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ABSTRACT

The incremental problem for a class Q of graph queries aims
to compute, given a query @ € Q, graph G, output Q(G)
and updates AG to G as input, changes AO to Q(G) such
that Q(GBAG) = Q(G)BAO. 1t is called bounded if its cost
can be expressed as a polynomial function in the sizes of @,
AG and AO. It is to reduce computations on possibly big
G to small AG and AO. No matter how desirable, however,
our first results are negative: for common graph queries such
as graph traversal, connectivity, keyword search and pattern
matching, their incremental problems are unbounded.

In light of the negative results, we propose two characteri-
zations for the effectiveness of incremental computation: (a)
localizable, if its cost is decided by small neighbors of nodes
in AG instead of the entire G; and (b) bounded relative to
a batch algorithm 7, if the cost is determined by the sizes
of AG and changes to the affected area that is necessarily
checked by 7. We show that the incremental computations
above are either localizable or relatively bounded, by provid-
ing corresponding incremental algorithms. That is, we can
either reduce the incremental computations on big graphs to
small data, or incrementalize batch algorithms by minimiz-
ing unnecessary recomputation. Using real-life graphs, we
experimentally verify the effectiveness of our algorithms.

Keywords

incremental computation; graph data management; query
optimization

1. INTRODUCTION

For a class Q of graph queries, the incremental problem
aims to find an algorithm 7a that, given a query Q € O,
a graph G, query answers Q(G) and updates AG to G as
input, computes changes AO to Q(G) such that

Q(G® AG) = Q(G) & AO.

Here S @ AS denotes applying updates AS to S, when S is
either graph G or query result Q(G). That is, Ta answers Q
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in response to AG by computing changes to the (old) output
Q(G). We refer to Ta as an incremental algorithm for Q,
in contrast to batch algorithms T that given @, G and AG,
recompute Q(G ® AG) starting from scratch.

The need for incremental computations is evident. Real-
life graphs G are often big, e.g., the social graph of Face-
book has billions of nodes and trillions of edges [23]. Graph
queries are expensive, e.g., subgraph isomorphism is NP-
complete (cf. [35]). Moreover, real-life graphs are constantly
changed. It is often too costly to recompute Q(G & AG)
starting from scratch in response to frequent AG. These
highlight the need for incremental algorithms 7Ta: we use a
batch algorithm 7 to compute Q(G) once, and then employ
incremental 7a to compute changes AO to Q(G) in response
to AG. The rationale behind this is that in the real world,
changes are typically small, e.g., less than 5% on the entire
Web in a week [34]. When AG is small, AO is often also
small, and is much less costly to compute than Q(G @& AG),
by making use of previous computation Q(G). In addition,
incremental computations are crucial to parallel query pro-
cessing [18,21] that partitions a big G, partially evaluates
queries on the fragments at different processors, treats mes-
sages among the processors as updates, and conducts itera-
tive computations incrementally to reduce the cost.

When AG is small and G is big, can we guarantee that
it is more efficient to compute AO with Ta than to recom-
pute Q(G & AG) with 77 A traditional characterization is
by means of a notion of boundedness proposed in [44] and
extended to graphs in [17,38]. It measures the cost of Ta
in [CHANGED| = |AG| + |AO], the size of the changes in
the input and output. We say that Ta is bounded if its cost
can be expressed as a polynomial function of |CHANGED|
and |@|. The incremental problem for Q is bounded if there
exists a bounded 7a for Q, and is unbounded otherwise.

Bounded 7a allows us to reduce the incremental compu-
tations on big graphs to small graphs. Its cost is determined
by |CHANGED| and query size |@|, rather than by the size
|G| of the entire G. In the real world, |Q| is typically small;
moreover, |CHANGED| represents the updating cost that is
inherent to the incremental problem itself, and is often much
smaller than |G|. Hence bounded 7a warrants efficient in-
cremental computation no matter how big G is.

Undoable. No matter how desirable, we show that the in-
cremental problem for Q is unbounded when Q ranges over
graph traversal (RPQ, regular path queries), strongly con-
nected components (SCC) and keyword search (KWS). The
negative results hold when AG consists of a single edge dele-



tion or insertion. Add to it the unboundedness of graph
pattern matching via subgraph isomorphism (ISO) [17]. For
these common queries, a bounded incremental algorithm is
beyond reach. That is, by the standard of boundedness,
incremental graph algorithms seem not very helpful.

Doable. The situation is not so hopeless. The bounded-
ness of [17,38,44] is often too strong to evaluate incremental
algorithms. To characterize the effectiveness of real-life in-
cremental algorithms, we propose two alternative measures.

(1) Localizable computations. We say that the incremental
problem for O is localizable if there exists an incremental
algorithm Ta such that for Q € Q, G and AG, its cost is de-
termined by |@Q| and the dg-neighbors of nodes in AG, where
dg is decided by |Q] only. In practice, @ is typically small,
and so is dg. Hence it allows us to reduce the computations
on (big) G to small dg-neighbors of AG.

We show that the incremental problems for KWS and ISO
are localizable, although they are unbounded.

(2) Relative boundedness. We often want to incrementalize
a batch algorithm 7 for Q. For a query Q € Q and a graph
G, we denote by G(7,q) the part of data in G inspected by
T when computing Q(G). Given updates AG to G, denote
by AFF the difference between (G ® AG)(7,¢) and G(7,q).

An incremental algorithm 7a for Q is bounded relative to
T if its cost is a polynomial in |AG], |Q| and |AFF|. Intu-
itively, AFF indicates the necessary cost for incrementalizing
T, and Ta incurs this minimum cost, not measured in |G|.

We show that RPQ and SCC are relatively bounded, i.e., it
is possible to incrementalize their popular batch algorithms
7 and minimize unnecessary recomputation of 7.

Contributions. The paper studies the effectiveness of in-
cremental graph computations, and provides the following.

(1) Impossibility results. We show that no bounded incre-
mental algorithms exist for RPQ, SCC, and KWS (Section 3).
We establish these impossibility results either by elemen-
tary proofs or by reductions from incremental graph prob-
lems that are already known unbounded. To the best of our
knowledge, this work gives the first proofs by reductions for
unbounded graph incremental computations.

(2) New characterizations. We characterize localizable in-
cremental computations and relative boundedness in Sec-
tions 4 and 5, respectively. We show that the incremental
computations above are either localizable (KWS and 1SO)
or relatively bounded (RPQ and SCC). That is, while these
incremental computations are unbounded, they can still be
effectively conducted with performance guarantees.

(3) Incremental algorithms. As a proof of concept, we de-
velop localized incremental algorithms for KWS and ISO
(Section 4), and bounded incremental algorithms for RPQ
and SCC relative to their batch algorithms (Section 5). We
also develop optimization techniques for processing batch
updates. These extend the small library of existing incre-
mental graph algorithms that have performance guarantees.

(4) Experimental study. We evaluate the algorithms using
real-life and synthetic graphs (Section 6). We find that
(a) our localizable and relatively bounded incremental al-
gorithms for KWS, RPQ, SCC and ISO are effective. They
outperform their batch counterparts even when |AG| is up
to 30%, 35%, 25% and 25% of |G|, respectively, and are on
average 4.9, 6.2, 2.9 and 3.7 times faster when |AG| accounts

for 10% of |G|. (b) They scale well with |G|. For instance,
they take 28, 100, 19 and 225 seconds, respectively, on G
with 50 million nodes and 100 million edges, under 5% up-
dates, as opposed to 197, 1172, 144 and 2386 seconds by
batch algorithms. (¢) Our optimization strategies are effec-
tive: they improve the performance by 1.6 times on average.

Related work. We categorize the related work as follows.

Bounded incremental algorithms. Proposed in [44], the no-
tion was studied for graph algorithms in [17,38,39]. A
number of incremental algorithms have been developed for
graphs [12, 17,26, 28, 32, 38-42, 46] (see [16] for a survey).
However, their costs are typically studied in terms of amor-
tized analysis for averaged operation time of a sequence of
unit updates to G, not in the size of changes that is inherent
to the incremental problem itself. To the best of our knowl-
edge, bounded algorithms are only in place for the short-
est path problems, single-source or all pairs, with positive
lengths [38,39]. It is known that the incremental problem
is unbounded for subgraph isomorphism ISO [17], and for
single-source reachability to all vertices [38].

As the notion of boundedness is often too strong, a weaker
standard was introduced in [17], based on a notion of affected
area AFFY. Intuitively, AFF" covers not only changes AO,
but also data that is necessarily checked to detect AO by
all incremental algorithms for Q, encoded in auxiliary struc-
tures. An incremental algorithm is semi-bounded [17] if (a)
its cost can be expressed as a polynomial in |AFFY|, |Q| and
|AG|, and (b) the size of the auxiliary structure is bounded
by a polynomial in |G|. The incremental problem for graph
simulation is shown semi-bounded [17].

This work differs from the prior work in the following. (a)
We establish new unboundedness results for RPQ, SCC and
KWS, and a new form of reductions as proof techniques.
(b) We propose measures for the effectiveness of incremen-
tal graph algorithms. In contrast to [17,38,39], localizable
algorithms are characterized by dg-neighbors of AG instead
of AO or AFFY. Relative boundedness is defined in terms of
the affected area AFF relative to a specific algorithm 7, as
opposed to AFFY for all incremental algorithms for Q (semi-
boundedness). (c¢) We develop incremental algorithms for
RPQ, SCC, KWS and ISO with performance guarantees un-
der the new measures, although they are unbounded.

Locality of graph computations. There have been batch al-
gorithms that capitalize on the data locality of queries, for
(parallel) subgraph isomorphism (e.g., [19,20]). Incoop [9],
a generic MapReduce framework for incremental computa-
tions, also makes use of the locality of previously computed
results in its scheduling algorithm to prevent straggling. To
the best of our knowledge, the study of localizable incremen-
tal algorithms is the first effort to characterize the effective-
ness of incremental algorithms in terms of locality.

Relative boundedness. There has also been work on incre-
mentalizing batch algorithms, notably self-adjusting compu-
tations [5,10]. The idea is to track the dependencies between
data and function calls as a dynamic dependency graph [6],
upon which functions that are affected by the changes in the
input can be identified and recomputed. Memorization [36]
is used to record and reuse the results of function calls when
possible. It is a general-purpose, language-centric technique
for programs to automatically respond to modifications to
their data. In contrast, relative boundedness is to charac-




terize whether it is feasible to incrementalize a given batch
algorithm 7 with cost measured in the size of affected area
AFF inspected by 7, not in terms of function calls.

