skip to main content
research-article

A Complexity Trichotomy for Approximately Counting List H-Colorings

Published:27 April 2017Publication History
Skip Abstract Section

Abstract

We examine the computational complexity of approximately counting the list H-colorings of a graph. We discover a natural graph-theoretic trichotomy based on the structure of the graph H. If H is an irreflexive bipartite graph or a reflexive complete graph, then counting list H-colorings is trivially in polynomial time. Otherwise, if H is an irreflexive bipartite permutation graph or a reflexive proper interval graph, then approximately counting list H-colorings is equivalent to #BIS, the problem of approximately counting independent sets in a bipartite graph. This is a well-studied problem that is believed to be of intermediate complexity—it is believed that it does not have an FPRAS, but that it is not as difficult as approximating the most difficult counting problems in #P. For every other graph H, approximately counting list H-colorings is complete for #P with respect to approximation-preserving reductions (so there is no FPRAS unless NP = RP). Two pleasing features of the trichotomy are (1) it has a natural formulation in terms of hereditary graph classes, and (2) the proof is largely self-contained and does not require any universal algebra (unlike similar dichotomies in the weighted case). We are able to extend the hardness results to the bounded-degree setting, showing that all hardness results apply to input graphs with maximum degree at most 6.

References

  1. Jin-Yi Cai, Andreas Galanis, Leslie Ann Goldberg, Heng Guo, Mark Jerrum, Daniel Štefankovič, and Eric Vigoda. 2016. #BIS-Hardness for 2-spin systems on bipartite bounded degree graphs in the tree non-uniqueness region. J. Comput. System Sci. 82, 5 (2016), 690--711. DOI:http://dx.doi.org/10.1016/j.jcss.2015.11.009 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Xi Chen, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum, Pinyan Lu, Colin McQuillan, and David Richerby. 2015. The complexity of approximating conservative counting CSPs. J. Comput. System Sci. 81, 1 (2015), 311--329. DOI:http://dx.doi.org/10.1016/j.jcss.2014.06.006 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Martin Dyer, Leslie Ann Goldberg, Catherine Greenhill, and Mark Jerrum. 2003. The relative complexity of approximate counting problems. Algorithmica 38, 3 (2003), 471--500. DOI:http://dx.doi.org/10.1007/s00453-003-1073-y Google ScholarGoogle ScholarCross RefCross Ref
  4. Martin Dyer and Catherine Greenhill. 2000. The complexity of counting graph homomorphisms. Random Structures Algorithms 17, 3--4 (2000), 260--289. DOI:http://dx.doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.3.CO;2-N Google ScholarGoogle ScholarCross RefCross Ref
  5. Martin Dyer, Mark Jerrum, and Haiko Müller. 2016. On the switch markov chain for perfect matchings. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16). 1972--1983. DOI:http://dx.doi.org/10.1137/1.9781611974331.ch138 Google ScholarGoogle ScholarCross RefCross Ref
  6. Tomás Feder and Pavol Hell. 1998. List homomorphisms to reflexive graphs. J. Combinatorial Theory B 72, 2 (1998), 236--250. DOI:http://dx.doi.org/10.1006/jctb.1997.1812 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Tomás Feder, Pavol Hell, and Jing Huang. 1999. List homomorphisms and circular arc graphs. Combinatorica 19, 4 (1999), 487--505. DOI:http://dx.doi.org/10.1007/s004939970003 Google ScholarGoogle ScholarCross RefCross Ref
  8. Tomás Feder, Pavol Hell, and Jing Huang. 2003. Bi-arc graphs and the complexity of list homomorphisms. J. Graph Theory 42, 1 (2003), 61--80. DOI:http://dx.doi.org/10.1002/jgt.10073 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Andreas Galanis, Leslie Ann Goldberg, and Mark Jerrum. 2016a. Approximately counting H-colourings is #BIS-Hard. SIAM J. Comput. 45, 3 (2016), 680--711. DOI:http://dx.doi.org/10.1137/15M1020551 Google ScholarGoogle ScholarCross RefCross Ref
