
ar
X

iv
:1

70
3.

03
20

1v
2

 [
cs

.D
B

]
 2

7
A

ug
 2

01
9

Conjunctive Queries on Probabilistic Graphs:
Combined Complexity

Antoine Amarilli

LTCI, Télécom ParisTech, Université Paris-Saclay

antoine.amarilli@telecom-paristech.fr

Mikaël Monet

LTCI, Télécom ParisTech, Université Paris-Saclay

mikael.monet@telecom-paristech.fr

Pierre Senellart

DI, École normale supérieure, PSL Research University

& Inria Paris

pierre.senellart@telecom-paristech.fr

Query evaluation over probabilistic databases is known to be intractable in
many cases, even in data complexity, i.e., when the query is fixed. Although
some restrictions of the queries [19] and instances [4] have been proposed
to lower the complexity, these known tractable cases usually do not apply
to combined complexity, i.e., when the query is not fixed. This leaves open
the question of which query and instance languages ensure the tractability
of probabilistic query evaluation in combined complexity.

This paper proposes the first general study of the combined complexity
of conjunctive query evaluation on probabilistic instances over binary sig-
natures, which we can alternatively phrase as a probabilistic version of the
graph homomorphism problem, or of a constraint satisfaction problem (CSP)
variant. We study the complexity of this problem depending on whether in-
stances and queries can use features such as edge labels, disconnectedness,
branching, and edges in both directions. We show that the complexity land-
scape is surprisingly rich, using a variety of technical tools: automata-based
compilation to d-DNNF lineages as in [4], β-acyclic lineages using [10], the X-
property for tractable CSP from [24], graded DAGs [27] and various coding
techniques for hardness proofs.

1

http://arxiv.org/abs/1703.03201v2

1. Introduction

Uncertainty naturally arises in many data management applications, when integrating
data that may be untrustworthy, erroneous, or outdated; or when generating or annotat-
ing data using information extraction or machine learning approaches. The framework
of probabilistic databases [31] has been introduced to answer such needs: it provides a
natural semantics for concise representations of probability distributions on data, and
allows the user to evaluate queries directly on the representations. The simplest proba-
bilistic framework is that of tuple-independent databases (TID), where each tuple in the
relational database is annotated with a probability of actually being present, assuming
independence across all tuples. Evaluating a Boolean query Q over a TID instance I
means computing the probability that Q is true according to the distribution of I, or in
other words, the total probability mass of the possible worlds of I that satisfy Q.

As is usual in database theory, the complexity of this probabilistic query evaluation
problem (PQE) can be measured as a function of both I and Q, namely, combined
complexity [33], or as a function of I when the query Q is fixed, called data complexity.
Almost all works on PQE so far have focused on data complexity, where they have
explored the general intractability of PQE in this sense. Indeed, while non-probabilistic
query evaluation of fixed queries in first-order logic has polynomial-time data complexity
(specifically, AC0), the PQE problem is #P-hard1 already for some fixed conjunctive
queries [18]. Specifically, the celebrated PQE result by Dalvi and Suciu [19], has shown
a dichotomy on unions of conjunctive queries: some are safe queries, enjoying PTIME
data complexity (specifically, linear [14]), and all other queries are #P-hard. Earlier work
by some of the present authors has shown also a dichotomy on instance families for fixed
monadic second-order queries, with tractable data complexity for bounded-treewidth
families [4], and intractability otherwise under some assumptions [6].

However, even when PQE is tractable in data complexity, the task may still be infea-
sible because of unrealistically large constants that depend on the query. For instance,
our approach in [4] is nonelementary in the query, and the algorithm for safe queries
in [19] is generally super-exponential in the query [31]. For this reason, we believe that it
is also important to achieve a good understanding of the combined complexity of PQE,
and to isolate cases where PQE is tractable in combined complexity; similarly to how,
e.g., Yannakakis’ algorithm can evaluate α-acyclic queries on non-probabilistic instances
with tractable combined complexity [37]. This motivates the question studied in this
paper: for which classes of queries and instances does PQE enjoy tractable combined
complexity?

Related work. Surprisingly, the question of achieving combined tractability for PQE
does not seem to have been studied before. To our knowledge, the only exception is in the
setting of probabilistic XML [26], where deterministic tree automata queries were shown
to enjoy tractable combined complexity [15]. In the context of relational databases, our

1#P is the class of counting problems that can be expressed as the number of accepting paths of a

nondeterministic polynomial-time Turing machine.

2

recent work [3] shows the combined tractability of provenance computation for a specific
Datalog fragment on bounded-treewidth instances, but observes that these results do not
seem to give tractability of PQE, which is already intractable in much more restricted
settings. These results, however (Propositions 36 and 38 of [2]), do not give a complete
picture of the combined complexity of PQE; in particular, they do not even give any
non-trivial setting where it is tractable.

Questions of combined tractability have also been studied in the setting of constraint
satisfaction problems (CSP), following a well-known connection between CSP and the
conjunctive query evaluation problem in database theory, or the study of the graph
homomorphism problem (see, e.g., [23]). We can then see the restriction of PQE to
conjunctive queries as a probabilistic, or weighted, variant of these problems, but we are
not aware of any existing study of this variant. In the graph homomorphism setting, a
related but different problem is that of counting graph homomorphisms [11]: but this
amounts to counting the number of matches of a query in a database instance, which
is different from counting the possible worlds of an instance where the query has some
match, as we do. A more related problem is #SUB [17], which asks, given a query graph G
and an instance graph H, for the number of subgraphs of H which are isomorphic to G.
When all facts are labeled with 1/2, our problem asks instead for the number of subgraphs
of H to which G admits a homomorphism. A further difference is that we allow arbitrary
probability annotations, amounting to a form of weighted counting; in particular, facts
can be given probability 1.

Problem statement. Inspired by the connection to graph homomorphism and CSP,
in this paper we investigate the probabilistic query evaluation problem for conjunctive
queries on tuple-independent instances, over arity-two signatures. To our knowledge, our
paper is the first to focus on the combined complexity of conjunctive query evaluation
on probabilistic relational data. For simplicity of exposition, we will phrase our problem
in terms of graphs: given a query graph and a probabilistic instance graph, where each
edge is annotated by a probability, we must determine the probability that the query
graph has a homomorphism to the instance graph, i.e., the total probability mass of the
subgraphs which ensure this, assuming independence between edges. We always assume
the query and instance graphs to be directed.

As we will see, the problem is generally intractable, so we will have to study restricted
settings. We accordingly study this problem under assumptions on the query and input
graphs. Inspired by our prior intractability results [6], one general assumption that we
will make is to impose tree-likeness of the instance. In fact, we will generally restrict it
to be a polytree, i.e., a directed graph whose underlying undirected graph is a tree. As
we will see, however, even this restriction does not suffice to ensure tractability, so we
study the impact of several other features:

• Labels, i.e., whether edges of the query and instance can be labeled by a finite
alphabet, as would be the case on a relational signature with more than one binary
predicate.

3

• Disconnectedness, i.e., allowing disconnected queries and instances.

• Branching, i.e., allowing graphs to branch out, instead of requiring them to be a
path.

• Two-wayness, i.e., allowing edges with arbitrary orientation, instead of requiring
all edges to have the same orientation (as in a one-way path, or downward tree).

We accordingly study our problem for labeled graphs and unlabeled graphs, and when
query and instance graphs are in the following classes, that cover the possible combi-
nations of the above characteristics: one-way and two-way paths, downward trees and
polytrees, and disjoint unions thereof.

Results. This paper presents our combined complexity results for the probabilistic
query evaluation problem in all these settings. After introducing the preliminaries and
defining the problem in Section 2, we first study the impact of disconnectedness in
instances and queries in Section 3. While we can easily show that disconnectedness does
not matter for instances (Lemma 3.7), we show that disconnectedness of queries has an
unexpected impact on complexity: in the labeled case, even the simplest disconnected
queries on the simplest kinds of instances are intractable (Proposition 3.3): this result
is shown via the hardness of counting edge covers in bipartite graphs. The picture for
disconnected queries is more complex in the unlabeled case (see Table 1): indeed, the
problem is still hard when allowing two-wayness in the query and instance (as it can be
used to simulate labels, see Proposition 3.4), but disallowing two-wayness in the instance
ensures tractability of all queries. This latter result (Proposition 3.6) is established by
showing that all queries then essentially collapse to a one-way path: we do so by assigning
a level to all vertices of the query using a notion of graded DAGs [27, 29].

We then focus on connected queries, and first study the labeled setting in Section 4;
see Table 2 for a summary of results. We show that disallowing instance branching
ensures the tractability of all connected queries (Proposition 4.11), and that disallowing
branching in the query and two-wayness in the instance and query also does (Proposi-
tion 4.10). These two results are shown by computing a Boolean lineage of the query [31],
and proving that we can tractably evaluate its probability because it is β-acyclic [10],
thanks to the restricted instance structure. For the first result, this process further re-
lies on a CSP tool to show the tractability of homomorphism testing in labeled two-way
paths, a condition dubbed the X-property [24, 22]. We show the intractability of all
other cases (Propositions 4.1, 4.4, and 4.5), by coding #SAT-reduction, reusing in part
a coding from [2].

We last study the unlabeled setting for connected queries in Section 5. We show that
disallowing query branching and two-wayness suffices to obtain tractability, provided
that the instance is a polytree (Proposition 5.4): this result is proven by building in
PTIME a deterministic tree automaton to test the length of the longest path, and
compiling a d-DNNF lineage as in [4]. This result immediately extends to branching
queries, as they are equivalent to paths in this case (Proposition 5.5). We complete
the picture by showing that, by contrast, allowing two-wayness in the query leads to

4

intractability on polytrees, by a variant of our coding technique (Proposition 5.6). We
then conclude in Section 6.

Our results completely classify the complexity of probabilistic conjunctive query evalu-
ation for all combinations of instance and query restrictions, in the labeled and unlabeled
setting. Full proofs are given in appendix.

2. Preliminaries

We first provide some formal definitions of the concepts we use in this paper, and intro-
duce the probabilistic graph homomorphism problem and the different classes of graphs
that we consider.

Graphs and homomorphisms. Let σ be a finite non-empty set of labels. When |σ| > 1,
we say that we are in the labeled setting ; when |σ| = 1, in the unlabeled setting.

We consider directed graphs with edge labels from σ, i.e., triples H = (V,E, λ) with
V a non-empty finite set of vertices, E ⊆ V 2 a set of edges, and λ : E → σ a labeling

function. We write a
R
−→ b for an edge e = (a, b) with label λ(e) = R. Note that we

do not allow multi-edges: an edge e has a unique label λ(e). When |σ| = 1, i.e., in the
unlabeled setting, we simply write (V,E) for the graph and a → b for an edge. Unless
otherwise specified, all graphs that we consider in this paper are directed.

A graph H ′ = (V ′, E′, λ′) is a subgraph of the graph H = (V,E, λ), written H ′ ⊆ H,
when we have V ′ = V , E′ ⊆ E, and when λ′ is λ|E′ , i.e., the restriction of λ to E′. (Note
that, in a slightly non-standard way, we impose that subgraphs have the same set of
vertices than the original graph; this will simplify some notation.)

A graph homomorphism h from some graph G = (VG, EG, λG) to some graph H =
(VH , EH , λH) is a function h : VG → VH such that, for all (u, v) ∈ EG, we have
(h(u), h(v)) ∈ EH and further λH((h(u), h(v))) = λG((u, v)). A match of G in H is
the image in H of such a homomorphism h, i.e., the graph with vertices h(u) for u ∈ VG

and edges (h(u), h(v))) for (u, v) ∈ EG. Note that two different homomorphisms may
define the same match. Also note that two distinct nodes of G could have the same
image by h, so a match of G in H is not necessarily homomorphic to G. We write
G ❀ H when there exists a homomorphism from G to H. We call two graphs G and G′

equivalent if, for any graph H, we have G ❀ H iff G′
❀ H. It is easily seen that G and

G′ are equivalent if and only if G ❀ G′ and G′
❀ G.