View maintenance. Related is also view maintenance for
updating materialized views, which has been studied for
relational data [14, 24, 25], object-oriented databases [31],
and semi-structured data modeled as graphs [4,46]. Various
methods have been proposed, e.g., an algebraic approach
of [11] for XML views and the use of key constraints [24]
for relations. However, few of them have provable per-
formance guarantees, and fewer can be applied to graph
queries. In particular, the techniques of [4,46] are devel-
oped for views specified as selection paths, and do not apply
to graph queries studied in this paper. In contrast, we study
the boundedness of incremental graph problems and provide
algorithms that are localizable or relatively bounded.

2. INCREMENTAL COMPUTATIONS

We first present graph queries studied in this paper, and
then formulate their incremental problems.

We start with basic notations.

We consider directed graphs G represented as (V, E,l),
where (1) V is a finite set of nodes; (2) E CV x V is a set
of edges in which (v,v") denotes an edge from v to v, and
(3) each node v in V carries [(v), indicating its label and
content, as found in social networks and property graphs.

If (v, w) is an edge in E, we refer to node w as a successor
of v, and to node v as a predecessor of w.

Graph G, = (Vi, Eq,ls) is a subgraph of G if V, C V,
E, C E, and for each node v € V5, Is(v) = I(v).

Subgraph G5 is induced by Vs if Es consists of all the edges
in GG such that their endpoints are both in V.

2.1 Graph Queries

We study the following four classes of graph queries.

RPQ. Consider directed graphs G = (V, E,l) over a finite
alphabet ¥ of labels defined on the nodesin V. A path p from
v t0 v, in G is a list (vo,...,vs), where for i € [0,n — 1],
(vi,vi+1) is an edge in G. The length of path p is n.
A regular path query Q is a regular expression as follows:
Qu=cla|Q-QQ+Q[Q".
Here (a) € denotes an empty path; (b) « is a label from 3; (c)
- and 4+ are concatenation and union operators, respectively;
and (d) Q" indicates zero or more occurrences of Q.

We use L(Q) to denote the regular language defined by
Q, i.e., the set of all strings that can be parsed by Q. For a
path p = (vo,...,vn) in G, we use [(p) to denote the labels
{(vo) - - - I(vn) of the nodes on p. A match of Q in G is a pair
(v,w) of nodes such that there exists a path p from v to w
having I(p) € L(Q). RPQ is stated as follows.

o Input: A directed graph G and a regular path query Q.
o Output: The set Q(G) of all matches of @ in G.
It takes O(|V|| E||Q|? log? |Q|) time to compute Q(G) by us-
ing NFA (nondeterministic finite automaton) [29, 33], where
|Q| is the number of occurrences of labels from ¥ in @ [29].

SCC. A subgraph G, of a directed graph G is a strongly
connected component of G if it is (a) strongly connected,
i.e., for any pair (v,v’) of nodes in G, there is a path from
v to v’ and vice versa, and (b) maximum, i.e., adding any
node or edge to G makes it no longer strongly connected.

symbols notations
Q(G) the answers to query Q in graph G
AG updates to graph G (edge insertions, deletions)
G d AG the graph obtained by updating G with AG
AO updates to old output Q(G) in response to AG
T a batch algorithm for a query class O
Ta an incremental algorithm for Q
AFF changes to the area inspected by a batch algorithm 7
dist(s, t) the shortest distance from node s to ¢
Gq(v) the d-neighbor of node v in G

Table 1: Notations

We use SCC(G) to denote the set of all strongly connected
components of G. The SCC problem is stated as follows.
o Input: A directed graph G.
o Output: SCC(G).
It is known that SCC is in O(|V| + |E|) time [43].

KWS. We consider keyword search with distinct roots in
the same setting of [37]. A keyword query @ is of the form
(k1,...,km), where each k; is a keyword. Given a directed
graph G and a bound b, a match to Q in G at node r is
a tree T(r,p1,...,pm) such that (a) T is a subgraph of
G, and r is the root of T, (b) for each i € [1,m], p; is a
node in T such that I(p;) = ks, i.e., it matches keyword k;,
(c) dist(r,p;) < b, and (d) the sum 3;c[1 mdist(r, p;) is the
smallest among all such trees. Here for a pair (r, s) of nodes,
dist(r, s) denotes the shortest distance from r to s, i.e., the
length of a shortest path from r to s. KWS is as follows.
o Input: A directed graph G, a keyword query Q =
(k1,...,km), and a positive integer b.
o Output: The set Q(G) of all matches to @ at node r
in G within b hops, for r ranging over all nodes in G.
It can be computed in O(m(|V|log|V|+ |E|)) time (cf. [45]).

ISO. A pattern query Q is a graph (Vo, Eg,lg), in which
Vo and Eq are the set of pattern nodes and directed edges,
respectively, and each node u in Vg has a label lg(u).

A match of @ in G is a subgraph G5 of G that is iso-
morphic to Q, i.e., there exists a bijective function h from
Vo to the set of nodes of G such that (a) for each node
u € Vo, lo(u) = l(h(u)), and (b) (u,u’) is an edge in Q iff
(h(u), h(u")) is an edge in Gs. The answer Q(G) to Q in G
is the set of all matches of @ in G. I1SO is stated as follows.

o Input: A directed graph G and a pattern Q.
o Output: The set Q(G) of all matches of Q in G.
It is NP-complete to decide whether Q(G) is empty (cf. [35]).

2.2 Incremental Query Answering
We next formalize incremental computation problems.
Updates. We consider w.l.o.g. the following unit updates:
o edge insertion: (insert e), possibly with new nodes, and
o edge deletion: (delete e).
A batch update AG to graph G is a sequence of unit updates.

Incremental problem. For a class Q of graph queries, the
incremental problem is stated as follows.
o Input: Graph G, query @ € Q, old output Q(G), and
updates AG to the input graph G.
o Output: Updates AO to the output such that

QRIG® AG) = Q(G) ® AO.
We study the problem for RPQ, SCC, KWS and ISO.
The notations of this paper are summarized in Table 1.

3. BOUNDED PROBLEMS: UNDOABLE

This section shows the following impossibility results.



Theorem 1: The incremental problem is unbounded for
o regular path queries (RPQ),
o strongly connected components (SCC), and
o keyword search (KWS),
even under a unit edge deletion and a unit edge deletion. O

Together with the unboundedness of ISO [17], Theorem 1
tells us that it is impossible to find bounded incremental
algorithms for all the graph query classes presented in Sec-
tion 2. The negative results are rather robust: the incremen-
tal problems are already unbounded under unit updates.

Before we give a proof, we first review the notion of bound-
edness of [17,38], and introduce a form of A-reductions.

Boundedness. An incremental algorithm 7a for a graph
query class Q is bounded if its cost can be expressed as a
polynomial of [CHANGED| and |Q|, where |CHANGED| =
|AG| + |AO|. Following [17,38], we require Ta to be locally
persistent. Such Ta may use (a) auxiliary structures asso-
ciated with each node v of G, to keep track of intermediate
results at v, and (b) pointers to its successors and predeces-
sors. However, no global auxiliary information is allowed,
such as pointers to nodes other than its neighbors; similarly
for edges. The algorithm starts an update from the nodes or
edges involved in AG, and traverses G following the edges
of G. The choice of which edge to follow depends only on
the information accumulated in the current processing of G
since global information from prior passes is not maintained.

Reductions. We now introduce A-reduction. Consider two
classes of graph queries Q1 and Q». For i € [1,2], we rep-
resent an instance of (the computational problem for) Q; as
I; = (Qi,G;), where Q; € Q; and G; is a graph.
A A-reduction from Q1 to Q2 is a triple (f, fi, fo) of func-
tions such that for each instance I1 = (Q1,G1) of Qs,
(1) f(I,) is an instance I» = (Q2,G2) of Qq; and
(2) for all updates AG; to G1,
(a) fi(AG1) computes updates AG2 to Ga; and
(b) fo(AO2) computes AO1, where AO; denotes up-
dates to Q;(G;) in response to AG; for ¢ € [1,2],
in polynomial-time (PTIME) in |AG:| + |AO:| and |@Q1].
Intuitively, f maps the instances of Q1 to Qq2; f; maps in-
put updates AG1 to AG2, and f, maps output updates Oz
back to O1, both in PTIME in the size of )1 and changes in
the input and output of instance (Q1,G1), where (Q2, G2)
corresponds to (Q1,G1) via function f. Hence if Q2 has a
bounded incremental algorithm, then so does Q;. Equiv-
alently, if Q; is unbounded, neither is Qs. That is, A-
reduction preserves boundedness (see Appendix for a proof).

Lemma 2: If there exists a A-reduction from Qi to Q2
and if the incremental problem for Qs is bounded, then the
incremental problem for Q1 is also bounded. O

Proof of Theorem 1. Based on A-reduction, we outline
a proof, which reveals the challenges to the development of
incremental algorithms. The proofs for RPQ, SCC and KWS
are nontrivial (see Appendix and [2]). For each query class,
we need to give two proofs: one under a unit edge deletion,
and the other under a unit insertion. Indeed, a problem
may be unbounded under deletions (resp. insertions) but be
bounded under insertions (resp. deletions). An example is
SSRP, the single-source reachability problem to all vertices.
It is to decide, given a graph G and a node vs in G, whether
there exists a path from vs to v, for all nodes v in G. It

is known that SSRP is unbounded under unit edge deletions
but bounded under unit edge insertions [38].

RPQ. We show that the incremental problem for RPQ is
unbounded under a unit edge deletion by A-reduction from
SSRP, whose incremental problem is unbounded under unit
deletions. We show the unboundedness under unit edge in-
sertions by giving an elementary proof. We construct an in-
stance (Q, G) of RPQ, and show by contradiction that there
exists no bounded incremental algorithm that can correctly
compute Q(G @ AG) in response to updates AG to G.

SCC. We prove the unboundedness of the case under a unit
edge deletion also by A-reduction from SSRP. The case
under unit edge insertions is verified by contradiction.

KWS. We show that the incremental problem for KWS is
unbounded under unit edge insertions by A-reduction from
subgraph isomorphism I1SO, whose incremental problem is
unbounded under edge insertions when Q@ is a tree [17]. The
case under unit edge deletions is proved by contradiction. O

4. LOCALIZABLE COMPUTATIONS

Not all is lost. Despite Theorem 1, there exist efficient
incremental algorithms for RPQ, SCC, KWS and ISO with
performance guarantees under new characterizations for the
effectiveness of incremental algorithms. In this section we in-
troduce one of the standards, namely, localizable incremen-
tal computations. We first present the notion (Section 4.1).
We then show that the incremental problems for KWS and
ISO are localizable (Section 4.2 and Appendix, respectively).