  10. Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. 2016b. Inapproximability of the partition function for the antiferromagnetic ising and hard-core models. Combinatorics Probabil. Comput. 25, 4 (2016), 500--559. DOI:http://dx.doi.org/10.1017/S0963548315000401 Google ScholarGoogle ScholarCross RefCross Ref
  11. T. Gallai. 1967. Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hungar 18 (1967), 25--66. Google ScholarGoogle ScholarCross RefCross Ref
  12. Leslie Ann Goldberg and Mark Jerrum. 2015. A complexity classification of spin systems with an external field. Proc. Natl. Acad. Sci. 112, 43 (2015), 13161--13166. DOI:http://dx.doi.org/10.1073/pnas.1505664112 Google ScholarGoogle ScholarCross RefCross Ref
  13. Pavol Hell and Jing Huang. 2004. Interval bigraphs and circular arc graphs. J. Graph Theory 46, 4 (2004), 313--327. DOI:http://dx.doi.org/10.1002/jgt.20006 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Mark Jerrum and Alistair Sinclair. 1993. Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput. 22, 5 (1993), 1087--1116. DOI:http://dx.doi.org/10.1137/0222066 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Steven Kelk. 2003. On the Relative Complexity of Approximately Counting H-colourings. Ph.D. Dissertation. Warwick University.Google ScholarGoogle Scholar
  16. Ekkehard G. Köhler. 1999. Graphs Without Asteroidal Triples. Ph.D. Dissertation. Technische Universität Berlin.Google ScholarGoogle Scholar
  17. Liang Li, Pinyan Lu, and Yitong Yin. 2012. Approximate counting via correlation decay in spin systems. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12). 922--940. Google ScholarGoogle ScholarCross RefCross Ref
  18. George B. Mertzios. 2008. A matrix characterization of interval and proper interval graphs. Appl. Math. Lett. 21, 4 (2008), 332--337. DOI:http://dx.doi.org/10.1016/j.aml.2007.04.001 Google ScholarGoogle ScholarCross RefCross Ref
  19. Fred S. Roberts. 1968. Representations of Indifference Relations. Ph.D. Dissertation. Stanford University, Stanford, CA.Google ScholarGoogle Scholar
  20. Fred S. Roberts. 1969. Indifference graphs. In Proof Techniques in Graph Theory (Proc. 2nd Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968). Academic Press, New York, 139--146.Google ScholarGoogle Scholar
  21. Sanjeev Saluja, K. V. Subrahmanyam, and Madhukar N. Thakur. 1995. Descriptive complexity of #P functions. J. Comput. Syst. Sci. 50, 3 (1995), 493--505. DOI:http://dx.doi.org/10.1006/jcss.1995.1039 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Allan Sly. 2010. Computational transition at the uniqueness threshold. In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS’10). 287--296. DOI:http://dx.doi.org/10.1109/FOCS.2010.34 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jeremy Spinrad, Andreas Brandstädt, and Lorna Stewart. 1987. Bipartite permutation graphs. Discrete Appl. Math. 18, 3 (1987), 279--292. DOI:http://dx.doi.org/10.1016/0166-218X(87)90064-3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Leslie G. Valiant and Vijay V. Vazirani. 1986. NP is as easy as detecting unique solutions. Theor. Comput. Sci. 47, 3 (1986), 85--93. DOI:http://dx.doi.org/10.1016/0304-3975(86)90135-0 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Gerd Wegner. 1967. Eigenschaften der Nerven Homologisch-einfacher Familien im Rn. Ph.D. Dissertation. Universität Göttingen, Göttingen, Germany.Google ScholarGoogle Scholar
  26. Dror Weitz. 2006. Counting independent sets up to the tree threshold. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing. 140--149. DOI:http://dx.doi.org/10.1145/1132516.1132538 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Complexity Trichotomy for Approximately Counting List H-Colorings

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Computation Theory
          ACM Transactions on Computation Theory  Volume 9, Issue 2
          June 2017
          110 pages
          ISSN:1942-3454
          EISSN:1942-3462
          DOI:10.1145/3086509
          Issue’s Table of Contents

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 April 2017
          • Accepted: 1 January 2017
          • Revised: 1 December 2016
          • Received: 1 May 2016
          Published in toct Volume 9, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader