
A R C H I T E C T U R A L I S S U E S I N D E S I G N I N G S Y M B O L I C

P R O C E S S O R S I N O P T I C S

Aloke Guha and R aja R amnarayan

Honeywell Corporate Systems Development Division
1000 Boone Ave. N., Golden Valley, MN 55427

Matthew Derstine

Honeywell Physical Sciences Center
10701 Lyndale Ave. S., Bloomington, MN 55420

ABSTRACT

This paper analyzes potential optical architec-
tures for AI applications (such as knowledge-based
systems). Our goal was to investigate architectures
most suitable for implementation completely in
optics. While optical computing appears to hold
much promise because of its inherent parallelism and
speed, constructing a symbolic processor or even a
general purpose computer in optics requires examin-
ing many issues never before addressed. This paper
presents these issues and discusses those architec-
tures which appear most feasible in optics. We take
into account fundamental physical limitations as well
as the state-of-the-art optical device research. We
conclude that, unlike in electronics, large-grained
parallelism is not suitable for implementation in
optics. We also find that functional languages, rather
than logic languages, are better candidates for optics.
Finally, we show that implementing an optical sym-
bolic processor warrants the need for a real, or at
least an emulated, addressable memory in optics.

INTRODUCTION

There has been very little research in developing optical
architectures for general purpose processors, and even less for
symbolic processors. Therefore, we chose a two-step approach
for meeting our long-term goal to design an optical processor
for real-time symbolic computing. First, we abstracted the
implementation requirements for existing AI languages by exa-
mining their execution models. Second, we determined suit-
able optical computing architectures, based on the state-of-the-
art optics technology, that would match these requirements. A
number of researchers, however, have suggested that the paral-
lelism of optics might offer a significant advantage for imple-
menting AI architectures [2-9]. Ward and Kottas [9] have even
proposed a hybrid optical design to this end. However, to
understmad the difficulty of implementing purely optical proces-
sors, one must first understand the unique advantages and
disadvantages that using optics presents.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

Optics and optical systems have several characteristics [2,
4] which make them advantageous over electronics.

• Optics can perform very well pattern matching and corre-
lations, operations used frequently in unification processes
in logic programming.

• Optical systems can provide very high space-bandwidth
and time-bandwidth, thus offering potential for high
throughput.

• Optical processors are inherently two-dimensional and
parallel.

• Optical signals can propagate through each other with
essentially no interaction and crosstalk, a feat that elec-
tronics cannot match.

While optics can provide a quantum leap over electronics
in high-speed communications and in potentially massive paral-
lelism, there are certain important disadvantages [4] that must
he kept in mind.

• Because digital optical devices are a new field of research,
the state-of-the-art is a far cry from the levels of complex-
ity and integration seen in today's electronics.

• Implementing optical logic is difficult because materials
which provide the essential nonlinearities are only begin-
ning to be developed. Optical nonlinearities are small
compared to their electronic counterparts. This means
that at present optical devices consume more power than
functionally similar electronic devices.

• To date, the concepts of optically addressable memories
(where addresses are decoded optically), or optical storage
materials as in the case of semiconductors, have not been
developed. The use of electronic or electronically
addressable memories means slow electro-photonie and
photo-electronic conversions.

An important guideline, based on the properties of optical
devices, for designing optical architectures is to avoid mimick-
ing electronic designs to achieve the same or better throughput.
To compete with electronics, one must somehow exploit the
parallelism and non-planar propagation capability of optics [4].