Probabilistic graphs. A probability distribution on graphs is a function Pr from a finite
set W of graphs (called the possible worlds of Pr) to values in [0; 1] represented as
rational numbers, such that the probabilities of all possible worlds sum to 1, namely,
∑

H∈W Pr(H) = 1.
A probabilistic graph is intuitively a concise representation of a probability distribu-

tion. Formally, it is a pair (H,π) where H is a graph with edge labels from σ and where
π is a probability function π : E → [0; 1] that maps every edge e of H to a probabil-

5

H:

•

•

•

•

1
R

0.1
R

R
0.1

R
0.05

S
0.7

R
0.8

Figure 1: Example probabilistic graph H

ity π(e), represented as a rational number. Note that each edge (u, v) in a probabilistic
graph (H,π) is annotated both with a label λ((u, v)) ∈ σ, and a probability π((u, v)).

The probability distribution Pr defined by the probabilistic graph (H,π) is obtained
intuitively by considering that edges are kept or deleted independently according to
the indicated probability. Formally, the possible worlds W of Pr are the subgraphs
of H = (V,E, λ), and for H ′ = (V,E′, λ|E′) ⊆ H we define Pr(H ′) ··=

∏

e∈E′ π(e) ×
∏

e∈E\E′(1 − π(e)). Note that, when H has edges labeled with 0 or 1, some possible
worlds are given probability 0 by π.

Example 2.1. Figure 1 represents a probabilistic graph (H,π) on signature σ = {R,S},
where each edge is annotated with its label and probability value. There are 26 possible
worlds, 25 of which have non-zero probability.

The possible world where all R-edges are kept and all S-edges are removed has proba-
bility 0.1× 1× 0.8× 0.1× 0.05 × (1− 0.7).

Probabilistic graph homomorphism. The goal of this paper is to study the probabilistic
homomorphism problem PHom, for the set of labels σ that we fixed: given a graph G
on σ and a probabilistic graph (H,π) on σ, compute the probability that there exists a
homomorphism from G to H under Pr, i.e., the sum of the probabilities of all subgraphs
of H ′ to which G has a homomorphism:

Pr(G ❀ H) ··=
∑

H′⊆H
G❀H′

Pr(H ′).

Example 2.2. Continuing the example, let us consider the PHom problem for the graph

G :
R
−→

S
−→

S
←− and the example probabilistic graph (H,π) in Figure 1. The graph G intu-

itively corresponds to the relational calculus query ∃xyzt R(x, y) ∧ S(y, z) ∧ S(t, z). Of
course, we can compute Pr(G ❀ H) by summing over the possible worlds of H, but this
process is generally intractable. Here, by considering the possible matches of G in H, we
can see that Pr(G ❀ H) = 0.7× (1− (1− 0.1) × (1− 0.8)).

Following database terminology, we call G the query graph and (H,π) the (probabilis-
tic) instance graph. Indeed, the PHom problem is easily seen to be equivalent to conjunc-
tive query evaluation on probabilistic tuple-independent relational databases [19], over
binary relational signatures.

Note that, in this paper, we measure the complexity of PHom as a function of both the
query graphG and of the instance graph (H,π), i.e., in database terminology, we measure

6

1WP

2WP

DWT

PT Connected All
⊆ ⊆

⊆ ⊆⊆ ⊆

Figure 2: Inclusions between classes of graphs

the combined complexity [33] of probabilistic query evaluation. The PHom problem is
known to be #P-hard in general [18] (even for some fixed query graphs): by this, we
mean that it is hard (under polynomial-time reductions) for the class #P of counting
problems that can be expressed as the number of accepting paths of a nondeterministic
polynomial-time Turing machine. To achieve tractable complexity for PHom, we will
classify the complexity of PHom under various restrictions. We say that the complexity
of some variant of the problem is tractable if the probability can be computed by a
deterministic polynomial-time Turing machine: by a slight abuse of terminology, we
then say that it is in PTIME. All PHom variants that we study will be shown either to
be PTIME in this sense, or to be #P-hard.

We will study restrictions of PHom first by distinguishing the labeled and unlabeled
settings. We write PHomL for the problem when the fixed label set σ is such that |σ| > 1,
and PHom6 L when the fixed σ is such that |σ| = 1.

The second restriction concerns the input query graphs and instance graphs. We will
model restrictions on these graphs by requiring them to be taken from specific graph
classes, where by graph class we simply mean an infinite set of graphs. Inspired by the
notation used in CSP, for two classes G and H of graphs in the labeled setting, we denote
PHomL(G,H) the problem that takes as input a graph G in class G and a probabilistic
graph (H,π) with H in class H, and computes the probability Pr(G ❀ H). We denote
the same problem in the unlabeled setting by PHom6 L(G,H).

Graph classes. The graph classes which we study in this paper are defined as follows,
on a graph G with edge labels from σ:

• G is a one-way path (1WP) if it is of the form a1
R1−−→ · · ·

Rm−1
−−−−→ am for some m,

with all a1, . . . , am being pairwise distinct, and with Ri ∈ σ for 1 6 i < m.

• G is a two-way path (2WP) if it is of the form a1 − · · · − am, with all a1, . . . , am

being pairwise distinct, and each − being
Ri−→ or

Ri←− (but not both) for some label
Ri ∈ σ.

• G is a downwards tree (DWT) if it is a rooted unranked tree (each node can have
an arbitrary number of children), with all edges going from parent to child in the
tree.

• G is a polytree (PT) if its underlying undirected graph is an unranked tree, without
restriction on edge directions.

7

R S S T

R S S T R

Figure 3: Example of labeled 1WP (top) and 2WP (bottom) for σ = {R,S, T}.

Figure 4: Examples of unlabeled DWT (left) and PT (right)

We also consider the class Connected of connected graphs, and write All the class of all
graphs. The inclusion diagram between our graph classes is shown in Figure 2. See
Figure 3 for an example of a labeled one-way path and two-way path, and Figure 4 for
an unlabeled downwards tree and polytree.

We also introduce the classes
⊔

1WP (resp.,
⊔

2WP,
⊔

DWT,
⊔

PT) of graphs that
are disjoint unions of 1WP (resp., 2WP, DWT, PT), that is, of possibly disconnected
graphs whose connected components are 1WP (resp., 2WP, DWT, PT).

Our graph classes were chosen to be representative of different features of graphs
that will have an impact in the complexity of the PHom problem, namely, labeling, two-
wayness, branching, and disconnectedness. Indeed, 2WP (resp., PT) adds two-wayness to
1WP (resp., DWT); DWT (resp., PT) adds branching to 1WP (resp., 2WP); and

⊔

1WP

(resp.,
⊔

2WP,
⊔

DWT,
⊔

PT) adds disconnectedness to 1WP (resp., 2WP, DWT, PT).
In the following sections, we investigate the complexity of probabilistic graph homo-

morphism for these various classes of conjunctive queries and instances.

3. Disconnected Case

We first consider the case where either the query or probabilistic instance graph is
disconnected, i.e., not in the Connected class. When the query is disconnected, we show
in this section that the probabilistic homomorphism problem is #P-hard in all but the
most restricted of cases (in particular in the labeled setting), which justifies that we
restrict to connected queries in the rest of the paper. On the other hand, we will show
that disconnectedness in the probabilistic instance graph has essentially no impact on
combined complexity.

8

Γ = (X ⊔ Y,E):

x1

x2

y1

y2

y3

e1

e2

e3e4

G:

C L V
(x1)

C L L V
(x2)

V R C
(y1)

V R R C
(y2)

V R R R C
(y3)

H:
C L V

(e1)

R C L V

(e2)

R R C L V

(e3)

R R R C L L V

(e4)

R C

Figure 5: Illustration of the proof of Proposition 3.3, for the bipartite graph Γ. Dashed
edges have probability 1

2 . We show (in parentheses) the edge of Γ coded by
each V -labeled edge in the instance graph H, and the vertex of Γ coded by
each 1WP component of the query graph G.

3.1. Labeled Disconnected Queries

We establish our main intractability result on disconnected queries by reduction from
the #Bipartite-Edge-Cover problem on undirected graphs:

Definition 3.1. An undirected graph is bipartite if its vertices can be partitioned into
two classes such that no edge connects two vertices of the same class. An edge cover
of an undirected graph is a subset of its edges such that every vertex is incident to at
least one edge of the subset. #Bipartite-Edge-Cover is the problem, given a bipartite
undirected graph, of counting its number of edge covers.

This problem was shown in [25] to be intractable. The result can also be proven
using Valiant’s holographic reductions [32] and the results of Cai, Lu, and Xia [13]: see
Appendix D.

Theorem 3.2. [25, 13] The #Bipartite-Edge-Cover problem is #P-complete.

We can then use this result to show intractability for the simplest forms of disconnected
query graphs (

⊔

1WP) on the simplest forms of probabilistic instance graphs (1WP), in
the labeled case:

Proposition 3.3. PHomL(
⊔

1WP, 1WP) is #P-hard.

Proof. We reduce from #Bipartite-Edge-Cover. Let Γ = (X ⊔ Y,E) be an input to
#Bipartite-Edge-Cover, i.e., a bipartite undirected graph with parts X and Y ; we
write X = (x1, . . . , xnl

), Y = (y1, . . . , ynr), E = (e1, . . . , em), and for all 1 6 i 6 m we
write ei = (xli , yri), with 1 6 li 6 nl and 1 6 ri 6 nr.

We first construct in PTIME the 1WP probabilistic graph (H,π): see Figure 5 for an
illustration of the construction. Specifically, for 1 6 j 6 m, we construct the following
1WP:

Hej
··= (

L
−→)lj

V
−→ (

R
−→)rj .

9

The graph H is then defined as:

C
−→ He1

C
−→ He2

C
−→ · · ·

C
−→ Hem

C
−→ .

We define π as follows: edges labeled by V have probability 1
2 (intuitively coding whether

an edge is part of the candidate cover), all others have probability 1.
We then construct the query graph G ∈

⊔

1WP, coding the edge covering constraints.

For every 1 6 i 6 nl, the graph G contains the 1WP component
C
−→ (

L
−→)i

V
−→, and for

every 1 6 i 6 nr, the graph G contains the 1WP component
V
−→ (

R
−→)i

C
−→.

It is clear that H is in 1WP, G is in
⊔

1WP and that both can be constructed in
PTIME from Γ. We now show that Pr(G ❀ H) is exactly the number of edge covers
of Γ divided by 2m, so that the computation of the latter reduces in PTIME to the
computation of the former, concluding the proof.

To see why, we define a bijection between the subsets of edges of Γ, seen as valuations
ν : E → {0, 1}, to the possible worlds H ′ of H of non-zero probability. We do so in the

expected way: keep the one V -edge
V
−→ of Hei iff ν(ei) = 1. We now show that there is

a homomorphism from G to H ′ if and only if ν is an edge cover of Γ. As the number of
H ′’s such that there is a homomorphism from G to H ′ is exactly Pr(G ❀ H)× 2m, this
will allow us to conclude.

Indeed, if there is a homomorphism h from G to H ′, then, considering the 1WP

component in G that codes the constraint on xi (resp., on yi), its image must be of the

form
C
−→ (

L
−→)i

V
−→ (resp.,

V
−→ (

R
−→)i

C
−→), but then by construction of H the V -fact must

correspond to an edge e such that xi (resp., yi) is adjacent to e, so that we have ν(e) = 1
and so xi (resp., yi) is covered. As this is true for each 1WP component, all the vertices
are covered and ν is indeed an edge cover of Γ.

Conversely, suppose that ν is an edge cover of Γ, then for every vertex xi (resp., yi)
we know that there exists 1 6 j 6 m such that ν(ej) = 1 and lj = i (resp., rj = i),
and we can use the V -fact corresponding to ej and the surrounding facts to build the
homomorphism as above from each component of G to H ′.

The proof of Proposition 3.3 crucially requires multiple labels in the signature. In-
deed, it is easy to see that, in the unlabeled setting, a query graph in

⊔

1WP (or even
in

⊔

DWT) is equivalent to the longest path within the graph, and we will show fur-
ther (Proposition 5.5) that PHom6 L(1WP, 1WP) (indeed, even PHom6 L(

⊔

DWT,PT)) is
PTIME.

