
Identifying Security Critical Properties for

the Dynamic Verification of a Processor

Rui Zhang Natalie Stanley Christopher Griggs Andrew Chi Cynthia Sturton

The University of North Carolina at Chapel Hill

{rzhang, cgriggs, achi, csturton}@cs.unc.edu stanleyn@email.unc.edu

Abstract

We present a methodology for identifying security critical
properties for use in the dynamic verification of a proces-
sor. Such verification has been shown to be an effective way
to prevent exploits of vulnerabilities in the processor, given
a meaningful set of security properties. We use known pro-
cessor errata to establish an initial set of security-critical in-
variants of the processor. We then use machine learning to
infer an additional set of invariants that are not tied to any
particular, known vulnerability, yet are critical to security.

We build a tool chain implementing the approach and
evaluate it for the open-source OR1200 RISC processor.
We find that our tool can identify 19 (86.4%) of the 22
manually crafted security-critical properties from prior work
and generates 3 new security properties not covered in prior
work.

1. Introduction

Hardware companies conduct extensive testing and verifi-
cation throughout the design phase, yet errata in the design
persist to the final shipped product [2, 3]. And, just as is the
case with software, bugs in the hardware can create vulner-
abilities that are exploitable by malicious software [15]. Re-
cent work has demonstrated the efficacy of using assertions
built in to the hardware design to protect, post-deployment,
against security vulnerabilities [10, 11, 22]. The assertions
act as an execution monitor: each assertion is a proposition
encoding a property that should always hold and at run-time
the assertion monitors the hardware signals and state named
in the property. If the property is ever violated the assertion
fires, triggering an exception. In this way, the assertions act
in concert with software to protect core, security-critical pro-
cessor functionality. The question of what to assert – what

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17, April 08 - 12, 2017, Xi’an, China

c⃝ 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037734

are the properties that are critical to security – is an open
one, and the problem addressed by this work.

The current state of the art is to develop the assertions
manually by studying the processor’s instruction set archi-
tecture (ISA), identifying properties of the ISA that are crit-
ical to the security of software running on the processor,
and encoding those properties as assertions. The process re-
quires human expertise and judgment, can be tedious and
time consuming, and some properties that are important for
security are obscure and unlikely to be identified. Further-
more, because the instruction manuals describing an ISA
may be incomplete and ambiguous there are important prop-
erties which even the most thorough perusal of the ISA will
be unable to uncover.

There is, however, a benefit to having a human in the loop.
The line between a security property and a purely functional
property is blurry. Some properties seem obviously critical
to security. As an example, each of the above cited works
([10, 11, 22]) includes an assertion that the supervisor sig-
nal is set only in response to a small number of well de-
fined events. Other properties, such as the one(s) violated
by Intel’s infamous FDIV bug [1, 7], feel safely character-
ized as purely functional. However, in general, making the
distinction often comes down to a judgment call, one that
weighs the cost of adding an additional assertion to the final
design against the benefit of increased security provided by
the particular assertion. Where the human expert chooses to
draw the line between security and functional properties can
change for different systems and at different points in time.

We present SCIFinder, a methodology and tool chain for
semi-automatically generating a set of security-critical pro-
cessor invariants that can be encoded as synthesizable asser-
tions. Our approach is informed by three observations. First,
detailed information about processor invariants may not ex-
ist in any specification documents; this information can only
be learned by studying a running processor. Second, human
expertise is still needed for, and well suited to, distinguishing
security concerns from purely functional ones. And, third,
properties that are critical to security tend to have some com-
monalities between them, for example, they concern state
that is critical to security such as the supervisor signal.

541

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3037697.3037734&domain=pdf&date_stamp=2017-04-04

Invariant Generation

SW
Programs
(C, C++)

SCI Identification

SCI Inference

Initial
SCI

Final
SCI

Human Expert

Known Processor
Errata (Patches,

English Descriptions)

Security
Critical Errata

Functional
Errata

Processor
Invariants

Processor
Design
(Verilog)

Figure 1: Workflow of SCIFinder.

Rather than try to cull security-critical properties from
the ISA, we instead generate, automatically, a large set of
processor invariants that describe all aspects of processor
behavior and then categorize each invariant as critical to
security or not. And, while we wish to use human judgment
to guide this process, we do not want to burden the human
with the task of combing through hundreds of thousands
of invariants to perform the categorization. Therefore, we
have developed two ways to algorithmically differentiate
security-critical invariants from functional invariants: 1) Use
published processor errata that can be shown to pose a threat
to security to drive the categorization, and 2) Use statistical
analysis techniques to classify the invariants.

The benefit of using published errata as a starting point is
the potential to create assertions with high value. These as-
sertions will at a minimum catch actual bugs that have had a
deleterious effect on security. The approach has the potential
to be stronger than that, however. If the assertions are well
crafted, they capture not just the absence of a particular bug,
but the presence of a desired security property. These asser-
tions will detect any bug that violates the protected property,
even if the bug itself is entirely different from the one that
first inspired the assertion.

Still, the errata-based approach is limited to finding prop-
erties that have at one point been violated by a known secu-
rity bug. In our second approach, we conjecture that once a
human has identified points along the security–functionality
boundary, machine learning techniques can be used to auto-
mate the classification of additional invariants. In this way
new security-critical invariants can be identified.

SCIFinder has four phases (Figure 1):

1. Observe a processor executing a variety of programs to
collect a set of likely processor invariants defined over
software-visible processor state.

2. Given a list of known design errata, use human expertise
and judgment to classify each erratum as either a func-
tional bug or a potential security vulnerability.

3. Identify security-critical invariants (SCI) as those invari-
ants violated by the security vulnerabilities.

4. Apply machine learning techniques to find additional SCI
in the set of processor invariants.

In this work we focus on the development of a meaningful
and comprehensive set of security-critical invariants. We
present the following:

◦ Our two-pronged approach that uses known design errata
plus machine learning techniques to identify processor
invariants that are well suited to dynamic verification
techniques and are critical to security.

◦ The implementation of our tool chain.
◦ An evaluation of our approach for the open-source OR1200

RISC processor, and a comparison of our semi-automated
approach to the fully manual approach of prior work.

We find that our tool can identify 19 (86.4%) of the
22 manually crafted security-critical properties from prior
work and generates 3 new security properties not covered
in prior work. We test our generated assertions against 14
bugs from published AMD errata documents (bugs not used
in the development of the assertions) and find the assertions
stop 12 (86%) of these bug-based exploits.

2. Dynamic Verification for Security

Dynamic verification targeted for security is inspired by a
long history of using assertion based verification (ABV)
during hardware design, testing, and verification. In ABV,
assertions are added to the hardware design, which is then
simulated with random or selected inputs. Any assertions
that fire during simulation point to a bug in the design [9, 17].

Unlike the assertions used as part of ABV, the security-
critical assertions used in dynamic verification are kept in the
design through synthesis and exist in the fabricated chip. So,
while ABV assertions cannot detect bugs that are not trig-
gered by test data, the security-critical assertions continue
to monitor processor state and will detect, post deployment,
attempts to exploit a vulnerability in the field. This form of
dynamic verification has several benefits to recommend it.
From a hardware-design point of view, the assertions are rel-
atively simple statements with low overhead in terms of area
and power. From a security point of view, the assertions can
provide a powerful guarantee: any violation of the property
will be detected, regardless of the possibly complex series of
events that brought the processor to an insecure state.

