, where Eq2 is inconsistent in G1. As shown
in Fig. 2, the coercion G2 of Eq2 on G is to merge v′1 and v′2
with distinct labels. The result of this sequence is ⊥. 2

As opposed to chase of relations or RDF with EGDs or
FDs [2, 7, 16, 30], a chasing sequence with GEDs operates
on a graph (pattern), and may be invalid due to label or
attribute conflicts. Moreover, it supports “attribute gen-
eration” (cases (1) and (2) of chase steps above) to cope
with schemaless graphs. In addition, the relational and RDF
chasing rules do not deal with id literals. When x.id = y.id is
enforced, all their attributes and edges have to be merged.

4.2 The Church Rosser Property
The chase with relational FDs has the Church-Rosser

property (cf. [1]). We show that chasing with GEDs retains
the property. To present this, we use the following notions.
We consider finite sets Σ of GEDs as usual.

(a) Chasing with GEDs is finite if for all sets Σ of GEDs and
graphs G, all chasing sequences of G by Σ are finite.

(b) Chasing with GEDs has the Church-Rosser property if
for all Σ and G, all terminal chasing sequences of G by Σ
have the same result, regardless of in what order the GEDs
are applied. That is, terminal sequences are either (a) all
valid with the same (Eq, GEq), or (b) all invalid with ⊥.

While chasing with GEDs may get into conflicts, all ter-
minal valid chasing sequences yield the same result.

Theorem 1: Chasing with GEDs is finite and has the
Church-Rosser property. Moreover, for any set Σ of GEDs
and graph G, if there exists a valid terminal chasing se-
quences of G by Σ, then GEq |= Σ, where (Eq, GEq) is the
result of the terminal sequence. 2

By Theorem 1, we can define the result of chasing G by
Σ as the result of any terminal chasing sequence of G by Σ,
denoted by chase(G,Σ). We say that chase(G,Σ) is consis-
tent if there exists such a valid terminal chasing sequence,
with result (Eq, GEq). It is inconsistent otherwise, i.e., when
all terminal chasing sequences are invalid.

Proof: (a) We show that in any chasing sequence ρ of G
by Σ, the equivalence relation Eqi in any chase step has size



at most |Eqi| ≤ 4 · |G| · |Σ|. Based on the bound, one can
readily verify that the length of ρ is at most 8 · |G| · |Σ|.
(b) We show the Church-Rosser property by contradiction.
Assume that there exist two terminal chasing sequences with
different results. We show that one of the sequences must
not be terminal, by distinguishing the case when both se-
quences are valid and the case when only one is valid.

(c) We show that GEq |= Σ by the definition of terminal
chasing sequences and the Church-Rosser property. 2

5. REASONING ABOUT GEDS
We next study three fundamental problems associated

with GEDs and their sub-classes identified in Section 3. We
characterize their static analyses and establish their com-
plexity in various settings (Sections 5.1 and 5.2). We also
investigate their validation problem (Section 5.3).

5.1 The Satisfiability Problem
We study a strong notion of satisfiability. Consider a set

Σ of GEDs. A model of Σ is a graph G such that (a) G |= Σ,
and (b) for each Q[x̄](X → Y ) in Σ, Q has a match in G.

Intuitively, if Σ has a model, then the GEDs in Σ are
sensible and do not conflict with each other. Hence we can
apply these GEDs without worrying about their conflicts.

The satisfiability problem for GEDs is as follows.

◦ Input: A finite set Σ of GEDs.
◦ Question: Does there exist a model of Σ?

We say that Σ is satisfiable if it has a model.

For relational FDs, the satisfiability problem is trivial:
there always exists a nonempty relation that satisfies a given
set of FDs (cf. [20]). When it comes to GEDs over graphs,
however, the satisfiability analysis is more intriguing.

Example 5: (1) Consider a set Σ1 consisting of

φ1 = Q1[x, y, z](x.A = x.B → y.id = z.id),
φ2 = Q2[x1, y1, z1, x2, y2, z2](∅ → x1.A = x1.B),

where Q1 and Q2 are depicted in Fig. 3. One can verify
that each of φ1 and φ2 has a model when they are taken
separately; however, Σ1 does not have a model. To see this,
consider a homomorphism f from Q2 to Q1, mapping x1

and x2 to x, y1 and y2 to y, and z1 and z2 to z. Hence for
any match h of Q1 in a graph G, the composition of h and f
makes a match of Q2 in G. When taken together, φ1 and φ2

require us to merge two nodes y and z with distinct labels.

(2) GEDs may interact with each other even when their pat-
terns are not homomorphic. To see this, consider Σ2 con-
sisting of φ1 and φ′2 = Q′2[x̄](∅ → x1.A = x1.B), where Q′2
extends Q2 by adding a connected component C2, as shown
in Fig. 3. Obviously, Q1 is not homomorphic to Q′2 and vice
versa. However, Σ2 is not satisfiable. To see this, suppose
by contradiction that Σ2 has a model G, in which Q′2 has
a match h2(x̄). Then for any match h1 of Q1 in G, we can
construct a match h′2 of Q′2 such that (a) over C2, h′2 is the
same as h2, and (b) over Q2, h′2 is the composition of h1 and
f given above. Then the same conflict emerges as in (1). 2

The example also illustrates complications introduced by
the homomorphism semantics for pattern matching. Un-
der the semantics of subgraph isomorphism [23], Q2 and Q′2
cannot find a match in Q1 and introduce no conflicts.