3.2. Unlabeled Disconnected Queries

In light of this intractability result, let us now consider the unlabeled setting. We
show in Table 1 where the tractability frontier lies. First, introducing two-wayness in
both query and instance graphs is enough to obtain an analogue of the intractability of
Proposition 3.3:

Proposition 3.4. PHom6 L(
⊔

2WP, 2WP) is #P-hard.

10

Table 1: Tractability of PHom6 L for disconnected queries (Section 3.2). Results also hold
when instances are unions of the indicated classes.

↓G H→ 1WP 2WP DWT PT Connected
⊔

1WP 5.1
⊔

2WP 3.4
⊔

DWT 5.5
⊔

PT

All 3.6

PTIME #P-hard Numbers given correspond to propositions for

border cases, remaining cells can be filled using the inclusions from

Figure 2.

Proof. We reduce, again, from the #P-hard problem #Bipartite-Edge-Cover. The
idea of the reduction is similar to that used in the proof of Proposition 3.3, but we
face the additional difficulty of not being allowed to use labels. Fortunately, we can use
two-wayness to simulate them.

Let Γ = (X ⊔ Y,E) be an input of #Bipartite-Edge-Cover. Consider the reduction
from Γ used in the proof of Proposition 3.3 and the 1WP probabilistic graph (H,π) and
the

⊔

1WP query graph G that were constructed. We construct from H and G the
unlabeled probabilistic graph H ′ and unlabeled

⊔

2WP query graph G′ as follows:

• replace each L- or R-labeled edge a
L
−→ b or a

R
−→ b in H and G by 3 edges

a→→← b;

• replace each C-labeled edge a
C
−→ b of H and G by 3 edges a←←← b;

• replace each V -labeled edge a
V
−→ b of H and G by 6 edges a→→→→→← b.

All edges of H ′ have probability 1, except the first edge of each sequence of 6 edges that
replaced a V -labeled edge, which has probability 1

2 .
Consider a 1WP component of G that codes the constraint on a vertex from Y , e.g

V
−→ (

R
−→)i

C
−→, which was rewritten in G′ into →→→→→← (→→←)i ←←←. A homo-

morphism from this component into a possible world J ′ of H ′ must actually map to

a rewriting of a
V
−→ (

R
−→)i

C
−→ sequence in H ′: indeed, the key observation is that the

first 5 → edges can only be matched to 5 consecutive → in J ′, which only exist as the
first 5 edges of a sequence of 6 edges that replaced a V -labeled fact in H. There is no
choice left to match the subsequent edges without failing. A similar observation holds

for components coding the constraints on vertices from X (
C
−→ (

L
−→)i

V
−→). Hence, we can

show correctness of the reduction using the same argument as before.

Allowing two-wayness in both the query and the instance graphs thus allows us to
simulate labels, so that PHom6 L is intractable. We will study in Section 5 what happens

11

2

0

1

3

4

5

Figure 6: A DAG with a level mapping (dashed lines), see Definition 3.5.

for query graph classes without two-wayness (i.e., 1WP, DWT, and unions thereof); so
let us now consider the case of instance graph classes where two-wayness is forbidden,
i.e., is in

⊔

DWT. As we will show, PHom6 L of arbitrary query graphs on such
⊔

DWT

instance graphs is tractable. To this end, we need to introduce level mappings of acyclic
directed graphs (DAGs):

Definition 3.5. A level mapping of a DAG G is a mapping µ from the vertices of G
to Z such that for each directed edge u→ v of G we have µ(v) = µ(u)− 1. We call G a
graded DAG if it has a level mapping.

An example of graded DAG together with a level mapping is given in Figure 6. It is
easy to see (and shown in Proposition 1 of [27]) that a DAG G is graded iff there are no
two vertices u, v and two directed paths χ, χ′ in G from u to v such that χ and χ′ have
different lengths (in the terminology of [27], G does not have a jumping edge). Graded
DAGs are related to the classical notion of graded ordered set [29], and the level mapping
function has been called in the literature a depth function [27], a grading function [29],
a set of levels [29], or a rank function [30].

To obtain such a level mapping, we can proceed by picking one vertex in each connected
component of G, mapping each of these vertices to level 0, and then exploring G by a
breadth-first traversal and assigning the level of each vertex according to the level of the
vertex used to reach it, visiting all edges and defining the image of each vertex. It is clear
that this process yields a level mapping of G unless it tries to assign two different levels to
the same vertex v, which cannot happen if there is no jumping edge [27, Proposition 1].

We will now use the notion of graded DAG to show:

Proposition 3.6. PHom6 L(All,
⊔

DWT) is PTIME.

Proof sketch. We only give the idea when the query graph is connected and the graph
instance H is a DWT (see Appendix for full proof). As we pointed out already, if the
query graph G is not a graded DAG, then it has a cycle or a pair of vertices joined by
two directed paths of different lengths: then, from the structure of the DWT instance
graph, this clearly implies that Pr(G ❀ H) = 0. So it suffices to study the case when G
is a graded DAG.

12

As we explained earlier, we can then compute in PTIME a level mapping µ of G. It is
clear that, as G is connected, the level mapping µ is uniquely defined up to an additive
constant. Hence, we shift µ so that the smallest value of its image is 0, and we then call
the difference of levels of G the largest value m in the image of µ. Note that m is not
the maximal length from a root of G to a leaf of G (see, e.g., Figure 6). We then claim
that, on any possible world H ′ of the DWT instance graph H, the query graph G is in
fact equivalent to the 1WP query graph →m of length m. This allows us to conclude
using Proposition 5.5.

One direction is easy to observe, because µ directly gives a homomorphism from G
to→m. For the converse, suppose that a homomorphism h from G to H ′ exists. Because
G is connected and H ′ is in

⊔

DWT, the image of h is actually a DWT, call it T . Now
it is easy to see that the image of a node that has level m− i in G has depth i in T , so
that T (and so H ′) contains the 1WP →m.

3.3. Disconnected Instances

We conclude our study of the disconnected case with the case of disconnected instance
graphs, which we show to be less interesting than the disconnected query graphs that we
studied so far. Specifically, when the query is connected, PHom on arbitrary instances
can reduce in PTIME to PHom of the same queries on a corresponding class of connected
instances:

Lemma 3.7. For any class of graphs H, let H′ be the class of connected components
of graphs in H. Then for any class of connected graphs G, PHomL(G,H) reduces in
PTIME to PHomL(G,H

′), and PHom6 L(G,H) reduces in PTIME to PHom6 L(G,H
′).

Proof. Let G ∈ G, H ∈ H, and write H = H ′
1 ⊔ . . . ⊔H ′

n: we have H ′
i ∈ H

′ for all
1 6 i 6 n. Let π be a probability distribution over H: the independence assumption
ensures that the edges of any H ′

i are pairwise independent from those of any H ′
j for i 6= j.

Now, as G is connected, any image of a homomorphism from G to H must actually be
included in some H ′

i. Thus, the computation of Pr(G ❀ H) reduces to that of the
Pr(G ❀ H ′

i) for 1 6 i 6 n, as follows:

Pr(G ❀ H) = 1−
∏

16i6n

(1− Pr(G ❀ H ′
i)).

We last discuss the case when both the query and instance graphs are disconnected.
Let us consider the results of Table 1 for connected instance graphs. Clearly, any hard-
ness results of a connected class carries over to the corresponding disconnected class.
Conversely, we have shown in Proposition 3.6 that PHom6 L(All,

⊔

DWT) is PTIME; this
implies that all tractable cases in Table 1 also hold for unions of the indicated instance
classes, except PHom6 L(

⊔

1WP,
⊔

PT) and PHom6 L(
⊔

DWT,
⊔

PT). But we have noted
at the end of Section 3.1 that, in the unlabeled setting,

⊔

1WP or
⊔

DWT query graphs
are equivalent to 1WP query graphs: thus, Lemma 3.7, together with tractability of
PHom6 L(1WP,PT), implies PHom6 L(

⊔

1WP,
⊔

PT) and PHom6 L(
⊔

DWT,
⊔

PT) are both

13

Table 2: Tractability of PHomL in the connected case (Section 4)

↓G H→ 1WP 2WP DWT PT Connected

1WP 4.10 4.1

2WP 4.5
DWT 4.4
PT

Connected 4.11

PTIME #P-hard Numbers given correspond to propositions for

border cases, remaining cells can be filled using the inclusions from

Figure 2.

in PTIME. Hence, the results of Table 1 also hold when instances are unions of the
indicated classes.

We have thus completed our study of PHomL and PHom6 L for disconnected instances
and/or disconnected queries, We accordingly focus on connected queries and instances
in the next two sections.

4. Labeled Connected Queries

In this section, we focus on the labeled setting, i.e., the PHomL problem, for classes of
connected queries and instances. Table 2 shows the entire classification of the labeled
setting for the classes that we consider.

Intuitively, we show intractability for polytree instance graphs, and for downward
trees instance graphs when the query graphs allow either two-wayness or branching.
Conversely, we show tractability of one-way path query graphs on downward trees, and
of arbitrary connected queries on two-way path instances. We first present the hardness
results, and then the tractability results.

4.1. Hardness Results

We recall that, if we allow arbitrary connected unlabeled probabilistic instance graphs
(or even just 4-partite graphs), then computing the probability that there exists a path
of length 2 is already #P-hard: this is shown in [31], and we will state this result
in our context as Proposition 5.1 in the next section. Hence, if we want to obtain
PTIME complexity for PHom, we need to restrict the class of instances. We can start by
restricting the instances to be polytrees, but as we show, this does not suffice to ensure
tractability:

Proposition 4.1. PHomL(1WP,PT) is #P-hard.

To show this result, we will reduce from the problem of computing the probability of
a Boolean formula, which we now define:

14

Definition 4.2. Given a set of variables X and a probability assignment π mapping
each variable X in X to a rational probability π(X) ∈ [0, 1], we define the probability
π(ν) of a valuation ν : X → {0, 1} as

π(ν) :=

∏

X∈X , ν(X)=1

π(X)

∏

X∈X , ν(X)=0

(1− π(X))

 .

The Boolean probability computation problem is defined as follows: given a Boolean
formula ϕ on variables X and a probability assignment π on X , compute the total prob-
ability of the valuations that satisfy ϕ, i.e., Pr(ϕ, π) =

∑

ν satisfies ϕ π(ν).

This problem is known to be #P-hard, even under severe restrictions on the formula ϕ.
We will use the #PP2DNF formulation of the above problem, which is #P-hard [28, 31]:

Definition 4.3. A positive DNF is a Boolean formula ϕ of the form

ϕ =
∨

16i6m

∧

16j6ni

Xi,j

 ,

i.e., it is a disjunction of (conjunctive) clauses that are conjunctions of variables of X .
We assume that each variable of X occurs in ϕ, as we can eliminate the others without
loss of generality.

A positive partitioned 2-DNF (PP2DNF) is intuitively a positive DNF ϕ on a par-
titioned set of variables where each clause contains one variable from each partition.
Formally, the variables of ϕ are X ⊔ Y, where we write X = {X1, . . . ,Xn1} and Y =
{Y1, . . . , Yn2}, and ϕ is of the form

∨

j=1...m(Xxj
∧Yyj) with 1 6 xj 6 n1 and 1 6 yj 6 n2

for 1 6 j 6 m.
The #PP2DNF problem is the Boolean probability computation problem when we impose

that π maps every variable to 1/2, and that ϕ is a PP2DNF.

We show Proposition 4.1 by reducing from #PP2DNF:

Proof sketch. The full proof is in appendix; see Figure 7 for an illustration. From the
PP2DNF formula ϕ, we construct a PT probabilistic instance where each branch starting
at the root describes a variable of the formula. The first edge is probabilistic and repre-
sents the choice of valuation. The edges are oriented upwards or downwards depending
on whether the variable belongs to X or to Y. We add a special gadget at different
depths of the branch to code the index of each of the clauses where the variable occurs.

We code satisfaction of the formula by a query that tests for a path of a specific length
that starts and ends with the gadget. The query has a match exactly on possible worlds
where we have set two variables to true such that the sum of the depths of the gadgets
corresponds to the query length: this happens iff the two variables occur in the same
clause.