What action is taken once the assertion fires depends
on the system design. A simple design choice is to halt
execution [10]; another option is to throw an exception to
software. Hicks et al. found that software can often recover
and move the processor past the buggy state to continue

542

making forward progress [22]. We leave this aspect of the
system design as out of scope for this work.

3. Design

Our methodology has four phases: invariant generation; clas-
sification of known design errata as either security vulnera-
bilities or functional bugs; security-critical invariant (SCI)
identification; and SCI inference. In the first phase, we col-
lect a set of likely processor invariants. We use a modified
version of Daikon, a dynamic invariant generation tool, and
execute the processor design in simulation with a variety of
software running on it. In keeping with prior art, we operate
at the ISA level: we track software-visible state and consider
execution of an instruction to be a single step of execution.

In the second phase we rely on human judgment to clas-
sify processor design errata as either security critical or not.
We use as our source of errata the revision history for the
design. This requires that revisions be documented with the
reason for the change, and if it was a bug fix, a high-level
description of the error. It is helpful if the revision documen-
tation includes a test case that triggers the error.

The third phase relies on one of our key observations:
security-critical errata are vulnerabilities precisely because
they violate some underlying security property. We can use
the errata to identify security-critical invariants – those that
are violated when a security-critical erratum is triggered.
SCI identified in this phase will protect against not just the
particular vulnerability used to find it (and presumably that
vulnerability has been patched in the latest version of the
processor), but also against other, unknown bugs that violate
the same invariant. In Section 5 we discuss how often this
occurs within our test data.

In the fourth phase, we use machine learning techniques
to identify additional invariants as security critical. We next
discuss phases one, three, and four in detail. Details of our
implementation of phase two are in Section 4.1.

3.1 Invariant Generation

We wish to collect meaningful processor invariants. We do
this by generating a large number of processor execution
traces covering as many processor states as possible, and
then observing invariants within and across these traces.
Some of the generated invariants are potentially security
critical and will be identified as such in the following phases
(see §3.3, §3.4).

3.1.1 Execution Traces

We obtain the processor execution traces by simulating the
processor’s register-transfer-level (RTL) design. During sim-
ulation we track architectural signals and selected register
values of the RTL design at each instruction boundary. To
provide as much breadth as possible, we run a variety of pro-
grams including SPEC benchmarks, a Linux boot, and scien-
tific computations (see §5.1). Our execution traces must, at

a minimum, cover all the instructions in the ISA, including
system calls, bit-rotation operations, word-extension opera-
tions, and interrupts and exceptions.

3.1.2 Daikon

From the execution traces, we use Daikon, a dynamic in-
variant detection tool, to gather meaningful invariants [16].
Daikon has an instrumenter and an inference engine. The
instrumenter records information about variable values as a
program executes, and the inference engine reads the traces
produced by the instrumenter to generate invariants.

Daikon is not specifically designed for hardware, and we
adapted it to suit our needs:

1. Daikon is intended to learn software-level invariants: pro-
cedure pre- and post-conditions, class invariants, and data
structure invariants. These are not directly applicable to
processor execution traces; we extend Daikon to suit our
hardware use case (see §3.1.3).

2. Patterns often seen in hardware design, such as bit-
packing several flags into a single register, are unknown
to Daikon. We develop new invariant patterns that cap-
ture such non-linear relationships between variables
(see §3.1.4).

3. Certain processor design optimizations, such as delay
slots, need to be carefully handled (see §3.1.5).

4. The invariants generated by Daikon contain redundan-
cies. Our SCI will be enforced on processors dynamically
and should be concise to avoid overhead. We introduce
optimizations to remove redundancy (see §3.2).

3.1.3 Invariant Variables

Daikon produces invariants in the form of procedure pre-
and post-conditions, as well as class and object invariants.
The latter two are not applicable to our hardware setting,
but the first two can be adjusted to suit our needs. We are
interested in ISA-level properties that hold as the processor
executes; by observing processor state before and after the
execution of each instruction, we can use Daikon to develop
a set of pre- and post-conditions for each instruction. The
pre-conditions describe properties that always hold when a
particular instruction executes, and the post-conditions de-
scribe properties that always hold at the conclusion of a par-
ticular instruction, provided the pre-conditions hold.

We modify Daikon’s instrumenter to extract trace data
from the execution logs produced by the simulation. It out-
puts variable values before and after each instruction is
executed. The set of variables tracked should be inclusive
enough for the inference engine to infer meaningful invari-
ants including those critical to security. On the other hand,
the variable set should be small enough to make invariant
inferences computationally feasible.

We make the same design decision as prior work in dy-
namic processor verification. We include all the variables at
the ISA level, that is, all registers and signals that are visible

543

to software: all general purpose registers (GPRs), all spe-
cial purpose registers (SPRs), flags, data and address of the
memory subsystem, target registers, and immediate values
of the instruction. The ISA level represents a trade-off be-
tween complexity and completeness: the microarchitectural
signals and registers that make up the processor implementa-
tion are abstracted away, reducing complexity. In exchange,
we lose information that may be useful for constructing se-
curity properties. As an example, prior work found that an
error in the processor’s pipeline that modifies an instruction
in flight would not be caught because the processor remains
self-consistent at the ISA level. Extending our approach to
capture microarchitectural information is the likely solution
to this limitation. Our optimization strategies (§3.2) are a
first step toward making such an extension feasible.

3.1.4 Invariant Patterns

Daikon invariants make comparisons between variables or
between a linear combination of variables. We found this
to be insufficient for capturing important properties at the
hardware level. For example, a common pattern in hardware
is for a 32-bit register to act as a record containing 32
(or fewer) independent bit flags. To address this, we made
the Daikon instrumenter configurable. This allows users to
create derived variables that can be used to define more
complex invariants. For example, a derived variable that
extracts bits from its parent variable can be used to generate
a property indicating whether the flag that handles control
flow is correctly set.

3.1.5 Processor Complexity

In many architectures, including the one in which we im-
plement our tool, the processor always executes the instruc-
tion in the delay slot – the instruction directly after a control
flow instruction (i.e., branch or jump). A naive observation
would infer the invariant that the next program counter (NPC)
after a control flow instruction is equal to the current pro-
gram counter plus four (PC + 4), and while true, this does
not capture the important property that control should move
to the target of the branching instruction after executing the
instruction in the delay slot. Similarly, the naive observa-
tion would be unable to infer an invariant about the NPC reg-
ister for any other instruction. Normally a (non-branching)
instruction obeys the invariant NPC = PC + 4, but if the in-
struction ever appears in a delay slot, its NPC would be the
address of the branch or jump target.

To allow for the generation of meaningful invariants
about control flow, we treat the control-flow instruction plus
the one in the delay slot as a single entity. The OpenRISC
architecture, the architecture we use in our implementation,
has a single branch delay slot, so the branching instruction
and the instruction in the delay slot is treated as one in-
struction. For those architectures with double branch delay
slots (e.g. MIPS-X), the branching instruction and the pair
of instructions following can be treated as one block.

EXPR
.
= EXPR1 | EXPR2

EXPR1

.
= OPER OP1 OPER

EXPR2

.
= OPER in {imm, imm, . . .}

OPER
.
= VAR | orig(VAR) | imm

OP1

.
= = | ̸= | < | ≤ | > | ≥

VAR
.
= GPR | SPR | flag | mem_address | VAR × imm

| notVAR | VAR mod imm | VAR OP2 VAR

OP2

.
= and | or | + | −

Figure 2: The grammar of invariant expressions. orig() in-
dicates the value of a variable before the instruction exe-
cutes; the default is the variable value after the instruction
executes. imm refers to an immediate value. in indicates set
inclusion. Boolean operators are all bitwise operators.