Figure 3: The satisfiability of GEDs

Characterization. We develop a sufficient and necessary
condition to characterize the satisfiability of a set Σ of GEDs.

Consider a set Σ of GEDs ϕi = Qi[x̄i](Xi → Yi) for i ∈
[1, n], where Qi = (Vi, Ei, Li), and we assume w.l.o.g. that
Vi and Vj are disjoint if i 6= j, after naming the nodes in Qi.

The canonical graph GΣ of Σ is defined to be a graph
(VΣ, EΣ, LΣ, F

Σ
A ), where VΣ is the union of Vi’s, and simi-

larly for EΣ and LΣ; but FΣ
A is empty.

Intuitively, GΣ is the union of all graph patterns in Σ, in
which patterns from different GEDs are disjoint.

We chase the pattern graph GΣ with Σ, and characterize
the satisfiability of Σ based on the chase (Section 4).

Theorem 2: A set Σ of GEDs is satisfiable if and only if
chase(GΣ,Σ) is consistent. 2

Example 6: Recall the set Σ1 of GEDs from Example 5.
Its canonical graph is the union GΣ1 of Q1 and Q2 shown in
Fig. 3. One can verify that chase(GΣ1 ,Σ1) is inconsistent,
i.e., there exists a terminal chasing sequence of GΣ1 by Σ1

with result ⊥. This confirms the observation of Example 5
that Σ1 is not satisfiable; similarly for Σ2. 2

Proof: (a) If chase(GΣ,Σ) is consistent, i.e., there exists
a valid terminal chasing sequence ρ of GΣ by Σ, we show
that one can build a model of Σ from GΣ based on ρ, using
Theorem 1. We take special care to handle ‘ ’ in Σ.

(b) If Σ is satisfiable, i.e., Σ has a model G, we show that
each terminal chasing sequence ρ of GΣ by Σ is valid. For
a pattern Q, an equivalence relation Eq on the nodes and
attributes of G and a match h of Q in G, we represent Eq
as a set of equality literals, and write h |= Eq if h |= l for
all literals l in Eq. We construct a match h of GΣ in G by
treating GΣ as a graph pattern, and show that h |= Eqi+1

for each chase step Eqi ⇒(ϕ,h) Eqi+1 of ρ. 2

Complexity. Using Theorem 2, we give the complexity of
the satisfiability analysis of GEDs and its sub-classes.

Theorem 3: The satisfiability problem is

◦ coNP-complete for GEDs, GFDs, GKeys, GEDxs;
◦ it is in O(1) time for GFDxs. 2

Theorem 3 tells us the following. (1) The intractability
of the satisfiability analysis is rather robust: it arises either
from constant literals in GFDs, or from id literals in GKeys
and GEDxs. As will be seen in the proof, the problem is
coNP-hard even when Σ consists of a fixed number of GEDs.
(2) In the absence of constant and id literals, the problem is
trivial: any set of GFDxs can find a model.

For relational EGDs, the satisfiability problem is not an
issue. The satisfiability problem for relational CFDs is NP-
complete [21]. A close examination reveals that it is in-
tractable only under a database schema that requires at-
tributes to have a finite domain, e.g., Boolean [21]. It is in



PTIME in the absence of finite-domain attributes. As re-
marked in Section 3, while GEDs can express CFDs when
relations are represented as graphs, they cannot enforce an
attribute to have a finite domain. That is, the satisfiabil-
ity problem for GEDs is intractable in the absence of finite-
domain attributes. Hence its intractability is not inherited
from CFDs, as indicated by coNP-complete vs. NP-complete.

Proof: We give an NP algorithm to check whether a set
Σ of GEDs is not satisfiable, based on Theorem 2. This is
possible because of the bound on terminal chasing sequences
by GEDs given in the proof of Theorem 1.

In particular, when Σ consists of GFDxs, chase(GΣ,Σ) is
always consistent. Indeed, in the absence of constant and id
literals, no chase step can result in conflicts.

For the lower bounds, we show that the problem is coNP-
hard for (a) GFDs, and (b) GKeys without constant literals;
these suffice since such GKeys are a special case of GEDxs
and GEDs. We prove (a) and (b) by (different) reductions
from the complement of the 3-colorability problem. The 3-
colorability problem is to decide, given an undirected graph
G, whether there exists a proper 3-coloring ν of G such that
for each edge (u, v) in G, ν(u) 6= ν(v). The problem is NP-
complete even when G is connected [25].

The proof for (a) uses two GFDs of the form Q[x̄](∅ → Y ),
where Y consists of variable and constant literals. It is dif-
ferent from the one given in [23], where GFDs are inter-
preted via subgraph isomorphism, while we adopt graph ho-
momorphism here. For (b) we use three GKeys of the form
Q[x̄](∅ → x.id = y.id) without constant literals. 2

5.2 The Implication Problem
A set Σ of GEDs implies another GED ϕ, denoted by Σ |=

ϕ, if for all graphs G, if G |= Σ then G |= ϕ.

The implication problem for GEDs is as follows:

◦ Input: A finite set Σ of GEDs and another GED ϕ.
◦ Question: Does Σ |= ϕ?

The implication analysis helps us optimize data quality rules
and graph pattern queries, among other things.