15

H: R

X1 X2 Y1 Y2

X1,3

X1,2

X1,1

X2,3

X2,2

X2,1

Y1,1

Y1,2

Y1,3

Y2,1

Y2,2

Y2,3

A1,1

A1,2

A2,3

B1,2

B2,1

B2,3

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

G:
T
−−→

S
−−→

S
−−→

S
−−→

S
−−→

S
−−→

S
−−→

T
−−→

Figure 7: Illustration of the proof of Proposition 4.3 for the PP2DNF formula X1Y2 ∨
X1Y1 ∨X2Y2. Dashed edges have probability 1

2 , all others have probability 1.

Hence, restricting instances to polytrees is not sufficient to ensure tractability, even
for 1WP query graphs. We must thus restrict the instance further, by disallowing one
of the two remaining features, namely branching and two-wayness. The first option of
disallowing branching, i.e., requiring the instance to be a 2WP, is studied in Section 4.2
below, where we show that the problem is tractable for arbitrary query graphs.

The second option is to forbid two-wayness on the instance, i.e., restrict it to be a
DWT. In this case, we first show that intractability holds even when we also forbid
two-wayness in the query graph, i.e., we also restrict it to be a DWT. The result follows
from our earlier work on the combined complexity of query evaluation [3, 2]:

Proposition 4.4 [2]. PHomL(DWT,DWT) is #P-hard.

If we forbid branching in the query graph instead of two-wayness, requiring it to be a
2WP, then intractability still holds, which also follows from our earlier results:

Proposition 4.5 [2]. PHomL(2WP,DWT) is #P-hard.

Thus, on DWT instances, the only remaining case is when the query is a one-way path.
We will now show in the section below that this case is tractable, in addition to the case
of arbitrary queries on 2WP instances that we left open above.

16

4.2. Tractability Results

The general proof technique to obtain PTIME combined complexity in this section is
inspired by the probabilistic database literature [31]: compute the lineage of G on H as a
Boolean formula in positive disjunctive normal form (DNF), then compute its probability.
Let us first define lineages:

Definition 4.6. Let G be a query graph and (H,π) be a probabilistic graph with edge
set E. For any valuation ν : E → {0, 1}, we denote by ν(H) the possible world of H
where each edge e ∈ E is kept iff ν(e) = 1. Letting ϕ be a Boolean function whose
variables are the edges of E, we say that ϕ captures the lineage of G on H if, for any
valuation ν : E → {0, 1}, the function ϕ evaluates to 1 under ν iff we have G ❀ ν(H).

Lineage representations allow us to reduce the PHom problem to the Boolean prob-
ability computation problem on the lineage function (recall Definition 4.2). Formally,
for any query graph G and probabilistic graph (H,π), given a Boolean function ϕ that
captures the lineage of G on H, we compute the answer to PHom on G and (H,π) as the
probability Pr(ϕ, π) of ϕ under π: it is immediate by definition that these two quantities
are equal.

Of course, computing a lineage representation does not generally suffice to show
tractability, because, as we explained earlier, the Boolean probability computation prob-
lem is generally intractable. However, computing a Boolean lineage allows us to leverage
the known tractable classes of Boolean formulas. Specifically, we will show how to use the
class of β-acyclic positive DNF formulas, which are known to be tractable [10]. We de-
fine this notion, by first recalling the notion of a β-acyclic hypergraph, and then defining
a β-acyclic positive DNF :

Definition 4.7. A hypergraph H = (V,E) is a finite set V of vertices and a set E of
non-empty subsets of V , called hyperedges. For v ∈ V , we write H\v for the hypergraph
(V \ {v}, E′) where E′ is {e \ {v} | e ∈ E} \ {∅}.

A vertex v ∈ V of H is called a β-leaf [9] if the set of hyperedges that contain it,
i.e., {e ∈ E | v ∈ e}, is totally ordered by inclusion. In other words, we can write
{e ∈ E | v ∈ e} as (e1, . . . , ek) in a way that ensures that ei ⊆ ei+1 for all 1 6 i < k.

A β-elimination order for a hypergraph H = (V,E) is defined inductively as follows:

• if E = ∅, then the empty tuple is a β-elimination order for H;

• otherwise, a tuple (v1, . . . , vn) of vertices of H is a β-elimination order for H if v1
is a β-leaf in H and (v2, . . . , vn) is a β-elimination order for H \ v1.

The hypergraph H is β-acyclic if there is a β-elimination order for H.

We can see a positive DNF (recall Definition 4.3) as a hypergraph of clauses on the
variables, and introduce the notion of β-acyclic positive DNFs accordingly:

Definition 4.8. The hypergraph H(ϕ) of a positive DNF on variables X has X as
vertex set and has one hyperedge per clause, i.e., we have H(ϕ) := (X , E) with E :=
{{Xi,j | 1 6 j 6 ni} | 1 6 i 6 m}. We say that the positive DNF ϕ is β-acyclic if H(ϕ)
is β-acyclic.

17

It follows directly from results by Brault-Baron, Capelli, and Mengel about the β-
acyclic #CSPd problem [10] that we can tractably compute the probability of β-acyclic
positive DNFs:

Theorem 4.9. The Boolean probability computation problem is in PTIME when re-
stricted to β-acyclic positive DNF formulas.

Proof sketch. The #CSPd problem studied in [10] is about computing a partition function
over the hypergraph, under weighted constraints on hyperedges: it generalizes the prob-
lem of counting the number of valuations of β-acyclic formulae in conjunctive normal
form (CNF) by [10, Lemma 3]. We show how the result extends to β-acyclic positive
DNF, using de Morgan’s law, and to probability computation for weighted variables,
using additional constraints on singleton variable sets.

We will then use the tractability of β-acyclic formulas to show PTIME combined
complexity results for our PHomL problem. The first result that we show is tractability
for labeled 1WP query graphs on DWT probabilistic instance graphs:2

Proposition 4.10. PHomL(1WP,DWT) is PTIME.

Proof sketch. Intuitively, the proof proceeds in three steps. The first step is to enumerate
all candidate minimal matches of the query graph in the instance graph, i.e., subgraphs
of the instance graph to which the query graph could have a homomorphism, and which
are minimal for inclusion. As the query graph is a path, we know that the minimal
matches are downward paths in the DWT instance: hence, as each vertex of the DWT

instance can be the lowest vertex of at most one match, there are polynomially many
matches to consider.

The second step is to decide which ones of these matches are actually a match of the
query, by considering the labels: as both the query graph and the match are a 1WP,
this is straightforward. These first two steps produce a positive DNF that captures the
lineage of the query graph on the instance in the standard sense.

The third step is to notice that this lineage expression is β-acyclic: this is because its
variables can be eliminated by considering the nodes of the instance DWT in a bottom-up
fashion.

Interestingly, we were not able to prove this result using tree automata-based dynamic
programming approach (like we will do later for Proposition 5.4).

The second result that we show is tractability when restricting the instance to be a
2WP, and allowing arbitrary connected queries (remember from Proposition 3.3 that the
problem is hard even on 1WP instances if we allow disconnected queries):

Proposition 4.11. PHomL(Connected, 2WP) is PTIME.

To show this result, we follow the same scheme as in the proof of Proposition 4.10
above: (i) enumerate all candidate matches; (ii) check whether they are indeed matches;

2The connection to β-acyclicity in this context is due to Florent Capelli.

18

and (iii) argue that the resulting lineage is β-acyclic. For the first step, there are polyno-
mially many candidate matches to consider, because matches are necessarily connected
subgraphs of the instance graph H, that are uniquely defined by their endpoints: this
is where we use connectedness of the query. For the third step, the resulting lineage
is β-acyclic for the same reason as in Proposition 4.10, as we can eliminate variables
following the order of the path H: all connected subpaths containing an endpoint of
the path are ordered by inclusion. What changes, however, is the second step: from the
quadratically many possible matches, to compute the lineage expression, we must decide
which ones are actually matches.

Deciding this for each subpath amounts to testing, given the connected query graph G
and a candidate match H ′, whether G ❀ H ′, in the non-probabilistic sense. This graph
homomorphism problem is generally intractable, but here the minimal match H ′ is a
2WP (as it is a subpath of H), so it turns out to enjoy combined tractability. The
corresponding result was first shown by Gutjahr [24] for unlabeled graphs, when the
instance graph is a path, or for more general instances satisfying a condition called the
X-property; this was generalized to labeled graphs by Gottlob, Koch, and Schulz in [22].
We recall here the definition of this property:

Definition 4.12 (Definition 3.2 of [22]). Let H = (V,E, λ) be a directed graph with
labels on σ, let R ∈ σ, and let < be a total order on V . Then R is said to have the X-
property w.r.t. < if for all n0, n1, n2, n3 ∈ V such that n0 < n1 and n2 < n3, if we have

n0
R
−→ n3 and n1

R
−→ n2 then we also have n0

R
−→ n2. H is said to have the X-property

w.r.t. < if it is the case of each label R.

Theorem 4.13. (Theorem 3.5 of [22], extending Theorem 3.1 of [24]) Given a labeled
query graph G, and given a labeled directed graph H with the X-property w.r.t. some
order <, we can determine in time O(|H| × |G|) whether G ❀ H.

We can use this result to check, for all connected subpaths of the 2WP instance graph,
whether the query graph has a homomorphism to the subpath. This leads to the following
sketch for the proof of Proposition 4.11 (the full proof is in Appendix):

Proof sketch. We proceed following the three-step process outlined above. We first enu-
merate the possible query matches in the instance, i.e., the quadratic number of con-
nected subpaths. Second, we test for each subpath ai − · · · − ai+k whether it satisfies
the query. We can do so tractably because the subpath clearly has the X-property w.r.t.
the order ai < · · · < ai+k: using the notation of Definition 4.12, there are in fact no
n0, n1, n2, n3 that satisfy the conditions. Third, having computed the resulting DNF, we
compute its probability using β-acyclicity, eliminating variables in the order of the path
as we explained above.

5. Unlabeled Connected Queries

We now turn to the unlabeled setting, whose classification is presented in Table 3. We
start with an intractability result which follows directly from the well-known intractabil-
ity of query evaluation in probabilistic databases [31]:

19

Table 3: Tractability of PHom6 L in the connected case (Section 5)

↓G H→ 1WP 2WP DWT PT Connected

1WP 5.1

2WP 5.6

DWT 5.5

PT

Connected 4.11 3.6

PTIME #P-hard Numbers given correspond to propositions for

border cases, remaining cells can be filled using the inclusions from

Figure 2.

Proposition 5.1 [31]. The PHom6 L(1WP,Connected) problem is #P-hard.

Proof. Example 3.3 of [31] states that the conjunctive query ∃x∃y∃z U(x, y) ∧ U(y, z)
is #P-hard on TID instances. In other words, PHom6 L({→→},All) is #P-hard, which
implies the #P-hardness of PHom6 L(1WP,All). We conclude using Lemma 3.7, which
provides a PTIME (Turing) reduction3 from the PHom6 L(1WP,Connected) problem to
the PHom6 L(1WP,All) problem.

Note that this PHom6 L(1WP,Connected) problem can be phrased in a very simple way:
given an unlabeled connected probabilistic graph (H,π) and a length m as input (namely,
that of the 1WP graph query), compute the probability that H contains a directed path
of length m.

This result suggests that, to obtain tractability, we need to restrict the instance graphs.
In fact, such tractability results were already obtained in the previous sections. In
Section 3, we proved (Proposition 3.6) that PHom6 L(All,DWT) has PTIME combined
complexity. Similarly, in the previous section, we proved that PHomL(Connected, 2WP)
is PTIME (Proposition 4.11), which means PHom6 L(Connected, 2WP) is also PTIME.
This completes the analysis of the unlabeled case for 1WP, 2WP and DWT instances
(see Table 3), so the only remaining case is that of PT instances.

We start our study of PHom6 L for PT instances with the simplest queries, namely, 1WP,
for which we will show tractability. We will proceed by translating the 1WP query to a
bottom-up deterministic tree automata [16]:

Definition 5.2. Given an alphabet Γ, a bottom-up deterministic tree automaton on
full binary (every node has either 0 or 2 children) rooted trees whose nodes are labeled
by Γ is a tuple A = (Q,F, ι,∆), where:

(i) Q is a finite set of states;

(i) F ∈ Q is a subset of accepting states;

3Note that it is usual to define #P-hardness under Turing reductions rather than under Karp reductions,

as #P is a counting complexity class.

