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ABSTRACT 

This paper analyzes potential optical architec- 
tures for AI applications (such as knowledge-based 
systems). Our goal was to investigate architectures 
most suitable for implementation completely in 
optics. While optical computing appears to hold 
much promise because of its inherent parallelism and 
speed, constructing a symbolic processor or even a 
general purpose computer in optics requires examin- 
ing many issues never before addressed. This paper 
presents these issues and discusses those architec- 
tures which appear most feasible in optics. We take 
into account fundamental physical limitations as well 
as the state-of-the-art optical device research. We 
conclude that, unlike in electronics, large-grained 
parallelism is not suitable for implementation in 
optics. We also find that functional languages, rather 
than logic languages, are better candidates for optics. 
Finally, we show that implementing an optical sym- 
bolic processor warrants the need for a real, or at 
least an emulated, addressable memory in optics. 

INTRODUCTION 

There has been very little research in developing optical 
architectures for general purpose processors, and even less for 
symbolic processors. Therefore, we chose a two-step approach 
for meeting our long-term goal to design an optical processor 
for real-time symbolic computing. First, we abstracted the 
implementation requirements for existing AI languages by exa- 
mining their execution models. Second, we determined suit- 
able optical computing architectures, based on the state-of-the- 
art optics technology, that would match these requirements. A 
number of  researchers, however, have suggested that the paral- 
lelism of  optics might offer a significant advantage for imple- 
menting AI architectures [2-9]. Ward and Kottas [9] have even 
proposed a hybrid optical design to this end. However, to 
understmad the difficulty of  implementing purely optical proces- 
sors, one must first understand the unique advantages and 
disadvantages that using optics presents. 
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Optics and optical systems have several characteristics [2, 
4] which make them advantageous over electronics. 

• Optics can perform very well pattern matching and corre- 
lations, operations used frequently in unification processes 
in logic programming. 

• Optical systems can provide very high space-bandwidth 
and time-bandwidth, thus offering potential for high 
throughput. 

• Optical processors are inherently two-dimensional and 
parallel. 

• Optical signals can propagate through each other with 
essentially no interaction and crosstalk, a feat that elec- 
tronics cannot match. 

While optics can provide a quantum leap over electronics 
in high-speed communications and in potentially massive paral- 
lelism, there are certain important disadvantages [4] that must 
he kept in mind. 

• Because digital optical devices are a new field of  research, 
the state-of-the-art is a far cry from the levels of complex- 
ity and integration seen in today's electronics. 

• Implementing optical logic is difficult because materials 
which provide the essential nonlinearities are only begin- 
ning to be developed. Optical nonlinearities are small 
compared to their electronic counterparts. This means 
that at present optical devices consume more power than 
functionally similar electronic devices. 

• To date, the concepts of optically addressable memories 
(where addresses are decoded optically), or optical storage 
materials as in the case of  semiconductors, have not been 
developed. The use of  electronic or electronically 
addressable memories means slow electro-photonie and 
photo-electronic conversions. 

An important guideline, based on the properties of optical 
devices, for designing optical architectures is to avoid mimick- 
ing electronic designs to achieve the same or better throughput. 
To compete with electronics, one must somehow exploit the 
parallelism and non-planar propagation capability of  optics [4]. 

In our architectural analysis we examined both logic and 
functional symbolic processing languages representative of  
languages typically used to write AI applications. Among logic 
languages our focus has been on a parallel logic language, PAR- 
LOG [11], which is a derivative of  Prolog and Guarded Horn 
Clauses. However, the essential conclusions for PARLOG 
apply equally well to PROLOG. We emphasized PARLOG 
because unlike the more popular PROLOG, the PARLOG com- 
putational model was inherently parallel. We thought that the 
parallelism of  this computational model would be an ideal vehi- 
cle to exploit the parallelism of  optics. We considered pure 
functional languages because the computational models for 

© 1987 ACM 0084-7495/87/0600-0145500.75 
145 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F30350.30367&domain=pdf&date_stamp=1987-06-01


such languages have the potential for a high degree of parallel- 
ism. 