Characterization. We characterize the implication Σ |= ϕ
as follows. Assume ϕ = Q[x̄](X → Y ), where pattern Q =
(VQ, EQ, LQ). We use the following notations.

(a) The canonical graph of Q is GQ = (VQ, EQ, LQ, FA),
where FA is empty, along the same lines as GΣ.

(b) We use EqX to denote the equivalence relation of X in
GQ, such that for any literal l in X, v ∈ [u]Eq, where l
is u = v, denoting x.A = c, x.A = y.B or x.id = y.id.
Moreover, EqX contains [x]EqX = {x} for each x ∈ VQ.

(c) We use chase(GQ,EqX ,Σ) to denote the result of the
chase of GQ by Σ starting with EqX . Note that it is incon-
sistent if EqX is inconsistent (see Section 4).

(d) We say that a literal l can be deduced from an equivalence
relation Eq if v ∈ [u]Eq, where l is u = v. That is, the
equality specified by l can be deduced from the transitivity
of equality literals, and the semantics of id literals in Eq.

We say that a set Y of literals can be deduced from Eq if
each literal of Y can be deduced from Eq.

Theorem 4: For a set Σ of GEDs and ϕ = Q[x̄](X →
Y ), Σ |= ϕ if and only if either (1) chase(GQ,EqX ,Σ) is

Figure 4: The implication of GEDs

inconsistent; or (2) chase(GQ,EqX ,Σ) is consistent and Y
can be deduced from chase(GQ,EqX ,Σ). 2

Intuitively, if chase(GQ,EqX ,Σ) is inconsistent, then for
all graphs G |= Σ and for all matches h(x̄) of pattern Q in
G, h(x̄) 6|= X. Condition (1) covers this case. Otherwise, if
chase(GQ,EqX ,Σ) is consistent, condition (2) ensures that
Y is a logical consequence of Σ, Q and X.

Example 7: Consider a set Σ1 = {φ1, φ2} and ϕ:

φ1 = Q1[x1, x2](x1.A = x2.A→ x1.id = x2.id),
φ2 = Q2[x1, x2](x1.B = x2.B → x1.A = x1.B),
ϕ = Q[x1, x2, x3, x4](X → Y ),

where Q, Q1 and Q2 are shown in Fig. 4, X is x1.A =
x3.A ∧ x2.B = x4.B, and Y is x1.id = x3.id ∧ x2.id = x4.id.
Canonical graph GQ has the same form as Q of Fig. 4. Then
chase(GQ,EqX ,Σ) yields all literals in Y , and Σ |= ϕ.

Note that x3 and x4 have distinct labels, and each is iden-
tified with a node labeled ‘ ’: x3 ∈ [x1]Eq and x4 ∈ [x2]Eq,
where Eq is the result of the chase. This explains why we
use � when comparing labels (see Section 4). 2

Theorem 4 tells us that to decide whether Σ |= ϕ, it suf-
fices to chase the canonical graph GQ of pattern Q.

Proof: We verify conditions (1) and (2) of Theorem 4
by using Lemmas (a) and (b) below. Consider a terminal
chasing sequence EqX ,Eq1, . . . ,Eqk ofGQ by Σ starting with
EqX , valid or not. We show the following lemmas.

(a) For any graph G and pattern Q[x̄], if G |= Σ, h(x̄) is a
match of Q in G and h(x̄) |= X, then h(x̄) |= Eqk.

(b) For consistent chase(GQ,EqX ,Σ), Y can be deduced
from chase(GQ,EqX ,Σ) if and only if for any graph G and
match h(x̄) of Q in G, h(x̄) |= Eqk implies h(x̄) |= Y . 2

Complexity. Based on the characterization, we settle the
complexity of the implication analysis of GEDs.

Theorem 5: The implication problem is NP-complete for
GEDs, GFDs, GKeys, GFDxs and GEDxs. 2

As opposed to Theorem 3, the implication analysis for
GFDxs is NP-hard, in the absence of constant and id literals,
although chase(GQ,EqX ,Σ) is always consistent in this case.
This is because to check whether Y can be deduced from
chase(GQ,EqX ,Σ), we need to examine all possible homo-
morphic mappings of patterns of Σ in GQ. The intractability
remains intact even when Σ consists of a single GED.

The lower bound for GEDs does not follow from its coun-
terpart for CFDs, which is coNP-complete [21], for the same
reason as for the satisfiability analysis. While the implica-
tion problem for EGDs is NP-complete [8], the proofs are
quite different, especially for the upper bound for GEDs and
lower bound for GKeys, in the presence of id literals.

Proof: We give an NP algorithm to check Σ |= ϕ based on
the characterization of Theorem 4 and the bound given in
the proof of Theorem 1. For the lower bounds, we show that
the problem is NP-hard for GFDxs and GKeys, since GEDs,
GFDs and GEDxs subsume GFDxs. We prove these by (differ-



ent) reductions from the 3-colorability problem, capitalizing
on Theorem 4. In the reductions, we use Σ consisting of
a single GFDx φ (resp. GKey ψ), where φ and ϕ have the
form Q[x̄](∅ → Y ) and Y consists of variable literals only
(resp. Q[x̄](∅ → x.id = y.id) for GKeys ψ and ϕ). 2

5.3 The Validation Problem
The validation problem for GEDs is stated as follows.

◦ Input: A finite set Σ of GEDs and a graph G.
◦ Question: Does G |= Σ?