20

(i) ι : Γ→ Q is an initialization function determining the state of a leaf from its label;

(i) ∆ : Γ × Q2 → Q is a transition function determining the state of an internal node
from its label and the states of its two children.

Given a Γ-tree 〈T, λ〉 (where λ : T → Γ is the labeling function), we define the run of
A on 〈T, λ〉 as the function ϕ : T → Q such that (1) ϕ(l) = ι(λ(l)) for every leaf l of T ;
and (2) ϕ(n) = ∆(λ(n), ϕ(n1), ϕ(n2)) for every internal node n of T with children n1

and n2. The automaton A accepts 〈T, λ〉 if its run on T maps the root of T to a state
of F .

We will evaluate 1WP queries by translating them to a tree automaton and running
it on an uncertain tree. This will use again the notion of lineage (recall Definition 4.6),
which was extended in [4] to tree automata running on trees with uncertain Boolean
labels: the lineage of an automaton on such a tree describes the set of annotations of the
tree that makes the automaton accept. In this context, the lineage of deterministic tree
automata was shown in [6] to be compilable to a deterministic decomposable negation
normal form circuit [20]:

Definition 5.3. A deterministic decomposable negation normal form (d-DNNF) is a
Boolean circuit C with the following properties:

(i) negations are only applied to input gates;

(ii) the inputs of any AND-gate depend on disjoint sets of input gates;

(iii) the inputs of any OR-gate are mutually exclusive, i.e., for any two input gates
g1 6= g2 of g, there is no valuation of the inputs of C under which g1 and g2 both
evaluate to true.

We can then straightforwardly extend the Boolean probability computation problem
(Definition 4.2) to take circuits as inputs, and the properties of d-DNNF circuits are
designed to ensure that the Boolean probability computation problem restricted to d-
DNNF has PTIME complexity [20]. Combining these tools, we can show that PHom6 L

on one-way path queries and polytree instances is tractable:

Proposition 5.4. PHom6 L(1WP,PT) is PTIME.

Proof sketch. The idea of the proof is to construct in polynomial time in the query
graph G a bottom-up deterministic automaton AG, which runs on binary trees T rep-
resenting possible worlds of the polytree instance H, and accepts such a tree T iff the
corresponding possible world satisfies G. We can then construct a d-DNNF represen-
tation of the lineage of G on H by [6, Theorem 6.11], which allows us to efficiently
compute Pr(G ❀ H): the complexity of this process is in O(|AG| · |H|), hence polyno-
mial in |H| · |G|. (An alternative way to see this is to use the results of [15].)

Intuitively, the design of the bottom-up automaton ensures that, when it reaches a
node n after having processed the subtree Tn rooted at n, its state reflects three linear-
sized quantities about Tn:

21

1. the length of the longest path leading out of n;

2. the length of the longest path leading to n;

3. the length of the longest path overall in Tn (not necessarily via n).

The final states are those where the third quantity is greater than the length of G.
The transitions compute each triple from the child triples by considering how the longest
leading paths are extended, and how longer overall paths can be formed by joining an
incoming and outgoing path.

Hence, PT instances enjoy tractability for the simplest query graphs. We now study
whether this result can be extended to more general queries. We first notice that this
result immediately extends to branching (i.e., to DWT queries), and even to unions of
DWT queries. Indeed, in the unlabeled setting, as we already observed at the end of
Section 3.1, such queries are equivalent to 1WP queries:

Proposition 5.5. PHom6 L(DWT,PT) and PHom6 L(
⊔

DWT,PT) are PTIME.

Proof. We first show the result for a DWT query graph G. Let m be its height, i.e.,
the length of the longest directed path it contains, and let G′ be the 1WP of length m,
which can be computed in PTIME from G. It is easy to observe that G and G′ are
equivalent. Indeed, we can find G′ as a subgraph of G by taking any directed path of
maximal length, and conversely there is a homomorphism from G to G′: map the root
of G to the first vertex of G′ and each element of G′ at distance i from the root to the
i-th element of G′. Hence, PHom6 L on G and an input probabilistic PT instance reduces
to PHom6 L on G′ and the same instance, so that the result follows from Proposition 5.4.

The same argument extends to
⊔

DWT by considering the greatest height of a con-
nected component of G.

Thus, we have successfully extended from 1WP to
⊔

DWT queries while preserving
tractability on PT instances. However, as we now show, tractability is not preserved if
we extend queries to allow two-wayness. Indeed:

Proposition 5.6. PHom6 L(2WP,PT) is #P-hard.

Proof. We adapt the proof of Proposition 4.1, but we face the additional difficulty of
not being allowed to use labels. Fortunately, we can use the two-wayness in the query
graph to simulate labels.

We reduce from #PP2DNF (recall Definition 4.3): the input consists of two disjoint sets
X = {X1, . . . ,Xn1}, Y = {Y1, . . . , Yn2} of Boolean variables, and a PP2DNF formula ϕ.
We construct a 2WP query graph G′ and PT instance H ′ with the same construction
as the one that yielded H and G in that proof, except that we perform the following
replacements (see Figure 8):

• replace every edge a
S
−→ b of H and G by 3 edges a→→← b;

22

H ′: R

X1 X2 Y1 Y2

X1,3

X1,2

X1,1

X2,3

X2,2

X2,1

Y1,1

Y1,2

Y1,3

Y2,1

Y2,2

Y2,3

A1,1

A1,2

A2,3

B1,2

B2,1

B2,3

G′: →→→ (→→←)6 →→→

Figure 8: Illustration of the proof of Proposition 5.6 for the PP2DNF formula X1Y2 ∨
X1Y1 ∨X2Y2. Dashed edges have probability 1

2 , all others have probability 1.

• replace every edge a
T
−→ b of H and G by 3 edges a→→→ b.

In particular, the query graph is then defined as follows:

G′ := →→→ (→→←)m+3 →→→ .

All the edges of H ′ have probability 1, except the middle edge of the edges that replaced
the S-labeled edges used to code the valuation of the variables (e.g., for Xi, the middle
edge of the 3 edges Xi →→← R), which have probability 1

2 .
One can check that any image of G′ must again go from the vertex Axj ,j to the

vertex Byj ,j for some 1 6 j 6 m. The key insight is that the first →5 of G must be
matched to a →5-path in H ′, which only exist as the concatenation of a →3 obtained
by rewriting a T -edge for some variable Xj , and of the first→2 of the (undirected) path
from Xxj ,j to R. Then there is no choice left to match the next edges without failing.

From this we deduce that, from any possible world H ′
W of the modified instance H ′,

considering the corresponding possible world HW of the unmodified instance H following
the natural bijection, the modified query graph G′ has a homomorphism to H ′

W iff the
unmodified query graph G has a homomorphism to HW. We thus conclude that the
probabilistic homomorphism problem on G′ and H ′ has the same answer as the one
on G and H, which finishes the proof.

23

6. Conclusion

We have introduced the probabilistic homomorphism problem, also known in the database
community as probabilistic evaluation of conjunctive queries on TID instances, and stud-
ied its combined complexity for various restricted classes of query and instance graphs.
Our classes illustrate the impact on PHom of various features: acyclicity, two-wayness,
branching, connectedness, and labeling. As we show, the landscape is already quite
enigmatic, even for those seemingly restricted classes! In particular, we have identi-
fied four incomparable maximal tractable cases, reflecting various tradeoffs between the
expressiveness that we can allow in the queries and in the instances:

• arbitrary queries on unlabeled downward trees (Proposition 3.6);

• one-way path queries on labeled downward trees (Proposition 4.10);

• connected queries on two-way labeled path instances (Proposition 4.11);

• downward tree queries on unlabeled polytrees (Proposition 5.5);

These results all extend to disconnected instances, as shown in Section 3.3. The (some-
what sinuous) tractability border is described in Tables 1, 2, and 3.

It is debatable whether the tractable classes we have identified yield interesting tractable
cases for practical applications. The settings of Propositions 3.6, 5.5, and 4.11 may look
restrictive, as both labels and branching are important features of real-world instances,
though some situations may involve unlabeled tree-like instances, or labeled words. The
setting of Proposition 4.10 may be richer, and is reminiscent of probabilistic XML [26]:
the instance is a labeled (downward) tree, while the query is a path evaluated on that
tree.

Future work. The query and instance features studied in this paper could be completed
by other dimensions: e.g., studying an unweighted case inspired by counting CSP where
all probabilities are 1/2 (as our hardness proofs seem to heavily rely on some edges being
certain); imposing symmetry in the sense of [7]; or alternatively restricting the degree of
graphs (though all our hardness proofs on polytrees and lower classes can seemingly be
modified to work on bounded-degree). Another option would be to modify some of the
existing dimensions: first, polytrees could be generalized to bounded-treewidth instances,
as we believe that the relevant tractability result (Proposition 5.5) adapts to this setting;
second, non-branching instances could be generalized to bounded-pathwidth instances, or
maybe general instances with the X-property (recall Definition 4.12).

Of course, another natural direction would be to lift the arity-two restriction, although
it is not immediate to generalize the definition of our classes to work in higher arity signa-
tures. We could also extend the query language: in particular, allow unions of conjunc-
tive queries as in [19]; allow a descendant axis in the spirit of XML query languages [8]; or
more generally allow fixpoint constructs as done in [3] in the non-probabilistic case. An
interesting question is whether an extended query language could capture the tractabil-
ity results obtained in the context of probabilistic XML by [15] (remembering, however,

24

that such results crucially depend on having an order relation on node children [1]).
Another possibility would be to search for extensions of the β-acyclicity approach, and
investigate which restrictions on the queries and instances ensure that the lineages are
β-acyclic.

Last, the connection to CSP would seem to warrant further investigation. In particular,
we do not know whether one could show a general dichotomy result on the combined
complexity of query evaluation on TID instances, to provide a probabilistic analogue to
the Feder–Vardi conjecture [21].

Acknowledgements. We are grateful to Florent Capelli for pointing out to us the
connection to β-acyclic instances and suggesting the idea used in the proof of Proposi-
tion 4.10, and to Tyson Williams for pointing out a connection to holographic algorithms,
in a very informative CSTheory post [34]. We also thank anonymous referees for their
valuable feedback. This work was partly funded by the Télécom ParisTech Research
Chair on Big Data and Market Insights.

References

[1] A. Amarilli. The possibility problem for probabilistic XML. In AMW, 2014.

[2] A. Amarilli, P. Bourhis, M. Monet, and P. Senellart. Combined tractability
of query evaluation via tree automata and cycluits (extended version). CoRR,
abs/1612.04203, 2016. https://arxiv.org/abs/1612.04203. Extended version
of [3].

[3] A. Amarilli, P. Bourhis, M. Monet, and P. Senellart. Combined tractability of query
evaluation via tree automata and cycluits. In ICDT, 2017.

[4] A. Amarilli, P. Bourhis, and P. Senellart. Provenance circuits for trees and treelike
instances. In ICALP, volume 9135 of LNCS, 2015.

[5] A. Amarilli, P. Bourhis, and P. Senellart. Provenance circuits for trees
and treelike instances (extended version). CoRR, abs/1511.08723, 2015.
https://arxiv.org/abs/1511.08723. Extended version of [4].

[6] A. Amarilli, P. Bourhis, and P. Senellart. Tractable lineages on treelike instances:
limits and extensions. In PODS, 2016.

[7] P. Beame, G. Van den Broeck, E. Gribkoff, and D. Suciu. Symmetric weighted
first-order model counting. In PODS, 2015.

[8] M. Benedikt and C. Koch. XPath leashed. CSUR, 2009.

[9] J. Brault-Baron. Hypergraph acyclicity revisited. ArXiv e-prints, abs/1403.7076,
2014.