In searching for the ideal optical architecture, we have 
looked for 

• the appropriate symbolic processing language, 

• the appropriate computational model of the chosen 
language, and 

• the optical computing techniques most suitable to support 
the execution of the computational model. 

While the steps involved in this approach look deceivingly 
sequential, they are really synergistic. Thus, the fundamental 
limits on optics and implementation technology determine the 
language and its computational model. The computational 
model in turn drives the next-generation of optics device 
research. 

The remaining sections of this paper are organized as fol- 
lows. Section 2 provides a brief outline of languages for AI 
applications. Both logic programming and functional languages 
are emphasized. A very brief survey of computational models 
for these languages is provided in Section 3. Section 4 outlines 
the building blocks that can be used in optical computing. The 
issues for implementing the optical computing architectures for 
the AI languages are dealt with in Section 5. Section 6 outlines 
the conclusions regarding optical symbolic architectures, and 
the recomendations that we make for further investigations into 
implementing optical processors. 

LANGUA GES FOR AI APPLICATIONS 

In this section, we discuss the types of languages available 
for implementing expert system shells. An expert system shell 
(e.g., KEE, ART, or LOOPS) is a tool that facilitates the 
development of expert systems. It provides facilities such as 
forward chaining (data-driven reasoning), backward chaining 
(goal-driven reasoning), procedural computation, object- 
oriented knowledge representation, evidential reasoning, 
models of time and hypothetical worlds, belief maintenance, 
nonmonotonic reasoning, and explanation facilities. 

Languages for implementing expert system shells can be 
divided into three categories: imperative, functional, and logic. 
A fourth category combines logic and functional languages, but 
such languages are still under development, and so we excluded 
them from consideration. 

Imperative languages 

Imperative languages, particularly LISP (as it is typically 
used today), form the basis of current expert system shells. 
However, they permit uncontrolled side effects via the assign- 
ment operation. The presence of side effects makes it very 
difficult to exploit parallelism in such languages. Moreover, 
due to the assignment operation, the execution of an impera- 
tive language program can he viewed as a series of changes to a 
large state space. Finally, the implementation of such 
languages requires the use of stacks. As will be seen in a Sec- 
tion 5, the large size of the state space and the need for stacks 
do not augur well for the optical implementation of imperative 
languages. 

Functional languages 

Programs in functional languages are essentially 
definitions and applications of functions. There is no notion of 
operations on named objects, and therefore there are no side 
effects [12]. Examples of functional languages include pure 
LISP, FP, and data flow languages such as VAL and Id. 

A functional program is usually expressed in terms of S- 
expressions (S for symbolic). S-expressions are defined as being 
either elementary items or atoms, or reeursively defined as a 

sequence of S-expressions. The following are examples of S- 
expression s. 

(EXP p q) representing the formula pq 
(ADD (MUL 2 x) 1) representing the formula (2x + 1) 

The absence of side effects render functional languages 
more suitable than imperative languages for implementations 
exploiting parallelism. 

Logic languages 

Programs in most logic languages are composed of Horn 
clauses, which have the form 

head ~-- body 

where head is zero or an atomic formula (predicates with argu- 
ments supplied) and body is a conjunction of zero or more 
atomic formulas. The logical interpretation of a Horn clause is 
that the body implies the head. For example, the Horn clause 

a(X, Y) :- b(X, Z), c(Z, Y) 

means that for all X, Y, and Z, b(X, Z) and c(Z, Y) imply 
a(X,Y). An empty Horn clause body is considered true. There- 
fore, a Horn clause with an empty body states the head is 
always true. Such a Horn clause is called a fact. Facts can be 
written with no implication sign. For example, parent(a, b), 
means that a is the parent of b. An empty Horn clause head is 
considered false. Therefore, a Horn clause with an empty head 
states that the conjunction of atomic formulas in the clause's 
body is false. This refutation of the body can be used to ini- 
tiate a resolution-based proof that the body is in fact true. In 
the course of this proof, all variable instantiations that make 
the body true can be discovered. A Horn clause with no head 
is therefore called a goal or query. 