As remarked earlier, the validation analysis is the basis of
inconsistency and spam detection, to find violations of GEDs
in a knowledge base or a social graph.

Recall that validations of relational FDs and CFDs are in
PTIME. It is harder for GEDs unless P = NP.

Theorem 6: The validation problem is coNP-complete for
GEDs, GFDs, GKeys, GFDxs and GEDxs. 2

As for the implication problem, the validation analysis is
intractable even for GFDxs, which is an extension of rela-
tional FDs that carries neither constant literals nor id liter-
als. The intractability remains intact when Σ consists of a
single GFDx or a single GKey. The proof is quite different
from the validation analysis of relational EGDs [8].

Proof: We provide an NP algorithm to check whether
G 6|= Σ, for GEDs. We show the lower bounds for GKeys
and GFDxs by (different) reductions from the complement
of the 3-colorability problem. These suffice since GFDxs are
a special case of GFDs, GEDxs and GEDs.

In the reductions, we use Σ consisting of only a single
GFDx Q[x̄](X → Y ) (resp. GKeys), where X = ∅ and Y
consists of a single variable literal (resp. id literal). 2

Tractable cases. The main conclusion of this section is
that the intractability of the analyses of GEDs is quite ro-
bust. In fact, even for GEDs defined in terms of tree pat-
terns, the satisfiability, implication and validation problems
remain intractable. This is because the analyses require to
enumerate and examine all matches of a patternQ in a graph
G in the worst case, not just to check whether there exists a
match of Q in G. We defer the proof to a latter publication.

Nonetheless, there are tractable cases that allow us to
make effective use of GEDs. For example, one may consider
a set Σ of GEDs in which graph patterns have a size at most
k, for a predefined bound k. This is practical. Indeed, real-
life graph patterns often have a small size: 98% of SPARQL
queries have no more than 4 nodes and 5 edges, and single-
triple patterns account for 97.25% of patterns in SWDF and
66.41% of DBPedia [24]. One can readily verify that the
satisfiability, implication and validation problems for GEDs
are in PTIME when patterns have a bounded size k.

6. FINITE AXIOMATIZABILITY
We next study the finite axiomatizability of GEDs.
We naturally want a finite set A of inference rules to

characterize GED implication, along the same lines as Arm-
strong’s axioms for relational FDs [5]. As observed in [1], the
finite axiomatizability of a dependency class is a stronger
property than the existence of an algorithm for testing its
implication. An axiom system reveals insight of logical im-
plication, and can be used to generate symbolic proofs.

GED1 Σ ` Q[x̄](X → X ∧ Xid), where Xid is
∧
i∈[1,n](xi.id =

xi.id), and x̄ consists of xi for all i ∈ [1, n].
GED2 If Σ ` Q[x̄](X → Y ) and literal (u.id = v.id) ∈ Y , then

Σ ` Q[x̄](X → u.A = v.A) for all attributes u.A that
appear in Y .

GED3 If Σ ` Q[x̄](X → Y ) and (u = v) ∈ Y , then Σ `
Q[x̄](X → v = u).

GED4 If Σ ` Q[x̄](X → Y ), (u1 = v) ∈ Y and (v = u2) ∈ Y ,
then Σ ` Q[x̄](X → u1 = u2).

GED5 If Σ ` Q[x̄](X → Y ) and EqX ∪ EqY is inconsistent,
then Σ ` Q[x̄](X → Y1) for any set Y1 of literals of x̄.

GED6 If Σ ` Q[x̄](X → Y ), EqX ∪ EqY is consistent, Σ `
Q1[x̄1](X1 → Y1), and if there exists a match h of
Q1 in (GQ)EqX∪EqY such that h(x̄1) |= X1, then Σ `
Q[x̄](X → Y ∧ h(Y1)).

Table 2: Axiom system AGED for GEDs

For a set Σ of GEDs and a GED ϕ, a proof of ϕ from Σ
using inference rules of A is a sequence of GEDs

ϕ1, . . . , ϕn = ϕ,

such that each ϕi either is a GED in Σ, or can be deduced
from ϕj ’s by applying an inference rule (or axiom) in A, for
j < i (see [1] for details about proofs).

We say that ϕ is provable from Σ using A, denoted by
Σ `A ϕ, if there exists a proof of ϕ from Σ using A. We
write it as Σ ` ϕ when A is clear from the context.

We say that for GEDs, an inference system A is

◦ sound if Σ `A ϕ implies Σ |= ϕ;
◦ complete if Σ |= ϕ implies Σ `A ϕ;

for all GED sets Σ and GEDs ϕ; and

◦ independent if for any rule r ∈ A, there exist GEDs Σ
and ϕ such that Σ `A ϕ but Σ 6`A\r ϕ.

Here A\r denotes A excluding r. That is, removing any rule
from A would make it no longer complete. We remark that
we focus on finite implication, considering finite graphs.

We refer to A as a finite axiom system or a finite axioma-
tization of GEDs if A is sound, complete and independent for
GEDs. We say that GEDs are finitely axiomatizable if there
exists a finite axiomatization of GEDs [1].

Inference rules. We give a set AGED of rules for GEDs in
Table 2, in which we denote by (a) Q[x̄] a pattern; (b) X a
set of literals of x̄; (c) h(X) the set of literals obtained by
substituting h(x) for all x ∈ X, for a match h ofQ in a graph;
(d) GQ the canonical graph of pattern Q (Section 5.2); (e)
EqX the equivalence relation of a set X of literals in GQ;
and (f) (GQ)Eq the coercion of Eq on GQ (Section 4). The
consistency of an equivalence relation Eq is defined in Sec-
tion 4. To simplify the presentation, we allow c = x.A as a
literal in intermediate results of a proof, for constant c.

Recall that Armstrong’s axioms consist of three rules for
relational FDs: reflexivity, augmentation and transitivity [5].
Four rules are needed for CFDs [21] and EGDs [38]. In con-
trast, AGED has six rules for GEDs over graphs.

Example 8: (a) We first prove the following property: if
Σ ` ϕ, ϕ = Q[x̄](X → Y ) and Y1 ⊆ Y , then Σ ` Q[x̄](X →
Y1), where Y1 is a set {ui = vi | i ∈ [1, n]} of literals that
are also in Y . When X ∪ Y is consistent, we have
(1) Q[x̄](X → Y ) ϕ
(2) Q[x̄](X → (v1 = u1)) (1) and GED3

(3) Q[x̄](X → (u1 = v1)) (2) and GED3

. . .
(2n+1) Q[x̄](X → (un = vn)) (2n) and GED3



(2n+2) Q[x̄](X → (u1 = v1)(u2 = v2)) (3), (5) and GED6

. . .
(3n) Q[x̄](X → Y1) (3n-1), (2n+1) and GED6

It can also be proven for inconsistent X∪Y . To simplify the
presentation, we denote this property as GED7 and apply it
in proofs, although GED7 is not in AGED.

(b) Recall the augmentation rule of Armstrong’s axioms: if
X → Y then XZ → Y Z. Analogously, consider Σ ` ϕ1,
where ϕ1 = Q[x̄](X → Y ), and GED ϕ = Q[x̄](XZ → Y Z).
We show that Σ ` ϕ using AGED as follows. First consider
the case when EqX ∪ EqZ is consistent:

(1) Q[x̄](XZ → XZ ∧Xid) GED1

(2) Q[x̄](XZ → XZ) (1) and GED7

(3) Q[x̄](X → Y ) ϕ1

(4) Q[x̄](XZ → XY Z) (2), (3) and GED6

(5) Q[x̄](XZ → Y Z) (3) and GED7

When EqX ∪ EqZ is inconsistent, the proof consists of steps
(1) and (2) above, followed by:

(3) Q[x̄](XZ → Y Z) (2) and GED5

(c) Let Σ ` ϕ1 and Σ ` ϕ2, where ϕ1 = Q[x̄](X → Y ) and
ϕ2 = Q[x̄](Y → Z). We show that Σ ` Q[x̄](X → Z) using
AGED. When EqX ∪ EqY is consistent, we have:

(1) Q[x̄](X → X ∧Xid) GED1

(2) Q[x̄](X → X) (1) and GED7

(3) Q[x̄](X → Y ) ϕ1

(4) Q[x̄](X → XY ) (2), (3) and GED6

(5) Q[x̄](Y → Z) ϕ2

(6) Q[x̄](X → XY Z) (4), (5) and GED6

(7) Q[x̄](X → Z) (6) and GED7

If EqX is inconsistent, the proof has steps (1), (2) and

(3) Q[x̄](X → Z) (2) and GED5

If EqX ∪ EqY is inconsistent, it has steps (1)–(3) and

(4) Q[x̄](X → XY ) (2), (3) and GED6

(5) Q[x̄](X → Z) (4) and GED5

These prove the transitivity of Armstrong’s axioms. 2

Axiomatization. GEDs are finitely axiomatizable.

Theorem 7: The set AGED of rules given in Table 2 is
sound, complete and independent for GEDs. 2

Proof: We outline a proof, highlighting intuition.

(1) Soundness. The soundness is verified by induction on
the length of proofs by using AGED, based on the chase and
Theorem 4. Below we illustrate each rule in AGED.

(a) GED1 extends the reflexivity of Armstrong’s axioms to
cover id literals. Similarly, GED3 and GED4 ensure that
equality literals are symmetric and transitive.

(b) GED2 enforces the semantics of id literals: if x and y refer
to the same node, then they have the same sets of attributes
with the same values x.A = y.A.

(c) If EqX ∪ EqY is inconsistent, then chase(GQ,EqX ,Σ) is
inconsistent, since EqX and EqY are included in its result.
GED5 says that if this happens, then any set Y1 of literals
of x̄ is a “logical consequence” of the inconsistent X,Σ and
Q, following condition (1) of Theorem 4.

(d) When EqX ∪ EqY is consistent, Q1 can be embedded
in (GQ)EqX∪EqY via a match h, and if h(x̄1) |= X1, then
one can verify that if chase(GQ,EqX ,Σ) is consistent, then
h(Y1) can be deduced from chase(GQ,EqX ,Σ). Hence GED6

follows from condition (2) of Theorem 4.

Observe that GED2 and GED6 are unique for graph depen-
dencies, which are needed to handle id-based entity identifi-
cation and embedding of graph patterns, respectively.

(2) Completeness. Assume that Σ |= Q[x̄](X → Y ). To

prove that Σ ` Q[x̄](X → Y ), for a terminal chasing se-
quence ρ of GQ by Σ, where ρ is Eq1 = EqX ,Eq2, . . . ,Eqk,
we treat Eqi as a set of equality literals. Then we show the
following claims by induction on the length of ρ.

Claim 1: For each 1 ≤ i ≤ k, Σ ` Q[x̄](X → Eqi).

Claim 2: If there exist GED ϕ ∈ Σ and match h of the
pattern of ϕ such that Eqk ⇒(ϕ,h) Eqk+1 and Eqk+1 is in-
consistent in GEqk , then Σ ` Q[x̄](X → Eqk+1).

We can verify that Σ ` Q[x̄](X → Y ) using the claims
as follows. By Theorem 4, if Σ |= Q[x̄](X → Y ), then
we need to consider two cases: (a) chase(GQ,EqX ,Σ) is
inconsistent; and otherwise, (b) Y can be deduced from
chase(GQ,EqX ,Σ). In case (a), Claim 2 and GED5 put to-
gether can derive Σ ` Q[x̄](X → Y ). In case (b), we can
show that Σ ` Q[x̄](X → Y ) following Claim 1.

(3) Independence. For each rule GEDk in AGED, we show
that there exist a set Σ of GEDs and another GED ϕ, such
that the proof of Σ ` ϕ necessarily uses GEDk.

Take GED5 as an example. Consider Σ = ∅ and ϕ =
Q5[x]((x.A = 1)∧ (x.A = 2)→ x.A = 3), where Q5 consists
of a single node x. We show by contradiction that with-
out using GED5, we cannot prove Σ ` ϕ. Indeed, no other
rule allows us to deduce Q[x̄](X → Y ) when Y contains a
constant that appears in neither X nor Σ. 2

7. EXTENSIONS OF GEDS
We next extend GEDs by supporting built-in predicates

(Section 7.1) or disjunctions (Section 7.2). We show that
the extensions complicate the static analyses.

7.1 Denial Constraints for Graphs
We first extend GEDs with built-in predicates, referred to

as graph denial constraints, denoted by GDCs.

GDCs. A GDC φ is defined as Q[x̄](X → Y ), where Q is
a pattern, and X and Y are sets of literals of one of the
following forms: (a) x.A ⊕ c, (b) x.A ⊕ y.B, for constant
c ∈ U , and non-id attributes A,B ∈ Υ, and (c) x.id = y.id;
here ⊕ is one of built-in predicates =, 6=, <,>,≤,≥.

Along the same lines as GEDs, we define G |= φ for a
graph G; similarly for other notions. Obviously GEDs are a
special case of GDCs when ⊕ is equality ‘=’ only. One can
verify that GDCs can express denial constraints of [3] when
relation tuples are represented as vertices in a graph.

Example 9: We can express “domain constraints” as GDCs,
to enforce each node of “type” τ to have an attribute with a
finite domain, e.g., Boolean, as follows:

φ1: Qe[x](∅ → x.A = x.A),
φ2: Qe[x](x.A 6= 0 ∧ x.A 6= 1→ false).

Here Qe consists of a single node labeled τ , φ1 is a GED
that enforces each τ -node x to have an A-attribute, and φ2

ensures that x.A can only takes values 0 or 1. 2

Complexity. The increased expressive power of GDCs
comes with a price. Recall that the satisfiability, implica-
tion and validation problems for GEDs are coNP-complete,



NP-complete and coNP-complete, respectively. In contrast,
the static analyses of GDCs have a higher complexity unless
P = NP, although their validation problem gets no harder.

Theorem 8: The satisfiability, implication and validation
problems for GDCs are Σp2-complete, Πp

2-complete and coNP-
complete, respectively. 2

The lower bounds of these problems remain intact when
Σ consists of a fixed number of GDCs with variable and con-
stant literals only. The proof of Theorem 8 is more involved
than their counterpart for GEDs (Theorems 3, 5 and 6).

Proof: (1) To prove the upper bound of the satisfiability
problem, we establish a small model property, as opposed
to the proof of Theorem 3 that is based on the chase. We
show that if a set Σ of GDCs has a model, then it has a
model of size at most 4 · |Σ|3. The proof requires attribute
value normalization. Based on the property, we give an Σp2
algorithm to check whether a set of GDCs is satisfiable.

We show the lower bound by reduction from a gener-
alized graph coloring problem (GGCP) [37, 40]. GGCP is
to decide, given two undirected graphs F = (VF , EF ) and
G = (VG, EG), whether there exists a two-coloring of F such
that G is not a monochromatic subgraph of F . A monochro-
matic subgraph of F is a subgraph in which nodes are as-
signed the same color. The problem is Σp2-complete when G
is a complete graph and F contains no self cycles [37].

The reduction is a little complicated. We use a set Σ
of four GDCs to encode 2-coloring, monochromatic G and
graph F . These GDCs use constant and variable literals
with 6= and ≤, but employ no id literals. One of them is a
forbidding constraint of the form Q[x̄](X → false).

(2) For implication, we also show a small model property:
if Σ 6|= ϕ, then there exists a graph Gh such that |Gh| ≤
2 · |ϕ| · (|ϕ| + |Σ| + 1)2, Gh |= Σ and Gh 6|= ϕ. Based on
the property, we give an Σp2 algorithm to check Σ 6|= ϕ. The
lower bound is verified by reduction from the complement
of GGCP, using Σ of three GDCs of the form above.