In our architectural analysis we examined both logic and
functional symbolic processing languages representative of
languages typically used to write AI applications. Among logic
languages our focus has been on a parallel logic language, PAR-
LOG [11], which is a derivative of Prolog and Guarded Horn
Clauses. However, the essential conclusions for PARLOG
apply equally well to PROLOG. We emphasized PARLOG
because unlike the more popular PROLOG, the PARLOG com-
putational model was inherently parallel. We thought that the
parallelism of this computational model would be an ideal vehi-
cle to exploit the parallelism of optics. We considered pure
functional languages because the computational models for

© 1987 ACM 0084-7495/87/0600-0145500.75
145

http://crossmark.crossref.org/dialog/?doi=10.1145%2F30350.30367&domain=pdf&date_stamp=1987-06-01

such languages have the potential for a high degree of parallel-
ism.

In searching for the ideal optical architecture, we have
looked for

• the appropriate symbolic processing language,

• the appropriate computational model of the chosen
language, and

• the optical computing techniques most suitable to support
the execution of the computational model.

While the steps involved in this approach look deceivingly
sequential, they are really synergistic. Thus, the fundamental
limits on optics and implementation technology determine the
language and its computational model. The computational
model in turn drives the next-generation of optics device
research.

The remaining sections of this paper are organized as fol-
lows. Section 2 provides a brief outline of languages for AI
applications. Both logic programming and functional languages
are emphasized. A very brief survey of computational models
for these languages is provided in Section 3. Section 4 outlines
the building blocks that can be used in optical computing. The
issues for implementing the optical computing architectures for
the AI languages are dealt with in Section 5. Section 6 outlines
the conclusions regarding optical symbolic architectures, and
the recomendations that we make for further investigations into
implementing optical processors.

LANGUA GES FOR AI APPLICATIONS

In this section, we discuss the types of languages available
for implementing expert system shells. An expert system shell
(e.g., KEE, ART, or LOOPS) is a tool that facilitates the
development of expert systems. It provides facilities such as
forward chaining (data-driven reasoning), backward chaining
(goal-driven reasoning), procedural computation, object-
oriented knowledge representation, evidential reasoning,
models of time and hypothetical worlds, belief maintenance,
nonmonotonic reasoning, and explanation facilities.

Languages for implementing expert system shells can be
divided into three categories: imperative, functional, and logic.
A fourth category combines logic and functional languages, but
such languages are still under development, and so we excluded
them from consideration.

Imperative languages

Imperative languages, particularly LISP (as it is typically
used today), form the basis of current expert system shells.
However, they permit uncontrolled side effects via the assign-
ment operation. The presence of side effects makes it very
difficult to exploit parallelism in such languages. Moreover,
due to the assignment operation, the execution of an impera-
tive language program can he viewed as a series of changes to a
large state space. Finally, the implementation of such
languages requires the use of stacks. As will be seen in a Sec-
tion 5, the large size of the state space and the need for stacks
do not augur well for the optical implementation of imperative
languages.

Functional languages

Programs in functional languages are essentially
definitions and applications of functions. There is no notion of
operations on named objects, and therefore there are no side
effects [12]. Examples of functional languages include pure
LISP, FP, and data flow languages such as VAL and Id.

A functional program is usually expressed in terms of S-
expressions (S for symbolic). S-expressions are defined as being
either elementary items or atoms, or reeursively defined as a

sequence of S-expressions. The following are examples of S-
expression s.

(EXP p q) representing the formula pq
(ADD (MUL 2 x) 1) representing the formula (2x + 1)

The absence of side effects render functional languages
more suitable than imperative languages for implementations
exploiting parallelism.

Logic languages

Programs in most logic languages are composed of Horn
clauses, which have the form

head ~-- body

where head is zero or an atomic formula (predicates with argu-
ments supplied) and body is a conjunction of zero or more
atomic formulas. The logical interpretation of a Horn clause is
that the body implies the head. For example, the Horn clause

a(X, Y) :- b(X, Z), c(Z, Y)

means that for all X, Y, and Z, b(X, Z) and c(Z, Y) imply
a(X,Y). An empty Horn clause body is considered true. There-
fore, a Horn clause with an empty body states the head is
always true. Such a Horn clause is called a fact. Facts can be
written with no implication sign. For example, parent(a, b),
means that a is the parent of b. An empty Horn clause head is
considered false. Therefore, a Horn clause with an empty head
states that the conjunction of atomic formulas in the clause's
body is false. This refutation of the body can be used to ini-
tiate a resolution-based proof that the body is in fact true. In
the course of this proof, all variable instantiations that make
the body true can be discovered. A Horn clause with no head
is therefore called a goal or query.