While the best known logic programming language is Pro- 
log, its sequential semantics render it inherently unsuitable for 
parallel processing. The semantics of Prolog are defined in 
terms of a sequential execution model. In this model, the 
order of the clauses in a Prolog "database" is significant; the 
database is scanned sequentially from top to bottom when 
attempting to satisfy a goal. Within a clause, the atomic formu- 
las in the body are satisfied from left to right in order. Finally, 
the cut operator, when executed, prevents searching for later 
clauses to satisfy the goal that the current clause is attempting 
to satisfy. 

Concurrent logic programming languages, e.g., Con- 
current Prolog, PARLOG [11], and Guarded Horn Clauses, 
alleviate the problems posed by the sequential semantics of 
Prolog. Here, atomic formulas are executed as processes. A 
clause represents the expansion of a process (the predicate in 
the consequent) into a set of processes (the predicates lh the 
body). Processes communicate with each other via shared ~,ari- 
ables. Synchronization mechanisms are provided to delay the 
consumer process when it attempts to reference a variable that 
the producer process has not yet bound. A goal is evaluated by 
checking the multiple clauses in parallel for applicability and 
non-deterministlcally choosing one of them. The atomic for- 
mula in the body are executed in parallel, as concurrent 
processes, with the shared variables acting as communication 
channels. 

COMPUTATIONAL MODELS FOR AI LANGUAGES 

To develop optical implementation techniques for logic 
and functional languages, we need to understand their opera- 
tional semantics. With this in mind, we examined the compu- 
tational models for these languages. In the logic language 
category, we concentrated on PARLOG, the language we 
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identified [1] as best meeting implementation requirements for 
high-performance expert system shells. This investigation will 
enable us to identify issues involved in the optical implementa- 
tion of other logic programming languages as well. In case of 
functional languages, our focus was on those, such as pure 
LISP or SASL, that exhibited no side effects. Based on the 
study of the computational models, we summarized the com- 
puting requirements necessary for optical implementations. 

Computational models for logic languages (PAR L OG ) 

The operational semantics of PARLOG are best under- 
stood in terms of the abstract AND/OR process model [1]. In 
this model, a process is created for evaluating literals and for 
searching for a candidate clause during evaluation of a literal. 
The state of a PARLOG evaluation is represented by a process 
structure called the AND/OR process tree. The nodes in this 
tree are processes. The leaf processes are either runnable or 
suspended on some variable. The non-leaf processes are not 
runnable. They await results from their child processes. There 
are two types of non-leaf processes: AND processes and OR 
processes. A process assumes a type AND if it is to evaluate a 
conjunction of literals. A process assumes a type OR if it is to 
search for a candidate clause among the clauses defining a rela- 
tion. A PARLOG query is evaluated by first searching for a 
candidate clause and then non-deterministicany committing to 
one such clause. Upon committment, the literals in the body 
of the chosen clause are evaluated. During query evaluation, 
the AND/OR process tree grows and shrinks dynamically. 

A graph reduction computational model based on the 
abstract AND/OR process model and a parallel abstract 
machine has been designed for PARLOG. This abstract 
machine is targeted towards electronic implementations [1]. 
This machine is a loosely coupled multiprocessor. Each pro- 
cessing element (PE) is a collection of computing agents that 
perform dedicated functions such as process tree growth, pro- 
cess tree management, and unification. The PARLOG data 
objects (or terms) are represented as directed acyclic graphs 
(DAGs) in this machine. Data objects and the AND/OR 
processes are distributed among the various PEs. However, the 
machine has a single virtual address space. This means that the 
DAGs and the process tree are linked across PEs. This linkage 
will be seen to have important consequences for optical imple- 
mentation of PARLOG. 