4.1 Locality of Incremental Computations

We start with a few notations. (a) In a graph G, we say
that a node v is within d hops of v if dist(v,v') < d by
taking G as an undirected graph. (b) We denote by Vi(v)
the set of all nodes in G that are within d hops of v. (c)
The d-neighbor G4(v) of v is the subgraph of G induced by
Vi(v), in which the set of edges is denoted by Eq(v).

Consider a graph query class Q. An incremental algorithm
Ta for Q is localizable if its cost is determined only by |Q)|
and the sizes of the dg-neighbors of those nodes on the edges
of AG, where dg is determined by the query size |Q|.

The incremental problem for Q is called localizable if there
exists a localizable incremental algorithm for Q.

Intuitively, if Ta is localizable, it can compute AO by
inspecting only G, (v), i.e., nodes within dg hops of nodes
v in AG. In practice, G, (v) is often small. Indeed, (a) Q
is typically small; e.g., 98% of real-life pattern queries have
radius 1, and 1.8% have radius 2 [22]; hence so is dg; and
(b) real-life graphs are often sparse; for instance, the average
node degree is 14.3 in social graphs [13]. Hence, 7a can
reduce the computations on possibly big G to small Ga,, (v).

The main results of this section are as follows.

Theorem 3: The incremental problem is localizable for
KWS and I1SO under batch updates. a

That is, while the incremental problems for KWS and 1SO
are unbounded, we can still effectively conduct their incre-
mental computations by making big graphs “small”.

As a constructive proof of Theorem 3, we next develop lo-
calizable incremental algorithms for KWS. The incremental
algorithms for ISO are similar and are outlined in Appendix.



Algorithm: IncKWSt

Input: A graph G with kdist(+), keyword query @ and bound b,
matches Q(G), and an edge (v, w) to be inserted.
Output: The updated matches Q(G @ AG) and kdist lists.

1. for each k; in @) with
kdist(w)[k;].dist < min(kdist(v)[k;].dist — 1,b) do
kdist(v)[k;].dist := kdist(w)[k;].dist + 1;
kdist(v)[k;].next := w; queue g; := nil; g;.enqueue(v);
while ¢g; is not empty do
node u := g;.dequeue();
for each predecessor u’ of u such that
kdist(u)[k;].dist < min(kdist(u’)[k;].dist — 1,b) do
kdist(u’)[k;].dist := kdist(u)[k;].dist + 1;
kdist(u')[k;].next := u; g;.enqueue(u’);

SN

5L

0.  replace (u,uY) with (u,uy) in all the matches of Q(G) or
add matches to Q(G ® AG) by including (u, uj);
11. return Q(G & AQG) (including revised Q(G)) and kdist(-);

for each v and uf involved in a changed kdist(u)[k;].next do

Figure 1: Algorithm IncKWS™

4.2 Localizable Algorithms for KWS

We first provide localizable algorithms for KWS under unit
edge insertions and deletions. We then develop a localizable
incremental algorithm for KWS to process batch updates.

Data structures. We start with an auxiliary structure. Re-
call that a KWS query consists of a list ) of keywords and an
integer bound b. For each node v in graph G, we maintain
a keyword-distance list kdist(v). Its entries are of the form
(keyword, dist, next), where dist is the shortest distance from
v to a node labeled keyword in @, and next indicates the
node on this shortest path next to v. A single shortest path
is selected with a predefined order in case of a tie. Hence
each root uniquely determines a match if it exists. Such
keyword-distance lists are obtained after the execution of a
batch algorithm. Indeed, existing batch approaches [8,27,30]
for KWS traverse G to find shortest paths from nodes to oth-
ers matching keywords in (). While they vary in search and
indexing strategies, they all maintain something like kdist(-).

(1) Unit insertions. Inserting an edge to graph G may
shorten the shortest distances from nodes to those matching
keywords in @, which is reflected as changes to dist and
next in the keyword-distance lists on (G. Based on this, we
present an incremental algorithm, referred to as IncKWS™
and shown in Fig. 1, to process unit edge insertions.

Given AG consisting of insert(v,w), IncKWS™ inspects
whether it inflicts any change to shortest paths of existing
matches; if so, it propagates the changes, revises kdist(v)
entries for affected nodes v and updates the matches ac-
cordingly. It proceeds until no more revision is needed. The
search is confined in the b-neighbors of nodes in AG, and
hence localizable, where b is the bound in the KWS query.

More specifically, IncKWS™ first checks whether (v, w) is
on a shorter path within the bound b from v to nodes labeled
ki in Q. If so, kdist(v) is adjusted by updating dist and next
(lines 2-3). IncKWS™ then propagates the change to the
ancestors of v if their kdist entries are no longer valid (lines
4-8). An FIFO (first-in-first-out) queue ¢; is used to control
the propagation, following BFS (breadth-first-search). Each
time when a node u is dequeued from g¢;, the predecessors of
u are inspected to check whether u triggers updated shortest
path from them within bound b, followed by updating their
kdist entries when needed (lines 6-8). These predecessors
may be inserted into queue g; for further checking (line 8).
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Figure 2: Example graph and matches of KWS

After revising the data structures, IncKWS™ computes
Q(G @ AG) based on the changes to next in kdist(-)’s (lines
9-10), either by replacing some edges in existing matches, or
by including new matches not in Q(G). Note that all such
affected edges are inside the 2b-neighbors of AG.

Example 1: Figure 2 gives a graph G (with all solid edges
and dotted ez, e5). Consider @ = (a,d) and bound 2. Two
trees Ty, and Ty, in Q(G) are shown in Fig. 2 (solid edges).
When edge e; is added to G, denote by G the graph after
the insertion. IncKWS™ finds that the shortest distance from
b2 to nodes matching d in G is reduced to 1 from 2. Thus it
updates the entries in kdist(b2)[d] and propagates the change
to ba’s predecessors. The propagation stops at c2 since the
shortest distance from it to d nodes reaches bound 2. The
values of (dist, next) in kdist lists on G are updated as follows.

| IncKWST | before insertion | after insertion |
kdist (b2)[d (2,b4) (1,d1)
kdist(c2)[d (L, nil) (2,b2)

Then IncKWS™ revises Ty, by replacing the path starting
with edge (b2, bs) by (b2, d1) to get Ty, in Q(G1), and a new
match T, (solid edges in Fig. 2) is added to Q(G1). O

Correctness & complexity. IncKWST updates kdist(-)’s cor-
rectly: it revises only entries in which dist values are de-
creased, and checks all affected entries by propagating the
changes. From this the correctness of IncKWS™ follows.

IncKWS ™ is in O(m(| Vs (w)| + | Ep (w)]) + [Vi ()] | Eap (w)])
time. Updating kdist(+)’s takes O(m(|V,(w)|+|Es(w)])) time
in total (lines 1-8), where m is the number of keywords in Q.
Observe the following: (a) each node with updated kdist is
verified at most m times to check all the keywords in @; and
(b) only the data in Gy(w) is inspected since change propa-
gation stops as soon as the shortest distance exceeds b, i.e.,
kdist(-)’s are partially updated for matches within bound b.
Updating Q(G) (lines 9-10) takes O(|Vy(w)||E2p(w)|) time
since the roots of the affected matches are within b hops of
w, and their edges to be adjusted are at most 2b hops away
from w. Therefore, algorithm IncKWS™ is localizable.

(2) Unit deletions. The incremental algorithm for pro-
cessing unit delete(v,w) is shown in Fig. 3, denoted by
IncKWS™. In contrast to edge insertions, some shortest dis-
tances in kdist lists may be increased by delete(v,w). The
main idea of IncKWS™ is to identify those entries in kdist(-)’s
that are affected by AG, and compute changes to dist and
next. Similar to IncKWS™, updating kdist(-)’s is confined
within the b-neighbors of AG by inspecting only those dis-
tances no longer than bound b. The identification and com-
putation are separated into two phases in IncKWS™.

After consulting whether (v, w) is on a shortest path from
v to some node labeled keyword k; within bound b, IncKWS™
propagates the change to v’s predecessors if needed with
the help of a stack a;, and each predecessor that may have



Algorithm: IncKWS™

Input: G with kdist(+), @, b, Q(G) as in IncKWS™, and delete(v, w).

Output: The updated matches Q(G @ AG) and kdist lists.

1. for each k; in Q with w = kdist(v)[k;].next
and kdist(w)[k;] < b do

2. queue q; := nil; stack a; := nil; a;.push(v); mark v affected;

3. while a; is not empty do

4. node u := a;.pop();

5. for each predecessor v’ of u that u = kdist(u’)[k;].next
and kdist(u/)[k;] < b do

6. a;.push(u’); mark u’ affected;

7. for each affected node u do

8. compute dist and next for kdist(u)[k;] based on those
u’s successors that are not affected;

9. gi-insert(u, kdist(u) [k;].dist);

10. while g; is not empty do

11. (u, d) := g;.pull_min();

12. for each predecessor u’ of u with
d < min(kdist(u’)[k;].dist — 1,b) do

13. kdist(u’)[k;].dist :== d + 1; kdist(u')[k;].next := u;

14. g;.decrease(u/, kdist(u’)[k;].dist);

15. for each u} and u} involved in a changed kdist(u)[k;].next do

16.  replace (u,uY) with (u,uy) in all the matches of Q(G) or
remove matches from Q(G) by excluding (u,u});

17.return Q(G & AG) (updated Q(G) above) and kdist(-);

Figure 3: Algorithm IncKWS™

an updated shortest path to nodes matching k; is marked
affected w.r.t. k; (lines 1-6). The propagation is similar to
that of IncKWS™, by inspecting next values, and is conducted
in the b-neighbors of v. Then the potential kdist entries for
those affected nodes are computed based on their successors
that are not affected w.r.t. k; (line 8), and affected nodes
with their potential dist values (as keys) are inserted into
priority queue ¢; (line 9) to compute exact dist values later.
Indeed, the exact values of dist and next may depend on the
affected successors, whose values also need to be determined.
The exact values of dist and next are computed in the sec-
ond phase (lines 10-14). For node u with minimum dist that
is removed from g;, IncKWS™ checks whether it leads to a
new shortest path within bound b originated from predeces-
sor v’ of u (lines 11-12). If so, values in kdist(u')[k;] are
updated, and the key of «’ in g; is decreased (lines 13-14).
The process continues until ¢; becomes empty. Matches
in Q(G) are updated using the latest kdist lists (lines 15-16).