While the best known logic programming language is Pro-
log, its sequential semantics render it inherently unsuitable for
parallel processing. The semantics of Prolog are defined in
terms of a sequential execution model. In this model, the
order of the clauses in a Prolog "database" is significant; the
database is scanned sequentially from top to bottom when
attempting to satisfy a goal. Within a clause, the atomic formu-
las in the body are satisfied from left to right in order. Finally,
the cut operator, when executed, prevents searching for later
clauses to satisfy the goal that the current clause is attempting
to satisfy.

Concurrent logic programming languages, e.g., Con-
current Prolog, PARLOG [11], and Guarded Horn Clauses,
alleviate the problems posed by the sequential semantics of
Prolog. Here, atomic formulas are executed as processes. A
clause represents the expansion of a process (the predicate in
the consequent) into a set of processes (the predicates lh the
body). Processes communicate with each other via shared ~,ari-
ables. Synchronization mechanisms are provided to delay the
consumer process when it attempts to reference a variable that
the producer process has not yet bound. A goal is evaluated by
checking the multiple clauses in parallel for applicability and
non-deterministlcally choosing one of them. The atomic for-
mula in the body are executed in parallel, as concurrent
processes, with the shared variables acting as communication
channels.

COMPUTATIONAL MODELS FOR AI LANGUAGES

To develop optical implementation techniques for logic
and functional languages, we need to understand their opera-
tional semantics. With this in mind, we examined the compu-
tational models for these languages. In the logic language
category, we concentrated on PARLOG, the language we

146

identified [1] as best meeting implementation requirements for
high-performance expert system shells. This investigation will
enable us to identify issues involved in the optical implementa-
tion of other logic programming languages as well. In case of
functional languages, our focus was on those, such as pure
LISP or SASL, that exhibited no side effects. Based on the
study of the computational models, we summarized the com-
puting requirements necessary for optical implementations.

Computational models for logic languages (PAR L OG)

The operational semantics of PARLOG are best under-
stood in terms of the abstract AND/OR process model [1]. In
this model, a process is created for evaluating literals and for
searching for a candidate clause during evaluation of a literal.
The state of a PARLOG evaluation is represented by a process
structure called the AND/OR process tree. The nodes in this
tree are processes. The leaf processes are either runnable or
suspended on some variable. The non-leaf processes are not
runnable. They await results from their child processes. There
are two types of non-leaf processes: AND processes and OR
processes. A process assumes a type AND if it is to evaluate a
conjunction of literals. A process assumes a type OR if it is to
search for a candidate clause among the clauses defining a rela-
tion. A PARLOG query is evaluated by first searching for a
candidate clause and then non-deterministicany committing to
one such clause. Upon committment, the literals in the body
of the chosen clause are evaluated. During query evaluation,
the AND/OR process tree grows and shrinks dynamically.

A graph reduction computational model based on the
abstract AND/OR process model and a parallel abstract
machine has been designed for PARLOG. This abstract
machine is targeted towards electronic implementations [1].
This machine is a loosely coupled multiprocessor. Each pro-
cessing element (PE) is a collection of computing agents that
perform dedicated functions such as process tree growth, pro-
cess tree management, and unification. The PARLOG data
objects (or terms) are represented as directed acyclic graphs
(DAGs) in this machine. Data objects and the AND/OR
processes are distributed among the various PEs. However, the
machine has a single virtual address space. This means that the
DAGs and the process tree are linked across PEs. This linkage
will be seen to have important consequences for optical imple-
mentation of PARLOG.