Computational models for functional languages 

There are basically two computational models for func- 
tional languages: data flow and reduction. In a data flow model, 
the program is compiled into a graph representing the data 
dependencies. The nodes of such a graph are referred to as 
operators. They represent function applications, while the 
edges reflect the composition of the functions. The data flow 
graph is executed directly; an operator "fires" whenever its 
input arguments are present, sending any output to its direct 
descendants. 

In a reduction model, the program is viewed as a set of 
rewrite rules. The left hand side of each rule corresponds to a 
function specification; the right hand side, the function 
definition. In order to evaluate a function, first a directed 
graph that captures the rewrite information, is built up. The 
nodes in this graph correspond to functions. The immediate 
descendants of a node correspond to the function's definition. 
The computation can proceed in either a demand driven or an 
eager manner. After a function is evaluated, it is replaced by 
its value, hence the name reduction. Eventually, the whole 
graph will be replaced by one value. 

Reduction comes in two varieties: string reduction and 
graph reduction. In string reduction, every occurrence of a 

variable is treated as a distinct copy, while in graph redaction, 
all occurrences share the same copy. 

A technique called combinator reduction is often used for 
implementing functional languages efficiently. In this tech- 
nique, variables occurring in a function definition are 
"abstracted out" to produce a function definition consisting 
solely of operators called combinators. Combinators are higher 
order functions, that is, they can accept functions as arguments 
and return functions as results. The so-called S, K, and I com- 
binators are sufficient to remove all variables from any function 
definition. Combinator reduction involves two steps. First, the 
program is transformed into combinator expressions (containing 
no variables). Second, these expressions are reduced as dic- 
tated by the definitions of the combinators. 

Computing requirements to support computational models 
An examination of the computation models, especially 

those that use graph reduction and are of interest to us, reveals 
that most computing requirements revolve around manipulating 
data structures such as graphs or lists. Representations in 
memory or an emulation of such data structures must therefore 
be efficient. Other operations that should be well supported are 
arithmetic and logic primitives, comparison or matching opera- 
tions, efficient ways of traversing graphs and lists, mad dynamic 
allocation of memory. 

In the next section, we examine the issues involved in 
implementing logic languages and functional languages using 
optics. 

COMPUTING PRIMITIVES IN OPTICS 

Our approach to designing symbolic optical processors 
consisted of two steps. First, examining the implementation 
requirements of computational models of symbolic processing 
languages. Second, determining suitable optical computing 
architectures that best matches these requirements. The results 
of the first step were described in the previous section. In this 
section we present the analyses of the second step. 

An examination of optical computing primitives and the 
fundamental and practical limitations of optics provides us with 
clues as to how well the computational models outlined earlier 
can be supported. The results of such an exercise will also 
influence the optical architectures that can be designed. 

Desirable optical features include parallelism in imple- 
mentation, parallelism in primitive operation such as parallel 
write and read, high-speed interconnects, large fanin and fanout 
compared to electronics, and data representation in more than 
one dimension, such as arrays. 

On the other hand, proposed optical computing schemes 
have certain limitations. First, traditional I/O methods cause 
bottlenecks at the electro-optic interface due to the need for 
different symbol representation in optical and electronic com- 
puters [4]. In addition, electron-photon conversion requires 
excess power. 

Second, use of discrete optical gates to implement the 
processing elements (PEs) is not feasible since it would result 
in increased complexity, size, and poor performance. Use of 
optical computing configurations such as optical finite state 
machines (OFSMs) (Figure 1) may be more attractive [2]. 

Our examination of the computational models revealed 
that data representation in optical memory is of paramount 
importance in designing the architecture. Most operations in 
symbolic processing require manipulating and performing 
macro-operations on data or memory elements. These include 
simple arithmetic and logic operations, input matching and 
unification, accessing elements of a data structure such as a tree 
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or graph or list, and dynamically allocating new memory cells. 
How memory structures are implemented and data represented 
is critical. 