25

http://ceur-ws.org/Vol-1189/paper_2.pdf
https://arxiv.org/abs/1612.04203
https://arxiv.org/abs/1511.08723
https://arxiv.org/abs/1604.02761
https://arxiv.org/abs/1412.1505
https://infoscience.epfl.ch/record/166852/files/25-leashed.pdf
https://arxiv.org/abs/1403.7076

[10] J. Brault-Baron, F. Capelli, and S. Mengel. Understanding model counting for
β-acyclic CNF-formulas. In STACS, 2015.

[11] A. A. Bulatov. The complexity of the counting constraint satisfaction problem. J.
ACM, 60(5), 2013.

[12] J. Cai, P. Lu, and M. Xia. Holographic reduction, interpolation and hardness.
Computational Complexity, 21(4), 2008. Preprint of [13].

[13] J. Cai, P. Lu, and M. Xia. Holographic reduction, interpolation and hardness.
Computational Complexity, 21(4), 2012.

[14] I. I. Ceylan, A. Darwiche, and G. Van den Broeck. Open-world probabilistic
databases. In KR, 2016.

[15] S. Cohen, B. Kimelfeld, and Y. Sagiv. Running tree automata on probabilistic XML.
In PODS, 2009.

[16] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata: Techniques and applications, 2007. Available
from http://www.grappa.univ-lille3.fr/tata.

[17] R. Curticapean and D. Marx. Complexity of counting subgraphs: Only the bound-
edness of the vertex-cover number counts. In FOCS, 2014.

[18] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.
VLDBJ, 16(4), 2007.

[19] N. Dalvi and D. Suciu. The dichotomy of probabilistic inference for unions of
conjunctive queries. JACM, 59(6), 2012.

[20] A. Darwiche. On the tractable counting of theory models and its application to
truth maintenance and belief revision. J. Applied Non-Classical Logics, 11(1-2),
2001.

[21] T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM
Journal on Computing, 1998.

[22] G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive queries over trees. JACM,
53(2), 2006.

[23] M. Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. JACM, 2007.

[24] W. Gutjahr, E. Welzl, and G. Woeginger. Polynomial graph-colorings. Discrete
Applied Mathematics, 35(1), 1992.

[25] S. Khanna, S. Roy, and V. Tannen. Queries with difference on probabilistic
databases. PVLDB, 2011.

26

http://drops.dagstuhl.de/opus/volltexte/2015/4963/pdf/lipics-vol30-stacs2015-complete.pdf
https://www.cs.sfu.ca/~abulatov/papers/counting-acm.pdf
http://pages.cs.wisc.edu/~jyc/papers/interpolation08.pdf
http://web.cs.ucla.edu/~guyvdb/papers/CeylanKR16.pdf
http://www.cs.huji.ac.il/~sara/papers/running-tree-automata.pdf
http://www.grappa.univ-lille3.fr/tata
https://arxiv.org/abs/1407.2929
https://homes.cs.washington.edu/~suciu/vldbj-probdb.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
https://arxiv.org/abs/cs/0003044
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.7882&rep=rep1&type=pdf
https://arxiv.org/abs/cs/0602004
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.9013&rep=rep1&type=pdf
http://www.sciencedirect.com/science/article/pii/0166218X9290294K
https://users.cs.duke.edu/~sudeepa/papers/VLDB11-probdb-difference.pdf

[26] B. Kimelfeld and P. Senellart. Probabilistic XML: models and complexity. In Z. Ma
and L. Yan, editors, Advances in Probabilistic Databases for Uncertain Information
Management. Springer, 2013.

[27] S. Odagiri and H. Goto. On the greatest number of paths and maximal paths for a
class of directed acyclic graphs. IEICE Trans. Fundamentals, E97-A(6), 2014.

[28] J. S. Provan and M. O. Ball. The complexity of counting cuts and of computing
the probability that a graph is connected. SIAM J. Computing, 12(4), 1983.

[29] B. Schröder. Ordered Sets. Birkhäuser, second edition, 2016.

[30] R. Stanley. Enumerative Combinatorics, volume 1. Cambridge University Press,
1997.

[31] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases. Morgan &
Claypool, 2011.

[32] L. G. Valiant. Holographic algorithms. SIAM J. Comput., 37(5), 2008.

[33] M. Y. Vardi. On the complexity of bounded-variable queries. In PODS, 1995.

[34] T. Williams. Complexity of counting the number of edge covers of a graph.
http://cstheory.stackexchange.com/q/21309, 2014.

[35] T. Williams. Advances in the Computational Complexity of Holant Problems. PhD
thesis, PhD thesis, University of Wisconsin-Madison, 2015.

[36] M. Xia, P. Zhang, and W. Zhao. Computational complexity of counting problems
on 3-regular planar graphs. Theoretical Computer Science, 384(1):111–125, 2007.

[37] M. Yannakakis. Algorithms for acyclic database schemes. In VLDB, 1981.

A. Proofs for Section 3 (Disconnected Case)

Proposition 3.6. PHom6 L(All,
⊔

DWT) is PTIME.

Proof. Let G be an arbitrary unlabeled graph and (H,π) a probabilistic graph with
H ∈

⊔

DWT. We observe that if G contains a directed cycle, then it cannot have a
homomorphism to a subgraph of H (which is necessarily acyclic), so Pr(G ❀ H) = 0.
Hence, it suffices to study the case where the query graph G is a DAG.

Likewise, if there are two vertices u, v of G and directed paths χ, χ′ in G from u to v
such that χ and χ′ have different lengths, then again G cannot have a homomorphism to
a subgraph of H: indeed, any subgraph of H is a directed forest and there is at most one
directed path between each pair of nodes. So we can assume without loss of generality
that there is no such pattern in G, and G is therefore graded.

Letting µ be a level mapping of G, we call the difference of levels of µ the difference
between the largest and smallest value of its image; the difference of levels of G itself is

27

http://pierre.senellart.com/publications/kimelfeld2013probabilistic.pdf
http://epubs.siam.org/doi/pdf/10.1137/070682575
https://www.cs.rice.edu/~vardi/papers/pods95.pdf
http://cstheory.stackexchange.com/q/21309
http://pages.cs.wisc.edu/~tdw/files/papers/Advances%20in%20the%20Computational%20Complexity%20of%20Holant%20Problems%20-%20Tyson%20Williams.pdf
https://core.ac.uk/download/pdf/82063901.pdf
https://www.researchgate.net/profile/Mihalis_Yannakakis/publication/200034379_Algorithms_for_Acyclic_Database_Schemes/links/5745c2a708ae9f741b430b62.pdf

the minimum difference of levels of a level mapping of G. As the level mappings of G only
differ in the constant value that they add to all vertices of each connected component,
the difference of levels can clearly be computed in PTIME by shifting each connected
component so that its minimal level is zero, and computing the difference; we call the
result of the shifting the minimal level mapping of G.

Letting m be the difference of levels of G, we now make the following claim: in any
subgraph H ′ of H, there is a homomorphism from G to H ′ if and only if H ′ has a directed
path of length m.

This claim implies the result. Indeed, we can first check in PTIME if G has no cycles
and has no pairs of paths of different lengths between two endpoints, and return 0 if the
conditions are violated. We can then compute in PTIME the difference of levels m of G
using the observations above. Now, on any subgraph of H, the query G is equivalent to
the 1WP graph →m, so our result follows from Proposition 5.5.

All that remains is to prove the claim. We first note that it suffices to show the claim
under the assumption that G is connected. Indeed, if the claim is true for all connected G,
then the claim is implied for arbitraryG by considering each of its connected components,
applying the claim, and observing that G has a suitable homomorphism to H ′ iff each
one of its connected components does, i.e., iff H ′ has a directed path whose length is
the maximal difference of levels of a connected component of G, and this is precisely the
difference of levels m of G. Hence, we now prove the claim for connected G.

We start with the backwards direction of the claim. It is easily seen that there is a
homomorphism h′ from G to the 1WP graph →m. Indeed, we define h′ according to
the minimal level mapping µ of G: we set h′ to map all the vertices whose level is i
to the i-th vertex of →m. From the existence of h′, we know that, whenever there is a
homomorphism h from →m to H ′, then h ◦ h′ is a homomorphism from G to H ′, which
shows the backwards implication.

For the forward direction of the claim, suppose that there exists a homomorphism h
from G to H ′, and let m be the difference of levels of G. Because G is connected and
H ′ is in

⊔

DWT, the image of h is actually a DWT, call it T . Now it is easy to see that
the image of a node that has level m− i in G has depth i in T , so that T (and so H ′)
contains the 1WP →m. This finishes the proof of the converse and thus the proof of
Proposition 3.6.

B. Proofs for Section 4 (Labeled Connected Queries)

Proposition 4.1. PHomL(1WP,PT) is #P-hard.

Proof. We reduce from the #P-hard problem #PP2DNF. From the formula ϕ, we construct
the following {S, T}-labeled probabilistic graph H (an example of this construction is
presented in Figure 7):

• The vertices of H are {R}⊔ {X1, . . . Xn1}⊔ {Y1, . . . , Yn2}⊔ {Xi,j | 1 6 i 6 n1, 1 6

j 6 m}⊔{Yi,j | 1 6 i 6 n2, 1 6 j 6 m}⊔{Axj ,j | 1 6 j 6 m}⊔{Byj ,j | 1 6 j 6 m}.

28

• The edges of H, all of which have probability 1 except when specified, are:

– Xi
S
−→ R for all 1 6 i 6 n1 and R

S
−→ Yi for all 1 6 i 6 n2, all having

probability 1
2 and intuitively coding the valuation of each variable;

– For all 1 6 i 6 n1, the edge Xi,m
S
−→ Xi and the edges Xi,j

S
−→ Xi,j+1 for all

1 6 j 6 m− 1;

– For all 1 6 i 6 n2, the edge Yi
S
−→ Yi,1 and the edges Yi,j

S
−→ Yi,j+1 for all

1 6 j 6 m− 1;

– For all 1 6 j 6 m, the edges Axj ,j
T
−→ Xxj ,j and Yyj ,j

T
−→ Byj ,j, intuitively

indicating that variables Xxj
and Yyj belong to clause j.

The {S, T}-labeled graph G is then
T
−→ (

S
−→)m+3 T

−→. It is clear that G is a 1WP query
graph, H is a polytree and that both can be constructed in PTIME from ϕ. We now
show that Pr(G ❀ H) is exactly the number of satisfying assignments of ϕ divided
by 2n, so that the computation of one reduces in PTIME to the computation of the
other, concluding the proof. To see why, we define a bijection between the valuations
ν of {X1, . . . ,Xn1} ⊔ {Y1, . . . , Yn2} to the possible worlds H ′ of H that have non-zero

probability, in the expected way: keep the edge Xi
S
−→ R (resp., R

S
−→ Yi) iff Xi (resp.,

Yi) is assigned to true in the valuation. We then show that there is a homomorphism
from G to H ′ if and only if ϕ evaluates to true under ν.

Indeed, if there is a homomorphism fromG toH ′, then by considering the only possible
matches of the T -edges, one can check easily that the image of the match in H ′ must

be of the following form for some 1 6 j 6 m: Axj ,j
T
−→ Xxj ,j

S
−→ Xxj ,j+1

S
−→ · · ·

S
−→

Xxj ,m
S
−→ Xxj

S
−→ R

S
−→ Yyj′

S
−→ Yyj′ ,1

S
−→ Yyj′ ,2

S
−→ · · ·

S
−→ Yyj′ ,j

′

T
−→ Byj′ ,j

′ ; further, from

the length of the S-path we must have (m− j) + 4 + (j′ − 1) = m+ 3, so that we must
have j = j′. Then, by construction, Xxj

and Yyj belong to clause j, so the valuation
satisfies ϕ. Conversely, suppose that the valuation satisfies ϕ, then for some 1 6 j 6 m
we know that Xxj

and Yyj are assigned to true by the valuation, and so we can build
the homomorphism as above from G to H ′.

Proposition 4.4 [2]. PHomL(DWT,DWT) is #P-hard.

Proof. The proof is almost the same as that of Proposition 36 of [2], straightforwardly
adapted to our setting of probabilistic graphs (in particular replacing the unary rela-
tion R by a binary relation), by observing that the probabilistic instance defined in
this proof is actually a DWT (beyond having treewidth 1), and that the query actually
corresponds to a DWT graph (beyond being α-acyclic).