3.1.6 Structure of the Invariants

From the data generated during executions we use the
Daikon generator to create invariants of the format

I
.
= risingEdge(INSN) → EXPR,

where risingEdge(INSN) represents the execution of an
instruction, and EXPR is an expression over the tracked
variables. Figure 2 shows the grammar for expressions in
our set of invariants.

As the execution of each instruction can take several
cycles, we only consider the variables as they enter and
leave the instruction. We designate the value of the variables
before the instruction begins with the orig() prefix, and any
variable without the orig() prefix indicates the value after
the instruction has been completed.

To give an example, we show the invariant that describes
the property that privilege should correctly de-escalate:

I
.
= risingEdge(l.rfe) → SR = orig(ESR0)

This invariant states that when returning from an excep-
tion (indicated by the l.rfe instruction), the status register
(SR) should be correctly updated with the value it had before
the processor entered the exception handler. ESR0 stores that
value. The orig(ESR0) denotes the value of ESR0 before the
l.rfe instruction is executed, while SR denotes the value of
SR after the l.rfe instruction is executed.

We generate approximately 106,000 unique invariants
which form a model describing normal processor behavior.
Inherently the model we generate represents the current im-
plementation of the processor; the correctness of our model
is tied to the correctness of the implementation and design
of the processor. Any errors or bugs in the specification and
implementation will be reflected and remain undetected.

3.2 Optimization

We perform the following optimizations to put the invariants
in a concise form.

544

3.2.1 Constant Propagation

Equality-to-constant invariants (e.g. A = 0) can be used
to reduce the complexity of other invariants. Our constant
propagation optimization is similar to the compiler opti-
mization technique of substituting constant values at com-
pile time [5, 6]. The propagation is performed iteratively so
that any new equality-to-constant invariant can be used in
subsequent substitutions.

We parse the invariants into expression trees, initialize a
worklist with all the invariants, and construct a variable–
value map. Then we iterate through the worklist, and for
each invariant, we use the variable–value map to substi-
tute constants for expressions where possible. For any new
equality-to-constant invariant after substitution, we update
the variable–value map and remove that invariant from the
worklist. The process continues to iterate through the work-
list until there are no new equality-to-constant invariants.

3.2.2 Deducible Removal

The deducible removal optimization pass removes the in-
variants that can be deduced from several other invariants.
For example, D < C is deductible from A + B > D and
C > B + A. Full deducible removal is equivalent to taking
the transitive reduction of the binary relation; we remove in-
variants with transitive operators that can be derived from
other invariants. Daikon invariants do not have complex ex-
pressions on both sides of an inequality, thus we do not per-
form deducible removal for cases similar to the following:
A+B > C +D is deducible from A > B and C > D.

We first canonicalize invariants with transitive operators
into the form of lhs OP rhs, where OP ∈ {>,≥,==}
(< and ≤ will be converted accordingly), and lhs (rhs) is
a sorted postfix string of the left (right) hand side of the
expression. We build a directed acyclic graph (DAG) for all
generated invariants for each OP. For each invariant I

.
=

lhs OP rhs, we add the lhs and rhs as vertices in the DAG,
and an edge directed from lhs to rhs. We then compute
transitive reduction of the graph to get the minimum set of
invariants with the same reachability relation.

3.2.3 Equivalence Removal

In this optimization pass we remove redundant invariants.
We cluster invariants that are logically equivalent to each
other in the same class and keep only one invariant from
an equivalence class. For instance, the following invariants
would be grouped into two equivalence classes and only two
would be retained: (A = B), (B = A); (C + B ∗ D >
F), (F < C +D ∗B), (D ∗B + C > F), etc.

We determine invariant equivalence by putting every in-
variant into a canonical form, using the same form as used
in the deducible removal pass.

3.3 Security-Critical Invariant Identification

Once we generate the set of invariants that describe normal
processor behavior, our goal is to identify the subset of in-

variants that are crucial for security – the security critical
invariants (SCI). One possible solution might be to use hu-
man expertise to develop a set of rules to apply. However,
the rules may lack diversity: only the types of properties that
a human has thought of will be represented, and prior work
has shown that this approach can leave gaps in the resulting
set of security properties [22]. In addition, the set of rules
has to be small enough that the human can reasonably create
it (i.e., there cannot be an individual rule for every generated
invariant), but the rules themselves cannot be too general or
they risk admitting too many invariants into the set of SCI.

For these reasons, we took an empirical approach to iden-
tifying SCI in the set of generated invariants. We leverage se-
curity errata that have existed in the processor design at some
point in its development lifecycle. By definition, a program
that triggers the bug must exhibit some unusual states that
do not obey processor specifications. By checking which of
our generated invariants are violated in the execution of a
triggering program, we can approximately obtain the SCI.
Because the errata are essentially programming bugs, they
may occur anywhere in the design and potentially provide
a more varied set of SCI than human-generated heuristics
do. Because the identified SCI come directly from a security
vulnerability, we know they are in fact critical to security.

To be specific, when we find a security bug from the pub-
lished processor errata list or bug trackers (§4.1), we first
implement the defect in an open source processor (in Ver-
ilog), creating a buggy processor. We then write a program
that triggers the vulnerability, execute it on the buggy pro-
cessor, and record its execution trace. Given the previously
generated invariant set and the execution trace, our tool will
automatically sort through the execution trace to see if at any
point an invariant has been violated. Any violated invariants
are then added to our set of candidate SCI.

Since the initial set of generated invariants may contain
false positives, invariants identified as SCI in this step may
not be true SCI. In order to remove these false SCI, we
run the same trigger program on a correctly implemented
processor (with the security defect removed) and perform the
same steps of recording execution traces and checking for
invariant violations. The set of violated invariants found in
this phase are false positives, i.e. they are not true processor
invariants, and can be eliminated from the final set of SCI.

One possible concern is that identified SCI are applicable
only to one particular bug. In our experiments, we found that
a single SCI can be identified from different bugs and it can
stop multiple bugs (see §5.2). This means the SCI we extract
from a particular bug are applicable to a class of bugs, a class
defined by the invariant(s) violated.

3.4 Security-Critical Invariant Inference

Once we have identified a set of SCI using security-critical
bugs, we apply machine learning techniques to infer which
other invariants should be labeled security-critical.

545

The core component of the Inference step is a logistic
regression model, which can be applied to classify invari-
ants as security critical or non-security critical. We model
the probability that an invariant is non-security critical as a
function of its measured features. In particular, we adopt
the penalized logistic regression model with elastic net
penalty [34]. There are two reasons: 1) In this application
the number of measured features is larger than the number of
observations (invariants). Penalized logistic regression ap-
proaches have successfully extended traditional regression
models for improved accuracy in such circumstances [34].
2) This model excels in parameter interpretability [24]. As
each feature included in the model incurs a cost or penalty,
it can also be used to understand which of the features are
critical to security.

Here, we specify the details of the regression model. We
fit the model with the elastic net penalty using the glmnet
[18] package in R.