(3) For validation, the lower bound follows from Theorem 6
since GEDs are a special case of GDCs. For the upper bound,
we use the algorithm for checkingG 6|= Σ developed for GEDs
in the proof of Theorem 6. We show that the algorithm also
works for GDCs and better still, remains in NP. 2

7.2 Adding Disjunction
We next extend GEDs by adding limited disjunctions.

GED∨s. A GED ψ with disjunction, denoted by GED∨, has
the same syntactic form Q[x̄](X → Y ) as GEDs, but Y is
interpreted as the disjunction of its literals. That is, for a
match h(x̄) of Q in a graph G, h(x̄) |= Y if there exists a
literal l ∈ Y such that h(x̄) |= l. Hence we also write ψ as

Q[x̄]
(∧

l∈X l→
∨
l′∈Y l

′).
The other notions such as satisfiability and implication

remain the same as their GED counterparts.
GED∨s subsume GEDs. Each GED Q[x̄](X → Y ) can be

expressed as a set of Q[x̄](X → l) of GED∨s, one for each
l ∈ Y . In contrast, some GED∨s are not expressible as GEDs.

Example 10: Recall GDCs from Example 9 that enforce
x.A to be Boolean. It is expressible as a GED∨:

ψ: Qe[x](∅ → x.A = 0 ∨ x.A = 1).
It specifies a domain constraint: each τ -node x has an A-
attribute and that x.A can only take Boolean values. 2

Complexity. Disjunctions also complicate the static anal-
yses but do not make the validation analysis harder. The
lower bounds remain intact when Σ consists of a fixed num-
ber of GED∨s with constant and variable literals only.

Theorem 9: The satisfiability, implication and valida-
tion problems for GED∨s are Σp2-complete, Πp

2-complete and
coNP-complete, respectively. 2

Proof: The proof is similar to the one for Theorem 8. For
satisfiability (resp. implication), the upper bound is also ver-
ified by means of a small model property, and the lower
bound by reduction from (resp. the complement of) GGCP,
by using a set Σ consisting of three GED∨s. 2

8. RELATED WORK
We categorize related work as follows.

Relational dependencies. FDs were introduced in [15] and
have been well studied for relations. Armstrong’s axioms
were proposed for FDs in [5], and the chase in [39]. EGDs
and TGDs were introduced in [7]. There were also renewed
interests in extending FDs to improve data quality, e.g., de-
nial constraints [3] and CFDs [21] (see [1,18,20] for surveys).

For relational FDs, the satisfiability, implication and val-
idation problems are in O(1), linear time and PTIME, re-
spectively (cf. [1]). Similar to the strong notion of satisfia-
bility studied in this work, a consistency problem was shown
NP-complete and undecidable for EGDs and TGDs [26], re-
spectively; their implication problems are also NP-complete
and undecidable, respectively [8]; and the validation prob-
lem was shown coNP-complete for EGDs [8] and Πp

2-complete
for TGDs [36]. The satisfiability, implication and validation
problems are NP-complete, coNP-complete and in PTIME
for CFDs [21], respectively. The satisfiability and implica-
tion problems are NP-complete and coNP-complete for de-
nial constraints [6], respectively. An axiom system of four
rules was developed for EGDs in [38], while TGDs are not
finitely axiomatizable for finite implication. A set of four
rules was shown sound and complete for CFDs [21].

GEDs carry graph patterns and id literals. Their satisfi-
ability, implication and validation problems are intractable.
However, their static analyses bear complexity comparable
to their counterparts for denial constraints, CFDs and EGDs.
Moreover, GEDs have the finite axiomatizability and the
Church-Rosser property of the chase, as for relational FDs.

One might want to encode GEDs as relational dependen-
cies and employ relational techniques to reason about GEDs.
However, (a) id literals and graph patterns with wildcard
complicate the encoding; and (b) it is not clear what we can
get from an encoding. To express GEDs we need both EGDs
and limited TGDs. Reasoning about generic TGDs is beyond
reach [8, 26]. While some special cases have been studied,
e.g., oblivious terminating TGDs and EGDs [33, 34], their
syntactic characterization is not yet in place, and their fun-
damental problems such as satisfiability and validation are
still open. It is not clear whether GEDs can be expressed
in the special forms, and even so, what results can GEDs
inherit from them. In light of this, we opt to give a clean
native definition of GEDs and develop their proofs directly.
(c) The chase and axiom system for GEDs are quite differ-
ent from their counterparts in the relational setting. For
instance, chasing with GEDs may expand a graph with new
attributes and run into conflicts, in contrast to with EGDs.



FDs for graphs. Graph constraints are being investigated by
W3C [31] and industry (e.g., [35]). The constraints currently
supported are quite simple, e.g., uniqueness constraints, car-
dinality constraints and property paths; a “standard” form
of FDs is not yet in place. However, there have been several
research proposals for FDs on RDF graphs. This line of work
started from [32]. It defines keys, foreign keys and FDs by
extending relational methods to RDF, and interpreting the
“scope” of an FD with a class type that represents a relation
name. Using clustered values, [42] defines FDs with con-
junctive path patterns, which were extended to CFDs [28].
FDs are also defined by mapping relations to RDF [13], with
tree patterns in which nodes represent relation attributes.
As opposed to class names [32], tree patterns [13] and path
patterns [28, 42], GEDs are specified with (possibly cyclic)
graph patterns with variables and node identities.