Example 2: Recall Q, Gi1 and Q(G1) from Example 1.
Suppose that ez is now removed from G1. This makes the
shortest path from ¢z to ag in T, split, and IncKWS™ marks
node ¢ affected with keyword a. Since the shortest distance
from successor bz of ¢z to nodes matching a equals the bound
2, IncKWS™ concludes that node ¢c2 cannot be the root of a
match, and removes T¢, of Example 1 from Q(G1). O

Correctness € complezity. The correctness of IncKWS™ is

verified just like for IncKWS™, except that the exact values
of kdist(v) may depend on multiple affected successors of v.
IncKWS™ runs in O(m(|Vs(w)|log |[Vs(w)| + |Es(w)]) +
|Vo (w)|| E2s(w)]) time, including O(|Vs(w)||E2s(w)]) for up-
dating matches in addition to the cost for computing changes
to kdist(-)’s. Its first phase (lines 1-9) takes O(m(|Vy(w)| +
|Ep(w)|)) time since only the affected shortest paths of
length bounded by b are identified. The second phase (lines
10-14) takes O(m(|Vs(w)|log |[Vs(w)| + |Ebs(w)|)) time, the
same as computing b-bounded shortest path from affected
nodes to m sinks, i.e., nodes labeled a keyword from Q.

(3) Batch updates. We next give an incremental algo-
rithm, denoted by IncKWS (not shown), to process batch
updates AG = (AGT,AG™), where AGT and AG~ de-
note edge insertions and deletions, respectively. We as-
sume w.l.o.g. that there exist no delete e in AG™ and insert e
in AG™ for the same edge e, which can be easily detected.
Given batch updates AG, IncKWS inspects whether each
unit edge deletion and insertion causes any change to ex-
isting matches, i.e., whether some of existing shortest paths
become invalid and new shortest paths have to be generated;
if so, it propagates the changes and updates the affected
keyword-distance lists.  The algorithm updates the same
entry at most once even if it is affected by multiple updates
in AG, by interleaving different change propagation with a
global data structure to accommodate the effects of different
unit updates. It works in three phases, as outlined below.

(a) IncKWS first identifies the affected nodes w.r.t. each key-
word k; in @ due to AG™ within the b-neighbors of AG™,
and computes their potential dist and next values, using
the same strategy of IncKWS™. Here all the affected nodes
w.r.t. k; and their potential dist values are inserted into a
single priority queue ¢; to further compute exact values.

(b) The algorithm then checks whether each insert(v,w)
leads to the creation of a shorter path within bound b when
neither v nor w is affected w.r.t. k; by AG™. Insertions
with affected nodes are not considered since dist value at
w may no longer be correct due to AG™, or this edge has
already been inspected to compute potential dist value for
node v. If so, dist and next values are updated for kdist(v).
Unlike IncKWS™ that propagates this change to ancestors of
v directly, it inserts node v and the updated dist value into
queue g; to interleave insert(v, w) with other updates in AG.

(c) After these, IncKWS computes exact next and dist values
of kdist(+)’s, in the same way as we do in IncKWS™ by making
use of queue ¢;. Note that all potential changes to kdist(-)’s
caused by AG, including both deletions and insertions, are
collected into the same g;; in this way the algorithm guaran-
tees that the exact value, i.e., shortest distance, is decided
at most once for each entry affected. Matches in Q(G) are
updated accordingly within the 2b-neighbors of AG at last.

Example 3: Consider Q and G of Example 1, and batch
updates AG that insert edges e1, es, e4 and delete e2 and es.

Given these, IncKWS first identifies the affected nodes ¢1
and ce2 w.r.t. a, and finds that the potential value of the
corresponding dist exceeds the bound 2. Then it processes
insertions; e.g., the insertion of e3 leads to decreased shortest
distance from b2 to a nodes, and the change is propagated to
¢z for computing the exact value of kdist(cz2)]al, i.e., IncKWS
interleaves insert e3 and delete e to decide the exact shortest
distance from ¢z to a nodes. The other updates are handled
similarly. Based on these, it replaces the two branches of T5,
with (b2, a1) and (b2, d1), respectively, and adds match Ty,
in Fig. 2. A new match T}, is also generated, where path
(c2,b3,a2) in T,, of Example 1 is replaced by (cz, b2,a1). O

Correctness € complexity. For the correctness of IncKWS,
observe the following. (a) Each node that is affected w.r.t.
keyword k; by any unit update in AG is inspected. (b) The
dist values for these nodes are monotonically increasing and
correctly computed, similar to its counterpart in IncKWS™.

IncKWS is in O(m(|Vo(AG)|log [V4(AG)| + |Ex(AG)]) +
Vo (AG)||E2(AG)|) time, where V4(AG) (resp. Ey»(AG))




denote the nodes (resp. edges) of the union of b-neighbors of
nodes in AG. Note that the final kdist value of each affected
node w.r.t. any keyword k; is determined once by using the
global priority queue ¢;. The complexity analysis is similar
to that of IncKWS™, except that here the 2b-neighbors of all
the nodes involved in AG are possibly accessed.

Since the costs of IncKWS™, IncKWS™ and IncKWS are
determined by m and the size of 2b-neighbors of nodes in-
volved in AG for a given bound b, they are all localizable.

Remark. Although the incremental algorithms for KWS are
developed for a constant b, they can be readily extended
to cope with b that varies. More specifically, when change
propagation stops at node v due to bound b, we can an-
notate v as a “breakpoint” w.r.t. b, and the set of all such
breakpoints is stored as a “snapshot” of graph G w.r.t. b.
When given a larger b’, the snapshot is firstly restored and
each breakpoint is regarded as a unit update to G, i.e., as
input to the incremental algorithm with b in addition to
AG, from where the change propagation continues. In this
way, KWS queries with different b values can be answered us-
ing the same data structure, i.e., keyword-distance list that
is consistently updated. Indeed, we only need to store the
snapshot of G w.r.t. the maximum b that is encountered.

S. RELATIVE BOUNDEDNESS

We next introduce relative boundedness, another alter-
native characterization for the effectiveness of incremental
computations. We first formalize the notion in Section 5.1.
We then develop relatively bounded incremental algorithms
for RPQ and SCC in Sections 5.2 and 5.3, respectively.

5.1 Relative Boundedness

Consider a batch algorithm 7 for a query class Q that
is proven effective and being widely used in practice. For
a query Q € Q and a graph G, we denote by G(r ) the
data inspected by 7 when computing Q(G), including data
in G and possibly auxiliary structures used by 7. For up-
dates AG to G, we denote by AFF the difference between
(G ® AG)(1,0) and G(1,q), i.e., the difference in the data
inspected by T for computing Q(G @ AG) and for Q(G).

An incremental algorithm 7a for Q is bounded relative to
T if its cost can be expressed as a polynomial function in
|AG|, |Q| and |AFF| for @ € Q, graph G and updates AG.
Note that the changes AO to Q(G) are included in AFF.

Intuitively, we only incrementalize batch algorithms 7’s
that have been verified effective. As batch algorithms have
been studied for decades for graphs, a number of such algo-
rithms are in place. When incrementalizing such algorithms,
relative boundedness is to characterize the effectiveness of
the incrementalization, i.e., whether it minimizes unneces-
sary recomputation in response to updates AG. It suffices
to develop Ta bounded relatively to one of such 7’s.

Note that for a class Q of graph queries, one can find local-
izable incremental algorithms only if Q has the data locality,
i.e., to decide whether v is in the answer Q(G) to a query @,
it suffices to inspect the dg-neighbor of v. However, many
graph queries do not have the data locality, e.g., RPQ and
SCC. For such queries, we can explore relatively bounded in-
cremental algorithms. Moreover, even when Q has the data
locality, we want to find incremental algorithms that are
both localizable and bounded relative to a practical batch
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Figure 4: NFA Mg and intersection graph of Mg, G

algorithm of Q. Such algorithms are particularly needed for
large queries @ (i.e., when diameter dg of @ is large).

We should remark that there are other alternative effec-
tiveness characterizations for incremental graph algorithms,
e.g., a classification in terms of incremental complexity. We
focus on localizability and relative boundedness in this paper
since they are easy to verify and use in practice.

The main results of this section are as follows.

Theorem 4: There are bounded incremental algorithms for
RPQ and SCC relative to their batch counterparts. O

As a proof, we present relatively bounded algorithms for
RPQ and SCC. As will be seen in Section 6, these algorithms
are effective although none of the query classes is bounded.

5.2 Incrementalization for RPQ

We start with RPQ. Given a regular path query @ and a
graph G, it is to compute the set Q(G) of matches of @ in
G, i.e., pairs (v,w) of nodes in G such that v can reach w
by following a path in the regular language defined by Q.

We incrementalize a batch algorithm RPQura [29,33] for
RPQ. We first review RPQnea and identify its AFF. We then
give a bounded incremental algorithm relative to RPQnra.

Batch algorithm. Algorithm RPQnra consists of two
phases. Given @ and G, it first translates @ into an NFA
Mg [29], and then computes Q(G) by traversing G guided
by Mg [33]. Tts time complexity is O(|V||E||Q|*log? |Q])-
More specifically, Mg = (S5,%, 6, so, F'), where S is a finite
set of states, 3 is the alphabet, § is the transition function
that maps S x 3 to the set of subsets of S, sg € S is the initial
state, and F' C S is the set of accepting states. There are
other methods for constructing NFA, e.g., the one based on
partial derivatives [7]. We adopt the algorithm of [29] since
it constructs smaller NFA than [7] and takes less time.
After Mg is in place, the second phase starts, traversing
the intersection graph G; = (Vi, Er,lr) of G and Mg [33].
Here Vi = V x S, li(v,s) = l(v), Er C Vi x Vi and
((v,8),(v',s") is in Er if and only if (v,0') € E and
s’ € §(s,1(v")). Each node v in G is marked with a set
v.pmark(-) of markings, where v.pmark(u) is a set of states
s in S, indicating that there exists a path p from u to v in
G such that (u, so) reaches (v, s) following the correspond-
ing path pr of p in G;. When node v is visited in state
s, only the successor v’ of v with §(s,I(v')) # 0 are in-
spected. The markings prevent a node from being visited
more than once in the same state. It includes (u, v) in Q(G)
if v.pmark(u) N F # 0, i.e., there exist state s € v.pmark(u)
and a path p; from (u, so) to (v, s) such that i;(pr) € L(Q).

Example 4: Consider an RPQ query Q@ =c-(b-a+¢)" -c
over the graph G of Fig. 2. Its NFA Mg and a fragment of
the intersection graph G of G and Mg are shown in Fig. 4
(excluding dotted edge ((b2, s2), (a1,51))).