Threshold Device ~ , i j ~  

~ - ¢  

. . . . . .  : _ _ _ . - -  

Rxed Interconnect 

Outputs 

Figure 1. Functional block diagram of the Optical Finite State Machine (OFSM) [2]. 
The 2-D array and the Interconnect act as the memory and combinatorial 

logic, respectively, of the OFSM. 

The following subsections discuss the representations of 
data in optics. However, the representation of data cannot be 
independent of the optical computing structures or the memory 
implementations. For this reason, we examine data representa- 
tion for proposed optical computing architectures. 

Data representation in optics 

In signal processing, traditional optical computing uses 
analog data representation. However, analog representations 
suffer from noise problems. Because of the requirement of 
precise data in programming languages, digital representation is 
preferred. For example, two-dimensional arrays of bit pixels as 
used in OFSMs [2, 4] would be more suited for representing 
complex data structures such as DAGs. 

In Sections 2 and 3, we described how typical low-level 
operations in symbolic processing require manipulations of 
structured data such as graphs or lists. In conventional comput- 
ers, such complex data structures =re implemented using 
pointers. This approach to the representation of complex data 
structures is attractive because it allows complicated relation- 
ships to be stored without having to be specified at the time the 
program was developed. It does, however, require that the 
machine possess addressable memory. This requirement can be 
fulfilled in two ways: by developing another memory structure 
or by developing a way to perform addressable memory with 
optical devices. 

Next we examine optical computing architectures and 
techniques for data representation. The architectural analysis 
presented later will be based on how these optical computing 
structures can be used to support the computational models 
described earlier. 

Two optical computing architectures, optical finite state 
machine (OFSM) and symbolic substitution, are discussed in 
this subsection. The emphasis is on how to implement memory 
structures to represent data in each architecture. 

One possible memory structure is the OFSM. Unlike con- 
ventional electronic computers, the OFSM memory is not 
separated from the processor. OFSM computing systems con- 
sisting of parallel planes with I000 x I000 optical gates have 
been proposed. The gates perform the logic operations of the 
finite state machine [2]. 

However, by using this type of structure, it is difficult to 
design a useful computer. The conventional way to design a 
finite state machine is to enumerate all the possible inputs, 
ouputs, and next states, and then design some combinatorial 
logic to perform that function. However, the design of a com- 
puter in this manner is practically impossible. Such an effort 
would involve specifying all of the possible data structures, all 
the values of the data items, and the answers at the time the 
machine is designed. 

Another way to structure memory is to avoid explicitly 
specifying the transition rules. Unfortunately, with this 
approach, called symbolic substitution (Figure 2) [3, 4], the 
machine is no longer massively interconnected, although it can 
utilize the parallelism of optics [3]. The lower degree of inter- 
connection limits the speed at which a computation can occur, 
since many cycles will be required to transfer data around the 
plane. 

Symbolic substitution, however, is easily implementable 
[2, 3] and may be able to employ high-speed (gigabit) optical 
components [10], making it a candidate worth investigating to 
determine if it can perform the primitive functions that compu- 
tational models require. 

Matrices [6, 9] are a another way to represent data or 
memory structures. Graph structures can be represented in a 
matrix structure by assigning nodes of the graph to rows and 
columns. When there is a connection between nodes, an entry 
is made at the intersections of rows and columns of the two 
elements. A directed graph may be represented by using the 

I 
m 

m 

[ ]  

Figure 2. Symbolic Substitution usihg parallel symbolic recognition and substitution [4]. 

The rule (top) is applied to the input (top left) to produce the output (bottom 

right). Intermediate arrays represent steps in recognition of the rule pattern, 

148 



rows to indicate the node the connection is from and the 
columns to indicate the node that is the destination. In this 
scheme, however, the memory is used very inefficiently since 
most graphs are not fully connected; only a few connections 
are made between nodes, while there is space for any possible 
connections. 

One advantage of the matrix representation scheme is that 
no addressing is required to check interconnections between 
data items; it is all present in the matrix. To set up the con- 
nections, however, some means are required to set the ele- 
ments of the matrix. This is made even more difficult when 

t h e  elements to be added to the existing matrix constitute 
another graph. Additions to the graph are necessary in logic 
languages since they feature partially instantiated data struc- 
tures. The graph representation must be modified when rows 
and columns are added to the existing graph. Modifications are 
also necessary when elements are to be removed from the 
graph. In either case, means to keep track of where the rows 
and columns are to be added or deleted are required. The 
answer is to use pointer structures or indirect addressing. Thus 
to perform nontrivial operations on data stored in matrix for- 
mat in logic languages, some form of location-based addressing 
must be used. 

There is also the direct approach to implementing location 
addressable memory. This requires constructing memory 
which has binary addresses. With this approach it is difficult to 
generate the decoding addresses. While an address decoder has 
been designed at Honeywell, it does not appear that its 
inclusion as part of a memory would significantly improve 
overall system performance as compared to pipelined high- 
speed electronic memory. 

In summary, it is possible to do most of the primitive 
functions required for symbolic computing in optics. However, 
it is unclear whether optics may have any clear advantage over 
electronics without examining implementations of memory in 
optics. 

ISSUES IN OPTICAL 
IMPLEMENTATION OF EXPERT SYSTEM LANGUAGES 

A review of the computational models for AI languages, 
and the computing primitives of optics provides the foundation 
for selecting appropriate architectures for an optical symbolic 
processor. Computational models for both logic and functional 
languages were considered. In this section, the critical issues of 
implementing either type of language, as well as the general 
issues of parallel implementation in optics are discussed. 

Issues in the optical implementation of PARLOG 

Based on the AND/OR graph reduction computational 
model [1] and the optical primitives and computing structures, 
we defined a broad optical architecture for PARLOG. This 
architecture corresponds to a distributed architecture that con- 
sists of multiple PEs connected point-to-point in optics, with 
both shared and dedicated memories. The shared memory 
must contain the AND/OR process descriptors since many 
AND/OR processes can be simultaneously evaluated by many 
PEs. Further, the shared memory must also contain terms that 
are constructed during evaluation of queries. The dedicated 
memory of each PE contains i) the complete compiled pro- 
gram, and ii) the template data objects that are used for match- 
ing or unification during runtime. Thus, the shared memory 
contains only those data objects that are constructed in runtime, 
while the dedicated memory contains all data objects known at 
compile time. By using shared memory for runtime-generated 
objects, the problem of linking different DAGs or subDAGs of 
a DAG across PEs can be avoided. 

The PEs in the parallel abstract machine for FARLOG 
consist of different agents [1] that are responsible for dedicated 

functions required to execute the single-solution PARLOG pro- 
grams. In optics such agents are best realized in terms of a clus- 
ter of OFSMs that execute the algorithms that comprise the 
function of the agent. The PEs, as well as the agents, com- 
municute via messages. Different message types can be recog- 
nized by the use of a set-associative pattern matching on the 
message type. Since OFSMs are limited in complexity, all con- 
trol operations such as logic and arithmetic operations, are done 
external to the basic finite state machine. 

The crucial design issue in the optical architecture, how- 
ever, is the data representation of the DAGs. In Section 4 we 
examined this issue, and concluded that representing DAGs 
and lists is difficult in optics. In the case of PARLOG, an 
added complexity is introduced by partially instantiated data 
structures, which may grow as processes execute, thus requiring 
the use of pointers. Furthermore, several processes may be 

suspended on some variable in a partially instantiated data 
structure. To avoid busy waiting, uninstantiated variables 
should have a demand list associated with them. This is a list 
of all processes that suspend on the variable. Demand lists 
necessitate pointer structures since their size is not known at 
compile time. 

Another problem in distributed architectures is context 
switching, which is discussed below in the next sub-section. 

Issues in the optical implementation of functional program- 
ruing languages 

One of the major disadvantages of logic programming exe- 
cution in optics is the presence of partially instantiated vari- 
ables. Functional languages, on the other hand, do not feature 
such data structures. In functional languages, a data structure 
must be fully instantiated before a function application can 
begin. Both data flow and reduction are suitable computational 
models for functional languages. 

In gross terms, there are no differences in the complexity 
of implementing a distributed architecture for data flow or 
graph reduction. With both data flow and graph reduction, 
large data structures must be manipulated. In electronics, this 
is handled by using I-structures [21]. These data structures, 
however, require pointers and demand lists. To avoid exten- 
sive use of pointers in optical data flow implementations, 
shared structure memory is preferred. While data-driven graph 
reduction may not provide any advantage over data flow archi- 
tectures, normal order graph reduction in optics may require 
less computation, thus making graph reduction more attractive 
than data f low. 

Normal  order graph reduction [13-18] is the reduction 
computational model type that appears most promising for 
parallelism. In this type of graph reduction, each step is an 
atomic step in which the graph is mutated in a manner con- 
sistent with the reduction rule of the corresponding combinator. 
An example of such graph mutation is Illustrated in Figure 3. 

Sfgxu .~ fx  (gx) Kxyu>lx  Ixn>x 

Figure 3. Combinator Graph Reduction: graph mutations on applying the S, K, and I 

combinators, f and g represent functions while x and y represent arguments. 
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In a distributed system, where the graph is distributed in a 
network of PUs, a message-passing strategy will allow each 
reduction to occur in piecemeal fashion [18]. The graph reduc- 
tion evaluation model appears very well suited to parallel com- 
puting at a medium-level granularity. This level corresponds to 
evaluating reducible expressions (redexes) in parallel. Thus 
individual redexes that are available can be evaluated in parallel 
by different PUs. 

One critical design issue in an optical implementation is 
how to exploit the parallelism of combinator graph reduction. 
Since the PE responsible for the combinator application is a 
simple combinational function, an OFSM implementation is not 
necessary. However, since the argument of the combinators 
can be a data structure, a list in the general case, of any size, 
the transformations may be difficult to handle if the data is 
moved every time into different nodes. In the electronic case, 
pointers can be used very conveniently without actual move- 
ment of data. Thus, unless the data is of simple structure, 
using pointers is essential. 

Another instance in graph reduction where pointer struc- 
tures are necessary is in the evaluation of common subexpres- 
sions. To avoid wasted computation, common expressions are 
shared in graph reduction (unlike in string reduction, which is 
similar in all other respects to graph reduction). However, the 
use of shared expressions in combinator graph reduction 
implies using indirection to ensure that argument values are not 
lost before all expressions involving the subexpression have 
been evaluated [ l l ] .  Given these issues, it would therefore 
appear more attractive to examine non-distributed architectures, 
where graph mutations are managed in a shared memory. Such 
architectures would be designed to exploit low-level parallelism 
in optics. 

Common issues in implementing distributed architectures in 
optics 

While the above issues relate to the specific computational 
models of symbolic processing languages, there are some 
aspects of computational support that are common to any mul- 
tiprocessor architecture. Support for context switching is one 
such aspect. Context switching requires maintenance of stacks 
and indirect addressing schemes which are difficult to handle in 
optics. Another issue is that of communication between pro. 
cessors. If data structures are to be sent from one processor to 
another, then addresses or pointers will be required, thus 
necessitating location-based addressing. 

CONCLUSIONS: WHAT MAKES SENSE 

We have examined different computational models of 
symbolic processing languages and found that it is not possible 
to directly exploit existing optical primitives. 

Because of the presence of partially instantiated data 
structures in logic languages and the difficulty in implementing 
location-based addressing, it is not feasible to implement optical 
processors for executing logic languages. Based on the com- 
parison of the computational models of logic programming and 
pure functional languages, however, it is clear that functional 
programming languages are a better candidate for optics 
implementation. The computational model that may be most 
worthwhile investigating is that of normal order combinator 
graph reduction in a non-distributed architecure targeted 
towards exploiting low-level parallelism. Such parallelism can 
be found in processes of small granularity such as parallel word 
searches, writes or reads. 
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