Closer to this work are [2, 16, 29, 30] for RDF. A class
of EGDs was formulated in [2] in terms of RDF triple pat-
terns with variables, which are interpreted with homomor-
phism and triple embedding. Along the same lines, a class
of FDs, tuple-generating dependencies (TGDs) and forbid-
ding dependencies were defined for RDF in [16]. The FDs
were extended in [30] to support constants like CFDs [21].
Chasing algorithms were developed in [2, 29, 30] for the im-
plication analysis of EGDs and FDs. The decidability of the
implication and validation problems was established in [16]
for the EGDs (and hence FDs), among other things. Fi-
nite axiom systems were provided for the EGDs, TGDs, and
for EGDs and TGDs put together, consisting of 9, 5 and 16
rules, respectively [2, 16]. Several axiom systems were also
provided for various classes of FDs over relations of an arbi-
trary arity [29,30], with 13 rules for the general case.

This work differs from [2,16,29,30] in the following.

(1) GEDs are defined for general property graphs, not lim-
ited to RDF. (a) GEDs distinguish node identity from value
equality. Their id literals enforce that nodes identified have
the same attributes and edges. (b) GEDs can uniformly ex-
press GFDs, keys of [19] and forbidding dependencies (Sec-
tion 3). (c) GEDs support constant literals, beyond [2,16,29].

(2) Our revised chase differs from the prior work in the fol-
lowing. (a) We study the chase of a graph (pattern) by
GEDs, not limited to the implication analysis. For instance,
the chase also helps us characterize the satisfiability analy-
sis. (b) Chasing with GEDs has to deal with id literals, a ma-
jor cause of invalid steps. It may also add new attributes as
enforced by GEDs. (c) We establish the Church-Rosser prop-
erty of the chase, which was not considered in [2,16,29,30].

(3) We provide characterizations of the static analyses of
GEDs, and the complexity of the satisfiability, implication
and validation problems for GEDs in various settings. The
satisfiability problem was not studied for EGDs or FDs of [2,
16, 29, 30]. Moreover, the complexity bounds remain to be
developed for their implication and validation problems.

(4) The axiom system AGED differs from [2,16,29,30] in the
following. (a) Besides value-based reasoning, AGED deals
with id-based deduction to enforce the semantics of node
identities. (b) It adopts graph pattern matching in prop-
erty graphs, beyond RDF and relations. (c) AGED allows
attribute generation (Section 4), which is not supported by
the axiom systems for EGDs and FDs [2, 16, 29, 30]. While

this can be derived from TGDs and EGDs of [16] put to-
gether, the finite axiomatizability for finite implication of
TGDs requires further investigation [8].

As remarked in Section 5, a class of keys was studied for
RDF [19]. Over property graphs, a form of GFDs [23] was de-
fined with a graph patternQ that is interpreted via subgraph
isomorphic mapping. These GFDs can express CFDs [21]
when tuples are represented as vertices in a graph, but can-
not express keys of [19]. The satisfiability, implication and
validation problems are shown coNP-complete, NP-complete
and coNP-complete, respectively, for GFDs of [23].

This work differs from our prior work [19,23] as follows.

(1) GEDs extend GFDs [23] by supporting id literals, and can
express the GFDs of [23]. Moreover, to simplify the defini-
tion of the keys of [19] and to reason about GFDs and GKeys
in a uniform framework, GEDs adopt the graph homomor-
phism semantics for graph pattern matching, as opposed to
subgraph isomorphism [19,23] (see Section 3).

(2) We revise the chase for GEDs, which was not studied
in [23]. A form of chase was studied for keys [19], which is
a simple case of the general process studied here.

(3) We establish the complexity of the satisfiability, impli-
cation and validation problems for GEDs in various settings.
These were not studied in [19], and were considered for
GFDs of [23] only. As remarked earlier, we employ charac-
terizations and proof techniques different from [23] to cope
with different semantics of graph pattern matching, e.g., the
chase to prove upper bounds. We also give lower bounds for
GKeys, GFDxs and GEDxs, which were not studied before.

(4) We provide finite axiomatization for GEDs, which was
not considered for GFDs and GKeys [19, 23].

(5) To the best of our knowledge, no previous work has stud-
ied graph dependencies defined in terms of built-in predi-
cates or disjunction, including [19,23].

The chase has also been studied for data exchange with
relational (disjunctive) EGDs [11] or FDs [9], for ontology
querying [12], and for optimizing SPARQL queries [41] with
the constraints of [32]. In contrast, we study the chase of a
graph by GEDs, and deal with id literals.

FDs for XML. Keys [10, 22] and FDs [4] have also been
studied for XML, which are quite different from GEDs in
formulation and semantics. As a consequence, the results
on XML do not apply to GEDs and vice versa.

9. CONCLUSION
We have proposed GEDs, which can uniformly express

GFDs and keys for graphs. For GEDs, we have revised the
chase with the Church-Rosser property, provided character-
izations for their static analyses, settled the complexity of
their satisfiability, implication and validation problems in
various settings (Table 1), and shown the finite axiomati-
zability of their finite implication. We have also studied
extensions of GEDs with built-in predicates or disjunction.

One topic for future work is to identify practical spe-
cial cases in which the static analyses and validation are
tractable. Another topic is to develop parallel scalable algo-
rithms for reasoning about GEDs, to warrant speedup with
the increase of processors. It is also interesting to study
other practical forms of graph dependencies, e.g.,TGDs.
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