Proposition 4.5 [2]. PHomL(2WP,DWT) is #P-hard.

Proof. The proof is almost the same as that of Proposition 38 of [2], again adapted to
our setting of probabilistic graphs, with one small modification: we do not materialize

edges b
S−

−−→ a in the instance graph for each edge a
S
−→ b in the instance, and instead

29

modify the query to replace all edges x
S−

−−→ y by edges x
S
←− y. This ensures that the

query is a 2WP and the instance is a DWT, and hardness is shown similarly to the
original proof.

Theorem 4.9. The Boolean probability computation problem is in PTIME when re-
stricted to β-acyclic positive DNF formulas.

Proof. We reduce our Boolean probability computation problem to the problem of β-
acyclic #CSPd of [10], which they show to be in PTIME (Theorem 26 of [10]). We will
explain how probability computation in the sense of Definition 4.2 can be encoded in
their setting, by a variant of their own encoding (in Lemma 3 of [10]): we give a full
proof for completeness.

First, we recall their definition of #CSPd (Definitions 1 and 2 in [10]) in the case of a
Boolean domain. We denote byQ+ the nonnegative rational numbers. Denote by {0, 1}X

the set of functions from X to {0, 1}, i.e., the Boolean valuations of X . For ν ∈ {0, 1}X

and Y ⊆ X , we denote by ν|Y the restriction of ν to Y. A weighted constraint (with
default value) on variables X is a pair c = (f, µ) that consists of a function f : S → Q+

for some subset S of {0, 1}X , called the support of c, and a default value µ ∈ Q+; we
write var(c) := X . The constraint c induces a total function on {0, 1}X , also denoted c,
that maps ν ∈ {0, 1}X to f(ν) if ν ∈ S, and to µ otherwise. The size of c is |c| = |S|×|X |.
Intuitively, a constraint with default value assigns a weight in Q+ to all valuations of X ,
but the default value mechanism allows us to avoid writing explicitly the complete table
of this mapping.

An instance of the #CSPd problem then consists of a finite set I of weighted constraints.
The size of I is |I| :=

∑

c∈I |c|, and we write var(I) :=
⋃

c∈I var(c). The output of the
problem is the partition function

w(I) =
∑

ν∈{0,1}var(I)

∏

c∈I

c(ν|var(c)).

The hypergraph H(I) of the #CSPd instance I (defined in Section 2.2 of [10]) is the
hypergraph (var(I), EI) where EI = {var(c) | c ∈ I}. We say that I is β-acyclic if H(I)
is a β-acyclic hypergraph (recall Definition 4.7), and we call β-acyclic #CSPd the problem
#CSPd restricted to β-acyclic instances. By Theorem 26 of [10], the problem β-acyclic
#CSPd is in PTIME.

We now explain how to reduce the probability computation problem to the β-acyclic

#CSPd problem. Let ϕ =
∨

16i6m

(

∧

16j6ni
Xi,j

)

be a Boolean β-acyclic DNF on vari-

ables X , with probabilities π(X) ∈ [0, 1] for each X ∈ X . We construct in linear
time from ϕ and π the variable set X ′ := {X ′ | X ∈ X}, the CNF formula ϕ′ :=
∧

16i6m

(

∨

16j6ni
X ′

i,j

)

, and the probability valuation π′ on X ′ defined by π′(X ′
i,j) =

1− π(Xi,j). By De Morgan’s duality law, ϕ′ is equivalent to the negation of ϕ, so that
we have Pr(ϕ, π) = 1 − Pr(ϕ′, π′); hence, the probability computation problem for ϕ
and π reduces in PTIME to the same problem for ϕ′ and π′.

30

We then construct in linear time a β-acyclic #CSPd instance I such that Pr(ϕ′, π′) =
w(I), which concludes the proof. For each variable X ′ ∈ X ′, we define a weighted
constraint cX′ on variables {X ′} by cX′(X ′ 7→ 1) = π′(X ′) and cX′(X ′ 7→ 0) = 1−π′(X ′),
which codes the probability of the variables. Now, for each clause 1 6 i 6 m, just like
in Lemma 3 of [10], we define a weighted constraint ci = (fi, 1) with default value 1
whose variables are {X ′

i,j | 1 6 j 6 ni}, i.e., those that occur in the clause: fi(ν) is 0
for the (unique) valuation that sets all variables of the clause to 0, intuitively coding
the constraint of the clause. From the fact that ϕ was β-acyclic, it is clear that I is
also β-acyclic. Now, the result w(I) of the partition function sums over all valuations of
the variables of I, namely the variables X ′ of ϕ′. Whenever a valuation does not satisfy
some clause 1 6 i 6 m, the weighted constraint ci will give it weight 0, hence ensuring
that the product evaluates to 0, so we can restrict the sum to valuations that satisfy ϕ′:
such valuations are given weight 1 by all weighted constraints ci. Now, it is easy to
see that the weight of valuations ν that satisfy ϕ is their probability π′(ν), as each cX′

gives them weight π′(X ′) or 1− (π′(X ′)) depending on whether ν(X ′) is 1 or 0. Hence,
we have reduced the probability computation problem for β-acyclic DNF formulas to
β-acyclic #CSPd in PTIME, which concludes the proof.

Proposition 4.10. PHomL(1WP,DWT) is PTIME.

Proof. Let G ··= u1
R1−−→ · · ·

Rm−1
−−−−→ um be the 1WP query (where all Ri are not necessarily

distinct), and H be the downwards tree instance. The idea is to construct the lineage
of G on H as a β-acyclic DNF ϕ, so that we can conclude with Theorem 4.9. It is
clear that any match of G can only be a downwards path of H, hence we construct ϕ as

follows: for every downwards path a1
R′

1−−→ · · ·
R′

m−1
−−−−→ am of length m of H (their number

is linear in |H| because each path is uniquely defined by the choice of am) check if the
path is a match of G (i.e, check that Ri = R′

i for 1 6 i 6 m−1), and if it is the case then

create a new clause of ϕ whose variables are all the facts ai
Ri−→ ai+1 for 1 6 i 6 m− 1.

The formula ϕ thus obtained is then a DNF representation of the lineage of H on G,
and has been built in time O(|H|·|G|), i.e., in PTIME. We now justify that ϕ is β-acyclic
by giving a β-elimination order for ϕ: while H still has edges, repeatedly pick a leaf b

of H and, letting a be the parent of b, eliminate the variable a
R
−→ b from ϕ. Such a

variable will always be a β-leaf, as any set of downwards paths of a downwards tree all
ending at a leaf is necessarily ordered by inclusion. From the above, the fact that ϕ is
β-acyclic suffices to conclude the proof.

Proposition 4.11. PHomL(Connected, 2WP) is PTIME.

Proof. First of all, notice that, as the query graph G is connected, the image of a homo-
morphism from the query G to the 2WP instanceH is necessarily a connected component
of H. Moreover, each connected component of H is also a 2WP and there are O(|H|2)
of them. We then proceed as follows. For every connected subpath C = a1 − · · · − an

(with each − being either
R
−→ or

R
←− for some binary relation R in H) of H, we check if

there is a homomorphism from G to C. This can be done in PTIME by Theorem 4.13,

31

because C trivially has the X-property w.r.t. the total order a1 < a2 < · · · < an: the
only possibility for (n0, n3) and (n1, n2) to be edges of C when n0 comes before n1 and

n2 comes before n3 is if n0 = n2 and n1 = n3, in which case it cannot hold that n0
R
−→ n3

and n1
R
−→ n2 at the same time, because we disallow multi-edges. If there is such a

homomorphism, then we create a new clause of ϕ whose variables are all the facts that
belong to C.

From this, we obtain in PTIME a positive DNF ϕ that captures the lineage of G on H.
We now justify that ϕ is β-acyclic by giving a β-elimination order for ϕ, by an argument
similar to the proof of Proposition 4.10: repeatedly eliminate a variable a − b from ϕ
and this fact from H, where b is an endpoint of H. Indeed such a variable will always be
a β-leaf, as any set of connected component of H including a− b is necessarily ordered
by inclusion. Hence, ϕ is β-acyclic, which allows us to conclude.

C. Proofs for Section 5 (Unlabeled Connected Queries)

Proposition 5.4. PHom6 L(1WP,PT) is PTIME.

Proof. Let G, (H,π) be the 1WP query graph and the probabilistic PT instance, and m
be the length of G. Then Pr(G ❀ H) is the probability that H contains a directed path
of length at least m.

Because we will use automata that run on full binary trees, we will have to represent
possible worlds of H as full binary trees. The first step is to transform H in linear
time into a full binary polytree H ′ by applying a variant of the left-child-right-sibling
encoding: in so doing, in addition to unlabeled edges of both orientations that exist in
the polytree, we will also introduce some edges called ε-edges that are labeled by ε and
whose orientation does not matter (so we see them as undirected edges and write them
a− b); intuitively, the ε-edge a− b means that a and b are in fact the same. For a node
a ∈ H and a child b of a, we say that b is an up-child of a if we have b → a and a
down-child of a if we have a→ b. We do this transformation by processing H bottom-up
as follows:

• If n is a leaf node of H, then create a node n′ in H ′.

• If n is an internal node ofH with up-children u1, . . . , uk and down-children d1, . . . , dl
then, letting u′1, . . . , u

′
k and d′1, . . . , d

′
l be the corresponding nodes in H ′: create a

node n′ in H ′ and nodes n′
1, . . . , n

′
k+l−2 with the following ε-edges: n′−n′

1− . . .−
n′
k+l−2, all having probability 1. Create an edge u′1 → n′ whose probability is that

of u1 → n. For 2 6 i 6 k create an edge u′i → n′
i−1 annotated with the same prob-

ability as ui → n. For 1 6 i 6 l − 1 create an edge n′
k−1+i → d′i annotated with

the same probability as n→ d′i, and finally create an edge n′
k−2+l → d′l annotated

with the same probability as n → d′l. Last, if any node has exactly one children
(specifically, n′, in case k+ l = 1), then create a node n′′ in H ′ and connect it with
an ε-edge to the node.

32

One can check that H ′ is indeed a full binary polytree (with some edges being labeled
by ε and being undirected) and that Pr(G ❀ H) equals the probability that H ′ contains
a path of the form (→ −∗)m, that is, m occurrences of a directed edge → followed by
some sequence of ε-edges −.

The second step is to transform in linear time H ′ into a probabilistic tree T to which
we can apply the construction of [5]. Specifically, T must be an ordered full binary rooted
tree whose edges do not have a label or an orientation, but whose nodes n carry a label
in some finite alphabet Γ (written λ(n), where λ is the labeling function) and with a
probability value written π(n). Writing Γ := Γ×{0, 1} as in [5], the semantics of T is that
it stands for a probability distribution on Γ̄-trees, i.e., trees T ′ labeled with Γ× {0, 1},
which have same skeleton as T : for each node n of T , the corresponding node n′ in a
possible world T ′ has label (λ(n), 1) with probability π(n) and label (λ(n), 0) otherwise.
We do this transformation by first adding a new root vertex to H ′ with an ε-edge with
probability 1 to the original root (this clearly does not change the probability that H ′ has
a path of the prescribed form), and then simply create T from H ′ by assigning the label
and probability of each node that is not the new root as the direction of its parent edge
(in Γ ··= {↑, ↓,−}) and its probability (so the root of T ′ has label − and probability 1).

Our last step is to construct a bDTA AG running on Γ-trees such that for every
possible world W of H ′, letting TW be its representation as a Γ̄-tree, AG accepts TW if
and only if W contains a path of the form (→ −∗)m. The states of AG are of the form
〈↑: i, ↓: j,Max : k〉 for 0 6 i, j 6 k 6 m, which ensures that AG is of size polynomial
in |G| (and we will construct it in PTIME from G). The idea is that when a node n
of TW will be in such a state, it will mean that:

• Letting Wn be the subinstance of W which is represented by the subtree of TW

rooted at n, and letting rn be the root of Wn, the longest directed upwards path
in Wn finishing at rn has length i (the path is the longest of the form (↑ −∗)∗ that
ends at rn).

• The longest directed downwards path in Wn beginning at rn has length j (the path
is the longest of the form (↓ −∗)∗ that begins at rn).