RPQnEea traverses G and marks the nodes in G with states
of Mg. Note that there exist paths from (c1, s0) to (c2, s3)
and from (cz, so) to (c2,ss3) in Gr; thus the accepting state



Algorithm: IncRPQ
Input: A graph G with pmarke(-), regular path query @ and

NFA Mg, matches Q(G), and batch updates (AGT, AG™).
Output: The updated matches Q(G @ AG) and markings pmarke(+).

set affs := identAff(G, pmarke(-), AG™); queue q := nil;
for each (v,u,s) in affs do
update dist, mpre for v.pmarke(u)[s] based on its cpre;
g.insert((v, u, s), v.pmarke (u)[s].dist);
for each edge insertion of (v,w) in AGT do
if edge (v, w) leads to a smaller w.pmarke(u)[s].dist for
node u and state s and (v, u, s) is not in affs then
update dist, mpre, cpre for w.pmarke(u)[s];
g.insert((w, u, ), w.pmarke(u)[s].dist);
update pmarke(-) based on queue g and NFA Mg;
update Q(G) to get Q(G ® AG);
return Q(G @ AG) and pmarke(+);
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Figure 5: Algorithm IncRPQ

s3 is included in markings co.pmark(ci) and co.pmark(cz).
Therefore, (c1,c2) and (cz, c2) are returned by RPQnra. O

Auziliary structures. The marking v.pmarke(u) is of the form
(state, dist, cpre, mpre), where (a) dist is the shortest distance
from (u,so) to (v,state) in Gy, (b) (v',s’) is contained in
v.pmarke (u)[s].cpre if there exists an entry in v’.pmarke(u)
for state s’ such that s € 4(s’,l(v)) and (v',v) is in G,
i.e., v.pmarke(u)[s].cpre stores predecessors of node (v,s)
in G; that are on a path starting from (u,so); and (c)
(v', 8") is in v.pmarke(u)[s].mpre if v’.pmarke(u)[s'].dist+ 1 =
v.pmark.[s].dist, i.e., mpre keeps track of those predecessors
on shortest paths. The auxiliary information is computed
by RPQnra without increasing its complexity.

Characterization of AFF. We identify AFF, i.e., the
difference between G(rpqu,@) and (G ® AG) (rpQyes, ), 85
changes to the markings. Indeed, the markings are the
data that RPQnra necessarily inspects, since updates to
markings trigger different behaviors of RPQnea when com-
puting Q(G @ AG) and Q(G). For instance, a change to
dist in v.pmarke(u)[s] indicates that (v, s) is reached in BFS
through a different path from (u, so) and state s is included
in v.pmark(u) in RPQnra at a different level of the BFS tree.

Incremental algorithm. Based on markings, we develop
incremental algorithms that are bounded relative to RPQnea.
The boundedness is accomplished by updating markings
only when there exists corresponding difference between the
data inspected by RPQnea. For unit edge deletions and in-
sertions, the algorithms are similar to their counterparts for
KWS (Section 4.2), guided by changes to dist. Below we just
present an algorithm for processing batch updates.

The algorithm is denoted as IncRPQ and shown in Fig. 5.
It first invokes procedure identAff (not shown) to identify
a set affs of (v, u,s) triples, where v.pmarke(u)[s].dist is no
longer valid due to edge deletions (line 1). Similar to how
IncKWS™ identifies affected entries of keyword-distance lists
(Section 4.2), identAff checks the values of mpre and cpre
in markings. For example, if v.pmarke(u)[s].mpre becomes
empty, it checks whether (v,s) is in v’.pmarke(u)[s’].mpre
for each successor v' of v and s’ € §(s,1(v")). If so, (v, s) is
removed, and identAff continues to check the successors of
v’. IncRPQ then updates the corresponding (potential) dist
values of triples in affs based on the current cpre, i.e., the
remaining candidate predecessors after removing affected en-
tries. These triples with dist values are inserted into priority
queue q (lines 2-4) for deciding exact markings later on.

Thereafter, IncRPQ processes insertions in AG™ by check-
ing whether they yield smaller dist values in some markings
(lines 5-6), and update them accordingly (line 7). Again,
the updated triples are added to queue ¢ (line 8). IncRPQ
determines exact markings based on queue ¢ (line 9) follow-
ing a monotonically increasing order of updated dist, similar
to IncKWS, while NFA Mg is used to guide the propaga-
tion. By grouping updated triples in queue ¢, the algorithm
reduces redundant computations when processing AG.

Finally, given the updated markings, Q(G @ AG) is com-
puted by taking new pairs of nodes marked with accepting
states in F' and removing invalid ones from Q(G) (line 10).

Example 5: Recall batch updates AG to G from Exam-
ple 3. These inflict the deletion of ((cz,s1), (b3, s2)) and
insertion of ((bz,s2), (a1,s1)) to the intersection graph Gr
of Example 4. IncRPQ first finds that triple (bs, ¢z, s2) is af-
fected by the deletion. The change is propagated to the dece-
dents of (bs, s2) in G, and potential values of (dist, mpre) for
affected entries are computed. After these, it decides exact
values after processing insertions; some are shown below.

[ IncRPQ [ before updates [ after updates |
bs.pmarke(c2)[s2]| (2, {(c2,s1)}) (L, nil)
as.pmarke(c2)[s1 (3, {(b3, s2)}) (L, nil)
cz.pmarke(c2)[ss]| (4, {(az,s1)}) (5, {(c1,81)})

(L, nil) (4,{(a1,s)})
(L, nal) (5,{(a1,s1)})

c1.pmarke(c2)[s3
c1.pmarke(c1)[s3

Note that although the previous path from (cz2,s0) to
(c2,83) is split, accepting state s3 remains in marking
c2.pmarke(c2) since another path connecting these two nodes
in Gy is formed as a result of insertions. Indeed, IncRPQ
combines the processes for delete(cz, bs) and insert(bz, a1) to
compute exact value of ca.pmarke(c2)[s3]. Based on these, it
adds (c2,c1) and (c1,c1) to obtain Q(G & AG), as accepting
state s3 is included in the corresponding markings. a

Correctness & complexity. One can verify that IncRPQ cor-
rectly updates markings by induction on the number of
changed entries. IncRPQ is in O(]AFF|log|AFF|) time. In-
deed, (a) affected triples are added to set affs and queue g at
most once by BFS traversal; (b) each of procedure identAff
(line 1), computing potential values (lines 2-4) and process-
ing edge insertions (lines 5-8) takes O(JAFF|) time by using
Mg and cpre, where to compute potential values, O(|AFF|)
predecessors are processed directly via cpre, without inspect-
ing the entire neighbors; and (¢) computing the latest values
of markings (line 9) needs O(|AFF|log |AFF|) time by using
heaps for queue g, just like fixing dist values for affected
nodes in IncKWS (Section 4.2). Note that |Q| is counted in
|AFF|. All these steps have costs bounded by a function of
|AFF|. Hence IncRPQ is bounded relative to RPQnra-

5.3 Incrementalization for SCC

We next investigate the incremental problem for SCC.
Given a graph G, it is to compute SCC(G), i.e., the set
of all strongly connected components in G. In the sequel we
abbreviate a strongly connected component as an scc.

We incrementalize Tarjan’s algorithm [43] for SCC. We
refer to the batch algorithm as Tarjan. Below we first review
the basic idea of Tarjan, and identify its AFF.

Batch algorithm. Tarjan traverses a directed graph G via
repeated DFS (depth-first search) to generate a spanning
forest F, such that each scc corresponds to a subtree of a
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Figure 6: DFS forest of G and contracted graphs

tree T in F with a designated root. It reduces SCC to finding
the roots of corresponding subtrees in F.

More specifically, each node v in G is assigned a unique
integer v.num, denoting the order of v visited in the traver-
sal. The edges of G fall into four classes by DFS: (a) tree
arcs that lead to nodes not yet discovered during the traver-
sal; (b) fronds that run from descendants to their ancestors
in a tree; (c) reverse fronds that are from ancestors to de-
scendants in a tree; and (d) cross-links that run from one
subtree to another. In addition, v.lowlink is maintained, rep-
resenting the smallest num of the node that is in the same
scc as v and is reachable by traversing zero or more tree arcs
followed by at most one frond or cross-link. It determines
whether v is the root of the subtree corresponding to an scc
by checking whether v.lowlink = v.num, and if so, generates
the scc accordingly. It uses a stack to store nodes that have
been reached during DFS but have not been placed in an
scc. A node remains on the stack if and only if there exists
a path in G from it to some node earlier on the stack.

Example 6: Figure 6 depicts the DFS forest F obtained
by applying Tarjan on graph G of Fig. 2. Each node is an-
notated with its (num,lowlink). There are four scc’s. The
corresponding contracted graph G. (see below) is also shown
in Fig. 6 (solid edges), where node i refers to scc; in G. O

Auziliary structures. To incrementalize Tarjan, we maintain
the values of num and lowlink after traversing G, and anno-
tate the edges with the type that they fall into. Besides, a
contracted graph G. is constructed by contracting each scc
into a single node. The graph G. maintains a counter for
the number of cross-links from one node to another. Each
node v in G. has a topological rank r(v), initially the order
of the scc to which v corresponds in the output sequence of
Tarjan. Indeed, the topological sorting of scc’s is a byproduct
of Tarjan as nodes of each scc are popped from the stack re-
cursively. These can be obtained by slightly revising Tarjan
without increasing its complexity or changing its logic.

It is shown that r(v) > 7(v') if (v,v’) is a cross-link in
G. [43], an invariant property on which we will capitalize.

Characterization of AFF. The affected area AFF includes
the following: (a) changes to lowlink and num of nodes when
computing SCC(G & AG), since accurate lowlink and num
values determine the correctness of Tarjan; (b) v’s successors
for each node v whose v.lowlink changes, since the lowlink
value of v is determined by comparing with lowlink or num
of its successors; and (c) the neighbors of v for each node v
whose v.num changes, since these neighbors are affected in
this case and are necessarily checked by Tarjan.

We next give bounded incremental algorithms relative to
Tarjan, under unit insertions, deletions, and batch updates.