Computational models for functional languages

There are basically two computational models for func-
tional languages: data flow and reduction. In a data flow model,
the program is compiled into a graph representing the data
dependencies. The nodes of such a graph are referred to as
operators. They represent function applications, while the
edges reflect the composition of the functions. The data flow
graph is executed directly; an operator "fires" whenever its
input arguments are present, sending any output to its direct
descendants.

In a reduction model, the program is viewed as a set of
rewrite rules. The left hand side of each rule corresponds to a
function specification; the right hand side, the function
definition. In order to evaluate a function, first a directed
graph that captures the rewrite information, is built up. The
nodes in this graph correspond to functions. The immediate
descendants of a node correspond to the function's definition.
The computation can proceed in either a demand driven or an
eager manner. After a function is evaluated, it is replaced by
its value, hence the name reduction. Eventually, the whole
graph will be replaced by one value.

Reduction comes in two varieties: string reduction and
graph reduction. In string reduction, every occurrence of a

variable is treated as a distinct copy, while in graph redaction,
all occurrences share the same copy.

A technique called combinator reduction is often used for
implementing functional languages efficiently. In this tech-
nique, variables occurring in a function definition are
"abstracted out" to produce a function definition consisting
solely of operators called combinators. Combinators are higher
order functions, that is, they can accept functions as arguments
and return functions as results. The so-called S, K, and I com-
binators are sufficient to remove all variables from any function
definition. Combinator reduction involves two steps. First, the
program is transformed into combinator expressions (containing
no variables). Second, these expressions are reduced as dic-
tated by the definitions of the combinators.

Computing requirements to support computational models
An examination of the computation models, especially

those that use graph reduction and are of interest to us, reveals
that most computing requirements revolve around manipulating
data structures such as graphs or lists. Representations in
memory or an emulation of such data structures must therefore
be efficient. Other operations that should be well supported are
arithmetic and logic primitives, comparison or matching opera-
tions, efficient ways of traversing graphs and lists, mad dynamic
allocation of memory.

In the next section, we examine the issues involved in
implementing logic languages and functional languages using
optics.

COMPUTING PRIMITIVES IN OPTICS

Our approach to designing symbolic optical processors
consisted of two steps. First, examining the implementation
requirements of computational models of symbolic processing
languages. Second, determining suitable optical computing
architectures that best matches these requirements. The results
of the first step were described in the previous section. In this
section we present the analyses of the second step.

An examination of optical computing primitives and the
fundamental and practical limitations of optics provides us with
clues as to how well the computational models outlined earlier
can be supported. The results of such an exercise will also
influence the optical architectures that can be designed.

Desirable optical features include parallelism in imple-
mentation, parallelism in primitive operation such as parallel
write and read, high-speed interconnects, large fanin and fanout
compared to electronics, and data representation in more than
one dimension, such as arrays.

On the other hand, proposed optical computing schemes
have certain limitations. First, traditional I/O methods cause
bottlenecks at the electro-optic interface due to the need for
different symbol representation in optical and electronic com-
puters [4]. In addition, electron-photon conversion requires
excess power.

Second, use of discrete optical gates to implement the
processing elements (PEs) is not feasible since it would result
in increased complexity, size, and poor performance. Use of
optical computing configurations such as optical finite state
machines (OFSMs) (Figure 1) may be more attractive [2].

Our examination of the computational models revealed
that data representation in optical memory is of paramount
importance in designing the architecture. Most operations in
symbolic processing require manipulating and performing
macro-operations on data or memory elements. These include
simple arithmetic and logic operations, input matching and
unification, accessing elements of a data structure such as a tree

147

or graph or list, and dynamically allocating new memory cells.
How memory structures are implemented and data represented
is critical.