As in the typical regression framework, we let yi ∈
{security-critical, non-security-critical} be the class label for
invariant i. Since yi is binary and hence a Bernoulli random
variable, we model its probability, pi, as follows.

pi = Probability(yi = non security critical),

(1 − pi) = Probability(yi = security critical).
(1)

For invariant i, we let xi be its set of measured features.
In our context, the features are all the ISA-level variables
(§3.1.3) such as general purpose registers, flags, and memory
addresses, and also operators such as >, <, ̸=.

Then, we relate pi to xi as,

log(
pi

1− pi
) = x

T

i β + β0. (2)

Here, β and β0 are the vector of regression model coeffi-
cients and the intercept term, respectively, that are fitted with
glmnet. The jth entry of β corresponds to the jth feature and
explains that feature’s contribution to the odds that invariant
i is not security critical. β0 is an intercept term giving the
odds of being non security critical. When fitting the model,
the objective is to learn the β and β0 values that best describe
the observed data.

We bootstrap this model using a small set of manually
labeled invariants that contain both SCI and non-SCI. The
constructed model can be used not only to predict whether
a given invariant is likely an SCI but also to help hard-
ware designers and security practitioners understand which
of the features are critical to security based on the learned
β. For example, in our implementation only 24 of the 158
features have non-zero coefficients in the constructed mod-
els. These critical features include GPR0, PC, SF, ==, and
IMM (see §5.3).

3.5 False Positives

False positives can occur in the final set of SCI in two ways.
The first is that our tool generates an invariant that is not truly

invariant. There are two potential sources for this type: 1)
the Daikon tool itself; 2) inadequate test suites for invariant
generation; and 3) the unintentional use of a buggy processor
during the first stage. We minimize the first and second
by tuning the parameters of Daikon to be conservative in
finding invariants (see §5.1) and running many programs on
our processor. (Increasing test coverage reduces the number
of false positives.) The third source of false positive is a
limitation of our tool. We rely on human experts to manually
remove this kind of false positive from the final set of SCI.

The second type of false positive occurs when our tool
classifies a non-security-critical invariant as security-critical.
Reducing this type of false positives requires drawing a fine
line to differentiate SCIs and non-SCIs, adding more labeled
data, and refining machine learning models.

The issue of how invariants are integrated into the system
– it is possible that false-positive invariants can be deployed
to the processor – is beyond the paper’s scope. Human ex-
perts can inspect the set of generated security-critical invari-
ants to decide which are suitable for production use.

4. Implementation

Our tool is implemented mainly in Python. The exception
is the SCI inference engine which is implemented in R and
Matlab. As part of our evaluation we implement assertions
enforcing the SCI on the OR1200 processor. This part of the
work is implemented in Verilog.

4.1 Security-Critical Errata

We use potential security vulnerabilities to find security-
critical invariants. We first collect bugs from the pop-
ular open source processors OR1200, LEON2, LEON3,
OpenSPARC-T1, and OpenMSP430. Bugs are found from
the processors’ bugtracker and bugzilla sites, developers’
mail archives, commits to the source repositories, comments
in the source code, and published lists of errata. The bugs
we collect are mainly in the core of the processor; bugs in
peripheral devices such as UART, Debug Unit, and Ethernet
are not included.

After collecting bugs, we manually select the bugs that
may be classified as security critical: for each bug in the col-
lection, we examine the patch and description to determine
whether it is vulnerable to a security attack. In doing so we
follow the same guidelines used by prior efforts in manually
building SCI. Namely, we look for bugs that would allow
an attacker to gain privileges to read or modify processor
state that would not otherwise be allowed by the ISA or that
would allow the attacker to subvert core functionality of the
processor such as modifying the address in a load operation.

The total number of bugs we collected is 185, of those we
deem 25 as security-critical. Of those 25, we successfully re-
produced and modeled 17; 8 of them were not reproducible.

546

Bug No. Synopsis Source

b1 l.sys in delay slot will run into infinite loop OR1200, Bugzilla #33
b2 l.macrc immediately after l.mac stalls the pipeline OR1200, Bugtracker #1930
b3 l.extw instructions behave incorrectly OR1200, Bugzilla #88
b4 Delay Slot Exception bit is not implemented in SR OR1200, Bugzilla #85
b5 EPCR on range exception is incorrect OR1200, Bugzilla #90
b6 Comparison wrong for unsigned inequality with different MSB OR1200, Bugzilla #51
b7 Incorrect unsigned integer less-than compare OR1200, Bugzilla #76
b8 Logical error in l.rori instruction OR1200, Bugzilla #97
b9 EPCR on illegal instruction exception is incorrect OR1200, Mail #01767
b10 GPR0 can be assigned OR1200, Mail #00007
b11 Incorrect instruction fetched after an LSU stall OR1200, Bugzilla #101
b12 l.mtspr instruction to some SPRs in supervisor mode treated as l.nop OR1200, Bugzilla #95

b13 Call return address failure with large displacement LEON2, Amtel-errata #2
b14 Byte and half-word write to SRAM failure when executing from SDRAM LEON2, Amtel-errata #3
b15 Wrong PC stored during FPU exception trap LEON2, Amtel-errata #4
b16 Sign/unsign extend of data alignment in LSU OpenSPARC T1
b17 Overwrite of ldxa-data with subsequent st-data OpenSPARC T1

Table 1: Security-critical bugs implemented and used for evaluation.

Table 1 shows the 17 security-critical processor bugs we
use. The first 12 bugs are from OR1200, 3 bugs are from
LEON2, and the last 2 are from OpenSPARC T1.

Bugs b1 and b2 may allow denial-of-service (DoS) at-
tacks. In particular, bug b1 causes the processor to run in
an infinite loop and bug b2 stalls the pipeline infinitely. Al-
though the attacks violate liveness properties, we can iden-
tify security-critical safety properties at the root of the vul-
nerability. For example, the SCI we identified for b1 shows
that the root cause of the vulnerability is that the PC is not
correctly updated.

Bug b8 can be exploited to make the processor ignore an
exception that it should handle. Attackers may leverage this
to bypass some security checks. For example, failing to raise
a bus error exception will potentially allow users to write
into protected memory area.

Bugs b6, b7, or b13 leave the processor open to insecure
control flow. Attacking bug b6 or b7 will cause the processor
to incorrectly set the flag that decides whether branches
should be taken. As a result, the processor may execute a
sequence of instructions of the attacker’s choosing. Bug b13
will incorrectly set the link register, which will cause the
processor to return from a function call incorrectly and thus
run a sequence of unexpected instructions.

Bug b11 can cause the processor to execute the wrong
instruction. Even though the processor would execute the
instruction correctly, the instruction itself in the pipeline
has been contaminated because of subtle timing constraints.
This allows the attackers to change or substitute instructions
according to their needs.

Attacks on bug b12 can cause l.mtspr (Move to
Special-Purpose Register Instruction) to act as a no-op when
moving the content of a general-purpose register to some

special-purpose registers. This bug causes the processor state
to be incorrectly updated.

Bugs b4, b5, b9, and b15 deal with the contamination of
exception-related special-purpose registers. This exposes the
processor to security vulnerabilities because contaminating
the registers that store the pre-exception processor state can
potentially lead to privilege escalation.

Bugs b3, b10, b14, b16, and b17 are related to memory
access. Bugs b3 and b10 can cause an incorrect address cal-
culation or the wrong data to be loaded or stored. Bugs b14,
b16, and b17 contaminate the data transferred between mem-
ory subsystems and registers. A potential attack might be to
modify secret keys by contaminating the memory address or
the data itself when loading or storing the data.

We reproduced these 17 bugs in the OR1200 processor,
which is a 32-bit implementation of the OpenRISC 1000
architecture with Harvard microarchitecture, 5-stage integer
pipeline, virtual memory support (MMU), and basic DSP ca-
pabilities [23]. Our processor implements the basic instruc-
tion set (i.e., none of the extension modules such as floating
point). It is widely used in research projects and embedded
computer environments. For each bug we also developed a
triggering program written in a mixture of C and assembly
that attacks the buggy processor and causes the violation of
some security policies during execution.

4.2 Assertions

Our tool does not yet provide the automatic translation from
SCI to hardware assertions enforcing those SCI. However,
in our experience the process is straightforward and we give
an example showing what is required for translation from
an invariant to an RTL assertion. We leverage the industry
standard Open Verification Library (OVL) for constructing
assertions. All SCI were translated using one of four OVL

547

assertion templates: always, edge, next, delta. always is used
when the expression is always true; edge is used when the
expression is true at the point when the instruction is sam-
pled; next is used when the expression is true some number
of clock cycles after sampling the instruction; delta is used
when a monitored signal’s updates stay within a range.

Taking the invariant we described in 3.1.6 as an example,

I
.
= risingEdge(l .rfe) → SR == orig(ESR0),

the corresponding assertion for this invariant is

A
.
= next(INSN = l .rfe, SR = ESR0PREV , 1).

This means expression SR = ESR0PREV must be true one
clock cycle after instruction l.rfe is sampled. Note that we
need to store the previous cycle value of ESR0 .

5. Evaluation

In this evaluation we show that 1) our tool effectively gen-
erates SCI from existing security-critical bugs; 2) the gen-
erated SCI stop both the existing security-critical bugs and
new bugs; 3) meaningful SCI not tied to any known security-
critical bugs can be found; and 4) the automatically gener-
ated SCI represent security properties written by experts.

5.1 Invariant Generation

Our tool’s first step is to run a variety of programs on the pro-
cessor to generate candidate invariants. We collected 26GB
of trace data from 17 programs; more trace data results in
more accurate invariant generation. We configured Daikon
with a confidence limit of 0.99, reducing the risk of generat-
ing false-positive invariants that hold by chance in our trace
data set. The filters search for invariants matching our invari-
ant grammar in Figure 2.

We evaluate how the number of programs affect the set of
invariants generated. We use the following programs: Linux
boot, SPEC benchmarks (Parser, Mesa, Ammp, Mcf, Instru,
Gzip, Crafty, Bzip, Quake, Twolf, Vpr), Basicmath, Pi Cal-
culation, Bitcount, FFT, Helloworld. The execution traces
cover all 56 instructions of the OpenRISC (basic instruction
set) architecture. Figure 3 shows the result of this evaluation.
We see that running additional programs may add invariants
to the result set by exercising new features of the processor.
It may also eliminate some invariants from the result set that
cannot be justified by the new trace.

The overall trend of Figure 3 indicates that as the number
of programs increases, the set of unique invariants that we
generate becomes stable. After adding the twolf benchmark,
no new invariants are generated or removed. From this trend,
we extrapolate that if we run enough (finite) programs on the
processor, we will reach a stable set of invariants that can
roughly model the behavior of a processor.

After the initial set of invariants is generated, it is opti-
mized. Table 2 shows the effectiveness of different optimiza-
tion passes in reducing redundant and lengthy raw invariants.

500

5,000

25,000

50,000

75,000

100,000

vmlinux
basicmath

parser
mesa

ammp mcf
instru gzipcrafty bzip

quaketwolf vpr
misc

N
um

be
r o

f i
nv

ar
ia

nt
s

Type
unmodified
new
deleted

Figure 3: Unique invariants generated from executing pro-
grams. The X-axis is aggregative, e.g., basicmath means
invariants generated from running both vmlinux and
basicmath.

Raw after CP after DR after ER

Invariants 106,174 106,174 90,955 88,301
Variables 210,013 171,858 170,517 167,863

Table 2: Effect of invariant optimizations (§3.2) in reducing
the total number of invariants and variables in all invariants.
CP is constant propagation; DR is deducible removal; ER is
equivalence removal.

The optimizations in combination achieve 17% reduction in
terms of the number of invariants and 20% reduction in terms
of the number of total variables in all invariants.

5.2 SCI Identification

The second step for our tool is SCI identification. Given a set
of optimized invariants, a buggy processor and a triggering
program, our tool identifies the affected SCI from the invari-
ant set. Table 3 shows the number of identified SCI for each
of the 17 security-critical bugs we implemented.

In total, our tool identifies SCI for 16 (94%) of the 17
bugs. Interestingly, although bug b1 and b5 are two differ-
ent bugs, our tool identified the same SCI. This shows one
advantage of our tool: the SCI we extract from a particular
security bug are not just applicable to that bug, but rather
potentially to a class of bugs. The only bug for which our
tool fails to identify any SCI is bug b2. The reason is that
no ISA-level invariants are violated by this bug. The bug is
in the pipeline and all software-visible signals remain self-
consistent. Identifying SCI for this bug would require adding
microarchitectural level variables to Daikon’s instrumenter
and generating microarchitectural level invariants.

Table 3 also shows more than one SCI identified per bug
in some cases. This occurs for one of three reasons. The sim-
plest is that the bug violates more than one security prop-
erty. A second reason is that violating a single property may
have multiple consequences. For example, in our implemen-

548

Bug No. True SCI FP Detected

b1 2 22 !

b2 0 N/A ×
b3 1 8 !

b4 2 2 !

b5 5 28 !

b6 1 5 !

b7 1 1 !

b8 3 0 !

b9 4 0 !

b10 32 0 !

b11 1 0 !

b12 1 4 !

b13 2 0 !

b14 1 0 !

b15 1 25 !

b16 1 0 !

b17 3 2 !

Table 3: SCI identified from the 17 security-critical bugs we
reproduced (see Table 1). Detected means enforcing the SCI
as assertions on the processor can detect the buggy behavior
dynamically.

tation the syscall handler is always at address 0xC00. Bug
b8 violates this property and, therefore, the two invariants
l.sys → PC = 0xC00 and l.sys → NPC = 0xC04, where
l.sys is the syscall instruction, PC is the program counter,
and NPC is the next program counter. A third reason is that a
violation may persist for multiple steps and our SCI are de-
fined per instruction. For example, bug b10 violates the prop-
erty GPR0 = 0. The bug manifests in the add instruction and
violates the invariant l.add → GPR0 = 0. And, as the reg-
ister is not restored to a valid state subsequent instructions
violate analogous invariants, such as l.nop → GPR0 = 0.

The set of identified SCI may include false positives. We
manually validated the identified SCI and found 7 of the
bugs (43.8%) resulted in 0 false positives, while 6 of the bugs
(37.5%) resulted in fewer than 10 false positives (Table 3).

In practice, the false positives in the identified SCI can
be easily spotted (e.g., an SPR must equal 0). We envision
the usage scenario of our tool is that after it identifies SCI,
experts would validate them before putting into a processor.

To further validate that our automatically identified SCI
are useful, we enforce them as assertions in a SPECS-like
system. The result shows that all the 16 security-critical
bugs from which we identified SCI are detected dynamically,
meaning the SCI are effective.

5.3 SCI Inference

In Section 5.2 we show that the SCI we build from the Identi-
fication step can effectively detect security-critical bugs and
some identified SCI can detect multiple different bugs. In
this section, we show that our tool can identify useful SCI
not tied to any particular previously known bug. We use an

−1.0 −0.5 0.0 0.5 1.0 1.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

PC1

PC
2

SC
Non SC

Figure 4: PCA using selected features. From the learned
elastic net logistic regression model, 24 of the original set of
158 features had non-zero coefficients. PCA was performed
using the 24 selected features on 102 SCI/non SCI. The plot
shows the projection of these invariants in 2 dimensions.

elastic net logistic regression model to infer new SCI from
existing SCI.

We start with our 88,301 invariants, each with 158 fea-
tures, i.e., in our model from Section 3.4, N = 88, 301, P =
158. Our model is supervised, and we leverage the results
from the Identification step to provide labels to train the
model. In particular, we have 54 verified SCI (unique SCI in
Table 3). We label the unique false positives from the Iden-
tification step as non-SCI, a total of 48 invariants.

Of these 102 labeled invariants, we used 70% of the data
as training data and performed the optimization of β and
β0 using the glmnet [18] package in R. We took α = 0.5
and used 3-fold cross validation in the training set to choose
an appropriate λ. Doing so, resulted in λ = .08. When we
tested the model on the test set, we observed 90% accuracy,
validating the quality of the fitted model.

In the constructed model, there were 24 non-zero coef-
ficients from the original set of 158 features (see Table 4).
To evaluate how these 24 features can be used to partition
invariants in high-dimensional feature space, we performed
principle component analysis (PCA) on the 102 labeled in-
variants according to this limited set of 24 selected fea-
tures. Figure 4 shows the projection of these invariants in
2-dimensional space. As expected, using this set of features,
invariants cluster adequately according to class label. This
supports the model’s selection of features as robust candi-
dates for distinguishing SCI from non SCI.

We use the constructed model to further predict the en-
tire set of 88,199 (88,301−102) unlabeled invariants. Ta-
ble 5 shows the results. The model recommends 3,146 out
of the 88,199 invariants as SCI. In the Identification step, we
used the triggering programs to validate an identified SCI.
In this Inference step, we do not have ground truth for the
88,199 invariants, but we manually examined the 3,146 rec-
ommended SCI and spotted 852 clear false positives.

549

Weight Features

Positive
GPR6 OPB ROR DIV
IM MEMBUS orig(OPA) orig(SPR)
orig(IM) < ̸= +

Negative
GPR0 PC SF WBPC
IDPC REGB orig(GPR0) orig(NPC)
orig(NNPC) CONST == >=

Table 4: 24 identified features with non-zero coefficients.
Features with negative weights are associated with SCI. Fea-
tures with positive weights are associated with non-SCI.

Invariants
Inferred

FP
Security

SCI Properties

88,199 3,146 852 33

Table 5: SCI inference results

These inferred SCI can be concisely described as 33 se-
curity properties that can be added, in the form of assertions,
to a processor. In Section 5.4, we show that some of the in-
ferred SCI represent security properties that are not covered
by the SCI found in the Identification step, demonstrating
the advantage of SCI inference.

5.4 Representing Manually Written Security
Properties

To evaluate the efficacy of our tool, we test whether it finds
SCI, either from Identification or Inference, that represent
the manually written security properties of the two state-of-
the-art works: SPECS [22] and Security-Checker [11].

Table 6 shows the result. Of the 27 security critical prop-
erties from these two papers, 3 (p25, p26, p27) are security
bugs outside of processor cores. These are not the target of
this paper. For the remaining 24, 2 of them (p18, p24) need
microarchitectural states and thus our tool cannot generate
these two invariants. Thus, we mainly focus on whether our
tool can identify or infer the remaining 22 security properties
using the 17 security-critical bugs we reproduced.

From the Identification step, 11 (50%) of the 22 security
properties are identified from 12 out of 17 bugs. There are
three interesting findings. The first is that a single security
property can be identified from different bugs and the iden-
tified SCI are different. For example, for bugs b4, b9, and
b15, the identified SCI are different although they belong to
the same security property (p3). The second is that different
security properties can be identified from the same bug, e.g.
p13 and p14 can be identified from b5. Finally, a single SCI
can concisely represent multiple manually written security
properties, e.g. p17, p21 and p23. The SCI for these proper-
ties is risingEdge(l.sys) → PC = 0xC00.

Adding the Inference step, 8 (36%) additional security
properties are found. Two (p10 and p22) are not found be-

No. Security Property Description Class
From From

Ident. Infer.

Properties from SPECS [22]

p1 Execution privilege matches
page privilege

XR !

p2 SPR equals GPR in register move
instructions

RU b12

p3 Updates to exception registers
make sense

XR b4 b9
b15

p4 Destination matches the target CR !

p5 Memory value in equals register
value out

MA b14

p6 Register value in equals memory
value out

MA b16
b17

p7 Memory address equals effective
address

MA !

p8 Privilege escalates correctly XR !

p9 Privilege deescalates correctly XR !

p10 Jumps update the PC correctly CF "

p11 Jumps update the LR correctly CF b13
p12 Instruction is in a valid format IE b11

p13 Continuous Control Flow CF b5

p14 Exception return updates state
correctly

XR b1 b5

p15 Reg. change implies that it is the
instruction target

CR !

p16 SR is not written to a GPR in user
mode

RU

p17 Interrupt implies handled XR b8

p18 Instr unchanged in pipeline IE ⋆

Properties from Security-Checker [11]

p19 SPR modified only in supervisor
mode

RU !

p20 Enter supervisor mode is on reset
or exception

XR !

p21 Exception handling implies ex-
ception mechanism activated

XR b8

p22 Unspecified custom instructions
are not allowed

IE "

p23 Exception handler accessed only
during exception, in supvr mode,
or on reset

XR b8

p24 Page fault generated if MMU de-
tects an access control violation

MA ⋆

p25 UART output changes on a write
command from CPU

$

p26 Only transmit cmd or initializa-
tion change Ethernet data output

$

p27 Debug Unit’s value and ctrl regs
only accessible from supvr mode

$

Table 6: Evaluation against security properties from prior work.

For each property we indicate whether it was found in the identi-

fication (From Ident) or the inference (From Infer) step. The bug

numbers correspond to Table 1. !means the property is found. If

the property is not found it may be because it is not generated from

Daikon ("), it needs micro-architectural state (⋆), or it relates to

HW outside the processor core ($).

550

No. Security Property Description Class
From From

Ident. Infer.

p28 Flags that influence control flow
should be set correctly

CF b6 b7

p29 Calculation of memory address
or memory data is correct

MA b3
b10

p30 Link address is not modified dur-
ing function call execution

CF !

Table 7: New security properties generated by our tool that
are not covered in prior work.

cause they do not exist in the invariant set generated with
Daikon, and one (p16) is not identified as security critical
although it does exists in the set of generated invariants.

Property p10 is missing because Daikon does not capture
effective addresses (the immediate value shifted left two bits,
sign-extended to program counter width, and then added to
the address of the jump/branch instruction [23]). By adding
the effective address as a derived variable to Daikon, we can
generate this invariant. Property p22 is missing because it
concerns custom instructions, which are part of the extended
instruction set that we did not implement. (Recall, we imple-
ment the basic instruction set in our evaluation.)

Property p16 is not found by our tool, although the asso-
ciated invariant does exist in our generated set of invariants.
The invariant is risingEdge(l.add) → SR ̸= OPDEST. It is
neither violated by any of our implemented bugs, nor is it
labeled as security critical by our logistic regression model.
The latter is because in our model the ̸= operator is a fea-
ture with high positive weights, meaning invariants with that
operator are likely to be classified as non-security-critical.

Our tool generates 3 new security properties not found by
either SPECS or Security-Checker (Table 7). Two properties
(p28, p29) are identified from bugs during the Identification
phase, and one (p30) is from the Inference phase.

The property (p28) identified from bugs b6 and b7 is an
example of using a derived variable, in this case one that de-
scribes the behavior of correctly setting the control flow flag.
The property (p29) identified from bugs b3 and b10 is related
to calculation. We note that SCIFinder is able to differentiate
between calculations often used for memory addresses and
others, and labels only the former as security critical. For
example, the property GPR0 = 0 is often leveraged during
address calculation and SCIFinder identifies multiple SCI to
enforce it. Whereas invariants related to rotate calculations
are not identified as security critical.

The property found during the Inference step (p30) has to
do with the link address. A link address gives the location of
a function call instruction and is used to calculate where pro-
gram execution should return after function completion [23].
The inferred SCI states that the link address should not be
modified during function execution.

5.5 Classification of Security Properties

The SPECS project classified security-critical processor er-
rata into five classes (invalid register update, execute incor-
rect instruction, memory access, incorrect results, and ex-
ception related) [22]. Inspired by this, we classified the secu-
rity properties related to the processor core into six classes:
five of them are similar to the SPECS classification and we
add one new class that is related to control flow. The classi-
fication results are shown in Tables 6 and 7.

CF stands for control flow related properties; XR stands
for exception related properties; MA represents properties
related to memory access; IE stands for the class of secu-
rity properties that guarantee the processor will execute the
correct and specified instructions; CR represents the class of
security properties about correctly updating results.

Classifying the properties yielded two observations. The
first is that SCIFinder was effective at finding properties
related to exceptions (XR). Of the 27 properties identified by
prior work, 9 fall into the XR category (the largest category
by far – CF and MA are the next largest with 5 properties
each) and SCIFinder was able to find all 9. On the other
hand, SCIFinder was least effective for properties related
to instruction execution (IE). Of the three identified in prior
work, SCIFinder found only one. The two missed properties,
p18 and p22, required microarchitectural state and analysis
of custom instructions, respectively. We caution that these
are observations; the total number of properties is too small
to draw conclusions. However, they do suggest areas where
SCIFinder may shine, as well as opportunities for future
research to strengthen the SCIFinder approach.

5.6 Detecting Unknown Bugs

The SCI have the potential to stop new bugs that have not
been seen before. We cannot measure this directly, as new
bugs would only be found if we happened to run software
that triggered the bug (causing the SCI assertion to fire). In-
stead, we took a set of bugs that we had not used in our
identification or inference phases, added them to the proces-
sor, and ran software that triggers the bugs to see whether
our SCI would fire. For this experiment we use the 14 AMD
errata from the SPECS project. The authors reproduced the
errata in the OR1200 processor and made their code pub-
lic. Our tool is able to detect 12 of the 14 bugs. (By way of
comparison, SPECS was also able to detect 12 bugs.) Five
of these were detected by the Identified SCI, while seven
were detected by the Inferred SCI. This demonstrates that
our automatic SCI are not just applicable to the 17 known
bugs from which they were generated, but are also useful to
detect unknown bugs.

To avoid selection bias we repeat the experiment, but
this time we randomly pick 14 bugs from our set of 28
(both from design documents and from AMD errata lists,
excluding the 3 that use microarchitectural state), for use in
the Identification and Inference steps. We use the remaining

551

Step Data Size Time

hh:mm:ss

Invariant Generation traces 26GB 11: 21 :00
Optimization invariants 106,174 00: 00 :04
SCI Identification invariants

+bugs
88,301
+16

00: 44 :52

SCI Inference invariants 88,301 <00: 00 :01

Table 8: Execution time. Except for traces, sizes are given
as number of items, e.g., the inference phase reads in 88,301
invariants.

Baseline Initial SCI Final SCI

Logic 10073 LUTs 1.6% 4.4%
Power 3.24 W 0.13% 0.31%
Delay 19.1 ns 0% 0%

Table 9: Hardware overhead. The baseline is the OR1200,
Xilinx xupv5-lx110t-based System-on-Chip. Initial SCI are
the 14 assertions from Identification step. Final SCI are the
33 assertions from both Identification and Inference steps.

14 bugs for testing. Of the test set, only bug b6 is not
detected; the SCI for detecting b6 (risingEdge(l.sfleu) →
(OPA − OPB) ∗ (1− 2 ∗ CF) ≥ 0) is not found.

5.7 Performance

In this section, we evaluate the performance of our tool.
The experiments are performed on a machine with an Intel
Core i7 Processor (quad-core, 2.60GHz) and 8 GB of RAM.
Table 8 shows the CPU time taken for each step of our tool.
The whole process takes about 12 hours. The most expensive
step is the Invariant Generation for 26 GB of trace data. In
practice, a full Invariant Generation step is only performed
once and all subsequent generation is incremental.

We also report on the manual effort needed to validate
the SCI recommended by our tool. It took a graduate stu-
dent roughly 5 hours to go through the entire list of 3,146
recommended SCI to identify false positives (10.5 invari-
ants per minute, on average). Invariants pertaining to one in-
struction were carefully validated first, and those that were
clearly non-invariant (as determined by the ISA) were classi-
fied as false positives. Invariants with the same expression as
the false positives, but pertaining to other instructions, were
then easily searched for and eliminated. Finally, invariants
that belong to only one or a few instructions were validated.

Finally, table 9 shows the hardware overhead incurred by
adding our assertions to the OR1200 design. The additional
logic is less than 5% of the original design, incurs a power
overhead of 0.3%, and adds no delay.

6. Related Work

Use of Security Critical Assertions Prior work has estab-
lished the use of assertions post deployment to strengthen
the security of hardware [4, 10, 11, 22]. Our work builds
upon this literature and we evaluate our semi-automatically
generated invariants against the manually crafted invariants
of prior art.

Extracting Assertions from HW Designs The IODINE
tool automatically extracts from designs ABV assertions
such as one-hot encoding or mutual exclusion between sig-
nals [19]. More recent papers use data mining of simulation
traces to extract assertions [12, 21]. These approaches focus
on extracting assertions for functional verification and are
not concerned with finding processor’s security properties.

Approaches for Protecting Vulnerable HW Techniques
for detecting and recovering from security-critical processor
bugs fall into three categories: hardware-based [8, 27, 29,
30], software-based [20, 25, 32] and a hybrid of hardware
and software [13, 14, 22]. Hardware-based solutions include
adding redundancy to protect against random errors and
checking processor state transitions against a known set of
errata signatures. Software-based solutions include micro-
code patching and binary translation. The hybrid approaches
can provide the best of both worlds: high coverage with low
overhead; the use of assertions for dynamic verification post-
deployment falls into this category.

Data Mining for Security Properties of SW Security prop-
erties in software have been found using human specified
rules [31], by observing instances of deviant behavior [16,
26, 28], or by identifying instances of known bugs [33].

7. Conclusion

We have presented SCIFinder, a methodology and tool-chain
for generating security-critical invariants (SCI). Given a list
of known security-critical errata from a processor and the
processor design we identify a set of SCI that can be used
to dynamically verify the processor’s security. Experiments
show SCIFinder’s practicality and effectiveness in generat-
ing meaningful SCI. It identifies effective SCI for 16 of 17
bugs from input errata plus 12 bugs from AMD errata lists.
The final SCI set covers 86.4% of the manually crafted se-
curity properties and identifies 3 new properties not covered
in prior work.

Acknowledgments

We would like to thank the anonymous reviewers for their
insightful questions and constructive suggestions for im-
provement. This research was supported by the National
Science Foundation under grants CNS-1464209 and CNS-
1651276, and the National Institutes of Health under grants
T32CA201159. Any opinions, findings, conclusions, and
recommendations expressed in this paper are solely those of
the authors.

552

References

[1] Intel pentium processor statistical analysis of floating point
flaw. Intel White Paper, July 2004.

[2] Revision Guide for AMD Family 16h Models 00h-0Fh Pro-
cessors. Product Revision, 2013.

[3] Intel Core i7-600, i5-500, i5-400 and i3-300 Mobile Processor
Series. Specification Update, 2014.

[4] M. Abramovici and P. Bradley. Integrated circuit security:
New threats and solutions. In Proceedings of the 5th Annual

Workshop on Cyber Security and Information Intelligence Re-

search: Cyber Security and Information Intelligence Chal-

lenges and Strategies, CSIIRW ’09, pages 55:1–55:3, New
York, NY, USA, 2009. ACM.

[5] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools (2nd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2006.

[6] F. E. Allen. Program optimization. In Annual Review in

Automatic Programming, vol. 5, pages 239–307, 1969.

[7] D. Athow. Pentium FDIV: The processor bug that shook the
world. techradar.pro, October 2014.

[8] T. M. Austin. DIVA: A reliable substrate for deep submi-
cron microarchitecture design. In Microarchitecture, 1999.

MICRO-32. Proceedings. 32nd Annual International Sympo-

sium on, pages 196–207, 1999.

[9] A. A. Bayazit and S. Malik. Complementary use of runtime
validation and model checking. In Proceedings of the 2005

IEEE/ACM International Conference on Computer-aided De-

sign, ICCAD ’05, pages 1052–1059, Washington, DC, USA,
2005. IEEE Computer Society.

[10] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin. Security
checkers: Detecting processor malicious inclusions at run-
time. In Hardware-Oriented Security and Trust (HOST), 2011

IEEE International Symposium on, pages 34–39, June 2011.

[11] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin. Evaluating
security requirements in a general-purpose processor by com-
bining assertion checkers with code coverage. In Hardware-

Oriented Security and Trust (HOST), 2012 IEEE International

Symposium on, pages 49–54. IEEE, 2012.

[12] P.-H. Chang and L. C. Wang. Automatic assertion extraction
via sequential data mining of simulation traces. In Design Au-

tomation Conference (ASP-DAC), 2010 15th Asia and South

Pacific, pages 607–612. IEEE, 2010.

[13] K. Constantinides and T. Austin. Using introspective
software-based testing for post-silicon debug and repair. In
Design Automation Conference (DAC), 2010 47th ACM/IEEE,
pages 537–542, June 2010.

[14] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco.
Software-based online detection of hardware defects mech-
anisms, architectural support, and evaluation. In 40th An-

nual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO 2007), pages 97–108, Dec 2007.

[15] T. de Raadt. Intel Core 2. OpenBSD-misc mailing list,
June 2007. http://marc.info/?l-openbsd-isc&

m=118296441702631;.

[16] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon sys-
tem for dynamic detection of likely invariants. Sci. Comput.

Program., 69(1-3):35–45, Dec. 2007.

[17] H. Foster, A. Krolnik, and D. Lacey. Assertion-Based Design.
Springer US, 2005.

[18] J. Friedman, T. Hastie, and R. Tibshirani. glmnet: Lasso and
elastic-net regularized generalized linear models. R package

version, 1, 2009.

[19] S. Hangal, S. Narayanan, N. Chandra, and S. Chakravorty.
IODINE: A tool to automatically infer dynamic invariants for
hardware designs. In Proceedings of 42nd Design Automation

Conference. IEEE, 2005.

[20] L. C. Heller and M. S. Farrell. Millicode in an IBM zSeries
processor. IBM Journal of Research and Development, 48
(3.4):425–434, May 2004.

[21] S. Hertz, D. Sheridan, and S. Vasudevan. Mining hardware as-
sertions with guidance from static analysis. Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions

on, 32(6):952–965, 2013.

[22] M. Hicks, C. Sturton, S. T. King, and J. M. Smith. SPECS: A
lightweight runtime mechanism for protecting software from
security-critical processor bugs. In Proceedings of the Twen-

tieth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS
’15, pages 517–529, Istanbul, Turkey, 2015. ACM.

[23] D. Lampret. OpenRISC 1200 IP core specification, 2001.

[24] S. Ma and J. Huang. Penalized feature selection and classi-
fication in bioinformatics. Briefings in bioinformatics, 9(5):
392–403, 2008.

[25] A. Meixner and D. J. Sorin. Detouring: Translating software
to circumvent hard faults in simple cores. In 2008 IEEE In-

ternational Conference on Dependable Systems and Networks

With FTCS and DCC (DSN), pages 80–89, June 2008.

[26] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim. Cross-
checking semantic correctness: The case of finding file system
bugs. In Proceedings of the 25th Symposium on Operating

Systems Principles, SOSP ’15, pages 361–377, New York,
NY, USA, 2015. ACM.

[27] S. Narayanasamy, B. Carneal, and B. Calder. Patching pro-
cessor design errors. In 2006 International Conference on

Computer Design, pages 491–498, Oct 2006.

[28] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sul-
livan, W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard.
Automatically patching errors in deployed software. In Pro-

ceedings of the ACM SIGOPS 22Nd Symposium on Operating

Systems Principles, SOSP ’09, pages 87–102, New York, NY,
USA, 2009. ACM.

[29] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari,
B. Calder, and J. Torrellas. Patching processor design errors
with programmable hardware. IEEE Micro, 27(1):12–25, Jan.
2007.

[30] S. R. Sarangi, A. Tiwari, and J. Torrellas. Phoenix: Detecting
and recovering from permanent processor design bugs with
programmable hardware. In Proceedings of the 39th Annual

553

IEEE/ACM International Symposium on Microarchitecture,
MICRO 39, pages 26–37, Washington, DC, USA, 2006. IEEE
Computer Society.

[31] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. AutoISES:
Automatically inferring security specifications and detecting
violations. In Proceedings of the 17th Conference on Secu-

rity Symposium, SS’08, pages 379–394, Berkeley, CA, USA,
2008. USENIX Association.

[32] S. G. Tucker. Microprogram control for System/360. IBM

Systems Journal, 6(4):222–241, 1967.

[33] F. Yamaguchi, F. Lindner, and K. Rieck. Vulnerability extrap-
olation: Assisted discovery of vulnerabilities using machine
learning. In Proceedings of the 5th USENIX Conference on

Offensive Technologies, WOOT’11, pages 13–13, Berkeley,
CA, USA, 2011. USENIX Association.

[34] H. Zou and T. Hastie. Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 67(2):301–320, 2005.

554