(1) Unit insertions. Inserting an edge may result in com-
bining two or more scc’s into a single one. This happens if

Algorithm: IncSCCt

Input: A graph G with num(-), lowlink(+), contracted graph Ge,
SCC(G) and an edge (v, w) to be inserted.
Output: SCC(G & AG) and updated num(-), lowlink(-) and G..

if v and w are within the same scc (tree) T then
T :=T & AG; update num(-), lowlink(-) for T}
if r(scc(v)) > r(scc(w)) then update G¢;
if r(scc(v)) < r(scc(w)) then
aff, := DFS¢(Ge, w, r(scc(v))); affi := DFSp(Ge, v, r(scc(w)));
if Tarjan(affy U aff;, v) has non-singleton cycle C' then
merge the corresponding components of nodes in C
update num(-), lowlink(-) for the new component;
. else reallocRank(aff}, aff;);
0. return SCC(G & AG) and updated num(-), lowlink(-), and G¢;

Figure 7: Algorithm IncSCC*

SOOI =

and only if a cycle is formed with the corresponding nodes
of these scc’s in the contracted graph after the insertion.

Employing the contracted graph G., we propose incre-
mental algorithm IncSCC™T, shown in Fig. 7, to process unit
insertion of edge (v, w). Intuitively, IncSCC" checks whether
(v, w) inflicts a cycle in G., and combines some of the scc’s
in SCC(G) when necessary to get SCC(GHAG). It separates
different types of (v, w), and makes use of topological ranks
based on the invariant property mentioned above. Relatively
boundedness is guaranteed since every change to the rank
of an scc inspected by algorithm IncSCC™ corresponds to a
change of lowlink or num, and thus is in AFF.

More specifically, if v and w are within the same scc
T, then nothing changes for the other scc’s. In this case,
IncSCC™ only applies AG to T' and computes the changes
to num and lowlink, by applying Tarjan on the changed parts
(lines 1-2). Otherwise consider the topological ranks of
scc(v) and scc(w) in G, where scc(v) (resp. scc(w)) refers
to the corresponding scc node to which v (resp. w) belongs.

(a) If r(scc(v)) > r(scc(w)), then no new scc is generated,
and IncSCC* only updates the graph G. by inserting edge
(scc(v), scc(w)) or increasing the counter of edges connecting
their corresponding scc’s (line 3). As the order of topological
ranks in G. is not affected in this case, it concludes that
graph G. is still acyclic and SCC(G @ AG) = SCC(G).

(b) If r(scc(w)) > r(scc(v)), i.e., if the order of these two
ranks becomes “incorrect”, IncSCC"' identifies the affected
area affi and aff,, two subgraphs of G. induced by nodes
whose ranks are no longer valid, through a bi-directional
search. It invokes procedure DFSs to conduct a forward DFS
traversal from w to find nodes with topological ranks greater
than that of v, followed by a backward traversal DFS;, from
v to find nodes having ranks less than that of w (lines 4-5).
If a cycle C' is formed in the affected area, the correspond-
ing scc’s of the nodes in C are merged into one to obtain
SCC(G & AG); this is followed by updating num and lowlink
values in the new scc (lines 6-8). Otherwise, although the
output is unaffected, it reallocates the topological ranks of
nodes in the affected area such that r(v) > r(v’) when (v,v")
is in G., using procedure reallocRank (not shown) (line 9),
i.e., the relationship of topological ranks still holds. Proce-
dure reallocRank sorts the previous ranks of those nodes in
affi and aff;, and reassigns them in an ascending order, first
aff, and then aff;. Indeed, nodes in aff, should have lower
ranks than those in aff| due to the edge insertion.

Example 7: Continuing with Example 6, consider insertion
of edge es = (ba,b3) into G. Observe that the topological



ranks r(scc(bs)) < r(scc(bs)) in Ge; thus IncSCCT identifies
the affected area that consists of nodes 1 and 2 and forms a
cycle. Then scci; and scce are merged to get the output. O

Correctness & complexity. The correctness of IncSCCY is
warranted by the following properties: (a) scc’s are merged
in response to an edge insertion if and only if they form a
cycle in the contracted graph; and (b) the topological ranks
of the nodes on any path in G. decrease monotonically.
IncSCC™ is in O(|AFF|log|AFF|) time. The cost for up-
dating lowlink and num by Tarjan on the affected parts is
O(]AFF|). Besides this, it only visits those nodes in the con-
tracted graph with updated ranks, and their neighbors. The
number of nodes visited does not exceed |AFF| since there
must be changes to num and lowlink in the scc’s that they
refer to. Cycle detection is done in O(|AFF|) time and rank
reallocation takes O(|AFF|log |AFF|) time via sorting by us-
ing heaps. Hence IncSCC™ is bounded relative to Tarjan.

(2) Unit deletions. When edge (v, w) is deleted from G,
an scc may be split into multiple ones. However, the output
is unchanged if v still reaches w after deletion. We give an
incremental algorithm for SCC under unit deletions, denoted
by IncSCC™. Intuitively, it examines the reachability from
v to w by using num and lowlink maintained, and computes
new scc’s in SCC(G @ AG) when v no longer reaches w
in the same scc. The reachability checking is done as a
byproduct of change propagation to num and lowlink, from
which relatively boundedness is obtained. For the lack of
space, we defer the details of IncSCC™ to [2].

(3) Batch updates. We now present algorithm IncSCC
to process AG = (AGT,AG™), provided in [2]. It handles
multiple updates in groups instead of one by one, to reduce
redundant cost. IncSCC consists of two steps.

(a) IncSCC first processes intra-component updates, where
the endpoints of an updated edge are in the same scc. All
updates to the same scc are grouped and processed together.
It starts with edge insertions, and adjusts values of num and
lowlink following IncSCC™. Inserted edges are processed fol-
lowing a descending order determined by the num values
of their source nodes. Then, following the same process-
ing order, IncSCC™ is invoked to handle deletions grouped
together, to reduce redundant updates to num and lowlink
values. After these, Tarjan is called on the affected scc’s at
most once to generate new scc’s in SCC(G & AG).

(b) IncSCC then handles inter-component updates, for edge
updates in which the endpoints fall in different scc’s. After
updating G. with deletions, forward and backward traver-
sals are performed to find the affected areas for all inter-
component insertions, similar to IncSCC*. However, IncSCC
stores these areas in a global structure aff, and checks the
existence of cycles formed by nodes from this global affected
area, instead of processing unit updates one by one. Com-
ponents are merged, and num(-) and lowlink(-) are revised,
along the same lines as IncSCC* to get SCC(G © AG).

Finally, topological ranks are reallocated if needed, and
SCC(G ® AG) is returned (see [2] for details).

Example 8: Consider batch updates AG of Example 3.
The intra-component deletions of e2 and es are firstly han-
dled. Since ez = (c2,b3) is a reverse frond in scca, IncSCC
just deletes it from scce. Deletion of es is processed as de-
scribed in Example 9 (Appendix). Thereafter, the remaining

three inter-component insertions in AG are handled by re-
trieving the affected area on contracted graph G.. Note that
nodes 1 to 5 are covered by affected area aff that constitutes
an scc in GY, hence all the previous scc’s in SCC(G) except
sccs (dz) are merged to obtain SCC(G @ AG) in IncSCC. O

Correctness & complexity. The correctness of IncSCC fol-

lows from the correctness of IncSCC* and IncSCC™. IncSCC
takes O(]AFF|(|AG| + log |AFF|)) time. Indeed, process-
ing intra-component updates needs O(|]AG||AFF|) time since
each update to the auxiliary structures in AFF is checked
at most |AG| times; and handling inter-component updates
takes O(|AG/||AFF|+ |AFF|log |AFF|) time, where each node
with updated ranks in G. is accessed by at most |AG| dif-
ferent bi-directional searches; the time for final rank reallo-
cation is in O(|AFF|log |AFF|) as all such nodes are collected
in aff. Thus IncSCC is bounded relative to Tarjan.

6. EXPERIMENTAL EVALUATION

Using real-life and synthetic data, we conducted three sets
of experiments to evaluate the impacts of (1) the size |AG]|
of batch updates; (2) the complexity of queries @ for KWS,
RPQ and ISO (see below); and (3) the size |G| of graphs
on our incremental algorithms, compared with their batch
counterparts and some existing dynamic algorithms.

Experimental setting. We used the following datasets.

Graphs. We used two real-life graphs: (a) DBpedia, a knowl-
edge graph [1] with 4.3 million nodes, 40.3 million edges and
495 labels; and (b) LiveJournal (liveJ in short), a social net-
work [3] with 4.9 million nodes, 68.5 million edges and 100
labels. We also designed a generator to produce synthetic
graphs G, controlled by the number of nodes |V| (up to 50
million) and number of edges |E| (up to 100 million), with
labels drawn from an alphabet ¥ of 100 symbols.

Updates AG are randomly generated for real-life and syn-
thetic data, controlled by size |[AG| and a ratio p of edge
insertions to deletions. We use p = 1 unless stated other-
wise, i.e., the size of the data graphs G remain stable.

Query generators. We randomly generated 30 queries of
KWS, RPQ and ISO with labels drawn from the graphs.
More specifically, (1) KWS queries are controlled by the
number m of keywords and bound b; (2) RPQ queries are
controlled by the size (recall size |Q] of a regular path query
from Section 2.1) and the numbers of occurrences of -, + and
Kleene *; and (3) I1SO queries are controlled by the number
of nodes |Vg/|, the number of edges |Eg| and the diameter
dq, i.e., the length of longest shortest path between any two
nodes in ) when taken as an undirected graph.

Algorithms. We implemented the following algorithms, all in
Java. (1) Incremental algorithms (a) IncKWS (Section 4.2),
IncRPQ (Section 5.2), IncSCC (Section 5.3) and InclSO (see
Appendix); (b) IncKWS,, IncRPQ,, IncSCC, and InclISO,
which process unit updates in batch AG one by one by call-
ing their algorithms for unit updates developed in this work;
(c) DynSCC that combines the incremental algorithm in [26]
to process insertions and decremental algorithm in [32] for
deletions.  (2) Batch algorithms BLINKS [27] for KWS,
RPQnra for RPQ, Tarjan for SCC, and VF2 [15] for ISO.

We did the experiments on an Amazon EC2 r3.4xlarge in-
stance, powered by Intel Xeon processor with 2.3GHz, with



>
3

IncKWS - 600

llng}%q % -
IncKWS, -G P ncl )y —G -
=80 | BLINKS —&— o ;500 RPQupy —2— p 2
S - ] o
§ 60 9 §400 -
g o p y x £300 I X
340 - b o
2 U x £200 -~ X
SR X IS P
100 | .o~ X
Ko X o 9l
0 0

5% 10% 15% 20% 25% 30% 35% 40% 5% 10% 15% 20% 25% 30% 35% 40%

=)
3
>
S
5]

TncSCC InclS0 —%
IneSCC,, ~G- B IncISO, -G _
- 80 Tarjan —&— o - 800 VE2 —A— el
3 DynSCC -+ o 3
N - /
PR NN - S — g 600 2
3 > =
s P X 3 P ¢
<40 o X < 400 R
S _0 Lk 2 Fod
3 B S 5 L
“‘203,/.~+~ 4T S -9 X
V.
0 0
5% 10% 15% 20% 25% 30% 35% 40% 5% 10% 15% 20% 25% 30% 35% 40%

(a) Varying AG, KWS (DBpedia) (b) Varying AG, RPQ (DBpedia) (¢) Varying AG, SCC (DBpedia) (d) Varying AG, 1SO (DBpedia)

400

IncKWS - 1500

eRPQ X
kWS, G r4 InﬁiPI())Qn -G o

= BLINKS —&— ; 21200 | RPQupy —2— -
330 , 3 A s
g ® £ 900 8
$200 o g /
g N Y NN S W §,600 S « X
£ o7 £ G
£100 i x € 300 e

o &% = —

5% 10% 15% 20% 25% 30% 35% 40%

(e) Varying AG, KWS (livel)

5% 10% 15% 20% 25% 30% 35% 40%

(f) Varying AG, RPQ (liveJ)

450 resce 160 igws =%
IneSCC, —&-- Y InckWS, -G
360 | Tarjan —&— ‘ 100 | BLINKS —&—
3 DynSCC -+ ¥) 3
$270 o 3
: -~ S0
§180 0 3 :
S % e S _
& 90 @,«@"/ ; X [“40?7/49—“ : X A
- X x
o EX 0
5% 10% 15% 20% 25% 30% 35% 40% @ Gy @) GH 65
(i) Varying AG, SCC (Synthetic) (j) Varying @, KWS (DBpedia)
200 o ews x 1200 oerpg

IncKWS, -~ IncRPQ, --&---
150 | BLINKS —&— 2900 | RPQxpa —2—
= <
= =
3 3
2100 4 :
£ 50 v S

> X x *

0
02 04 0.6 08 10 02 04 0.6 08 10

(m) Varying G, KWS (Synthetic) (n) Varying G, RPQ (Synthetic)

(k) Varying Q, RPQ (DBpedia)

(o) Varying G, SCC (Synthetic)

N o R e f
ncSCC, —6- 7 nc] -6 -
Sys | T —-— o~ ® 22500 VF3 —A— 2
< DynSCC ~+ - o e < o
5 . . £2000 o
S . 4ot S v
S g g X | EDO0 o
N + N =7
s I = 1000 ©
g 50 X S - X
= S 500 p© x
x X
0 0
5% 10% 15% 20% 25% 30% 35% 40% 5% 10% 15% 20% 25% 30% 35% 40%
(g) Varying AG, SCC (liveJ) (h) Varying AG, ISO (liveJ)
1200 R 3600
nc| -0
=00 | K 4 3000
< <
g §2400
S 600 £1800
S £1200
& 300 g &
T 600 o
0 RumET K= x x 0 =R
3 4 5 6 7 351 462 (573 (684 (195

(1) Varying Q, 1SO (DBpedia)

130 misoe = 2500 o5
IneSCC, —G- InclSO, —G
2120 | Tagan —A— 52000 VE) —A—
T DynSCC -+ 3
3% §1500
3 60 <1000
& e g Pm—
30 x 500 Q*"Qﬁ_x
0 0 S
02 04 06 08 10 02 04 0.6 08 10

(p) Varying G, ISO (Synthetic)

Figure 8: Performance evaluation

122 GB memory and 320GB SSD storage. Fach experiment
was run 5 times and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Impact of |[AG|. We first evaluated the impact of
|AG| on the performance of IncKWS, IncRPQ, IncSCC and
InclSO, compared with (a) their batch counterparts, and (b)
incremental IncKWS,, IncRPQ,,, IncSCC, and InclSO,, and
DynSCC for SCC. We conducted the experiments (a) on
real-life graphs by varying |AG| from 2.2M to 17.6M in
2.2M increments over DBpedia and from 3.7M to 29.6M in
4M increments over liveJ, which account for 5% to 40% of
each graph; and (b) synthetic G with |G| = (50M, 100M) by
varying |AG| from 7.5M to 60M in 7.5M increments, i.e.,
5% to 40% of |G|, for SCC; the results for KWS, RPQ and ISO
on synthetic graphs are consistent with their counterparts on
real-life graphs, and hence are not reported here.

(1) KWS. Fixing m = 3 and b = 2, we report the perfor-
mance of IncKWS on DBpedia and liveJ in Figures 8(a) and
8(e), respectively. We find the following. (a) IncKWS out-
performs BLINKS from 6.3 times to 2.8 times over DBpedia,
and from 7.3 times to 2 times over liveJ, when |AG| varies
from 5% to 20% of |G|. In fact, IncKWS does better than
BLINKS when |AG| is up to 35% and 30% of |G|, respec-
tively. These verify the effectiveness of localizable incremen-

tal algorithm IncKWS. (b) IncKWS is from 1.6 to 2 and 1.3
to 1.7 times faster than IncKWS,, in the same setting. This
validates the effectiveness of our optimization strategies on
batch updates. (c) The larger |AG] is, the slower IncKWS
and IncKWS, are, as expected. However, when |AG| in-
creases, the gap between the performance of IncKWS and
IncKWS,, gets larger, which is more evident on liveJ. That
is, IncKWS scales better with |AG|. In contrast, BLINKS
is indifferent to |[AG|. (d) IncKWS is efficient: it takes 12
and 32 seconds over DBpedia and livel, respectively, when
|AG]| is 10% of |G|, as opposed to 61 and 146 seconds by
BLINKS. (e) The ratio p of insertions to deletions in AG
has no impact on the performance of IncKWS, by varying p
while keeping |[AG| unchanged (not shown).

(2) RPQ. We then evaluated the relatively bounded algo-
rithm IncRPQ. Fixing |Q| = 4, Figures 8(b) and 8(f) show
that (a) IncRPQ is from 8.6 to 3.2 times faster than RPQnra
on DBpedia, and from 12.7 to 4.1 times faster on liveJ, when
|AG| varies from 5% to 20% of |G|. (b) IncRPQ consistently
does better than IncRPQ,. The improvement is on aver-
age 2.3 times when |AG| is about 15% of |G|. (c) IncRPQ
scales better with |AG| than IncRPQ,,, especially when |AG]|
is large. (d) IncRPQ is insensitive to p.

(3) SCC. Figures 8(c), 8(g) and 8(i) report the performance
for SCC over DBpedia, live) and synthetic graphs, respec-



tively. We find the following. (a) IncSCC is from 8 to 1.5, 2.3
to 1.2, and 7.7 to 1.7 times faster than Tarjan over DBpedia,
liveJ and synthetic graphs, respectively, when |AG| varies
from 5% to 25% of |G|. These verify the effectiveness of
incrementalizing batch algorithm Tarjan. It is from 1.7 to
2.6, 1.9 to 2.1, and 1.4 to 2.2 times faster than IncSCC,
in the same setting. (b) IncSCC performs better than
DynSCC. For instance, IncSCC is on average 2.1 times faster
than DynSCC when |AG]| varies from 5% to 15% of |G| over
synthetic graphs. In particular, DynSCC does not do well
with small |AG| due to its additional cost for maintaining
dynamic data structures even when the output remains sta-
ble. (c) IncSCC works better on DBpedia than on liveJ since
there are large scc’s in liveJ, which take up to 77% of |G|, and
need to be split in response to AG. (d) IncSCC is insensitive
to p, similar to IncKWS and IncRPQ.

(4) 1SO. Fixing |Q| = (4,6,2), i.e., pattern queries with
4 nodes, 6 edges and diameter 2, we evaluated localizable
IncISO. As shown in Figures 8(d) and 8(h) on DBpedia and
livel, respectively, (a) InclSO behaves better than VF2 and
InclSO, when |AG| is no more than 25% of |G|; it is from
5.6 to 1.8 times faster than VF2 and from 2.4 to 2.6 times
faster than InclSO,, respectively, for |AG| from 5% to 25%
of |G|. (b) The gap between the performance of IncISO and
IncISO, gets larger when |AG| grows. (c) InclSO and InclSO,
take longer to process edge insertions than deletions for the
same |AG|. This is because matches to be removed can be
directly identified and hence, IncISO is faster for deletions.
We also find that IncISO is insensitive to p.

(5) Unit updates. Using the same set of queries, we also
evaluated the performance of these algorithms on process-
ing unit updates, which consist of either a unit insertion
or a unit edge deletion. As expected, the improvements
of incremental algorithms are substantial. More specifically,
IncKWS, IncRPQ, IncSCC and InclSO outperform their batch
counterparts by 89 times, 221 times, 37 times, and 393 times
on average, respectively (not shown). Moreover, IncSCC is
5.7 times faster than DynSCC on average.

Exp-2: Query complexity. We next evaluated the im-
pact of queries @, by varying different parameters of ). We
focused on KWS, RPQ and ISO, as SCC has a constant query.
We fixed |AG| = 4.4M, i.e., 10% of |G|, and used DBpedia.
(1) KWS. We varied (m,b) from (2,1) to (6,5) for KWS
queries. As shown in Figure 8(j), (a) the larger (m, b) is, the
longer time is taken by all the algorithms, as expected. (b)
IncKWS performs well on real-life queries. For queries with 4
keywords and bound 3, it takes 17 seconds over DBpedia, as
opposed to 44 seconds by BLINKS. It works better on sparse
DBpedia than on liveJ (not shown). (c) IncKWS outperforms
the other algorithms, consistent with Fig. 8(a).

(2) RPQ. Varying |Q| from 3 to 7, the results in Fig. 8(k) tell
us the following. (a) IncRPQ is efficient: it returns answers
within 190 seconds for all the queries, as opposed to 1080
seconds by RPQnra and 326 seconds by IncRPQ,. (b) The
occurrences of Kleene x have little impact on all the algo-
rithms, as the size of NFA Mg only depends on the number
of node labels in Q. (c) IncRPQ outperforms RPQnra and
IncRPQ, on all the queries; this is consistent with Fig. 8(b).

(3) 1SO. Varying |Q| = (|Vgl,|Eq|,dq) from (3,5, 1) to (7,
9, 5), we evaluated the impact of pattern queries. Figure 8(1)

shows that all algorithms take longer over larger |Q|, as ex-
pected. However, (a) IncISO outperforms VF2 and InclSO,
in all the cases, for the same reasons given above. (b) InclSO
does well: it takes 290 seconds when |Q| = (5,7, 3), but VF2
and InclSO, take 1160 and 570 seconds, respectively.

Exp-3: Impact of |G|. We finally evaluated the impact
of |G| using synthetic graphs. Fixing |AG| = 15M and
using the same set of queries tested in Exp-1, we varied
|G| with scale factors from 0.2 to 1. Figures 8(m), 8(n),
8(o) and 8(p) report the performance for KWS, RPQ, SCC
and ISO, respectively. Observe the following. (a) All the
incremental algorithms are less sensitive to |G| compared
with their batch counterparts. (b) Incremental algorithms
scales well with |G| and are feasible on large graphs.

Summary. From the experiments we find the following.
(1) Incremental algorithms, either localizable or relatively
bounded, are more effective than their batch counterparts
in response to updates. When |AG| varies from 5% to 20%
of |G| for the three full-size graphs G, IncKWS, IncRPQ,
IncSCC and InclSO outperform BLINKS, RPQnga, Tarjan
and VF2 from 6.9 to 2.4 times, 11.6 to 2.8 times, 3.4 to
1.7 times, and 7.9 to 2 times on average, respectively.
They outperform the batch algorithms even when |AG| is
up to 30%, 35%, 25% and 25% of |G|, respectively. (2)
Incremental algorithms scale well with |G| and are feasible
on real-life graphs when AG is small, as commonly found
in practice. For instance, IncKWS, IncRPQ, IncSCC and
IncISO take 9, 42, 7 and 113 seconds, respectively, when
updates account for 5% of DBpedia, as opposed to 62,
355, 54 and 427 seconds by their batch counterparts. (3)
Our optimization strategies for batch updates effectively
improve the performance by 1.6 times on average.

7. CONCLUSION

We have established undoable and doable results for in-
cremental graph computations. We have shown that the in-
cremental problems for RPQ, SCC and KWS are unbounded
under unit updates. However, we have proposed alternative
characterizations for the effectiveness of incremental graph
computations, and shown that RPQ, SCC, KWS and ISO are
either localizable or bounded relative to their batch counter-
parts, by providing incremental algorithms with correspond-
ing performance guarantees. Our experimental results have
verified that the incremental algorithms substantially out-
perform their batch counterparts and scale well with large
graphs, justifying the effectiveness of the new standards.

One topic for future work is to classify graph queries com-
monly used in practice, characterize their incremental com-
putations, and identify performance guarantees for their in-
cremental algorithms when possible. Another topic is to
identify practical conditions under which unbounded incre-
mental problems become bounded or relatively bounded.
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Appendix: Proofs and Algorithms

Proof of Lemma 2

Assume that there exists a bounded incremental algorithm
Ta for Q2. We show that a bounded incremental algo-
rithm TA for Q1 can be built from Ta and the A-reduction
(f, fi, fo) from Qi to Q2. Given an instance I1 = (Q1,G1)
of Qi, we first compute a corresponding instance f(I1) =
(Q2,G2) of Q2. Then for each update AG; to G1, TA trans-
forms it to fi(AG1) and invokes the bounded incremental
algorithm TA on GQ, QQ, QQ(G2) and fl(AG1) to obtain
AQO2, i.e., the corresponding changes to Q2(Gz2). There-
after, it transforms the updates AO> back to AO; leveraging
function fo. As (f, fi, fo) is a A-reduction, it concludes that
fo(AO2) = AO1, where AO;: denotes the updates to Q1(G1)
in response to AG1, and TA takes PTIME in |AG:|+ |AO4|
and |Q1| to compute AQq, i.e., TA is a bounded incremental
algorithm for Q;. From this Lemma 2 follows. m|

Proof of Theorem 1

We give a proof for RPQ, and defer the proofs for SCC and
KWS to [2] due to the lack of space.

RPQ. We consider first updates consisting of a unit edge
deletion, and then the case of a unit edge insertion.

(1) Deletions. We prove the unboundedness of the incre-
mental problem for RPQ under a unit edge deletion by A-
reduction from the single source reachability problem to all
vertices (SSRP). Given a graph G = (V, E,l) and a node
vs € V, SSRP is to decide whether node v; is reachable from
vs for all v; € V. The answer is expressed as Boolean value
r(v;) associated with v;. The incremental problem for SSRP
is unbounded under a unit edge deletion [38].

Given an instance I; of SSRP, i.e., a graph G; =
(Vi, E1,11) and a distinguished node v, in G1, we construct
an instance I of RPQ, i.e., a graph G2 = (Va, Ea,l2) and
a regular path query @2, by using function f such that the
reachability r(v;) from vs to v; in G1 changes in response to
AG: iff (if and only if) there exists a corresponding change
in the output of Q2 on G2 in response to AG2, where in-
put and output updates of the two instances are mapped by
functions f; and f,, respectively (see Section 3).

More specifically, G2 is constructed from G; with each
node v; replaced by v;. All the edges in G; remain un-
changed, i.e., (v;,v}) € Ez iff (vi,v;) € Ey1. Furthermore,
l2(vi) = a1 when v; = v;, and l2(v;) = a2 otherwise, where
v, corresponds to source node vs in G1. Query Q2 is defined
as ai - (a2)™. Then one can verify that v; is reachable from
vs in Gy iff the node pair (v}, v]) is a match of Q2 in Gs.
Indeed, the source node of each match in Q2(G2) must be
v% since all paths having label a; originate from v7.

Given delete(v;,v;) in AG:, function f; returns corre-
sponding (v{,v;) to be deleted from Ga, ie, AGy =
fi(AG1). Then the changes AO2 to Q2(G2) consist of node

pairs (/v;,vzg removed. Clearly, v is no longer reachable
from vy in G2 and v; is not reachable from vs in G1; hence

AO; is the set of such (v;) changed from true to false, which
can be computed by f,(AO2) directly. Thus, a one-to-one
mapping between the changes of I1 and I3 is obtained via
linear-time functions f; and f,.

Putting these together, (f, fi, fo) is a A-reduction and
RPQ is unbounded under a unit edge deletion by Lemma 2.

(2) Insertions. We next show that RPQ is unbounded under
a unit edge insertion by contradiction. Consider graph G
shown in Fig. 9 (excluding dotted edges), which consists of
two cycles (vi,v2), ..., (Van—1,v2n), (Van,v1) and (u1,us2),
.y (u2n—1,u2n), (u2n,u1), and an edge (v1,w). Each node
v; in G has label oy for ¢ € [1,2n], while u; is labeled as.
Node w is labeled a3 that is distinct from a1 and az. Query
Q is defined as aq - (a1)* - a2 - (a2)* - as. Denote by A;
the insertion of e1 = (vn,un), and by Ay the insertion of
e2 = (u1,v1). Let graph G1 = G® A1, G2 = G ® A,
and Gs = G1 @ As. One can verify that Q(G) = Q(G1) =
Q(G2) = 0, while Q(Gs) = {(vs,w) | i € [1,2n]}.

Assume by contradiction that there exists a bounded in-
cremental algorithm 7a for RPQ under a unit edge insertion.
Then Ta (G, Q, Q(G), A1) and Ta(G, Q, Q(G), Az) are both
in O(1) time since only a unit update is applied to G and
none of the outputs is affected for the fixed query Q. We
next show that this leads to contradiction.

Let Ts(G, AG) denote the sequence of nodes visited in ex-
ecuting Ta(G, Q, Q(G), AG), referred to as its trace. Ob-
serve that Ta(G,Q,Q(G),Az) and Ta(G1,Q,Q(G1),As)
must behave differently as the outputs of these two are dif-
ferent, in which 7Ta(G1, @, Q(G1), A2) computes Q(G3) ex-
actly. This can happen only if Ts(G, Az2) and Ts(G1, A2)
contain some node associated with different information in
G and G; as Ta traverses the graph from the nodes involved
in Ag, i.e., u1 or vy. Since G is obtained by applying A; to
G, these nodes must be included in T (G, A1) with informa-
tion updated. Observe that if a node v in G is visited during
the execution of a locally persistent algorithm 7a to process
AG, then each node on some undirected path from the po-
sition of AG to v is also inspected by Ta. Denote by vg4 the
the first node having different information in 7, (G, A2) and
Ts(G1,A2). Then T5(G, A1) and Ts(G, As) include all the
nodes on an undirected path from the position of A; to that
of Ay through vy. However, the length of this path is O(n),
which contradicts the assumption that Ta (G, Q, Q(G), A1)
and Ta (G, Q, Q(G), Az) both take constant time. O

Localizable Algorithm for ISO (Section 4)

Recall that given a pattern query @ and a graph G, ISO is
to compute the set Q(G) of all matches of @ in G, i.e., all



subgraphs of GG that are isomorphic to Q. Observe that the
deletion of an edge e may cause the removal of matches that
include e from Q(G). Conversely, insertion of e = (v, w) may
add new matches to Q(G) and all these matches are within
Gag (v) and G, (w), where dg is the length of the longest
shortest path between any two nodes in () when taken as
undirected graph, i.e., the diameter of Q.

Based on this, we outline a localizable incremental algo-
rithm, denoted by InclSO, for ISO under batch updates (not
shown). It works as follows. (1) Collect the set AG™ of all
edge deletions in AG. For each edge deletion of e, remove
those matches including e from Q(G), by inspecting the dg-
neighbors of the two nodes on e, where dg is the diameter
of Q. (2) For the rest of updates in AG, i.e., edge insertions
AGT, extract the union of dg-neighbors of the nodes in-
volved in these edge insertions, denoted by Ga, (AG™). (3)
Invoke an existing batch algorithm (e.g.,VF2 [15]) for ISO
to compute Q(Ga, (AG™)) all together rather than one by
one, and add those matches to Q(G) that are not in Q(G).

Obviously, the cost of IncISO can be expressed as a func-
tion of |Q| and |Ga, (AG)|, instead of the size |G| of the

entire graph G. In other words, InclSO is localizable, and
hence so is 1ISO. Note that Ga, (AG) also includes the dg-
neighbors of nodes involved in edge deletions.

Putting this together with the algorithms presented in
Sections 4.2, we complete the proof of Theorem 3.

In our experimental study, we compare InclSO with an-
other algorithm InclSO,, which applies the batch algorithm
on dg-neighbor of each update one by one.

Incrementalization for SCC (Section 5.3)

Example 9: Consider deleting edge es = (c1, a1) from G of
Fig. 2, which is a frond in sccs (see Example 6). Since the
lowlink value of ¢; increases to 3 and equals its num after
deletion, procedure chkReach concludes that ¢; no longer
reaches root a; of sccg. In light of this, IncSCC™ computes
new scc’s on affected sccs to update the output, i.e., sccs is
split into three components. The contracted graph G- after
the deletion is also shown in Fig. 6 (solid edges). O