Threshold Device ~ , i j ~

~ - ¢

. : _ _ _ . - -

Rxed Interconnect

Outputs

Figure 1. Functional block diagram of the Optical Finite State Machine (OFSM) [2].
The 2-D array and the Interconnect act as the memory and combinatorial

logic, respectively, of the OFSM.

The following subsections discuss the representations of
data in optics. However, the representation of data cannot be
independent of the optical computing structures or the memory
implementations. For this reason, we examine data representa-
tion for proposed optical computing architectures.

Data representation in optics

In signal processing, traditional optical computing uses
analog data representation. However, analog representations
suffer from noise problems. Because of the requirement of
precise data in programming languages, digital representation is
preferred. For example, two-dimensional arrays of bit pixels as
used in OFSMs [2, 4] would be more suited for representing
complex data structures such as DAGs.

In Sections 2 and 3, we described how typical low-level
operations in symbolic processing require manipulations of
structured data such as graphs or lists. In conventional comput-
ers, such complex data structures =re implemented using
pointers. This approach to the representation of complex data
structures is attractive because it allows complicated relation-
ships to be stored without having to be specified at the time the
program was developed. It does, however, require that the
machine possess addressable memory. This requirement can be
fulfilled in two ways: by developing another memory structure
or by developing a way to perform addressable memory with
optical devices.

Next we examine optical computing architectures and
techniques for data representation. The architectural analysis
presented later will be based on how these optical computing
structures can be used to support the computational models
described earlier.

Two optical computing architectures, optical finite state
machine (OFSM) and symbolic substitution, are discussed in
this subsection. The emphasis is on how to implement memory
structures to represent data in each architecture.

One possible memory structure is the OFSM. Unlike con-
ventional electronic computers, the OFSM memory is not
separated from the processor. OFSM computing systems con-
sisting of parallel planes with I000 x I000 optical gates have
been proposed. The gates perform the logic operations of the
finite state machine [2].

However, by using this type of structure, it is difficult to
design a useful computer. The conventional way to design a
finite state machine is to enumerate all the possible inputs,
ouputs, and next states, and then design some combinatorial
logic to perform that function. However, the design of a com-
puter in this manner is practically impossible. Such an effort
would involve specifying all of the possible data structures, all
the values of the data items, and the answers at the time the
machine is designed.

Another way to structure memory is to avoid explicitly
specifying the transition rules. Unfortunately, with this
approach, called symbolic substitution (Figure 2) [3, 4], the
machine is no longer massively interconnected, although it can
utilize the parallelism of optics [3]. The lower degree of inter-
connection limits the speed at which a computation can occur,
since many cycles will be required to transfer data around the
plane.

Symbolic substitution, however, is easily implementable
[2, 3] and may be able to employ high-speed (gigabit) optical
components [10], making it a candidate worth investigating to
determine if it can perform the primitive functions that compu-
tational models require.

Matrices [6, 9] are a another way to represent data or
memory structures. Graph structures can be represented in a
matrix structure by assigning nodes of the graph to rows and
columns. When there is a connection between nodes, an entry
is made at the intersections of rows and columns of the two
elements. A directed graph may be represented by using the

I
m

m

[]

Figure 2. Symbolic Substitution usihg parallel symbolic recognition and substitution [4].

The rule (top) is applied to the input (top left) to produce the output (bottom

right). Intermediate arrays represent steps in recognition of the rule pattern,

148

rows to indicate the node the connection is from and the
columns to indicate the node that is the destination. In this
scheme, however, the memory is used very inefficiently since
most graphs are not fully connected; only a few connections
are made between nodes, while there is space for any possible
connections.

One advantage of the matrix representation scheme is that
no addressing is required to check interconnections between
data items; it is all present in the matrix. To set up the con-
nections, however, some means are required to set the ele-
ments of the matrix. This is made even more difficult when

t h e elements to be added to the existing matrix constitute
another graph. Additions to the graph are necessary in logic
languages since they feature partially instantiated data struc-
tures. The graph representation must be modified when rows
and columns are added to the existing graph. Modifications are
also necessary when elements are to be removed from the
graph. In either case, means to keep track of where the rows
and columns are to be added or deleted are required. The
answer is to use pointer structures or indirect addressing. Thus
to perform nontrivial operations on data stored in matrix for-
mat in logic languages, some form of location-based addressing
must be used.

There is also the direct approach to implementing location
addressable memory. This requires constructing memory
which has binary addresses. With this approach it is difficult to
generate the decoding addresses. While an address decoder has
been designed at Honeywell, it does not appear that its
inclusion as part of a memory would significantly improve
overall system performance as compared to pipelined high-
speed electronic memory.

In summary, it is possible to do most of the primitive
functions required for symbolic computing in optics. However,
it is unclear whether optics may have any clear advantage over
electronics without examining implementations of memory in
optics.

ISSUES IN OPTICAL
IMPLEMENTATION OF EXPERT SYSTEM LANGUAGES

A review of the computational models for AI languages,
and the computing primitives of optics provides the foundation
for selecting appropriate architectures for an optical symbolic
processor. Computational models for both logic and functional
languages were considered. In this section, the critical issues of
implementing either type of language, as well as the general
issues of parallel implementation in optics are discussed.

Issues in the optical implementation of PARLOG

Based on the AND/OR graph reduction computational
model [1] and the optical primitives and computing structures,
we defined a broad optical architecture for PARLOG. This
architecture corresponds to a distributed architecture that con-
sists of multiple PEs connected point-to-point in optics, with
both shared and dedicated memories. The shared memory
must contain the AND/OR process descriptors since many
AND/OR processes can be simultaneously evaluated by many
PEs. Further, the shared memory must also contain terms that
are constructed during evaluation of queries. The dedicated
memory of each PE contains i) the complete compiled pro-
gram, and ii) the template data objects that are used for match-
ing or unification during runtime. Thus, the shared memory
contains only those data objects that are constructed in runtime,
while the dedicated memory contains all data objects known at
compile time. By using shared memory for runtime-generated
objects, the problem of linking different DAGs or subDAGs of
a DAG across PEs can be avoided.

The PEs in the parallel abstract machine for FARLOG
consist of different agents [1] that are responsible for dedicated

functions required to execute the single-solution PARLOG pro-
grams. In optics such agents are best realized in terms of a clus-
ter of OFSMs that execute the algorithms that comprise the
function of the agent. The PEs, as well as the agents, com-
municute via messages. Different message types can be recog-
nized by the use of a set-associative pattern matching on the
message type. Since OFSMs are limited in complexity, all con-
trol operations such as logic and arithmetic operations, are done
external to the basic finite state machine.

The crucial design issue in the optical architecture, how-
ever, is the data representation of the DAGs. In Section 4 we
examined this issue, and concluded that representing DAGs
and lists is difficult in optics. In the case of PARLOG, an
added complexity is introduced by partially instantiated data
structures, which may grow as processes execute, thus requiring
the use of pointers. Furthermore, several processes may be

suspended on some variable in a partially instantiated data
structure. To avoid busy waiting, uninstantiated variables
should have a demand list associated with them. This is a list
of all processes that suspend on the variable. Demand lists
necessitate pointer structures since their size is not known at
compile time.

Another problem in distributed architectures is context
switching, which is discussed below in the next sub-section.

Issues in the optical implementation of functional program-
ruing languages

One of the major disadvantages of logic programming exe-
cution in optics is the presence of partially instantiated vari-
ables. Functional languages, on the other hand, do not feature
such data structures. In functional languages, a data structure
must be fully instantiated before a function application can
begin. Both data flow and reduction are suitable computational
models for functional languages.

In gross terms, there are no differences in the complexity
of implementing a distributed architecture for data flow or
graph reduction. With both data flow and graph reduction,
large data structures must be manipulated. In electronics, this
is handled by using I-structures [21]. These data structures,
however, require pointers and demand lists. To avoid exten-
sive use of pointers in optical data flow implementations,
shared structure memory is preferred. While data-driven graph
reduction may not provide any advantage over data flow archi-
tectures, normal order graph reduction in optics may require
less computation, thus making graph reduction more attractive
than data f low.

Normal order graph reduction [13-18] is the reduction
computational model type that appears most promising for
parallelism. In this type of graph reduction, each step is an
atomic step in which the graph is mutated in a manner con-
sistent with the reduction rule of the corresponding combinator.
An example of such graph mutation is Illustrated in Figure 3.

Sfgxu .~ fx (gx) Kxyu>lx Ixn>x

Figure 3. Combinator Graph Reduction: graph mutations on applying the S, K, and I

combinators, f and g represent functions while x and y represent arguments.

149

In a distributed system, where the graph is distributed in a
network of PUs, a message-passing strategy will allow each
reduction to occur in piecemeal fashion [18]. The graph reduc-
tion evaluation model appears very well suited to parallel com-
puting at a medium-level granularity. This level corresponds to
evaluating reducible expressions (redexes) in parallel. Thus
individual redexes that are available can be evaluated in parallel
by different PUs.

One critical design issue in an optical implementation is
how to exploit the parallelism of combinator graph reduction.
Since the PE responsible for the combinator application is a
simple combinational function, an OFSM implementation is not
necessary. However, since the argument of the combinators
can be a data structure, a list in the general case, of any size,
the transformations may be difficult to handle if the data is
moved every time into different nodes. In the electronic case,
pointers can be used very conveniently without actual move-
ment of data. Thus, unless the data is of simple structure,
using pointers is essential.

Another instance in graph reduction where pointer struc-
tures are necessary is in the evaluation of common subexpres-
sions. To avoid wasted computation, common expressions are
shared in graph reduction (unlike in string reduction, which is
similar in all other respects to graph reduction). However, the
use of shared expressions in combinator graph reduction
implies using indirection to ensure that argument values are not
lost before all expressions involving the subexpression have
been evaluated [l l] . Given these issues, it would therefore
appear more attractive to examine non-distributed architectures,
where graph mutations are managed in a shared memory. Such
architectures would be designed to exploit low-level parallelism
in optics.

Common issues in implementing distributed architectures in
optics

While the above issues relate to the specific computational
models of symbolic processing languages, there are some
aspects of computational support that are common to any mul-
tiprocessor architecture. Support for context switching is one
such aspect. Context switching requires maintenance of stacks
and indirect addressing schemes which are difficult to handle in
optics. Another issue is that of communication between pro.
cessors. If data structures are to be sent from one processor to
another, then addresses or pointers will be required, thus
necessitating location-based addressing.

CONCLUSIONS: WHAT MAKES SENSE

We have examined different computational models of
symbolic processing languages and found that it is not possible
to directly exploit existing optical primitives.

Because of the presence of partially instantiated data
structures in logic languages and the difficulty in implementing
location-based addressing, it is not feasible to implement optical
processors for executing logic languages. Based on the com-
parison of the computational models of logic programming and
pure functional languages, however, it is clear that functional
programming languages are a better candidate for optics
implementation. The computational model that may be most
worthwhile investigating is that of normal order combinator
graph reduction in a non-distributed architecure targeted
towards exploiting low-level parallelism. Such parallelism can
be found in processes of small granularity such as parallel word
searches, writes or reads.

REFERENCES

[1] Raja Ramnarayan, et al, 'Interim Report on Very Large
Parallel Data Flow Program', Honeywell Corporate Sys-
tems Development Division, May, 1986.

[2] Alexander A. Sawchuk and Timothy C. Strand, 'Digital
Optical Computing', Proceedings of the IEEE, Vol. 72,
No. 7, July '84, pp. 758 - 779.