• The longest directed path in Wn has length k (the path is of the form (→ −∗)k

and is the longest in Wn).

We now describe the initialization function ι of AG:

• ι((s, 0)) := 〈↑: 0, ↓: 0,Max : 0〉 for any s ∈ Γ.

• ι((−, 1)) := 〈↑: 0, ↓: 0,Max : 0〉.

• ι((↑, 1)) := 〈↑: 1, ↓: 0,Max : 1〉.

• ι((↓, 1)) := 〈↑: 0, ↓: 1,Max : 1〉.

• ∆((↑, 1), 〈↑: i, ↓: j,Max : k〉, 〈↑: i′, ↓: j′,Max : k′〉) := 〈↑: i′′, ↓: 0,Max : k′′〉
where i′′ := min(m,max(i+1, i′+1)) and k′′ := min(m,max(i′′, i+ j′, i′+ j, k, k′)).

33

• ∆((↓, 1), 〈↑: i, ↓: j,Max : k〉, 〈↑: i′, ↓: j′,Max : k′〉) := 〈↑: 0, ↓: j′′,Max : k′′〉
where j′′ := min(m,max(j+1, j′+1)) and k′′ := min(m,max(j′′, i+j′, i′+j, k, k′)).

• ∆((−, 1), 〈↑: i, ↓: j,Max : k〉, 〈↑: i′, ↓: j′,Max : k′〉) := 〈↑: i′′, ↓: j′′,Max : k′′〉
where i′′ := max(i, i′) and j′′ := max(j, j′) and k′′ := min(m,max(k, k′, i + j′, i′ +
j)).

• ∆((s, 0), 〈↑: i, ↓: j,Max : k〉, 〈↑: i′, ↓: j′,Max : k′〉) := 〈↑: 0, ↓: 0,Max : k′′〉
where k′′ := min(m,max(k, k′, i+ j′, i′ + j)) for every s ∈ {−, ↑, ↓}.

The final state of AG are all the states 〈↑: i, ↓: j,Max : k〉 such that k = m. One can
check by a straightforward induction that the semantics of each state is respected, so
that indeed the automaton tests the query G.

We conclude thanks to Proposition 3.1 of [5] by computing in linear time in |AG| and
|H ′| a representation of the lineage on H ′ of the query that checks whether the input
contains a directed path of the form (→ −∗)m, and observe by Theorem 6.11 of [6]
that it is a d-DNNF. We then compute the probability of this d-DNNF [20], yielding
Pr(G ❀ H) in PTIME: this concludes the proof.

D. Proof of Hardness of Counting Edge Covers

In this appendix, following a connection pointed out in [34], we give a proof of the
following strengthening of Theorem 3.2, which is independent from the proof of [25].

Theorem D.1. The #Bipartite-Edge-Cover problem is #P-complete. Hardness holds
even for 2–3 regular bipartite undirected graphs that are planar.

Proof. Membership in #P is straightforward: the machine guesses a subset of edges and
accepts in PTIME iff the subset is a matching. Hence, we focus on hardness.

Recall that 2–3 regular bipartite undirected graphs are bipartite undirected graphs
Γ = (U ⊔ V,E) where the degree of each vertex in U is 2 and that of each vertex in V
is 3. We will show how the result derives from the holographic reduction results of [13].

For t ∈ U ⊔ V , we denote by E(t) the set of edges to which t is adjacent. For a
valuation of the edges ν : E → {0, 1} and a vertex t, we write ν(E(t)) the multiset
{{ν(e) | e ∈ E(t)}}. Given a multiset of bits B, the Hamming weight of B is the number
of 1 bits in B. For each x0, . . . , xn ∈ {0, 1}, let [x0, . . . , xn] denote the function that
takes a multiset of n bits as input and outputs xi if the Hamming weight of those n bits
is i.

For every x0, x1, x2, y0, y1, y2, y3 ∈ {0, 1}, the problem #[x0, x1, x2]|[y0, y1, y2, y3] is the
following [13]: given a 2–3 regular bipartite undirected graph Γ = (U ⊔ V,E), compute
the quantity

∑

ν:E→{0,1}

∏

u∈U

[x0, x1, x2](ν(E(u)) ×
∏

v∈V

[y0, y1, y2, y3](ν(E(v))).

34

Then, when we restrict our attention to 2–3 regular bipartite undirected graphs, our
problem #Bipartite-Edge-Cover can be seen to be the same as #[0, 1, 1]|[0, 1, 1, 1].
Indeed, seeing a valuation ν of the edges as a set of edges, the value under the sum for a
valuation ν will be 1 if and only if, for every vertex, there exists an adjacent edge such
that ν(e) = 1, which exactly means that ν is an edge cover of Γ.

Now, let us consider the problem #[1, 1, 0]|[1, 1, 1, 0]. As observed at the end of Sec-
tion 8 of [12], it is the reversal of the problem #[0, 1, 1]|[0, 1, 1, 1]. Indeed, the problem
#[1, 1, 0]|[1, 1, 1, 0] amounts to counting the number of subsets S of edges such that, for
every vertex v, there exists at least one edge adjacent to v that is not in S, i.e., that is
in E \ S. But this means that #[1, 1, 0]|[1, 1, 1, 0] counts the number of sets S such that
E \ S is an edge cover of Γ. As there is a trivial bijection between the sets S that are
edge covers and the sets S′ such that E \ S′ is an edge cover, #Bipartite-Edge-Cover
is PTIME-equivalent to #[1, 1, 0]|[1, 1, 1, 0] on 2–3 regular bipartite undirected graphs.

Now, the problem #[1, 1, 0]|[1, 1, 1, 0] is shown in [12, 13] to be #P-hard. However,
one subtle problem is that the notion of graph used in these works is different from our
own notion, because they generally allow the graph to contain multiple occurrences of
the same edge, and they allow self-loops (edges from a vertex to itself): this is what
we would call a multigraph. By contrast, the graphs that we used throughout the paper
are simple graphs, where edges cannot be repeated, and we disallow self-loops. Now,
even though this is implicit in [12, 13], the line of works on Holant problems typically
consider multigraphs instead of graphs (e.g., see footnote 1 page 217 of [35]), so the
hardness result in [12, 13] would in principle apply to input multigraphs. Thus, it does
not directly allow us to conclude the proof of our result, as we stated that the problem
#Bipartite-Edge-Cover is #P-hard on simple graphs. For this reason, to conclude our
proof, we will follow in detail the reasoning used by [12] to show that #[1, 1, 0]|[1, 1, 1, 0]
is #P-hard on 2–3 regular bipartite planar (multi)graphs, and check that their argument
in fact establishes hardness even when the input graphs are required to be simple.

The first step of the hardness proof for #[1, 1, 0]|[1, 1, 1, 0] in [12] is [12, Lemma 4.1].
For our purposes, this lemma shows that the problem #[x0, x1, x2]|[1, 1, 1, 0] is #P-
hard for some x0, x1, x2 ∈ R (which uses some generalized definition of the notation
#[x0, x1, x2]|[y0, y1, y2, y3] that allows values outside of {0, 1}), and that this hardness
holds even for inputs that are 2–3 regular bipartite planar (multi)graphs. We want to
show that this is true also when the input graphs are required to be simple. This hard-
ness result in [12, Lemma 4.1] is shown by reducing from the problem of counting vertex
covers on 3-regular planar (multi)graphs, which is #P-hard by [36]: as they explain, this
implies that the problem #[0, 1, 1]|[1, 0, 0, 1] is #P-hard on 2–3 regular bipartite planar
(multi)graphs. Now, we note that [36, Theorem 9] actually shows hardness of the prob-
lem #3RBP-VC of counting vertex covers on 3-regular planar (multi)graphs that are
bipartite: this means in particular that these input graphs cannot contain self-loops (but
they can contain multi-edges). We can use this to show #P-hardness of the problem
#[0, 1, 1]|[1, 0, 0, 1] on 2–3 regular bipartite simple graphs. Indeed, as in [12, Lemma 4.1],
we reduce from #3RBP-VC by taking an input graph G to #3RBP-VC and creating a
new graph G′ by subdividing each edge (adding a vertex of degree 2 in the middle of
the edge). Now, the resulting graph G′ is 2–3 regular bipartite, it is still planar, it con-

35

tains no multi-edges because G does not contain any self-loops (any multi-edges in G get
translated to different edges in G′ as each of them is subdivided with a different middle
vertex), and the answer to #3RBP-VC on G is exactly the answer to #[0, 1, 1]|[1, 0, 0, 1]
on G′. Indeed, as explained in [12, Lemma 4.1], counting the vertex covers on G amounts
to counting the number of subsets S of the vertices of degree 3 of G′ such that every
vertex of degree 2 is adjacent to a vertex of that subset. Equivalently, this is counting
subsets S′ of the edges of G′ such that each vertex of degree 2 is adjacent to an edge
of S′ (hence the constraint [0, 1, 1]) and such that for every vertex of degree 3 we either
keep all incident edges in S′ (i.e., we keep the vertex in S) or keep none (i.e., we do not
keep the vertex in S), hence the constraint [1, 0, 0, 1]. Thus, this reduction shows that
the problem #[0, 1, 1]|[1, 0, 0, 1] on 2–3 regular bipartite planar graphs is #P-hard, even
when the input graphs are required to be simple. Let us denote this problem by (⋆).

The rest of the proof of [12, Lemma 4.1] uses a holographic reduction to reduce
problem (⋆) to the problem #[x0, x1, x2]|[1, 1, 1, 0], for some x0, x1, x2 ∈ R. More
precisely, the hardness is shown by reducing either from problem (⋆), or from a dif-
ferent problem of counting matchings, depending on the signature that we are inter-
ested in. Specifically, the reduction from (⋆) is used when reducing to a signature
#[x0, x1, x2]|[y0, y1, y2, y3] when we can find values α1, α2, β1, β2 such that α1β2−α2β1 6=
0 and we have yi = α3−i

1 αi
2 + β3−i

1 βi
2 for all i. For the signature that we are interested

in, namely [y0, y1, y2, y3] = [1, 1, 1, 0], we can take α1 := 0, α2 := −1, β1 := 1, β2 := 1 and
verify that the conditions are satisfied, so indeed the reduction is from problem (⋆). The
reduction from problem (⋆) in [12, Lemma 4.1] is a holographic reduction, which does
not modify the input graphs (see for instance [35, Section 3.2] for an introduction to
holographic reductions). Thus, it follows from the proof of [12, Lemma 4.1] that there
is a choice of x0, x1, x2 ∈ R such that the problem #[x0, x1, x2]|[1, 1, 1, 0] is #P-hard on
2–3 bipartite planar graphs that are simple.

Then, the authors of [12] use what is called the interpolation technique, in order to
show that any problem of the form #[x0, x1, x2]|[1, 1, 1, 0] is polynomial-time reducible
(under Turing reductions) to the problem #[1, 1, 0]|[1, 1, 1, 0], which is the problem that
we are interested in. This is done in the appendix of [12], on page 15, by replacing
the degree-2 nodes of the input graph by some graph gadgets. On page 15 we see
that they use graph gadget number 1, and by looking at that gadget (Figure 3), we
see that performing replacements with this gadget can never introduce parallel edges or
self-loops. Thus, as the reduction is from simple graphs (as we argued in the preceding
paragraphs), the graphs that are images of this reduction are also simple graphs. Thus,
the proof of [12] actually shows that the problem #[1, 1, 0]|[1, 1, 1, 0] is #P-hard on 2–3
regular bipartite planar graphs that are simple. This is the result needed to conclude
the proof.

36

	1 Introduction
	2 Preliminaries
	3 Disconnected Case
	3.1 Labeled Disconnected Queries
	3.2 Unlabeled Disconnected Queries
	3.3 Disconnected Instances

	4 Labeled Connected Queries
	4.1 Hardness Results
	4.2 Tractability Results

	5 Unlabeled Connected Queries
	6 Conclusion
	A Proofs for Section 3 (Disconnected Case)
	B Proofs for Section 4 (Labeled Connected Queries)
	C Proofs for Section 5 (Unlabeled Connected Queries)
	D Proof of Hardness of Counting Edge Covers