[3] Karl-Heinz Brenner, Alan Huang, Norbert Streihl, 'Digital
Optical Computing with Symbolic Substitution', Applied
Optics, Vol. 25, September 1986, pp. 3054 - 3060.

[4] Alan Huang, 'Architectural Considerations Involved in
the Design of an Optical Digital Computer', Proceedings
of the IEEE, Vol. 72, No. 7, July '84, pp. 780 - 786.

[5] Keith B. Jenkins and C. Lee Giles, 'Parallel Processing
Paradigms and Optical Computing', SPIE Vol. 625, Opti-
cal Computing (1986), pp. 22 - 29.

[6] Rodney A. Schmidt and W. Thomas Cathey, 'Optical
Representations for Artificial Intelligence Problems', SPIE
Vol. 625, Optical Computing (1986) pp. 226 - 233.

[7] J. Tanida and Y. Ichioka, 'Optical Logic Array Processor
using Shadowgrams', Journal of Optical Society of Amer-
ica, Vol. 73, No. 6, June 1983, pp. 800 - 809.

[8] T .K. Gaylord et al, 'Optical Digital Truth Table Look-up
Processing', Optical Engineering, January/February 1985,
Vol. 24, No. 1.

[9] Cardinal Ward and James Kottas, 'Hybrid Optical Infer-
ence Machines: Architectural Considerations', Applied
Optics, Vol. 25, March 1986, pp. 940 - 947.

[10] P. W. Smith and W. J. Tomlinson, 'Bistable Optical Dev-
ices promise Subpicosecond Switching', IEEE Spectrum,
Vol. 18, June 1981, pp. 26 - 33

[11] Keith Clark and Steve Gregory, 'PARLOG: Parallel Pro-
gramming in Logic', Research Report DOC 84/4, June
1985, Department of Computing, Imperial College of Sci-
ence and Technology, University of London.

[12] Peter Henderson, 'Functional Programming Application
and Implementation', Prentice-Hall International, 1980.

[13] David Turner, 'A New Implementation Technique for
Applicative Languages', Software-Practice and Experience,
Vol. 9, 1979, pp. 31 - 49.

[14] T.J.W. Clarke et al, 'SKIM - the S, K, I Reduction
Machine', Proc. of the 1980 ACM LISP Conference, pp.
128- 135.

[15] W.R. Stoye et al, 'Some practical methods for Rapid
Combinator Reduction', Proc. of the 1984 ACM Sympo-
sium on LISP and Functional Languages, pp. 159 - 166.

[16] R.J.M. Hughes,'Super-Comhinators', Proc. of the 1982
ACM Symposium on LISP and Functional Languages, pp.
1- 10.

[17] Simon L. Peyton Jones, 'An Investigation of the Relative
Effieiencies of Combinators and Lambda Expressions',
Proc. of the 1982 ACM Symposium on LISP and Func-
tional Languages, pp. 150- 158.

[18] Steven Tighe, 'A Study of Parallelism Inherent in Combi-
nator Reduction' MCC Tech. report PP-140-85,
November 1985.

[19] Paul Hudak and Benjamin Goldberg, 'Experiments in
Diffused Combinator Reduction', Proc. of the 1984 ACM
Symposium on LISP and Functional Languages, pp. 167 -
176.

[20] Paul Hudak and Benjamin Goldberg, 'Distributed Execu-
tion of Functional Programs Using Serial Combinators',

150

IEEE Transactions on Computers, Vol. C-34, No. 10,
October 1985, pp. 881 - 891.

[21] Arvind and V. Kathail, 'A Multiple Processor Data Flow
Machine that supports Generalized Procedures' , Proc. of
the 8th Annual Symposium on Computer Architecture,
May 1981, pp. 291 - 302.

This research was supported by the Air Force Office of Scientific Research and the Advanced Research Projects Agency of the Department of Defense under Contract
No. F49620-86-C-0082.

151

